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Abstract

We examine the joint time series of option prices and returns on the S&P 500
index and a set of stocks drawn from the index with a new arbitrage-free multivariate
stochastic volatility model that captures a market effect. The preliminary results show
that the new model fits well for all the marginal time series for different periods of
time. The price of volatility risk is estimated from option prices simultaneously for
stocks and the index. We find that the volatility risk premia is not constant over time
and that it differs across stocks. However, our model yields very small option pricing
errors both in-sample and out-of-sample. Our future work will focus on (1) improving
the estimation from the joint data of returns and option prices, and test the statistical
significance of model parameters, (2) compare our modeling approach with existing
univariate models from a trading perspective, and (3) extend our model with a latent
process to describe the price of volatility risk.

1 Introduction

Today options play an increasingly important role in financial markets. Within ten years
of the establishment of the first options organized exchange in 1973, the volume of trading
in stock options grew to a level often exceeding, in terms of share equivalents, that of the
New York Stock Exchange. Huge volumes are now traded on many exchanges throughout
the world and also over the counter by financial institutions. The underlying assets include
stocks, market indices, foreign currencies, futures and debt instruments.

Option valuation was first satisfactorily developed by Black and Scholes (1973) and Mer-
ton (1973). The authors derived the arbitrage-free price of a European option under the
assumption that the stock price follows a geometric Brownian motion with constant drift
(i.e. constant risk-free rate) and constant volatility. The main problem with their derived
option price is that it is often significantly different from the actual trading price that one
can observe in the market. Such systematic valuation errors are often attributed to the fact
that volatility does not remain constant over time. In addition to temporal variation, it
is also well known that the Black, Scholes, and Merton (BSM) implied volatility (i.e. the
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resulting volatility parameter from matching the observed option price with the BSM price)
exhibits cross-sectional variation, known as the “smile” effect. The name came from the
fact that, prior to the October 1987 market crash, the BSM implied volatility function of
the S&P 500 index options had the shape of a smile across strike prices. However, after
October 1987, some studies suggested that the index implied volatility function decreases as
the strike price increases.

The implied volatility describes a process which is often different from the realized volatil-
ity (see, Figure 1). To hedge the risk of the volatility process, buyers of options pay a pre-
mium, called volatility risk premium or the price of volatility risk. Empirically, it was found
that the pricing of the volatility risk in options is a possible explanation for the difference
between implied and realized volatility (see Bakshi and Kapadia (2003)). In the context of
option valuation, three important questions arise. Is the volatility risk premium statistically
significant in options? Does the price of volatility risk vary across time? Do different assets
have different prices of volatility risk? If so, is there any common component across assets,
such as market or industry? This thesis tries to address these questions on the price of
volatility risk by developing a multivariate model that allows one to examine and capture
features of the price of volatility risk for stocks and the S&P 500 index simultaneously.

The volatility risk premium was examined with univariate volatility models, and for index
options mainly (see Bates(2000), Pan(2002), Eraker (2004) among others). In the context
of index options, there is no common conclusion on whether the volatility risk premium is
significantly different from zero or whether it is constant over time and strike prices. Also,
literature gives much more attention to index options than to equity options. Literature
investigating the properties of volatility risk premium from equity options is almost nonexis-
tent. However, Bakshi and Kapadia (2003) studied equity options and found that individual
equity options embedded a negative market volatility risk premium, in general, assuming
that idiosyncratic volatility was not priced.

The models developed to study the price of volatility risk belong to a large class of volatil-
ity models, known as stochastic volatility (SV) models. This class of models is popular for
two main reasons. First, it captures the return volatility term structure while explaining the
smile effect. Secondly, options can be valued under some stochastic volatility models ana-
lytically (see Heston model, 1993) or numerically (for example, by Monte Carlo simulations
or by finite difference methods). However, to study the price of volatility risk across stocks,
we need to capture both the term structure of return volatilities for different assets and the
dynamics of the cross-correlations.

Straightforward extensions of popular univariate stochastic volatility models (Heston
(1993) or its generalization developed by Bates (2000)) may be computational infeasible to
estimate. The calibration for univariate SV models is already very complex due to the latent
stochastic volatility, an extension to a multivariate framework involving a large number of
parameters would make the model difficult to fit even a 3-dimensional return series. In this
thesis we propose a novel multivariate stochastic volatility model that describes the evolu-
tion of the covariance matrix through an observed common factor and latent idiosyncratic
stochastic volatilities. We fit our model to a 13-dimensional time series of returns using the
maximum likelihood criterion. Preliminary results show that our multivariate model fits all
marginal return series well. However, returns alone cannot give information about the price
of volatility risk. We need option price data (or implied volatilities computed from options)
to estimate this premium. Therefore, we add to our model a parameter for each asset, to
represent the volatility risk premium and we estimate it from option prices, for all assets
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simultaneously. The estimation of the volatility risk premia from option price data uses the
parameter estimates obtained from returns data. In other words, we first use the returns
data to estimate one set of parameters, and then conditioned on these estimates, we calibrate
the price of volatility risk from option prices for each asset. Our results show that the price
of volatility risk is different across assets and varies over time when estimated for different
time windows. However, we did not obtain standard errors for our parameter estimates. We
are particularly interested in estimating the standard errors for the price of volatility risk
to test whether it is statistically significant. Most empirical studies don’t report standard
errors for the price of volatility risk since they fit their model to returns and option prices
separately. Nevertheless, there are few authors who estimated all model parameters from
the S&P 500 index returns and option prices jointly. These authors used methods such as
Generalized Method of Moments (GMM) (see Pan (2002)), Efficient Methods of Moments
(EMM) (see Chernov and Ghysels (2000)), and Bayesian methods (see Eraker (2004)). How-
ever, given the difficulty in estimating SV models, all previous empirical studies on the joint
time series of returns and options have been for a single underlying (i.e, an index or an
interest rate). Our work is the first estimation of a multivariate stochastic volatility model
from the joint time series of returns and derivatives on different underlying assets. Moreover,
while most researchers worked only with European options (i.e., index options), we study
also American-style options for individual stocks, options that are more difficult to price
than European options. Therefore, methods previously used to fit univariate returns and
option prices jointly, may be inefficient or difficult to implement for our multivariate model
and data. As a consequence, we develop a stochastic EM-type algorithm to calibrate our
model to returns and option price data jointly.

The next section discusses existing modeling approaches to value options, and methods
to estimate model parameters from returns and option prices. Section 3 presents preliminary
results from fitting our proposed model to returns and option price data. Section 4 discusses
work that remains to be done, including an estimation procedure to calibrate our model to
returns and option price data jointly, a comparison of our modeling approach with existing
univariate models from an application perspective, and an extension of our model to describe
the dynamics of the volatility risk premium.

2 Literature Overview

Most attempts to explain the BSM implied volatility smile concentrate on relaxing the BSM
assumption of constant volatility by allowing the return volatility to evolve through time
deterministically or stochastically. Two deterministic time-varying volatility models have
gained popularity in practice, the Cox and Ross (1976) constant elasticity of variance (CEV)
model, and the implied binomial tree models of Dupire (1994), Derman and Kani (1994),
and Rubinstein (1994). Emanuel and MacBeth (1982) found that in sample, the CEV model
fits option price data better than the BSM constant volatility model, but the CEV model
does no better than the BSM model out-of-sample. On the other hand, the problem with the
implied binomial tree framework is that it provides flexible models that overfit the option
prices at any point in time. However, empirically it was found that the parameters of simple
deterministic volatility models are highly unstable through time (see Dumas, Fleming, and
Whaley, 1998). All these observations suggest that deterministic volatility models may not
be able to explain the shape of the implied volatility curve.
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2.1 Stochastic Volatility Models

Empirical studies on option pricing with stochastic volatility (SV) models showed that these
models have the potential to explain the shape of the implied volatility curve. Moreover,
these models seem to allow for large market movements or fat tails in the returns distribution
by assuming a stochastic element in the time evolution of the conditional variance process.
Two popular examples of option pricing models with SV are Hull and White (1987), and
Heston (1993). Let S(t) and v(t) denote the spot price and the return variance at time
t, respectively. The model introduced by Hull and White assumes the following stochastic
processes:

dS(t) = µSdt + σ(t)SdW1(t), (1)

v(t) = σ2(t)

dv(t) = φvdt + ξvdW2(t), (2)

where W1 and W2 are two correlated Wiener processes, µ, φ and ξ are unknown parameters,
and σ(t) is the return volatility process.

The Heston model assumes that the spot asset S(t) follows the diffusion process given
by (1) and that the volatility σ(t) follows an Ornstein-Uhlenbeck process (OU), or that the
variance process v(t) follows the square-root process (Cox, Ingersoll, and Ross)

dv(t) = k(θ − v)dt + ξ
√

vdW2(t), (3)

where W1 and W2 are two correlated Wiener processes, and k (the speed of mean reversion),
θ (long-run mean) and ξ are unknown parameters. Heston provides a closed-form solution for
European options using Fourier transform methods, while Hull and White value European
options in a series form for the case in which W1 and W2 are independent.

Another example of diffusion models is the class of exponential linear models (Tauchen,
2004). In this class, the basic model is given by two equations, equation (1) for the asset
price evolution, and equation (4) for the log-volatility dynamics:

σt = exp(ξ0 + ξ1v(t))

dv(t) = (α0 + α1v)dt + α2dW2(t), (4)

where ξ1, ξ2, α0, α1, and α2 are unknown parameters.
There have been numerous theoretical extensions to models (1)-(4). However, few of them

have been tested against their simpler form (for example, the Heston model) empirically.
One extension was the introduction of jumps in the underlying and/or volatility processes.
A number of empirical studies investigated whether the stochastic volatility jump-diffusion
specifications could explain the pricing biases in the BSM model. Most papers invoked the
October 1987 market crash for the deficiency of an SV model to fit the return series and the
option prices. In particular, recent work by Bates (2000), Pan (2002) and Eraker (2000, 2004)
focused on whether incorporating discontinuous jumps in the asset price and/or volatility
improved the fit over simpler SV models to S&P 500 return data and index option prices.
Bates (2000) found, for example, that stochastic volatility significantly reduced option pricing
errors compared to the BSM model. His general model was an extension of the Heston model
allowing for Poisson jumps in the asset price with constant or time-varying intensity. This
jump diffusion model seemed to bring a slight improvement over the Heston model in terms of
option errors. However, his approach used option prices only, and consequently, parameters
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were estimated only under the risk neutral measure without being able to identify volatility
and jump risk premia. Pan (2002) adopted the Bates (2000) model and used the joint data of
returns and option prices to estimate model parameters. She concluded that jump diffusions
were important in capturing variations in BSM volatilities, and that, the Heston model was
strongly rejected for the joint data, as well as for the univariate data. Contrary to the results
in Bates(2000) and Pan(2002), Eraker (2004) found the Bates model with jump components
didn’t seem to improve significantly upon the simpler stochastic volatility (Heston) model in-
sample and out-of-sample option pricing. However, his findings showed that jump diffusion
models fitted the time series dimension of the data reasonably well. Overall, researchers
found that the Heston model calibrated with moment-based methods did not fit the returns
and option prices on the S&P 500 well.

Another extension to models (1)-(4) was the introduction of a second unobserved volatil-
ity factor. Several other authors argued that the Heston model did not fit well long series of
daily stock index returns (Anderson et al (2002), Chernov et al (2003), Eraker et al (2003))
because there was only one volatility process, which had to accomplish two purposes simul-
taneously. Specifically, it needed to capture the persistent stochastic volatility (with very
small values of the mean reversion speed parameter k), and it needed to accommodate the fat
tails (with very large values of k). Therefore, some researchers introduced a second volatility
factor with a different mean reversion speed. Two-factor volatility structures have been de-
veloped empirically by Gallant, Hsu, and Tauchen (1999), Barndorff-Nielsen and Shephard
(2001a, 2002a), Alizadeh, Brandt, and, Diebold (2002), among others. Also, Bakshi and
Kapadia (2003) build a two-factor stochastic volatility model based on the assumption of a
common latent factor in the marginal volatilities (see model given by (5)). However, they
do not fit their model to returns and/or options, instead they are interested in deriving
delta-hedged gains as a function of market volatility risk premium.

dSi(t)
Si(t)

= µi[Si, Vi]dt +
√

Vi(t)dW 1(t),

Vi(t) = βiVm(t) + Zi(t),
dVm(t) = (θ − kVm)dt + η

√
VmdW 2(t),

(5)

where Si(t) and Vi(t) denote the stock price and the variance of firm i, Vm(t) denotes the
market index variance, and β, θ, k, η are unknown parameters. The overall conclusion in the
above studies was that the two-factor volatility model did a better job than the one-factor
model, but it still didn’t fit the daily returns data well. Tauchen et al (1999) extended
the two-factor model to a three-factor volatility model and found that this latter model
did better than the former, arguing that the three-factor model mimicked the long-memory
behavior of financial volatility.

Empirically, it was found that the dependence in the volatility structure initially decays
quickly at short lags, and then the decay slows at longer lags, when volatility is measured
using high frequency data over a few years or using daily data over decades. To capture
this feature, researchers have been working with both discrete and continuous time long
memory SV. Recent work focused on the square root model driven by fractionally integrated
Brownian Motion (Comte, Coutin, and Renault, 2003) and on the infinite superposition of
non-negative OU processes (Barndorff-Nielsen, 2001a). These two models have the advantage
that option valuations can be performed without high computational cost. We will not
investigate further these models since we use daily data for a time period of only a few years.
The overall conclusion is that stochastic volatility models are suitable for returns data, and
for option price data if volatility/jump risk premia is parameterized. Given this fact, we build
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our multivariate model with stochastic volatility models for the marginal returns series.

2.1.1 Multivariate Stochastic Volatility Models

Numerous empirical studies exist for pricing options under univariate stochastic volatility
models, but there are none that investigate multivariate volatility models using the data of
returns and option prices jointly. Moreover, the literature on multivariate volatility models
is not rich. Various discrete time multivariate models have been proposed in the literature
to parameterize the conditional covariance (see, for example the multivariate GARCH model
introduced by Engle and Kroner (1995), the dynamic conditional correlation model of En-
gle (2002), and models based on copula distributions of Şerban, Brockwell, Lehoczky and
Srivastava (2006)). An alternative approach for achieving a more manageable and parsimo-
nious multivariate volatility model makes use of factor structures (see Diebold and Nerlove
(1989) for example). Each factor is allowed to have its own latent dynamic structure, which
is parameterized as an ARCH process. An empirical drawback of this approach is that
the covariance matrix of the idiosyncratic innovations is assumed constant over time. A
continuous-time multivariate stochastic volatility model is introduced by Gourieroux and
Sufana (2004) in the context of derivative pricing. They propose a multivariate extension of
the Heston model, modeling the dynamics of the covariance matrix as a Wishart autoregres-
sive (WAR) process. However, the authors provide no empirical application of their model.
Our study is the first to develop and fit a cross-sectional multivariate model to returns and
option prices jointly.

2.2 Inference

A major difficulty with the use of discrete and, in particular, continuous time SV models is
that they are hard to estimate because they don’t have readily available likelihood functions.
Formally, the SV likelihood is given as follows. Let r = (r1, ..., rT ) and v = (v1, ..., vT ) denote
the vector of returns and volatilities, respectively. If Θ is the set of model parameters, then
the probability density function of the data given Θ may be written as

f(r; Θ) =

∫
f(r,v; Θ)dv =

T∏
t=1

∫
f(rt|vt; Θ)f(vt|Ft−1; Θ)dvt. (6)

For parametric SV models such as (2)-(4), the density f(rt|vt; Θ) is known in closed form,
but f(vt|Ft−1; Θ) is not available. This led to two approaches in the literature to estimating
SV models. Numerous authors focus on simple moments-based estimators, whereas others
focus on computationally intensive methods such as simulated maximum likelihood methods
and MCMC techniques.

In the first class of estimation methods, the Generalized Method of Moments (GMM)
and the Efficient Method of Moments (EMM) have been used predominantly in the econo-
metrics literature. The GMM was developed by Hansen (1982) from the method of moments
procedure and is closely related to the classical theory of minimum chi-square estimation.
However, this method is not particularly efficient, since the unconditional moments available
in closed-form are different from the (efficient) score moments associated with the likelihood
function. The EMM procedure (Gallant and Tauchen, 1996) has the potential to deliver effi-
cient inference, since it is based on approximating the score (moment) vector. The main idea
in the EMM is to use a tractable semi-parametric (SNP) density estimate to approximate
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the log-likelihood, and then approximate the (pseudo) score moments (given by SNP) using
Monte Carlo simulations from the true SV model. An important drawback for GMM and
EMM is the lack of any estimates of the underlying latent state variable. Some authors used
the Kalman filter to estimate the latent variable even though the simplest SV model assumes
some non-Gaussian components. However, the Kalman filter has been generally found to
perform poorly when the noise is non-gaussian. Gallant and Tauchen (1998) developed a
technique within EMM, called re-projection, in which they used the same idea of a tractable
SNP density estimate in order to evaluate the one-step-ahead conditional mean and vari-
ance analytically. The EMM technique is not necessarily very efficient, and the re-projection
method for estimating the latent variable is numerically intensive.

In the second class of calibration methods, the MCMC approach worked well for discrete
SV models by Shephard (1993), and Jacquier, Polson, and Rossi (1994). A key advantage
of the MCMC algorithm is that the distribution of the latent state vector is obtained as an
implicit part of the estimation. The procedure solves the smoothing problem of determining
f(vt+j|rT), but it doesn’t yield the filtering distribution f(vt|rt) which is important in many
applications. However the filtering problem can be tackled via so-called particle filters (see,
for example, Gordon, Salmond, and Smith (1993), Doucet, deFreitas, and Gordon (2001),
and Pitt and Shephard (1999), for more details). The extension of the MCMC technique to a
continuous-time setting is discussed in Elerian, Chib, and Shephard (2001) and Eraker(2001).
In summary, the MCMC approach works well for many practical problems, but in more
complex settings there might be serious issues with its implementation.

In general, most estimation procedures developed for non-linear state-space models can
be adopted for continuous-time models. Some of the SV models have closed-form conditional
distributions readily available in continuous time, and the above mentioned techniques can
be applied. Some, however, don’t have closed-form distributions, but it is possible to dis-
cretize the model by using first order (Euler scheme) and second order (Milestein scheme)
approximations. Moreover, Monte Carlo methods (such as the bootstrap filter of Gordon et
al (1993), or the method introduced in Brockwell (2005)) can be used to approximate the
likelihood function (6) for SV models in (1)-(4).

Inference from returns only is not sufficient to predict option prices. According to modern
asset pricing theory, the value of an option can be computed as the expectation under the risk-
neutral measure of the discounted future payoff. Therefore, options are priced not using the
true process, but using a corresponding risk-neutral process that incorporates the appropriate
compensation for volatility risk and/or jump risk. SV models under a risk-neutral measure
usually have the same parametric structure as the ones under the true measure. They also
have common parameters. The difference between the objective and risk-neutral measures
defines the risk premia. It has been documented in the literature (Doran and Ronn (2004),
Eraker (2004) for example) that the price of volatility risk, for example, is of key importance
for pricing options. However, information on the volatility risk premium (which is usually
the risk-neutral specific parameter) cannot be obtained only from the return data. Therefore,
there is a growing body of research which advocates the use of the joint data of returns and
option prices to fit SV models. Papers by Chernov and Ghysels (2000), Bates (2000), Pan
(2002), Jiang (2002), Jones (2003), Eraker (2004) all use some combination of a time series of
the underlying price and one or more time series of liquid, short-term, near-the-money option
prices to estimate the model parameters under both the objective and risk-neutral measures.
Most of the above authors use moments-based inference methods, except for Eraker(2004)
and Jones(2003) who used Bayesian analysis to arrive at their estimates.
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2.2.1 Volatility Risk Premium

There is no common conclusion on the properties of the volatility risk premium. Some au-
thors argued that this premium was statistically significantly different from zero (Melenberg
and Werker (2001), for EOE index options; Bakshi and Kapadia (2001), and Coval and
Shumway (2001) for options on S&P 500 and S&P 100), and some argued that while nega-
tive, the volatility risk premium was insignificant for S&P 500 options (Pan (2002), Eraker
(2004)). Doran and Ronn (2004) documented the impact of the market price of volatility
risk on volatility bias through simulations. Their findings suggest that across several models
the market price of volatility risk is a critical parameter that generates the differences in
risk-neutral (BSM implied volatility) and objective volatility (realized volatility). Moreover,
Melenberg and Werker (2001) studied the time-series properties of the volatility risk premi-
ums (estimated at daily frequency) and concluded that they were non-constant and exhibit
significant autocorrelation.

Literature investigating the properties of the volatility risk premium from the equity
option market is almost nonexistent. However, Bakshi and Kapadia (2003) investigated the
market volatility risk premium for the equity option market with the model given by (5).
They found that individual equity option prices embedded a negative market volatility risk
premium, in general. However, they showed that the volatility risk from equity options was
much smaller than that from index options, and idiosyncratic volatility is not priced. Their
conclusion is based on regressing stock delta-hedged gains versus market realized volatility
and stock realized volatility averaged over all stocks, obtaining a significant coefficient for
the market volatility and an insignificant one for the stock return volatility. However, their
empirical results are questionable, because, for example, they used realized market and stock
volatilities, rather than the market and idiosyncratic volatilities filtered from their model.

3 Preliminary Results

In this section we propose a new continuous-time multivariate stochastic volatility model
and demonstrate that it fits well the return series data from 12 stocks representing three
industrial sectors and the S&P 500 index. We also evaluate this model from an option pricing
perspective.

3.1 The model

Our multivariate diffusion model builds on the idea that stock returns have a market com-
ponent, which we assume is observed through the S&P 500 index. Other factors can be
considered as well, such as the ones from the discrete-time Fama-French model. However,
Figure 2 shows, for the example of 12 stocks, that one eigenvalue dominates the other ones
over time. Therefore, for our initial study we restrict ourself to considering only one factor
in predicting the stock returns. We also specify a diffusion model for the market factor, and
model both the idiosyncratic stock return volatility and the market (index) return volatility
as autonomous stochastic processes. This model introduces four sources of uncertainty to
the underlying stock price dynamics: (1) stock return shocks, (2) market return shocks, (3)
stock volatility shocks, and (4) market volatility shocks. The prices of these risk factors are
parameterized and estimated in Section 3.4.
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3.2 The data-generating process

Let (Ω,F , P ) be a probability space and (Ft) an information filtration satisfying the usual
conditions (see, e.g. Protter, 1990). We denote by S = (S1, ..., SN) and by I an N-dimensional
vector of stock price processes and the index process, respectively. Our model assumes the
following data-generating process for the stock price vector S and for the index I

dSk(t)
Sk(t)

= (µk − βkµI)dt + βk
dI(t)
I(t)

+
√

vSk
(t)dW

(S)
k (t),

dI(t)
I(t)

= µIdt +
√

vI(t)dW
(S)
I (t),

vSk
(t) = exp(xSk

(t)),

dxSk
(t) = αk(bk − xSk

(t))dt + σkdε
(X)
k (t),

dε
(X)
k (t) = γkdW

(X)
(t) + dW

(X)
k (t),

vI(t) = exp(xI(t)),

dxI(t) = αI(bI − xI(t))dt + σIdW
(X)
I (t),

(7)

where, for k = 1, .., N , W
(S)
k (t), W

(S)
I (t), W

(X)
(t), W

(X)
k (t) and W

(X)
I (t) are standard

Brownian motions with the following correlation parameters

0 = dW
(S)
k (t)dε

(X)
k (t),

0 = dW
(S)
I (t)dW

(X)
I (t),

ρSI
k = dW

(X)
k (t)dW

(X)
I (t),

0 = dW
(X)

(t)dW
(X)
k (t),

ρ = dW
(X)

(t)dW
(X)
I (t)

0 = dW
(S)
k (t)dW

(S)
I (t).

Applying Îto’s Lemma to the first two equations in (7), we obtain the following model
for stock and index log-returns

d log(Sk(t)) = (µk − βkµI − vSk
(t)

2
− βk(βk − 1)vI(t)

2
)dt + βkd log(I(t))

+
√

vSk
(t)dW

(S)
k (t),

d log(I(t)) = (µI − vI(t)
2

)dt +
√

vI(t)dW
(S)
I (t),

vSk
(t) = exp(xSk

(t)),

dxSk
(t) = αk(bk − xSk

(t))dt + σkdε
(X)
k (t),

dε
(X)
k (t) = γkdW

(X)
(t) + dW

(X)
k (t),

vI(t) = exp(xI(t)),

dxI(t) = αI(bI − xI(t))dt + σIdW
(X)
I (t).

(8)

This model captures important features of the stock returns dynamics, namely, the mar-
ket effect and the stochastic return volatility. First, the market effect is modeled by the
process I that introduces two sources of uncertainty to the stock return processes, the index
return shock W

(S)
I and the index volatility shock W

(X)
I , which initially are assumed to be
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independent. The index return log-volatility xI follows an OU process with constant long-
run mean level bI , speed of mean-reversion αI , and volatility coefficient σI . Higher values
of σI imply that the asset price distribution will have fatter tails. Second, the idiosyncratic
stock return volatility is modeled by the process vSk

which introduces the shock ε
(X)
k . The

stock return log-volatility xSk
follows an OU process with constant long-run mean bk, speed

of mean-reversion αk, and volatility coefficient σk, for k = 1, 2, ..., N . We further expand on
the covariance structure between stock return volatilities by assuming a common shock W
and an idiosyncratic shock W

(X)
k , both correlated with the index log-volatility shock W

(X)
I

with coefficients ρ and ρSI
k , respectively. The intuition behind these correlations is that the

index is nothing other than a weighted average of stocks (we fit only stocks from S&P 500)
and thus its variance process will be a function of the noise processes from the stock variance
process.

There is evidence in the literature (e.g. Pan(2002)) that the shock in the index return,

W
(S)
I , and the shock in the index volatility, W

(X)
I are correlated with a significant constant

coefficient. This correlation parameter is typically found to be negative and implies that a fall
in prices usually will be accompanied by an increase in volatility, which is sometimes known
as the “leverage effect”. For model simplification, we assume that the return shocks and the
log-volatility shocks are not correlated for both stock and index returns. Investigations on
whether these correlations are significantly non-zero are left for future work.

3.3 Inference from the returns data

Since we sample the returns at discrete times, we need a discrete version of the continuous-
time model (8). The relatively simple form of the differential equations in (8) allows us
to obtain analytical solutions for the return conditional distribution and the log-volatility
transition distribution. The resulting discrete version of model (7) is given by (14) in the
appendix.

We fit the discrete model (14) to daily returns on 12 stocks (from Table 5) and the
S&P 500 index (source: CRSP from Wharton Research Data Services). The stock data we
analyzed consist on returns from daily closing prices from 01/2003 to 12/2004. We chose
these particular stocks because they belong to three different industrial sectors (IT, Finance
and Materials) and because the options on these stocks are more liquid than options on
other stocks belonging to the same industry. We estimated the parameters from model (14)
by using the maximum likelihood criterion. The likelihood function (6) was approximated
by using the bootstrap filter (Gordon et al 1993). Goodness-of-fit was tested using the same
particle filter used for estimation. We obtained a set of residuals (see Brockwell, 2005 for more
details) by first obtaining one-step predictive marginal cumulative distributions and then
converting them into normally distributed “residuals”. Then, we applied standard methods
to test the normality of the residuals. In particular, we used the Kolmogorov-Smirnov (KS)
test. Parameter estimates and p-values for goodness-of-fit tests, using data from year 2003
for example, are presented in Table 2. The results in Table 2 show that model (14) fits
well both the stock and index marginal distributions. Moreover, we performed likelihood
ratio tests to examine whether the parameters βk, ρIS

k , and γk are significantly different from
zero. We can see that all the β parameters, except for one, are significantly non-zero at
level 1%, while most of the parameters ρIS

k and γk are significantly non-zero at level 5%. We
found that the correlation coefficient ρ is not significantly different from zero, therefore we’ll
exclude it from the model in our further analysis. All these results are consistent over other
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periods of time.
In the next section we consider statistical inference from the option data. In particular,

we want to investigate the dynamics of risk-neutral specific parameters (the volatility risk
premia). Before that, we investigate the stability of the model parameters under the objective
measure. We fit model (14) to an overlapping moving window of 251 observations (one year)
beginning with February 2003 and ending with August 2004. For example, we obtain one set
of parameters Θobj = ({µk}, µI , {βk}, {bk}, {αk}, {σk}, bI , αI , σI , {ρIS

k }) for the time period
February 2003 - January 2004, then another set for March 2003 - February 2004, and so on
up to August 2004, in total there are 7 sets of parameters estimates. All these estimates are
plotted in Figures 3-9. The estimates for φ, b, σ, and β don’t seem to vary over time for each
asset, instead the estimates for ρIS and γ do exhibit time variation for some of the stocks.
The time series properties of these particular parameters will be investigated in future work.

3.4 The price of volatility risk

We mentioned in Section 2.2 that options are priced under a risk-neutral measure. Therefore,
to use the time series of option prices, we need to specify a model under this measure besides
the model under the objective measure. Following the common practice in econometrics and
because our new model does a good job in fitting the returns under the true measure, we
assume that the continuous-time model under the risk-neutral measure is given by

dSk(t)
Sk(t)

= r(1− βk)dt + βk
dI(t)
I(t)

+
√

vSk
(t)dW

(S)
k (t),

dI(t)
I(t)

= rdt +
√

vI(t)dW
(S)
I (t),

vSk
(t) = exp(xSk

(t)),

dxSk
(t) = αk(bk − xSk

(t)− λkσk)dt + σkdε
(X)
k (t),

dε
(X)
k (t) = γkdW

(X)
(t) + dW

(X)
k (t),

vI(t) = exp(xI(t)),

dxI(t) = αI(bI − xI(t)− λIσI)dt + σIdW
(X)
I (t),

(9)

where, for k = 1, .., 4, W
(S)
k (t), W

(S)
I (t), W

(X)
(t), W

(X)
k (t) and W

(X)
I (t) are standard

Brownian motions with the following correlation parameters





0 = dW
(S)
k (t)dε

(X)
k (t),

0 = dW
(S)
I (t)dW

(X)
I (t),

ρSI
k = dW

(X)
k (t)dW

(X)
I (t),

0 = dW
(X)

(t)dW
(X)
k (t),

0 = dW
(X)

(t)dW
(X)
I (t)

0 = dW
(S)
k (t)dW

(S)
I (t).

The difference between equations (7), the model under the objective measure, and equa-
tions (9), the model under a risk-neutral measure, is two-fold. First, under the risk-neutral
measure, the stock and index mean return rate is r, the risk free interest rate which we
assume to be constant. Second, in (9), we introduce new parameters Θneutral = ({λk}, λI)
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which measure the price of volatility risk for each stock and for the index. The rest of the
parameters are common to both measures. In our current study, we plugged in the estimates
obtained from the returns data (see Section 3.3) and estimated Θneutral from option prices.
Some authors parameterized the volatility premium as being proportional to the level of
volatility (Heston, 1993, Pan, 2002 among others). As a first step in our analysis, we as-
sume Θneutral = ({λk}, λI) to be constant over time, and constant over option moneyness
(strike/spot price) and maturity. We will then expand our model if these assumptions prove
to be inappropriate.

The option data are from OptionMetrics of Wharton Research Data Services. Option-
Metrics contains data on all US exchange-listed index and equity options. For each observa-
tion day (from 01/2003 to 12/2004), we collected all bid-ask closing quotes for put options
only. We removed all option records with open interest zero, options with maturity longer
than 6 months, and options with moneyness less than 0.9 (deep out-of-the money options).
The reason we eliminated options deep out-of-the-money is that our model doesn’t account
for default risk, which might be taken into account for deep out-of-the-money options.

We computed the theoretical option prices (under model (9)) using Monte Carlo methods.
The value of a put on the S&P 500 index, which is an European option, at time t is

pt = Ẽt((K − ST )+),

where Ẽt is the conditional expectation under a risk-neutral measure, K is the option strike
price, and T is the option maturity. Therefore, simulations from model (9) together with
variance reduction methods can be applied directly to price European options. However,
equity options are American options, and their valuation is more complex than pricing
European options. This is because an American option can be exercised at any point in
time until expiration. Thus, besides approximating the expected value of the discounted
payoff, one needs to approximate the early exercise premium. We used the least-square
method (LSM) introduced by Longstaff and Schwartz (2001) in order to value American
equity options.

Using the parameter estimates under the objective measure, we estimated the volatility
risk premia from option price data for each stock and for the index at monthly and weekly
frequency. In other words first we fitted model (7) to returns from the period of time February
2003-January 2004 and obtained estimates for Θobj. Next, we used a non-linear regression
to obtain estimates for Θneutral using option prices (average of bid and ask quotes) observed
in every month/week beginning with January 2004 and up to July 2004. Plots of these
estimates at a monthly frequency are in Figures 10-11 and at a weekly frequency in Figures
12-13. Three things are worth mentioning. First, the parameter estimates seem to vary over
time for almost all stocks. Second, the prices of volatility risk are different across stocks and
from the index. Finally, stocks have both positive and negative volatility premia, while the
index volatility risk price is always negative. A negative volatility risk premium means that
whenever volatility is high, options are more expensive than what is implied by the objective
measure as the investor asks for a higher premium. Conversely, in low-volatility periods, the
options are less expensive. Since the idiosyncratic volatility risk premium can be positive
for some of the stocks, it seems that buyers of individual equity options leave less money
on the table than buyers of index options. However, in our model, the stock volatility risk
price is a combination of the index volatility risk and the idiosyncratic stock volatility risk
premium. We will further examine the time series, cross-sectional and cross-stock properties
of this premium in future work. We also would like to investigate the economic implications
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of changes in the volatility risk premia.

3.5 Pricing Errors

We investigate the fit of model (9) for the panel data of option prices by looking at the
pricing errors (predicted price versus observed price) at monthly frequency in-sample and
out-of-sample. Figures 14 and 15 show the in-sample and out-of-sample pricing errors for
CSCO. Residuals and forecasting errors are small for the all stocks, suggesting that our
model fits the option price data reasonably well.

4 Proposed Research

The next steps for this research may be considered in three areas:

1. Estimate model parameters under the objective and the risk-neutral measure jointly.
Test the statistical significance of model parameters.

2. Compare our modeling approach with existing univariate models from a trading per-
spective.

3. Extend our model with a process to describe the dynamics of the volatility risk pre-
mium.

4.1 Estimate model parameters under the objective and the risk-
neutral measure jointly. Test the statistical significance of
model parameters

In future work, one of the problems we would like to address is to jointly estimate the model
parameters under the objective measure and the risk-neutral measure from the multivariate
data (stocks returns, index returns, equity option prices, index option prices). We plan
to develop a stochastic EM-type algorithm to maximize the joint log-likelihood of returns
and options. The EM-type algorithm will allow us to obtain standard errors for parameter
estimates using the EM iterates. In particular, once we have the standard errors for the
price of volatility risk we can test whether this parameter is statistically significant for each
stock and the index, respectively. Also, we can test the statistical significance of new model
parameters such as the correlation between returns and volatilities.

4.1.1 A stochastic EM algorithm

Let Θ = (Θobj, Θneutral) be the model parameters, where Θobj represents the parameters
under the objective measure, and Θneutral represents the parameters under the risk-neutral
measure (i.e. the price of volatility risk). Also, we denote by YT the multivariate data of

observed stock and index returns, by ÔT the observed option prices, and by XT the latent
log-volatility, from time 1 to T. Then we can write the complete joint log-likelihood as:

log f((ÔT,YT), X0,XT|Θ) = log f(ÔT|YT, X0,XT, Θ) + log f(YT, X0,XT|Θ)

= log f(ÔT|YT, X0,XT, Θobj, Θneutral) + log f(YT, X0,XT|Θneutral)
(10)
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The stochastic EM algorithm allows us to maximize the joint log-likelihood log f((ÔT,YT)|Θ)
using an expectation-maximization iterative procedure. This algorithm is particular useful
in our case since we cannot directly maximize the log-likelihood log f((ÔT,YT)|Θ), but we
can maximize a lower bound, which iteratively gets closer to the log-likelihood:

log f((ÔT,YT)|Θ) = log
∫

f((ÔT,YT)|X0,XT, Θ)f(X0,XT|Θ)dX0dXT

≥ ∫
log f((ÔT,YT)|X0,XT, Θ)f(X0,XT|Θ)dX0dXT.

By using the log-likelihood function we can actually split the estimation procedure into two
steps: first update the objective parameters and then update the risk-neutral parameters.

Specifically, the steps in a stochastic EM will be:

1. Start with Θ(0).

For i ≥ 0 (until convergence), given Θ(i) perform step 2 and step 3 and obtain Θ(i+1),

2. (E-step) Compute the expectation

Q(Θ|Θ(i)) =
∫

log f((ÔT,YT),XT|Θ)f(XT|(ÔT,YT), Θ(i))dXT

=

∫
log f(ÔT|YT,XT, Θ)f(XT|(ÔT,YT), Θ(i))dXT

︸ ︷︷ ︸
Q2(Θ|Θ(i))

+

∫
log f(YT,XT|Θ)f(XT|(ÔT,YT), Θ(i))dXT

︸ ︷︷ ︸
Q1(Θobj|Θ(i))

(11)

We can approximate Q1(Θobj|Θ(i)) and Q2(Θ|Θ(i)) using MC simulations by

Q1(Θobj|Θ(i)) ≈ 1

ni

ni∑
j=1

T∑
t=1

(log f(yt|X(j)
t , Θobj) + log f(X

(j)
t |X(j)

t−1, Θobj)) (12)

and

Q2(Θ|Θ(i)) ≈ 1

ni

j=ni∑
j=1

T∑
t=1

log f(Ôt|X(j)
t , St, Θ), (13)

where {X(j)
t } are simulated from f(Xt|(ÔT,YT), Θ(i)).

3. (M-step) Obtain Θ(i+1) by maximizing Q1(Θobj|Θ(i)) over Θobj. Using Θ
(i+1)
obj , update

to Θ
(i+1)
neutral by maximizing Q2((θ

(i+1)
obj , Θneutral)|Θ(i)) over Θneutral.

4.1.2 Test the statistical significance of model parameters

The EM algorithm in Section 4.1.1 allows us to maximize the log-likelihood and thus, to
test the statistical significance of model parameters under the objective and the risk neutral
measure. Also, we plan to find a procedure that uses the EM iterates in order to estimate
the standard errors of parameter estimates, and thus test their statistical significance. In
particular, we are interested to test the statistical significance of the price of volatility risk.
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4.1.3 Investigate model assumptions

First, we plan to investigate whether the price of volatility risk is constant over groups
of options with different strikes and maturities. Our model assumes that the risk-neutral
parameters {λk} and λI don’t depend on the options parameters. However, Jiang (2002)
found that the risk-neutral process (represented by the λ parameters in our case) estimated
from different segments of the options market is not unique, suggesting a segmented market.
Therefore, we would like to estimate the λs from different groups of options and see whether
they are significantly different.

Second, we would like to test whether the correlation between returns and volatility is
zero. Researchers have found that the correlation between the asset returns and volatility is
significant for the S&P 500 index returns (see e.g. Pan(2002), Eraker(2004)). The correlation
parameter between returns and volatility was typically found to be negative. This means that
a fall in prices usually will be accompanied by an increase in volatility, which is sometimes
known as the “leverage effect”. Therefore, we plan to add new correlation parameters to our
model and test whether they are statistically significant.

4.2 Compare our modeling approach with existing univariate mod-
els from a trading perspective

Univariate models for spot price and volatility are currently used to price options in almost
all trading applications. Therefore, we would like to examine whether our multivariate model
performs better than independent univariate models, for stocks and the S&P500 index, in a
trading strategy. Specifically, first, we calibrate our model and separate univariate models
for stocks and the index using observations from a training period of a few years. Then, we
will compute realized returns from the trading strategy using model price predictions, for
the remaining years in the sample. The level of realized returns will be considered as an
objective criterion to compare modeling approaches.

4.3 Extend our model with a process to describe the dynamics of
the volatility risk premium

Figures 10-11 and 12-13 seem to indicate that the price of volatility risk varies from week to
week and from month to month in a mean-reverting way, for each asset. Therefore, we plan
to extend our model with a new specification for the volatility risk premium. Specifically,
we will add new equations to model (9) to describe the dynamics of {λk} and λI as latent
mean-reverting processes.

Recent papers capture the term structure of the volatility risk premium by assuming
that it is proportional to the volatility level (Chernov and Ghysels (2000), Pan (2002) and
Eraker (2004) among others). Given the popularity of this specification for the volatility
risk premium, we would like to compare it with a more general specification such as an
autonomous mean-reverting process.
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5 Figures and tables
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Figure 1: BSM implied volatility and realized volatility for options and returns on S&P500.
The realized volatility is computed as the sample variance over an overlapping window of
120 observations.
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Figure 2: Eigenvalues of the sample covariance matrix of 12 stock returns. Each set of
eigenvalues was computed for an overlapping window of 251 observations using data from
2003 and 2004. The stocks are Cisco Systems Inc., DELL, Microsoft, IBM, Citi, JP Morgan,
AIG, Bank of America, Newmont Mining, Alcoa, Dow Chemical, and EI DuPont de Nemours.
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Figure 3: Estimated µ using observations from seven overlapping windows of 252 observations
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Figure 4: Estimated φ using observations from seven overlapping windows of 252 observations
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Figure 6: Estimated σ using observations from seven overlapping windows of 252 observations

1 2 3 4 5 6 7

0
.0

0
.5

1
.0

1
.5

beta

Month

P
a

ra
m

e
te

r

CSCO
DELL
MSFT
IBM
C
JPM
AIG
BAC
NEM
AA
DOW
DD

Figure 7: Estimated β using observations from seven overlapping windows of 252 observations
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Figure 8: Estimated ρIS using observations from seven overlapping windows of 252 observa-
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Figure 9: Estimated γ using observations from seven overlapping windows of 252 observations
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Figure 10: Estimated λ using observations from 7 non-overlapping windows of 20 observa-
tions for the assets in the legend
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Figure 12: Estimated λ using observations from 28 non-overlapping windows of 5 obs.
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Figure 13: Estimated λ using observations from 28 non-overlapping windows of 5 obs.
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Figure 14: Residuals from option prices for CSCO
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Figure 15: One-month ahead forecasting errors from option prices for CSCO

Ticker Company Industry
CSCO Cisco Systems Inc. IT
DELL Dell Inc IT
MSFT Microsoft Corp. IT
IBM International Business Machines Corp. IT
C Citigroup Inc. Finance
JPM JP Morgan Finance
AIG American International Group Finance
BAC Bank of America Finance
NEM Newmont Mining Materials
AA Alcoa Inc. Materials
DOW Dow Chemical Materials
DD EI DuPont de Nemours

Table 1: The 12 analyzed stocks belong to three different industries

24



p-value µ̂ φ̂ b̂V σ̂ β̂ ρ̂IS γ̂
CSCO 0.40 0.56 0.51 0.20 7.65 1.54 ** 0.41 * 0.35 *
DELL 0.98 0.28 0.95 0.21 1.16 1.14 ** 0.11 * 1.24 *
MSFT 0.78 0.02 0.42 0.15 8.91 1.27 ** -0.04 0.41 *

IBM 0.56 0.10 0.69 0.12 6.17 1.02 ** 0.18 * 0.37 *
C 0.89 0.26 0.97 0.14 0.24 1.19 ** 0.82 * 2.75 *

JPM 0.49 0.35 0.96 0.16 0.31 1.4 ** 0.64 * 1.16 *
AIG 0.92 0.11 0.91 0.19 1.22 1.32 ** 0.74 * 1.71 *
BAC 0.70 0.20 0.79 0.10 5.08 0.79 ** 0.07 * 0.61 *
NEM 0.85 0.56 0.89 0.34 0.89 0.07 0.39 * 0.57 *

AA 0.88 0.47 0.89 0.24 0.79 1.33 ** 0.20 * 1.75 *
DOW 0.96 0.16 0.70 0.17 3.57 1.06 ** 0.75 ** 0.65 *

DD 0.47 −0.02 0.81 0.14 4.44 0.97 ** 0.88 ** 0.44 *
SP500 0.98 0.20 0.99 0.16 0.67

Table 2: Goodness-of-fit tests and estimates from the multivariate stochastic volatility
model(year 2003). The “**” and “*” stand for significantly different from zero at level
1% and 5%, respectively. We display parameter estimates in a more meaningful form than
in their initial form in (14). That is, we report φ = exp(−α∗dt) instead of α, which measures
the persistence in log-volatility, and we report bV = exp(b) instead of b to have a better sense
of the long-run mean of the volatility.

APPENDIX

A Discrete-time version of model (8)

Yk(n) = log(Sk(n + 1)/Sk(n))
= (µk − βkµI − Vk(n)/2− βk(βk − 1)VI(n)/2)∆t + βkM(n)

+
√

Vk(n)∆tZk(n),

M(n) = log(I(n + 1)/I(n))

= (µI − VI(n)/2)∆t +
√

VI(n)∆tZI(n)

Vk(n) = exp(Xk(n)),
Xk(n) = bk + exp(−αk∆t)(Xk(n− 1)− bk) + σkckεk(n),
εk(n) = γk ε̄(n) + ηk(n),

VI(n) = exp(XI(n)),
XI(n) = bI + exp(−αI∆t)(XI(n− 1)− bI) + σIcIεI(n),

(14)

where, for k = 1, .., N , c2
k = 1−exp(−2αk∆t)

2αk
, c2

I = 1−exp(−2αI∆t)
2αI

, Zk(n), ZI(n), ε̄(n), ηk(n)
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and εI(n) are standard normal r.v. with the following correlation coefficients

0 = corr(Zk(n), εk(n)),
0 = corr(ZI(n), εI(n)),

ρIS
k = corr(ηk(n), εI(n)),
0 = corr(ε̄(n), ηk(n)),
ρ = corr(ε̄(n), εI(n)),
0 = corr(Zi(n), ZI(n)).
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