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1 Introduction

Recent years have seen the introduction of likelihood-free inference to the applied statistical
literature. Likelihood-free inference, a class of methods that includes approximate Bayesian
computation (ABC), is appropriate in any setting of Bayesian parametric inference wherein
the evaluation of a likelihood function of a parameter value may be computationally or
analytically intractable, but a forward process exists to simulate data using that parameter
value as its input. The end result of any ABC algorithm is a sample of parameter values
whose distribution is an approximation to the desired posterior distribution.

A crucial step in any ABC algorithm involves comparing observed data to simulated
data. When the dimension of the data is too high for straightforward comparison, an ABC
analysis will reduce the dimension of the data via some summary statistic. Ideal summary
statistics will be minimally sufficient for the parameter of interest; however, minimal sufficient
statistics are rarely known in cases where the likelihood function is complex, and for some
models, there may be no sufficient statistic with dimension lower than the data.

The approximate posterior sample resulting from an ABC analysis may be quite sensi-
tive to the choice of summary statistic; this motivates the desire for summary statistics to
be chosen in a principled fashion. Some recent methods focus on selecting subsets of sum-
mary statistics from among a larger pool of candidate statistics [13] or regressing parameter
values on simulated data [8]. By contrast, we propose a method which, using a simulated
training set, estimates mappings that embed both the parameters and data in the same
lower-dimensional space. The resulting mappings from the data to the lower-dimensional
space are then a natural choice for ABC summary statistics.

We present a simple toy example where the minimal sufficient statistic and the true pos-
terior distribution are known. In this example, we demonstrate that the mapping resulting
from our method, when used as the summary statistic in an ABC analysis, performs com-
parably to the minimal sufficient statistic, and favorably to other candidate statistics that
are either not sufficient or not minimal.

We consider, as an area of application, the cosmological challenge of inferring key param-
eters from measurements of weak gravitational lensing. Weak lensing is the distortionary
effect on the perceived shape of distant galaxies as their light passes through dark matter;
inference about the structure of this distortionary effect permits the constraint of parameters
in a cosmological model (e.g., the ΛCDM model). The setting is natural for application of
ABC in conjunction with our method: given values for cosmological parameters, it is pos-
sible to simulate shear realizations of a form comparable to observed data, while specifying
and evaluating a likelihood function for those parameter values would be impossible under
realistic modeling assumptions.

2 Background and motivation

2.1 Likelihood-free inference

Likelihood-free methods allow for inference in Bayesian settings where it is difficult or im-
possible to evaluate a likelihood function for a given set of parameter values, but where a
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forward model is available to simulate data using those parameter values as inputs. This
includes the approach of ABC, which was first introduced in 1999 [21] in a biological con-
text. We give here a brief explanation of ABC, deferring to the literature (e.g., [18]) for more
comprehensive exposition.

Consider the setting where data x ∈ Rd is generated from a model parameterized by θ;
suppose that a density for x is given by f(x|θ). Having observed x, the Bayesian approach to
inference in this setting is to assume a prior distribution π(θ) for the parameter and explore
the posterior distribution π(θ|x) of parameters conditional on observed data:

π(θ|x) =
f(x|θ)π(θ)

f(x)
=

f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

∝ f(x|θ)π(θ) (1)

Direct evaluation of the π(θ|x) would require a means of evaluating both the likelihood
f(x|θ) and the marginal distribution of f(x). Methods in the broad Markov Chain Monte
Carlo (MCMC) class permit sampling from the posterior distribution, provided that the
likelihood f(x|θ) can be evaluated. By contrast, ABC does not require the evaluation of
f(x|θ); thus, it can be applied in settings where it is feasible to simulate a realization of x
given θ, but where evaluating f(x|θ) is analytically or computationally intractable.

Suppose that we that we observe data xobs and that a forward model, Mθ, is available to
simulate data given a value for θ. The simplest ABC algorithm is as follows:

Algorithm 1 Basic ABC Rejection Algorithm

1: for i = 1 to N do
2: Draw τ from π
3: Simulate y from Mτ

4: if y = xobs then
5: Retain τ
6: end if
7: end for

The resulting sample of retained τ values will have distribution π(θ|xobs). However, in
most cases of application, the event that y = xobs exactly is an event of probability zero, so
no values of τ will be retained. Instead, comparisons between observed and simulated data
are usually made using some summary statistic of the data, S(·) : Rd → Rp. This requires
modifying lines 4-6 of Algorithm 1 as follows:

if S(y) = S(xobs) then
Retain τ

end if

After this modification, the resulting sample of retained τ values will have distribution
π(θ|S(x) = S(xobs)). Note that if S(·) is sufficient for θ, then π(θ|S(x) = S(xobs)) is equal
to π(θ|xobs); a justification is given in section A.1 of the appendix. If S(·) is not sufficient
for θ, then the distribution of the retained τ values will be an approximation of the desired
posterior.
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However, depending on the distribution of S(x), it may still be the case that the event
that S(y) = S(xobs) is extremely improbable. We modify the algorithm again, retaining τ
if the difference between S(y) and S(xobs) is small in some metric ρ : Rp × Rp → R. The
algorithm, modified to incorporate these changes, is given in Algorithm 2.

Algorithm 2 Basic ABC Rejection Algorithm, Modified

1: for i = 1 to N do
2: Draw τ from π
3: Simulate y from Mτ

4: if ρ(S(y), S(xobs)) ≤ ε then
5: Retain τ
6: end if
7: end for

The distribution of the resulting sample of retained τ values is now πε(θ|S(x) ≈ S(xobs)),
where the subscript ε refers to the tolerance up to which the summarized observed and
simulated data may differ. If and only if ε = 0 and S(·) is sufficient for θ, then πε(θ|S(x) =
S(xobs)) is equal to the desired π(θ|xobs). By contrast, as ε grows arbitrary large, all τ values
are retained, so the resulting sample has distribution equal to the prior π(θ).

In practice, the choice of ε involves a tradeoff. Taking ε too large will make πε(θ|S(x) ≈
S(xobs)) a poor approximation to π(θ|xobs); on the other hand, taking ε too small will either
result in a sample too small to be of inferential value, or require N , the number of candidate
(τ, y) pairs generated, to be prohibitively large.

Moreover, any ABC analysis will also be sensitive to the choice of summary statistic S.
Asymptotic performance guarantees, such as those in [1], require of S only that it be sufficient
for θ in order for πε(θ|S(x) ≈ S(xobs)) to converge to π(θ|xobs) as the size of the retained
τ sample grows arbitrarily large. (Note that S(x) = x satisfies trivially the condition that
S(·) be sufficient for θ.) However, using ABC in practice requires that S(·) achieve some
substantial dimension reduction in order to avoid the curse of dimensionality. In section 3.1,
we demonstrate the effect of different choices of summary statistic on a toy example ABC
analysis in which the true posterior distribution is known.

The ABC algorithm outlined here is only the most basic version; the literature contains
numerous refinements and extensions of the method. One such extension is a generaliza-
tion given in [4], where instead of simply accepting or rejecting τ , a weight is assigned via a
smoothing kernel functionK(·). (Indeed, taking the rectangular kernelKε(ρ(S(y), S(xobs))) =
1
2
I{ρ(S(y),S(xobs))≤ε} recovers Algorithm 2.) Additional extensions include a likelihood-free

MCMC given in [19]; the Sequential Monte Carlo (SMC) approach of [26]; and an iter-
ative scheme given in [2] that incorporates the importance sampling-based techniques of
Population Monte Carlo. While these algorithms greatly enhance the computational feasi-
bility of using ABC methods, the choice of an appropriate summary statistic still remains
crucial.

Comparatively less attention is paid in the literature to the choice of summary statistic.
[13] provides a scoring mechanism for selecting subsets of summary statistics from among
a larger pool of candidate statistics, while [8] constructs estimated summary statistics via
regression of parameter values on simulated data.
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2.2 Weak gravitational lensing

We give here a brief overview of weak gravitational lensing in order to motivate the develop-
ment of our methods, deferring to reviews (e.g., [12] and [20]) for a more complete exposition
of the phenomenon and associated inference techniques.

Prevailing cosmological models posit the existence of dark matter, i.e., matter which nei-
ther emits nor absorbs light, because the behavior of galaxies does not accord with predictions
based only on the amount of luminous matter. Weak gravitational lensing is a phenomenon
which permits inference on parameters in cosmological models, (e.g., ΩM , the dark matter
density, and σ8, the matter power spectrum normalization, in the ΛCDM model). General
relativity predicts that the path of light traveling from distant galaxies to an observer should
be bent by intervening matter, resulting in a circular object being observed as an ellipse [7];
the correlation in the amount of shear of galaxies is related to the parameters mentioned
above.

Distant galaxies already have some intrinsic ellipticity, so that the result of weak lensing
is a slight modification of their ellipticity, roughly on the order of one percent of intrinsic
ellipticity [17]. Although this shear signal is incredibly faint for each individual galaxy, the
shearing of individual galaxies is less relevant for cosmological parameter constraint than the
ensemble shear behavior. Underlying smoothness in the dark matter structure dictates that
nearby galaxies should exhibit similar shear effects. Hence, any parameter inference from
weak lensing must incorporate information about the shapes of large numbers of galaxies.

This requires an accurate method for measuring galaxy shapes, a task made more difficult
by contamination due to atmospheric and detector effects, commonly referred to as the
point spread function (PSF). The recent series of GREAT (Gravitational lEnsing Accuracy
Testing) challenges (see [17] and references therein) has attempted to attract computational
researchers across various disciplines to the development of shape-measurement methodology
precise enough to be applicable to upcoming surveys. For the purposes of this work, we will
assume that a method exists to measure galaxy shear to a precision which can itself be
quantified.

Given a galaxy catalogue with associated positions, shape measurements, and estimates
of shape measurement error, a standard approach to parameter constraint is to first compute
a sample estimate of the two-point shear correlation function ξ± or its Fourier transform,
the shear power spectrum C`. Unbiased estimates of the ξ± are given by

ξ̂±(θ) =

∑
(i,j)

wiwj
(
ε++
i ε++

j ± ε××i ε××j
)

∑
(i,j)

wiwj
(2)

where ε++
i and ε××i are estimates of the tangential and cross components of galaxy ellipticity

for galaxy i; wi is a weight associated with the precision of the εi measurement; and the sums∑
(i,j) are over pairs of galaxies (i, j) separated by angular distance θ (up to some binning in

θ). Some analyses consider other statistics (e.g. aperture mass dispersion [25], ring statistics

[24], COSEBIs [23]) which can be calculated from these ξ̂±(θ) estimates and are intended to
isolate informative characteristics of the correlation functions.

The standard inference paradigm proceeds by assuming that the so-called data vector
(either ξ± or some transformation thereof) has a multivariate normal distribution. Then,
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the likelihood of a cosmological parameter set θ is computed via

L(θ|X) =
1√

(2π)p|C|
exp

(
−1

2
(X − g(θ))TC−1(X − g(θ))

)
(3)

where X is the empirically computed data vector, g(θ) is the theoretical value of the data
vector given parameters θ̃, and C is the covariance matrix of the data vector. This likelihood
can be evaluated either as part of a frequentist maximum likelihood analysis or, as is more
often the case, in a Bayesian framework in conjunction with a posterior sampling scheme, as
in, e.g., [9].

Additionally, some analyses (e.g., [11]) attempt to mitigate bias due to the intrinsic
alignment of galaxies by dividing galaxies into bins in redshift z as well as angular separation
θ and estimating shear auto- and cross-correlations with respect to those redshift bins. This
increases the size of the data vector by a multiplicative factor of Nt +

(
Nt

2

)
, where Nt is the

number of redshift bins. Still other analyses [9] augment the data vector with estimates of
three- and four-point correlation functions (or their Fourier space analogues, the bispectrum
and trispectrum, respectively) in order to incorporate information not captured by two-point
correlation function estimates.

Some recent work has called into question the validity of the assumption on the form
of the likelihood in (3). Hartlap et al. [10] uses a large sample of simulations to estimate
the likelihood and investigate the impact on parameter constraints of using a Gaussian
approximation. Keitel and Schneider [14] demonstrate analytically that the distribution of
two-point correlation function estimates is noticeably non-Gaussian even in the simplified
setting where lensing shear is distributed according to a Gaussian random field model.

Fortunately, forward simulation models are available to generate data realizations given
cosmological input parameters; these simulation models range from overly simplified Gaus-
sian random fields to, e.g., the SUNGLASS simulations of [15] that incorporate the effects of
non-linear evolution. This suggests weak lensing as a natural area of application for ABC, as
for these more complex models it is impossible to analytically specify a likelihood function.
However, including the higher-order correlation functions and tomographic binning necessary
to preserve the rich information from these simulations will increase the natural dimension
of the summary statistic S(·). Thus, developing a method for reducing the dimension of the
summary statistic while preserving the information relevant for inference will be a crucial
step in implementing an ABC approach to weak lensing.

3 Preliminary work

Focusing first on the ABC paradigm, we consider the issues that arise in a simple toy ex-
ample in order to motivate the development of methods to estimate approximately sufficient
statistics of low dimension.

3.1 Toy example: estimating a normal mean via ABC

We remark here that in standard Bayesian inference, the posterior distribution π(θ|x) is
proportional to π(θ)f(x|θ), where f(x|θ) is also the likelihood L(θ;x). By contrast, in the
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ABC formulation, the posterior is approximated by

π(τ)P(y is retained | y ∼Mτ )

Consequently, in an ABC scheme, it would be desirable for the probability of retaining a
candidate parameter value τ to be proportional to the likelihood L(τ ;x). In the example
that follows, we will assess the performance of summary statistics by quantifying how well
the probability of retaining τ in an ABC analysis using those summary statistics (suitably
normalized) approximates the likelihood of τ .

Now, suppose that data X1, . . . , Xn ∼ N (µ, 1), where µ is unknown. We will use ABC to
explore the posterior distribution π(µ|X1, . . . , Xn). Recall that performing an ABC analysis
requires a choice of distance metric ρ, summary statistic S(·), and tolerance ε. For simplicity,
we will use the Euclidean norm for ρ in the ABC procedure.

For S(·), we will consider what happens under various extents of summarizing the ob-
served and simulated data sets. One extreme is no summarizing, i.e., S(X1, . . . , Xn) =
(X1, . . . , Xn). Another extreme is summarizing the entire data set by its mean, X =
1
n

∑n
i=1Xi. Both extremes can be shown to be sufficient for µ; the former is trivially so,

while the latter is a basic result in elementary statistics. In between these extremes there
are intermediate extents of summarizing, which we make formal.

3.1.1 Not summarizing enough

Assuming for the sake of argument that n = 2` for some integer `, we will define tiers of
summary statistics at each of `+ 1 levels: 0, 1, . . . , `. We will use the notation

X
j

k =
1

2`−j

2`−jk∑
i=2`−j(k−1)+1

Xi

Our approach is to partition the data set X1, . . . , Xn into chunks such that at level j there

will be 2j chunks, each of size 2`−j. Then, the summary statistics X
j

k will be the means of

the data in each chunk. (Indeed, X
0

1 will just be our familiar X.)

At any level j, the collection X
j

1, . . . X
j

2j is jointly sufficient for µ and thus is adequate for
use in an ABC analysis. Intuition suggests that sufficient statistics of lower dimension should
be preferred. We demonstrate first that a lower dimensional summary statistic requires
a lower tolerance ε to achieve the same probability (e.g., 0.25) of accepting the true µ
value. We then attempt to assess the relative usefulness of the tiers of sufficient statistics
by calculating, for each tier, what probability of retaining the true µ is needed so that the
retention probabilities pj(τ) approximate the likelihood of τ with the same accuracy as is
obtained when X, the minimal sufficient statistic, is used with a 0.25 probability of retaining
the true µ value.

To this end, suppose we are in the setting where the true value of µ is 0; we have already
observed X1, . . . , Xn, which were distributed f , so they are considered not to be random in
what follows; and τ has already been drawn from the prior distribution to also be equal to
0, which is the true µ. In other words, our prior has guessed µ correctly, so to speak.

7



At level j, the ε∗j needed so that the true µ will be retained with probability 0.25 is given
by

ε∗j =

√
2j

n
F−1
2j ,λ

(0.25) (4)

where F−1
2j ,λ

is the inverse CDF for the noncentral χ2 distribution with 2j degrees of free-

dom and noncentrality parameter λ = n
2j

∑2j

i=1(X
j

k)
2. The justification for this is given in

Appendix A.2. Because the noncentrality parameter λ depends on the data X1, . . . , Xn, the
needed tolerances ε∗j (for any j) will vary for any particular instance of the data. For one
such instance, with n = 32, the needed ε∗j are given in Table 1.

dimension of S(·) 1 2 4 8 16 32
ε∗j needed 0.0622 0.2017 0.5715 1.2945 2.8561 6.4198

Table 1: Tolerances needed for 25% retention of the true parameter value for one particular
instance of observed data X1, . . . , X32.

Now that we have calculated ε∗j for j = 1, . . . , `, we can fix ε∗j at each level and consider
the retention probability pj(τ) as τ varies to depart from µ. By arguments very similar to
the justification given in A.2, the retention probability as a function of τ is given by

pj(τ) = F2j ,λj(τ)

( n
2j
ε∗j

2
)

where F2j ,λj(τ) is the distribution function for a χ2
2j ,λj(τ)

random variable, and λj(τ) =

n
2j

∑2j

i=1(X
j

k − τ)2. It is straightforward to evaluate this function on a grid of τ values.
In Figure 1, we compare, for various extents of summary, pj(τ) to the true likelihood

L(τ ;X1, . . . , X32) – i.e., the probability of X1, . . . , X32 having been drawn from a N (τ, 1)
model – with everything normalized to integrate to 1 for the sake of comparison. We see
that, when n = 32 and the tolerance is fixed so that the true µ is retained with probability
0.25, summarizing via the minimal sufficient statistic X (red curve) will retain τ almost
exactly in proportion to L(τ ;X1, . . . , X32) (black dotted curve).

By contrast, summarizing via statistics that are sufficient but not minimal (using the
same 0.25 level of retaining the true µ) will retain τ in a way that departs from being pro-
portional to L(τ ;X1, . . . , X32); we see that this behavior gets worse as the undersummarizing
grows more extreme. If the retention probability disagrees with the likelihood, then the dis-
tribution πε(µ|X1, . . . , Xn) of the resulting ABC sample will be a poor approximation to
π(µ|X1, . . . , Xn).

In principle, as long as the summary statistic chosen is sufficient for µ, we can guarantee
that πε(µ|X1, . . . , Xn) is an adequate approximation to π(µ|X1, . . . , Xn) simply by choosing
ε small enough. However, this asymptotic guarantee is of little practical use on its own;
requiring a too-small value of ε may render the probability of retaining any candidate τ so
low that the number of candidates needed to retain a reasonable number may grow infeasibly
large.

We can quantify this by approaching the problem from a slightly different angle. Until
now, we have fixed the probability of retaining the true µ at 0.25 and compared different
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Figure 1: Normalized retention probability pj(τ)

extents of summary j by finding the ε∗j for each that achieves that probability; this results
in retention behavior for each j that varies in quality as a proxy for the true likelihood.
As an alternative, we can quantify how well the retention behavior using X matches the
desired likelihood and then, for each other summary level j, calculate what value of ε would
be needed to achieve that same quality of approximation.

Using the notation that pj(τ, ε) is the probability of retaining τ at summary level j
and using tolerance ε, we quantify the quality of approximation via the integrated squared
difference between the true likelihood and the normalized retention probability, given by

ISE(j, ε) =

∫ ∞
−∞

(L(τ)− pj(τ, ε))2dτ

For computational purposes, we approximate the above via a discrete sum over plausible
τ values. For the same realization of X1, ...X32 we have cited throughout, ISE(0, ε∗0) =
0.000495, where ε∗0 is the value for ε0 that yields probability 0.25 of retaining the true µ.
For each other j, we can use numerical optimization to compute the value εL2

j that achieves

that same ISE. That εL2
j dictates a probability of retaining the true µ, p(0, εL2

j ). These
probabilities are given in Table 2.

dimension of S(·) 1 2 4 8 16 32
ε needed 0.0622 0.1014 0.1755 0.3197 0.6061 1.1809

P(0 is retained) 0.25 0.07 0.00375 1.94e-05 3.96e-10 1.83e-20

Table 2: Tolerance values and associated retention probability at the true µ

These results tell us that if we use the full data set as our summary statistic, in order to
achieve roughly the same quality of approximation as we would if we used the overall mean,
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the tolerance ε would need to be such that even the true parameter value is retained with
probability less than 2 × 10−20. We remark that the ε values from Table 2 are not directly
comparable to each other because of the changing dimension.

3.1.2 Summarizing too much

We can also consider what happens if we summarize the data too much, in the sense that
the summary statistic is no longer sufficient for the parameter; in other words, we would be
discarding information.

The mean of all n observations, X, is known to be the minimal sufficient statistic for µ.
Define the partial mean Xm as the mean of the first m observations, i.e.,

Xm =
1

m

m∑
i=1

Xi, for m ≤ n.

Note that Xn is just our familiar X, while X1 is just X1 by itself. Suppose again that we
have already observed the data X1, . . . , Xn so that it is not considered to be random, and
further that we are in the setting where we have drawn τ = 0 (the true value of µ) from a
prior distribution. Then the tolerance ε∗m needed to achieve a retention probability of 0.25
can be calculated as

ε∗m =

√
1

m
F−11,λm

(0.25)

where F1,λm is the distribution function for the χ2 distribution with 1 degree of freedom and
noncentrality parameter λm = m(Xm)2; a justification for this is given in Appendix A.3.
These ε∗m values, for the same values of X1, . . . X32 as were used earlier, are given in Table 3.

m 32 16 8 4 2 1
ε∗m needed 0.0622 0.0807 0.1200 0.1632 0.2332 0.3612

Table 3: Tolerances needed for 25% retention of the true parameter value when summariz-
ing too much, i.e., keeping only X1, . . . , Xm. As before, these values pertain to a specific
realization of the data X1, . . . , X32.

Similarly to the case of not summarizing enough, we can now vary τ and use these ε∗m
values to calculate the probability of retaining τ for different values of m. When τ 6= 0,
m(Xm − Y m)2 ∼ χ2

1,λm(τ), where now λm(τ) = m(Xm − τ)2. Hence,

pm(τ) = P(

√
(Xm − Y m)2 ≤ ε∗m) = P(m(Xm − Y m)2 ≤ mε∗m

2) = F1,λm(τ)(mε
∗
m

2). (5)

Again, similarly to the preceding section, we can evaluate this distribution function on a
grid of τ values. Recall that in order for the distribution of the ABC sample to successfully
approximate the true posterior distribution, the retention probability at τ should be roughly
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Figure 2: Normalized retention probability of τ when summarizing too much

proportional to L(τ ;X1, . . . , X32). These retention probabilities, as a function of τ and
normalized to integrate to 1 for the sake of comparison, are displayed in Figure 2.

Note that the summary statistics Xm for m < n are not sufficient for µ, so in this case,
there is no asymptotic guarantee that the true posterior distribution can be approximated
to arbitrarily high quality simply by taking ε very small.

3.1.3 Simulations

One motivation for considering this simple toy example was that the true posterior distri-
bution π(µ|X1, . . . , Xn) can easily be derived analytically. Specifically, if we use a N (2, 1)

prior for µ, n = 32, and Xi|µ
IID∼ N (µ, 1), then the posterior distribution π(µ|X1, . . . Xn) is

N ( 1
33

2 + 32
33
X, 1

33
).

Each of the simulations to follow will yield an ABC-derived posterior sample of retained
parameter values τ1, . . . , τt. From this sample, it is straightforward to evaluate the empirical
CDF for any value of µ, which is given by

F̂t(µ) =
1

t

t∑
i=1

I(τi ≤ µ).

This empirical CDF can be compared to the known true posterior CDF F (µ) by taking the
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mean of the squared differences between those the two CDFs at the sample points,

1

t

t∑
i=1

(
F̂t(τi)− F (τi)

)2
. (6)

In Figure 3, we present the results of ABC analyses using five different choices of

summary statistic: the mean, the median, the half-means (X
1

1, X
1

2), the quarter-means

(X
2

1, X
2

2, X
2

3, X
2

4), and the mean of the first half of the data (X16). The violin plot shows the
distributions of CDF estimation errors, as computed via (6), across 500 simulations. In each
of these simulations, new X1, . . . , X32 data were generated, along with 10,000 candidate τ
values, of which 1% were retained to form a posterior sample.
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Figure 3: Distributions of error across 500 simulations of an ABC analysis using each of five
summary statistics; diamonds indicate mean CDF error.

These simulation results confirm our previous understanding that the minimal sufficient
statistic, in this case the mean of all of the data, results in the lowest CDF error across
simulations. Moreover, summary statistics that are sufficient but not minimal (the half-
means and quarter-means) typically fare slightly worse than the mean. Summary statistics
that are minimal but not sufficient (the median and the mean of only half of the data) tend
to perform far worse.

3.2 Common space mapping method

Motivated by the desire for summary statistics that are both sufficient and of low dimension,
we introduce a training set method which seeks to find embeddings of both parameters and
data into the same low-dimensional space. Heuristically, these mappings will capture the
information from the training set in the data relevant for variation among the parameters,
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and vice versa. We propose that the mapping from the original data space to the shared
lower-dimensional space will be an acceptable choice of ABC summary statistic, as it will
have properties resembling sufficiency and will have user-controlled dimension. In what
follows, we make these ideas formal.

Assume θ admits a low-dimensional representation, i.e.

η = (η1(θ), η2(θ), . . . , ηJ(θ))

is (approximately, at least) one-to-one, in the sense that given η, it is possible to reconstruct
(approximately) θ. This would be the case if θ is of low dimension in its native form, or if
θ is of high dimension but has inherently low-dimensional structure, as is often the case in
the cosmological inference problems of interest.

The representation η is certainly not unique. We propose that if we search over a suffi-
ciently wide class of such η, it will be possible to find corresponding mappings on the data
space Tj such that an adequately-fitting model of the form

Tj(X) = ηj(θ) + εj, (7)

where εj are i.i.d. standard normal, can be found. At first glance, this may seem to be a
particularly restrictive form, but with sufficiently flexibility in the class of functions, it is
hoped that an appropriate one will be found.

3.2.1 Fitting the model

First, consider that the conditional density f(T(X)|η(θ)) is given by

f(T(X)|η(θ)) =

(
1√
2π

)J
exp

(
J∑
j=1

−1

2
(Tj(x)− ηj(θ))2

)

f(T(X)|η(θ)) =

(
1√
2π

)J
exp

(
J∑
j=1

−1

2

[
(Tj(x))2 − 2Tj(x)ηj(θ) + (ηj(θ))

2
])

log f(T(X)|η(θ)) =
J∑
j=1

[
Tj(x)ηj(θ)−

1

2
(Tj(x))2 − 1

2
(ηj(θ))

2 − 1

2
log(2π)

]
Then, if we assume that θ is distributed according to some prior distribution π(θ), then the
joint log likelihood of a transformed data-parameter pair would be given by

log f(T (xi), η(θi)) =
J∑
j=1

[
Tj(xi)ηj(θi)−

1

2
(Tj(xi))

2 − 1

2
(ηj(θi))

2 − 1

2
log(2π)

]
+ log(π(θi))

Taking the derivative of this with respect to Tj(xi) and setting equal to zero, we find that
the joint log likelihood log f(T(X),η(θ)) is maximized when Tj(xi) = ηj(θi). This suggests

a scheme in which we try to find mappings T̂j(x) and η̂j(x) whose results are pulled close
together.
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Given a training set of NT (θi, xi) pairs, the joint log likelihood of those parameters and
data would be

log f(T (x), η(θ)) =

NT∑
i=1

[
J∑
j=1

[
Tj(xi)ηj(θi)−

1

2
(Tj(xi))

2 − 1

2
(ηj(θi))

2 − 1

2
log(2π)

]
+ log(π(θi))

]

Our approach will be to learn mappings T̂j(x) and η̂j(θ) that embed the parameters and
data in the same lower-dimensional space. To this end, we appeal to a class of spectral
dimension-reduction methods that find local structure in complex data.

These methods rely on a user-specified kernel matrix K where Kuv = k(u, v) for some
kernel function k : X × X → R that quantifies some notion of “similarity” between two

observations u and v. A common choice for k is the Gaussian kernel, kh(u, v) = exp(−‖u−v‖
2

h
),

where the bandwidth h is a tuning parameter. We form the K suitable for use in such a
dimension-reduction method via the block matrix

K =

[
Kθ λINT

λINT
Kx

]
where Kθ and Kx, are kernel matrices capturing the similarities within, respectively, the
training parameter set and the training data set, and λ is a tuning parameter that represents,
at least heuristically, the affinity between a parameter element and its corresponding data
element. We remark that the parameter kernel matrix Kθ can and should be constructed
using a different bandwidth h from that used to construct the Kx, and that these bandwidths
are additional tuning parameters which provide some additional flexibility in learning a
mapping.

Following the diffusion map approach of [6], a spectral decomposition of this 2NT × 2NT

K matrix yields eigenvectors ψ̂j for j = 1, . . . , NT . Our approach is to take [η̂j T̂j]
T = ψ̂j

for j = 1, . . . , J , retaining the first J eigenvectors. These yield a value of T̂j(xi) for each

xi in the training set. For a new data point x̃, the value of the mapping T̂ (x̃) could be

constructed by taking a weighted average of the T̂j(xi) for the xi in the training set. This
can be accomplished by weighting by the same similarity function as was used for the Kx

matrix, i.e.,

T̂j(x̃) =

NT∑
i=1

k(x̃, xi)T̂j(xi)

k(x̃, xi)

Note that T̂ will be sensitive to the tuning parameter λ; using a large value for λ will prioritize
the relationship between parameter values and the data that generated them, relative to the
relationship between points close together in the parameter space or between points close
together in the data space.

We remark that the distribution f(x|θ) is said to belong to an exponential family if

f(x|θ) = h(x) exp (η(θ) ·T(x)− A(θ))

for some functions A(θ) and h(x) and possibly vector-valued functions η(θ) and T(x). If
this assumption, which is stronger than the one made above in (7) holds, then T(x) is a
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sufficient statistic for θ; otherwise it will be an approximation to one. This suggests the
utility of the T̂ resulting from the common space mapping method as an ABC summary
statistic.

3.2.2 Normal mean toy example, revisited

We return to the toy example of Section 3.1, using ABC to obtain the posterior distribution
of µ given n independent observations from a N (µ, 1) random variable. We evaluate the

performance of the summary statistic T̂ resulting from the CSMM in comparison to other
summary statistics.

We first build a training set for the CSMM by simulating 1000 (µi, xi) pairs, where each
µi is drawn from a Unif [−5, 5] distribution, and the xi are vectors of length 32, each of
whose entries are drawn independently from a N (µi, 1) distribution.

We then construct the similarity matrices for parameters and data, quantifying distance

for parameters via d(µu, µv) = |µu − µv| and for data via d(xu, xv) =
√∑n

i=1(xu(i) − xv(i))2,
the Euclidean distance between the order statistics of the data. (We compare order statistics
because the independent and identical distribution of the X1, . . . , Xn means their individual
indices have no intrinsic meaning.) For various values of the tuning parameter λ, the CSMM

yields a mapping T̂λ.
Our simulations have the same general structure as those in Section 3.1.3. We calculate

the CDF error from (6) when using the various T̂λ mappings, showing their error distributions
in Figure 4, with those for the mean, median, and half-means shown for reference to the right.
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Figure 4: CDF error distributions when using the CSMM-derived T̂λ for various values of λ;
at right, those for the mean, median, and half-means.

We observe that, in this example, the performance of the CSMM is not particularly
sensitive to the value of λ, provided that it is not too small. Moreover, for adequately large
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λ, T̂λ appears to perform comparably to the mean and noticeably better than the median or
the half-means. This behavior suggests that, at least in this toy case, the CSMM is learning
a mapping T̂λ that is in some sense approximately minimally sufficient. In this particular
example, increasing λ (at least up to 1024) does not appear to have an adverse effect on the

performance of T̂λ. In section 4.1, we consider further the implications of the choice of λ.

3.3 Simple weak lensing application

We present an application of this method in a simple weak lensing analysis, simulating data
from known inputs. Specifically, we generate a random realization of a shear field using input
cosmological parameters ΩM = 0.25, σ8 = 0.8, and all other inputs (including survey redshift
distribution) chosen to replicate those in the simulation exercises of [16]. In this case, we
model lensing shear as a Gaussian random field on a grid of pixels. We add i.i.d. shape noise
(σint = 0.37) to represent the effect of intrinsic galaxy ellipiticity.

In applying the CSMM to learn a mapping T̂λ, we must choose a value for the tuning
parameter λ. In Figure 5, we examine the T̂λ mappings produced for three possible values
of λ. Our heuristic interpretation, discussed further in 4.1, is that too large values of λ will
result in too high priority given to the relationship between corresponding parameters and
data in the training set, that is, overfitting to the training set. Thus, we aim for a value of
λ for which T̂λ maps a (θi, xi) pair close together but not quite to the same point. For this
simple weak lensing example, we choose λ = 5.
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Figure 5: For three values of λ, the first two coordinates of the T̂λ (bullets) and η̂λ (triangles)
mappings in the simple weak lensing example. Points (and lines connecting corresponding
data and parameters) are colored according to the value defining the degeneracy, Ω0.7

M σ8.

For our ABC analysis, we sample candidate parameter values (Ω̃M , σ̃8) from a uniform
prior distribution on the rectangle [0.1, 0.8] × [0.5, 1]. In Fig. 6 we compare samples from the

approximate posterior distributions using two summary statistics: at left, estimates ξ̂±(θ) of
the two-point correlation functions – evaluated in eight logarithmically spaced bins – and,
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at right, the first two coordinates of T̂ learned via the common space mapping method. In
each case, we take ρ to be standard Euclidean distance and we choose ε so that 5% (blue)
and 10% (green) of the candidate samples are retained for each case.
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Figure 6: ABC-derived posterior samples using ξ̂±(θ) (left) and T̂1, T̂2 (right).

As ΩM and σ8 are known to be degenerate (these data can only distinguish the value of
Ω0.7
M σ8), we display the degeneracy curve corresponding to the input parameters in orange.

Simple inspection suggests that using T̂ as learned via the CSMM as the summary statistic is
preferable to simply using ξ̂±(θ), because the samples from the former assemble more tightly
around the true degeneracy curve than those from the latter.

4 Research plan

4.1 Methodology

We observed in section 3.2.2 on the normal mean toy example that, above some low threshold,
varying λ did not appear to affect the behavior of T̂λ as an ABC summary statistic. We
posit that this is true here because the N (µ, 1) model is identifiable; there is no redundant
information contained in the parameter value µ. One of the strengths of our proposed
method is that it will yield not only summary statistic T̂ (x) suitable for ABC but also a
lower-dimensional reparameterization η̂(θ) that isolates the information in θ that is relevant
to the distribution of x.

We suspect that for parameterizations where there is some redundancy, choosing λ too
large will, in some sense, overfit to the redundancy in the training set. The weak lensing
case presents one seemingly natural domain, as θ can be thought of either as some small col-
lection of (e.g., two) ΛCDM parameters or as a collection of infinite-dimensional correlation
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functions. We plan to develop theory to make this more rigorous and demonstrate the effect
of such overfitting on some examples. We hope that this work would lead to a principled
scheme for choosing the tuning parameter λ in novel applications.

Beyond the choice of λ, we will work toward a better understanding of the theoretical
properties of the common space mapping method. We will aim to explain more rigorously
why the method seems to work in the cases where it does work, and conversely, what condi-
tions on the structure of the parameters and the data would cause it to perform poorly. For
one specific example, the structural assumption laid out in (7) would admit some very trivial

T and η mappings, but in practice, the method tends to yield nontrivial T̂ and η̂ mappings.

4.2 Application

Our primary motivation for exploring the CSMM was the problem of weak gravitational
lensing, as outlined in Section 2.2. We will refine our application of the method to this
problem, attempting to incorporate more complex, and computationally costly, simulation
mechanisms (e.g., [15]) into the forward modeling process. The end goal of these refinements
is application to real data, both from existing and upcoming surveys, to improve upon current
cosmological parameter constraint.

We will also consider other applied settings where the structure of the data and param-
eters does not lend itself to an obvious means of summarizing the data without discarding
information. One such scenario would be the case of Gaussian mixture models, where there
is no sufficient statistic of lower dimension than the number of observations. Canonically,
inference in this setting proceeds via the E-M algorithm [3]. Other approaches include a
Bayesian treatment given in [22] and the Population Monte Carlo (PMC) approach of [5].
Especially in the case where no sufficient lower-dimensional summary statistic is known to
exist, an approximately sufficient dimension reduction would be a crucial ingredient in any
ABC approach.

Finally, we will work toward a fast, efficient implementation of the method, which we
plan to make publicly available as an R package.
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A Proofs of Claims

A.1 Summarizing by a sufficient statistic

Claim If S(·) is a sufficient statistic for θ, then π(θ|S(x)) = π(θ|x).
Proof In what follows, let f(·) denote a density function.

Suppose that S(X) is a sufficient statistic for θ, so that f(x|θ, S(x)) = f(x|S(x)). Con-
sider the posterior distribution π(θ|x).

π(θ|x) =
f(θ, x)

f(x)
=
f(θ, x, S(x))

f(x, S(x))

This last equality above is due to the fact that X = x implies that S(X) = S(x).

π(θ|x) =
f(x|θ, S(x))f(θ, S(x))

f(x|S(x))f(S(x))
=
f(x|S(x))f(θ, S(x))

f(x|S(x))f(S(x))
=
f(θ, S(x))

f(S(x))

20



This last quantity is simply π(θ|S(x)), yielding the result.

A.2 Tolerance needed for summary statistic tiers in toy example

Claim At level j, the ε∗j needed so that the true µ will be retained with probability 0.25 is
given by

ε∗j =

√
2j

n
F−1
2j ,λ

(0.25)

where F−1
2j ,λ

is the inverse distribution function for the noncentral χ2 distribution with 2j

degrees of freedom and noncentrality parameter λ = n
2j

∑2j

i=1(X
j

k)
2

Proof Having fixed τ = 0, each Yi ∼ N (0, 1). Thus, each Y
j

k is the mean of 2`−j

independent N (0, 1) random variables, so it has a N (0, 2j−`) distribution. Since the Xi are

fixed (and consequently, so are the X
j

k), the quantity X
j

k−Y
j

k has aN (X
j

k, 2
j−`) distribution.

The sum of squares of normally distributed random variables divided by their variancees

has a noncentral χ2 distribution. Generally, if Ui ∼ N (µi, σ
2
i ), then

∑p
i=1

(
Ui

σi

)2
has a χ2

distribution with p degrees of freedom and noncentrality parameter λ =
∑p

i=1

(
µi
σi

)2
. Hence,

the quantity

n

2j

2j∑
k=1

(X
j

k − Y
j

k)
2 (8)

has a χ2 distribution with 2j degrees of freedom and noncentrality parameter λ = n
2j

∑2j

i=1(X
j

k)
2.

Suppose now we want to calculate the probability of retaining the candidate τ which is
equal to the true µ. We will retain τ if and only if

‖S(X1, . . . , Xn)− S(Y1, . . . , Yn)‖2 ≤ ε

for some chosen ε.
Hence, as a function of ε, the probability of retaining τ is

p(ε) = P(‖S(X1, . . . , Xn)− S(Y1, . . . , Yn)‖2 ≤ ε)

Summarizing at level j, we have that S(X1, . . . , Xn) = (X
j

1, . . . , X
j

2j), and analogously for
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S(Y1, . . . , Yn), meaning that

pj(ε) = P


√√√√ 2j∑

k=1

(X
j

k − Y
j

k)
2 ≤ ε

 or equivalently,

pj(ε) = P

 2j∑
k=1

(X
j

k − Y
j

k)
2 ≤ ε2

 , or finally,

pj(ε) = P

 n

2j

2j∑
k=1

(X
j

k − Y
j

k)
2 ≤ n

2j
ε2

 . (9)

We argued earlier that the quantity on the right-hand side of the inequality has a χ2 distri-

bution with 2j degrees of freedom and noncentrality parameter λ = n
2j

∑2j

i=1(X
j

k)
2. Hence,

if F2j ,λ is the distribution function for that χ2 distribution, then

pj(ε) = F2j ,λ(
n

2j+1
ε2).

If we desire the tolerance ε∗j that allows us to retain the true parameter value, in expectation,
say, 25% of the time, it is straightforward to solve

F2j ,λ(
nε∗j

2

2j
) = 0.25, or

ε∗j =

√
2j

n
F−1
2j ,λ

(0.25)

for each of j = 0, 1, . . . , `.

A.3 Tolerance needed when undersummarizing

Y m ∼ N (0,
1

m
)

(Xm − Y m) ∼ N (Xm,
1

m
)

m(Xm − Y m)2 ∼ χ2
1,λm where λm = m(Xm)2.

Call the CDF of this last quantity F1,λm . Then

p(0, ε) = P(

√
(Xm − Y m)2 ≤ ε) = P(m(Xm − Y m)2 ≤ mε2) = F1,λm(mε2).

Thus, the expression on the right hand side of the last equality gives the probability of
retaining τ when τ = 0. We can invert this relationship to calculate the ε∗m needed to achieve
a desired acceptance probability of the true µ, e.g., 0.25.
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