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Abstract

Record linkage techniques allow us to combine different sources of information from a common popula-
tion in the absence of unique identifiers. Linking multiple files is an important task in a wide variety of
applications, since it permits to gather information that would not be otherwise available, or that would
be too expensive to collect. In practice, an additional complication appears when the datafiles to be linked
contain duplicates. The final output of duplicate detection and record linkage techniques is traditionally a
single file on which different analyses are carried out. Performing any analysis on those linked files completely
ignores the uncertainty associated with the record linkage and duplicate detection decisions. The reason for
this practice is that traditionally record linkage and duplicate detection techniques do not provide a proper
account of the uncertainty of their outputs.

We present a class of inferential scenarios where uncertainty from duplicate detection/record linkage
decisions can be incorporated into subsequent statistical analyses, in such a way that both steps can be done
sequentially. By taking this two-step approach we can solve the record linkage/duplicate detection step using
comparison data, which avoids the explicit modeling of fields that are only important for record linkage and
duplicate detection, such as names and addresses. This approach however will not lead to valid inferences in
most scenarios, and therefore we explore conditions under which the inference can be done sequentially. For
this approach to work, we propose methods for finding duplicates in a datafile, and for linking multiples files
potentially containing duplicates, that provide a proper account of the uncertainty of the decisions that they
output. The uncertainty from record linkage and duplicate detection is handled as a posterior distribution
that can be incorporated in a variety of subsequent analyses, such as the estimation of population sizes or
the estimation of relationships between variables that appear in different files.
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1 Introduction

Combining different sources of information from the same population is important in a wide variety of ap-
plications, including merging post–enumeration surveys and census data for census coverage evaluation (e.g.,
Winkler, 1988; Jaro, 1989; Winkler and Thibaudeau, 1991), and linking health–care databases for epidemi-
ological studies (e.g., Bell et al., 1994; Méray et al., 2007). It is also common to find duplicates within the
datafiles that we want to analyze, and therefore we need to account for the existence of duplicates to avoid
biased results.

The task of finding sets of records that refer to the same entity is not trivial when unique identifiers are not
available, and specially when records are subject to errors. In this document two or more records referring to
the same entity are called coreferent. When our aim is to find coreferent records within one datafile, we refer
to the task as duplicate detection, and when our goal is to find coreferent records across different datafiles,
we call the task record linkage, although some authors use these and other terms indistinguishably (e.g. see
Elmagarmid et al., 2007; Christen, 2012a).

Although, in principle, when linking multiple datafiles we could put all files together in a concatenated
file, and treat the problem as one of duplicate detection, we would like to distinguish both tasks in the
following sense. When linking multiple files it is important to acknowledge the data collection process that
lead to creation of each of the files. For example, the data sources to be linked may come from surveys,
administrative registries, convenience samples, or even censuses. Also, the different data collection processes
may lead to different kinds of errors in the different files. On the other hand, when finding duplicates within
one file, we assume all records have been subject to the same data collection process, and therefore all records
may be subject to the same distribution of error.

Current approaches to duplicate detection and record linkage train classifiers or mixture models using
comparison data computed on pairs of records, and output independent decisions on the coreference status of
each record pair (Elmagarmid et al., 2007; Herzog et al., 2007). This practice does not guarantee transitivity
of the coreference decisions and thus require resolving discrepancies in a post–processing step. For example,
it may be possible that records i and j are declared as being coreferent, as well as records j and k, but
records i and k may be declared as non–coreferent. If i, j, and k truly correspond to the same entity,
the non–transitivity could occur due to measurement error or incomplete record information. It may be
the case however that only two of those records are coreferent, but current methodologies do not offer any
representation of uncertainty in these situations.

Many studies require linking files or detecting duplicates within a file, or both, as a step that precedes some
statistical analysis. For example the usual methodology of census coverage evaluation matches a coverage
measurement survey to the census data in order to estimate population sizes using dual–system estimation
(e.g. Hogan, 1992, 1993). The different types of analysis that follow the linkage step, however, do not usually
account for the uncertainty coming from record linkage.

In this thesis we propose new methods that guarantee transitivity of the coreference decisions in the
context of finding duplicates within one file, as well as in the context of linking multiple files that may contain
duplicates. Our methods provide posterior distributions on the space of coreference decisions, and therefore
we can incorporate this uncertainty in subsequent statistical analysis using a Bayesian framework.

The remaining document is organized as follows. Section 2 provides an overview of the proposed frame-
work. Section 3 presents a literature review of current methods for record linkage and duplicate detection,
later develops a methodology for duplicate detection, and ends with a proposed generalization for linking
multiple datafiles. Section 4 outlines how to incorporate the uncertainty obtained from record linkage and
duplicate detection into some statistical procedures. Finally, Section 5 presents the proposed future steps of
this thesis, including applications to Human Rights and the US Census.

2 The Proposed Framework

Assume we have K datafiles possibly containing sets of coreferent records within them, as well as across
them. Let us denote the kth datafile as Xk, and the number of records that it contains as rk, k = 1, . . . ,K.
Each datafile can be conceptualized as a set of records, and therefore we can define X =

⋃K
k=1 Xk as the

concatenated file containing all the records coming from the K different sources. The number of records in the
combined file X is denoted r =

∑
k rk. We label the records in the combined file as {1, . . . , r}, such that if file

Xk contains record i, file Xk′ contains record i′, and k < k′, then i < i′. In practical terms, this means that
file X organizes the K different files in a common format, and the files are concatenated one under another.
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Assuming that there are n ≤ r different entities represented in the combined datafile X, we can safely
think that X can be partitioned into n groups of records, where each group represents a set of coreferent
records. This partition of the combined file is our parameter of interest in joint duplicate detection and record
linkage, and it can be represented by a matrix, as presented in the next section.

2.1 The Coreference Matrix

Let us consider the (unobserved) coreference matrix ∆ of size r × r, whose (i, j)th entry is defined as

∆ij =

{
1, if records i and j refer to the same entity;
0, otherwise.

This definition implies that ∆ is symmetric with diagonal entries containing only ones. It also implies that
∆ can be rearranged as a block–diagonal matrix by permuting its rows and columns, which is equivalent to
relabeling the entities in the combined datafile. In the block–diagonal version of ∆ each block represents a
group of coreferent records, and so the total number of blocks equals n, the number of entities represented in
X. An important fact that we will use in subsequent sections is that rank(∆) = n.

From a computational point of view, representing partitions using matrices might be inefficient, specially
when the combined file X is large. In practice, we represent a partition by an arbitrary labeling of its elements,
but we choose to use coreference matrices in this document to simplify notation and the exposition of ideas.

The labeling of the records in the combined file allows us to express the coreference matrix as a block–
matrix as follows:

∆ =


∆11 ∆12 . . . ∆1K

∆21 ∆22 . . . ∆2K

...
...

...
∆K1 ∆K2 . . . ∆KK

 ,

where ∆kk is a submatrix of size rk × rk that contains the information of duplicates for file k, and ∆kl is
a submatrix of size rk × rl that contains the information of links between files k and l. Notice that making
inference on the submatrices ∆kk represents the task of duplicate detection within files, and similarly, inference
on the set of matrices ∆kl, k 6= l, represents the task of linking pairs of files. In subsequent sections we will
be using the facts that rank(∆kk) = nk, where nk is the number of entities represented in file k, and
rank(∆kl) = nkl, where nkl is the number of entities represented in both files k and l.

2.2 Bayesian Inference on the Coreference Matrix

The goal of joint record linkage and duplicate detection is to make inference on the partition of the combined
file X, such that coreferent records get grouped in the same element of the partition. Given the lack of unique
identifiers, we use the information contained in the file X for this purpose. From a Bayesian standpoint, we
are interested in finding a posterior distribution on the set of partitions of the combined file, represented by
coreference matrices, given the information contained in X, this is

p(∆|X) ∝ p(∆)p(X|∆), (1)

simply by Bayes theorem. Section 3 presents methods for making inference on the coreference matrix under
the assumption that pairwise comparisons between records are all the information that we need in order to
determine their coreference status, this is

p(∆|X) = p(∆|Γ(X)) ∝ p(∆)p(Γ(X)|∆), (2)

where Γ(X) represents an array of comparisons among pairs of records. In other words, we are assuming
Γ(X) to be Bayesian sufficient for ∆. This assumption is implicit in most of the literature on record linkage
and duplicate detection (e.g. Fellegi and Sunter, 1969; Winkler, 1988; Jaro, 1989; Winkler and Thibaudeau,
1991; Larsen and Rubin, 2001; Herzog et al., 2007).

The main advantage of working with the assumption presented in Equation (2), compared to the direct
use of the Bayes theorem as in Equation (1), is that models for Γ(X)|∆ will often be much simpler than
models for X|∆. In effect, depending on the context, the file X will contain some combination of fields like
family and given names, dates, addresses, phone numbers, etc. Modeling X|∆ implies proposing a model for
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such fields, which typically involves proposing a model of how such information gets corrupted. Tancredi and
Liseo (2011) and more recently Steorts et al. (2013) have addressed the record linkage problem by modeling
X|∆ directly, but they confine themselves to work only with categorical information, for which there exist
models for measurement error, such as the hit–miss model of Copas and Hilton (1990). On the other hand,
modeling comparison data Γ(X)|∆ can be done in a simple way, as presented in Section 3, as long as the
records can be compared in a meaningful way.

2.3 Comparison Data

As the name suggests, comparison data are obtained by comparing pairs of records, with the goal of finding
evidence of whether two records refer to the same entity or not. Intuitively, two records referring to the same
entity should be very similar. The way to construct the comparisons depends on the information contained by
the records. The most straightforward way of comparing the same field of two records is by checking whether
their information agree or not. Although this comparison method is extensively used, and it is appropriate
for comparing unordered categorical fields (e.g. sex or race), it completely ignores partial agreement among
the information being compared.

Winkler (1990) proposes to take into account partial agreement among fields that contain strings (e.g.
given names) by computing a string metric, such as the normalized Levenshtein edit distance or any other
(see Bilenko et al., 2003; Elmagarmid et al., 2007), and then dividing the resulting set of similarity measures
into different levels of agreement. Winkler’s approach can be extended to compute levels of agreement for
fields that are not appropriately compared in a dichotomous fashion.

We compare the field f of records i and j by computing some similarity measure Sf (i, j). The range of
this similarity measure is then divided into Lf intervals If1, If2, . . . , IfLf

, that represent different levels of
agreement. By convention, the first interval, If1, represents the highest level of agreement, which includes
total agreement, and the last interval, IfLf

, represents the lowest level of agreement, which depending on
the field represents complete or strong disagreement. Based on these intervals, the comparison data consist
of ordinal variables that represent levels of agreement. For records i and j, and comparison criterion f , we
define

γfij = l, if Sf (i, j) ∈ Ifl. (3)

These different field comparisons are collected in vectors for each pair of records, as in Fellegi and Sunter
(1969), although in this case they are not limited to binary comparisons. γij = (γ1ij , . . . , γ

f
ij , . . . , γ

F
ij) denotes

the comparison vector for records i and j, where F is the number of fields being compared. In Section 3, we
assume that the array of comparisons γ = {γij}i,j is a realization of a random array Γ(X) that depends on
the variables in the datafiles. Henceforth we simply denote Γ(X) as Γ.

2.4 Bayesian Inference with Uncertainty on the Coreference Matrix

Record linkage and duplicate detection often precede other inferential procedures, such as population size
estimation or regression. In general, we might be interested in estimating a parameter vector φ using data
from the combined file X. From a Bayesian standpoint this requires finding a posterior distribution p(φ|X).
The direct use of the data X in traditional inferential procedures is not appropriate, since the existence of
coreferent records within the file may lead to biased inferences. Inferential procedures therefore need to take
into account the uncertainty on the coreference matrix represented by some posterior p(∆|X).

To address this inferential challenge, we first consider the simplest case scenario. Let us suppose that we
know the true ∆, this is, say we know which records are coreferent. How can we estimate φ using X?, this
is, how can we find p(φ|X,∆)? The answer, as usual, depends on the problem, although in general a set of
coreferent records can be regarded as multiple measurements on the same entity, and therefore measurement
error models (e.g. Fuller, 1987) can play an important role in modeling X|φ,∆, specially if X contains
continuous measurements. For most applications, however, X might contain categorical variables measured
with error, and thus extensions of the hit–miss model (Copas and Hilton, 1990) will play an important role.
Section 4 presents ideas on how to obtain posteriors p(φ|X,∆) for different types of problems, but for the
sake of outlying the general framework, we will assume that we are able to obtain p(φ|X,∆) in a meaningful
way.

Let us assume that we have a model MA for X|φ,∆ that allows us to find pA(φ|X,∆) using the prior
p(φ). In the last paragraph we were conditioning on a known coreference matrix ∆, but in general the
uncertainty on the configuration of this matrix may be summarized by a posterior distribution. Therefore,
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suppose we have a posterior pB(∆|X) coming from a model MB , using the prior p(∆). Naively, we would
like to compute

p(φ|X) =
∑
∆

pA(φ|X,∆)pB(∆|X) (4)

in order to account for uncertainty on the coreference matrix. However, models MA and MB may not be
compatible. Notice that model MA, along with priors p(∆) and p(φ) necessarily imply

pA(∆|X) ∝ p(∆)

∫
φ

pA(X|φ,∆)p(φ)dφ

which in general will not be the same as pB(∆|X). Since models MA and MB do not necessarily fit together
in a common joint distribution of X, φ, and ∆, Equation (4) will in general lead to non valid inferences.
Notice that this issue also occurs in multiple imputation (Rubin, 1987) whenever the model used to impute
missing data is different from the model used to analyze the multiple imputed datasets.

A natural solution to the above difficulty is to model X|φ,∆ and then make inference on φ and ∆
simultaneously. The advantage of this approach is that it is internally consistent and it will lead to valid
posteriors p(φ|X). Such approach is taken by Tancredi and Liseo (2011) in order to simultaneously link
datafiles and estimate population sizes using capture–recapture methods. As we mentioned in Section 2.2,
however, it might be difficult to model X, since it usually contains names, addresses, phone numbers, dates,
etc, and therefore authors taking this approach have focused only on categorical information. Furthermore,
the vector of interest φ may involve directly none or only some of the variables in X, and therefore the
complete modeling of X might be unnecessary.

In this document we propose to explore inferential scenarios where the application of the simple formula
given by Equation (4) leads to valid inferences, where pA(φ|∆, X) and pB(∆|X) come from different models.
For instance, the posterior on the space of partitions (coreference matrices) can be obtained using comparison
data, as it will be presented in Section 3, and for a given partition the posterior on the parameters of interest
can be obtained using existing models or perhaps some simple modification.

We now present some simple conditions under which Equation (4) leads to valid inferences.

Condition 1. If φ ⊥ X|∆ then Equation (4) leads to valid inferences. Here Equation (4) simplifies to

p(φ|X) =
∑
∆

pA(φ|∆)pB(∆|X)

Condition 1 deals with cases where inference on φ only directly involves ∆. Under Condition 1 we will be
able to make inference on population sizes using multiple systems estimation/ capture–recapture methods,
accounting for uncertainty in record linkage and duplicate detection, as it will be presented in Section 4.

Condition 2. Say X = (X1,X2). If φ ⊥ X2|∆,X1, and ∆ ⊥ X1|X2 then Equation (4) leads to valid
inferences. In this case Equation (4) can be written as

p(φ|X) =
∑
∆

pA(φ|∆,X1)pB(∆|X2)

An intuitive way to interpret Condition 2 is that once the set of variables X2 is being used to estimate ∆,
the set X1 does not provide further information, and the parameter vector of interest φ involves only X1. An
extreme example of X2 would be if it contained a unique identifier measured without error, since this is all
we need to determine ∆. In such a situation, of course, the record linkage and duplicate detection processes
would be trivial.

Lahiri and Larsen (2005) consider the regression problem where response and covariates appear in different
files, but both files share a set of fields that are useful to link them. In this scenario, response and covariates
are not useful for record linkage, but the regression involving them should account for uncertainty in the
linkages. This scenario fits under Condition 2, and we discuss it further in Section 4.

3 Duplicate Detection and Record Linkage

3.1 Literature Review

Duplicate detection and record linkage techniques have the goal of finding coreferent records in two traditional
scenarios. The first one involves one single datafile that contains duplicates, and the goal is to detect them.
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The second scenario involves two files that have an overlap in terms of the entities that they represent. The
goal in this case is to identify the records referring to entities represented in both files. The last scenario
traditionally assumes that the files contain no duplicates.

In the context of duplicate detection, there are r(r − 1)/2 pairs that need to be classified into coreferent
and non–coreferent pairs, where r is the size of the file. When linking two files, the number of pairs is r1× r2,
where r1 is the size of the first file, and r2 the size of the second one. In either case, pairwise comparison data
are the input of the method.

The existing methods for probabilistic duplicate detection and record linkage can be roughly classified in
two groups, those unsupervised that use mixture models, and those supervised that use classification methods.
A thorough survey on methods for duplicate detection and record linkage is presented by Elmagarmid et al.
(2007). We now present the general idea of those two groups of methods.

3.1.1 Finding Coreferent Record Pairs Using Mixture Models

In this approach we assume that the comparison vector γij is a realization of a random vector Γij , and the
comparison data γ = {γij}i,j are a realization of a random array Γ. Since we expect coreferent records to
largely agree in the information that they contain, we assume that the distribution of Γij is the same for all
record pairs that refer to the same entity (regardless the entity), and that the distribution of Γij is the same
for all record pairs that refer to different entities (regardless the pair of entities).

The above intuitive description can be formalized into a model for the comparison data as

Γij |∆ij = 1
iid∼ G1, Γij |∆ij = 0

iid∼ G0, (5)

where G1 and G0 represent the models of the comparison data for pairs that are coreferent and not coreferent,
respectively. These models may change depending on the comparison data at hand, this is, depending on the
availability of binary comparisons, similarity measures, etc.

The key component of the mixture model implementation is that in addition to the model of Equation
(5), the ∆ij ’s are modeled as i.i.d. Bernoulli(p). The ∆ij ’s, along with the parameters of the complete model
are usually estimated using the EM algorithm. If the distribution of the Γij ’s among coreferent records is
well separated from the distribution of the Γij ’s among non–coreferent records, the separation of the record
pairs into coreferent and non–coreferent will be of good quality.

This approach for finding coreferent records was initially proposed by Fellegi and Sunter (1969) in the
record linkage context, and its modern implementations using the EM algorithm have been widely used (e.g.
Winkler, 1988; Jaro, 1989; Larsen and Rubin, 2001). Fellegi and Sunter (1969) proposed a decision rule that
allows us to separate pairs of records into matches, non–matches, and possible matches that are sent for
clerical review. The rule of Fellegi and Sunter is optimal in the sense that it minimizes the probability of
assigning a pair to the subset of possible matches, subject to two user–defined tolerable levels of error: the
probability of false matches, and the probability of false non–matches.

This approach outputs independent decisions on the coreference status of pairs of records, and it relies
on the ∆ij ’s being independent, which is obviously violated in this context. The result of this methodology
therefore may not satisfy transitivity or other coherent constraints in the problem. For example, in the case
of linking files, if we assume that the files do not contain duplicates, then each record in the first file may
be linked to maximum one other record in the second file, and viceversa. When solving the record linkage
problem using this approach, there is nothing that enforces this maximum–one–to–one requirement in the
model itself, and therefore some post processing steps are required (see Jaro, 1989). Similarly, in the case of
finding duplicates, we may obtain non–transitive coreference decisions that have to be reconciled somehow.
More recently, Sadinle and Fienberg (2013) extended this approach to the linkage of more that two datafiles
under the assumption that the files do not contain duplicates, which is quite restrictive in practice. The
approach of Sadinle and Fienberg (2013) naturally inherits the before mentioned difficulties of the mixture
model implementation. In Section 3.12 we propose a solution to the problem of linking multiple datafiles that
may contain duplicates. See also Steorts et al. (2013) for an alternative approach.

3.1.2 Finding Coreferent Record Pairs Using Classification Methods

The problem of finding coreferent pairs is a classification problem: we need to separate record pairs into
coreferent and non–coreferent classes. If we have access to a sample of record pairs for which the true
coreference status is known, we can train a classifier on this sample, and then predict the coreference status
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of the remaining record pairs (e.g. Cochinwala et al., 2001; Bilenko et al., 2003; Christen, 2008; Ventura et al.,
2013).

Classification methods typically assume that we are dealing with i.i.d. data, and therefore the training
of the models and the prediction using them rely heavily on this assumption. The fact that these methods
output independent coreference decisions for pairs of records imply that this approach may lead to conflicting
decisions in either duplicate detection or in record linkage contexts, this is, we may obtain pairs of records
with non–transitive decisions when finding duplicates, and may violate the maximum–one–to–one assignment
constraint of traditional record linkage scenarios. Typically some subsequent post processing step is required
to solve these inconveniences.

In the subsequent subsections we will propose some methods that guarantee the transitivity of the coref-
erence decisions. In Sections 3.2 through 3.11 we propose a methodology for finding duplicates within one
datafile, and therefore r denotes the number of records that the file contains. Section 3.12 extends the
proposed methodology to the context where we want to link multiple files that potentially contain duplicates.

3.2 Duplicate Detection Using a Bayesian Partitioning Model

In this section we revisit the model presented in Equation (5), since we believe that it is a reasonable way to
approach the problem of finding coreferent records. We however propose a way to correct the difficulty of the
mixture model implementation, this is, we do not assume that the ∆ij ’s are i.i.d. Bernoulli(p), but instead
we treat the ∆ij ’s as the entries of a coreference matrix that in turn represents a partition.

Leaving G1 and G0 unspecified in the model of Equation (5), we can see that for a configuration δ of the
coreference matrix ∆, the joint probability of observing the comparison data γ can be written as

P(Γ = γ|∆ = δ) =
∏
i<j

P1(γij)
δijP0(γij)

1−δij , (6)

where δij represents the (i, j)th element of δ. Up to this point, this is the same as in a mixture model
implementation, but here ∆ takes values on the space of partitions. Bayesian inference requires to use a prior
distribution on the set of possible configurations of the coreference matrix ∆, this is, a prior on the space of
partitions of the file.

3.3 Prior Distribution of the Coreference Matrix

In this section we present the prior distribution of the matrix ∆ used in this document. We denote r̃ as
the number of unique records in the datafile, this is, r̃ is the number of records discounting exact duplicates.
We assume r̃ is the maximum number of entities possibly represented in the datafile, since we expect not to
have further information available to distinguish exact duplicates. By assigning an arbitrary labeling to the
r̃ potential entities, we can introduce the vectors Zi = (Zi1, . . . , Ziq, . . . Zir̃)

T , i = 1, . . . , r, where

Ziq =

{
1, if record i represents entity q;
0, otherwise;

and let Z be the r × r̃ matrix containing the vectors Zi in its rows. Notice that although the ordering of the
r̃ potentially existing entities is arbitrary, any permutation of the columns of Z leads to the same partition
of the records. Also notice that if the number of entities n is lower than r̃, then Z will have r̃− n columns of
zeroes. The usefulness of the preceding representation comes from the fact that if records i and j represent
the same entity, then ZTi Zj = 1, otherwise ZTi Zj = 0, which implies that ∆ = ZZT . Since ZZT is invariant
to permutations of the columns of Z, we can safely obtain a prior for ∆ by proposing a prior for the Zi
vectors. Also, since rank(Z) = rank(∆) = n, a prior for the Zi vectors implies a prior for the number of
entities represented in the datafile. In this document we propose to model the Zi’s a priori as a random
sample from a multinomial distribution with vector of probabilities π = (π1, . . . , πr̃), which represents the
entities’ relative propensities to appear in the datafile. We can also impose a hyperprior for π, which is
here taken as a symmetric Dirichlet distribution with parameter vector α1r̃, where 1r̃ is a vector of ones of
length r̃, and α is a positive constant. The symmetric Dirichlet distribution treats equally each potential
entity since we typically cannot distinguish them a priori. The parameter α controls the concentration of
the distribution of π around r̃−11r̃. If α = 1, then the vector of the entities’ propensities to appear in the
datafile (π) is uniformly distributed on the standard (r̃ − 1)–simplex; if α < 1, as α → 0, the prior of π
gets more concentrated around the vertices of the simplex, which represents the prior belief that there is one
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entity overly represented in the datafile; and finally, if α > 1, as α→∞, the prior of π converges to a point
mass located at r̃−11r̃.

The preceding Zi’s prior leads to a distribution on the set of configurations of ∆, where each of these
configurations represents a partition of r objects. This distribution is known as the Dirichlet multinomial
model for partitions (Keener et al., 1987), or the Dirichlet partition model (McCullagh, 2011). Keener et al.
(1987) study several properties of the Dirichlet partition model, and we refer the reader to their article for
further details.

3.4 Model Restatement

The model in Equation (5) along with the prior of ∆ can be rewritten in a hierarchical form as

π ∼ Dirichlet(α1r̃), Zi|π
iid∼ Multinomial(1,π), (7)

Γij |ZTi Zj = 1
iid∼ G1, Γij |ZTi Zj = 0

iid∼ G0.

The posterior distribution of ∆ can be obtained from the posterior of Z, which can be approximated using
Markov chain Monte Carlo (MCMC) methods.

3.5 A Model for Independent Comparison Fields

In this section we describe a simple parametrization for G1 and G0. We present a model for comparisons
that use levels of agreement (as in Section 2.3), assuming that the comparison fields are independent for both

coreferent and non–coreferent records, or in other terms, Γfij ⊥ Γf
′

ij |∆ij = 1 and Γfij ⊥ Γf
′

ij |∆ij = 0 for all f
and f ′, f 6= f ′.

If comparison f is divided into Lf levels of agreement, the distribution of the agreement levels Γfij among
coreferent records can be modeled according to a multinomial distribution, this is

P1(Γfij = γfij) =

Lf∏
l=1

(m∗fl)
I(γf

ij=l) (8)

where γfij represents an observed level of agreement, m∗fl = P1(Γfij = l), and
∑Lf

l=1m
∗
fl = 1. It is easy to show

that these probabilities can be rewritten as

m∗fl =


mf1, if l = 1;
mfl

∏
h<l(1−mfh), if 1 < l < Lf ;∏

h<Lf
(1−mfh), if l = Lf ;

(9)

where mf1 = P1(Γfij = 1), and mfl = P1(Γfij = l|Γfij > l − 1) for 1 < l < Lf . We choose to parameterize

the distribution of Γfij among coreferent records in terms of the conditional probabilities mfl since this
parametrization facilitates prior specification, as presented in Section 3.7. Using this parametrization, the
model in Equation (8) can be reexpressed as

P1(Γfij = γfij) =

Lf−1∏
l=1

m
I(γf

ij=l)

fl (1−mfl)
I(γf

ij>l). (10)

Notice that if Lf = 2, this is, comparison f is binary, we obtain the traditional binary comparisons model.

We follow an analogous construction of the distribution of Γfij among non–coreferent pairs, in which case

uf1 = P0(Γfij = 1), and ufl = P0(Γfij = l|Γfij > l − 1) for 1 < l < Lf .

3.6 Missing Comparisons and Conditional Independence

The combination of the assumptions of the comparison fields being conditionally independent (CI), and the
comparisons being missing at random (MAR), make it straightforward to deal with missing comparisons. In
fact, under these assumptions

P1(γobsij |Φ1) =

F∏
f=1

[ Lf−1∏
l=1

m
I(γf

ij=l)

fl (1−mfl)
I(γf

ij>l)

]Iobs(γf
ij)

, (11)
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where Iobs(·) is one if its argument is observed, and zero it is missing, and Φ1 = (m1, . . . ,mF ), with mf =
(mf1, . . . ,mf,Lf−1). A similar expression is obtained for P0(γobsij |Φ0) where Φ0 = (u1, . . . ,uF ), with uf =
(uf1, . . . , uf,Lf−1). The above equation indicates that the combination of the CI and MAR assumptions allow
us to ignore the comparisons that are not observed, and yet model the observed comparisons in a simple
fashion.

Under the CI assumption we can write P(Γobs = γobs|Z = z,Φ) =
∏F
f=1 P(Γfobs = γfobs|Z = z,Φf ), where

Φ = (Φ1,Φ0), and Φf = (mf ,uf ). Therefore we can write the likelihood for Z and Φ as L(Z,Φ|Γobs =

γobs) =
∏F
f=1 L(Z,Φf |Γfobs = γfobs), where

L(Z,Φf |Γfobs = γfobs) =

Lf−1∏
l=1

m
a1fl(Z)

fl (1−mfl)
∑

h>l a
1
fh(Z)u

a0fl(Z)

fl (1− ufl)
∑

h>l a
0
fh(Z), (12)

and
a1fl(Z) =

∑
i<j

Iobs(γ
f
ij)I(γfij = l)ZTi Zj , a0fl(Z) =

∑
i<j

Iobs(γ
f
ij)I(γfij = l)(1− ZTi Zj). (13)

For a given matrix of memberships Z, the two above quantities represent the number of coreferent and
non–coreferent records agreeing at level l for observed comparison f .

Although our main interest is to make inferences on the coreference matrix ∆, a fully Bayesian approach
requires the specification of priors for the parameters Φ.

3.7 Prior Specification

In this section we explain the choosing of the priors for the parameters mfl and ufl, l = 1, . . . , Lf − 1. The

first parameter that we will focus on is mf1 = P1(Γfij = 1), which represents the probability of observing the
first level of agreement in the comparison f among coreferent records. The first level of agreement represents
extreme or total agreement, so if we believe that field f contains no error, mf1 should be, a priori, a point
mass at one, and as the error in field f increases the prior of mf1 should get concentrated around values
further from one. For example we may expect a priori mf to be in some interval [λ1f1, 1] with probability one,

for some 0 < λ1f1 < 1. If the field used to compute comparison f is believed to be fairly accurate, then the

threshold λ1f1 should be set close to one. On the other hand, the more errors a field is believed to contain,

the lower λ1f1 should be set in the prior. Therefore we can take the prior distribution for mf1 in general as

Beta(α1
f1, β

1
f1) truncated to the interval [λ1f1, 1], which we denote as TBeta(α1

f1, β
1
f1, λ

1
f1, 1).

The parameter mf2 = P1(Γfij = 2|Γfij > 1) represents the probability of observing the second level of
agreement in the comparison f , among coreferent record pairs that do not have the first level of agreement.
Depending on the construction of the agreement levels, and if the number of levels is greater than two, we
can think of the second level of agreement as mild agreement, and therefore, if we expect the amount of error
to be relatively small, mf2 should be concentrated around values close to one. Following a similar reasoning
as for mf1, we could take the prior of mf2 as TBeta(α1

f2, β
1
f2, λ

1
f2, 1), where we can set the hyper–parameters

of this distribution, specially λ1f2, according to our expected levels of error in the field f .
We can use a similar reasoning as for mf1 and mf2 to determine the prior distribution of the remaining

parameters mfl = P1(Γfij = l|Γfij > l − 1), l = 3, . . . , Lf − 1. In general, we can take the prior of mfl as

TBeta(α1
fl, β

1
fl, λ

1
fl, 1), where the truncation points λ1fl change according to the field f , the way the agreement

levels were constructed, and the amount of error expected a priori. Notice however that if a field is believed
to contain large amounts of errors, it may be better to exclude it from the duplicate detection process since
its inclusion can potentially harm the results (Sadinle and Fienberg, 2013, explore this issue in the multiple
record linkage context). In this document we set α1

fl = β1
fl = 1, for all fields f and levels l, this is, we take

mfl ∼ Uniform(λ1fl, 1).
The probabilities ufl of agreement among non–coreferent records may have quite different distributions

depending on the fields used to compute the comparisons. For instance, if a nominal field is used and it
contains a highly frequent category, then the probability of agreement will be high even for non–coreferent
records. On the other hand, if a field is almost a unique identifier of the entities, then the probability of
agreement will be small among non–coreferent records. We therefore take the priors of the ufl parameters
as Beta(α0

fl, β
0
fl) without truncation, but we can still use α0

fl and β0
fl if prior experience is available. In this

document, however, we set α0
fl = β0

fl = 1, this is ufl ∼ Uniform(0, 1).
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3.8 Bayesian Inference via Gibbs Sampler

In this section we present a Gibbs sampler to explore the posterior of Z given a value of the observed
comparison data Γobs. We have integrated over π in the model of Equation (7), since this leads to a simpler
Gibbs sampler. The sampler uses the parametrization for the comparison data given by Equation (12). In
this case, using a Gibbs sampler, we obtain a Markov chain that explores the joint posterior of Z and Φ. The
conditional distributions necessary to implement a Gibbs sampler are given by

mfl|Γobs = γobs,Z = z ∼ TBeta
(
α1
fl + a1fl(z), β1

fl +
∑
h>l

a1fh(z), λ1fl, 1
)
,

ufl|Γobs = γobs,Z = z ∼ Beta
(
α0
fl + a0fl(z), β0

fl +
∑
h>l

a0fh(z)
)
,

for l = 1, . . . , Lf − 1, and Zi|Z(−i) = z(−i),Γobs = γobs,Φ ∼ Multinomial
(
1, (pi1, . . . , pir̃)

)
, for i = 1, . . . , r,

where we obtain
piq ∝

(
z
(−i)
+q + α

)
exp

(∑
j 6=i

zjqΛij

)
, (14)

where
Λij =

F∑
f=1

Iobs(γ
f
ij)

Lf−1∑
l=1

[
log
(mfl

ufl

)
I(γfij = l) + log

(1−mfl

1− ufl

)∑
h>l

I(γfij = h)

]
(15)

=

F∑
f=1

Iobs(γ
f
ij)

Lf∑
l=1

log
(m∗fl
u∗fl

)
I(γfij = l). (16)

If we only have binary comparisons and no missing data, Equation (15) becomes the composite weight often
used in record linkage to declare record pairs as matches or non–matches (Fellegi and Sunter, 1969; Winkler,
1988; Jaro, 1989). Equation (16) represents the composite weight proposed by Winkler (1990) using agreement
levels. Finally, we notice that the conditional distributions of the mfl parameters are truncated beta, which
we can sample efficiently using the method of Damien and Walker (2001).

3.9 An Illustrative Example

Table 1 presents a small toy example to illustrate different situations where different sets of records may be
considered as coreferent depending on the levels of error that we believe the fields may contain. We explore
the results of our duplicate detection method under different scenarios where these data could have arisen.
The example uses Hispanic names since dealing with those is specially challenging. Full Hispanic names are
usually composed by four pieces, two corresponding to given name, and two corresponding to family name.
In practice, however, Hispanic people use different pieces depending on the context, and according to their
own preferences. For example, someone named JULIAN ANDRES (record 1 of Table 1) could be known as
JULIAN by his extended family, but as ANDRES by his friends.

Records 1, 2 and 3 in Table 1 represent an example where pairwise decisions on the coreference status of
records may not be transitive. In this example, records 1, 2 and 3 agree in year, month, day, and municipality;
also the names in records 2 and 3 are basically contained in the pieces of name of the first record, except
for some errors, but the names in records 2 and 3 completely disagree. In this situation, any method taking
pairwise decisions, or even a human taking decisions for one pair of records at a time, will most likely decide
that records 1 and 2 are coreferent, as well as records 1 and 3, but will probably decide that records 2 and
3 are not coreferent. Table 1 also presents records 4 and 5, which agree in all of their information, except
for month, day, and the second piece of family name, which is missing for record 5. The decision of whether
to declare records 4 and 5 as coreferent will depend on the levels of error that we believe month and day
may contain. Below we show how the proposed method deals with the uncertainty of these situations under
different scenarios.

Let us think of two different scenarios from where the records in Table 1 could have arisen. In the first
scenario, each record refers to a person who was killed during a war, and the data were reported by witnesses
more than 10 years after the event occurred. In this scenario, year, month, day, and municipality in Table
1 correspond to the date and location of the killing as reported by the witnesses. Under this scenario we
expect to have many reporting errors in the names of the victim and in the date and place of the killing, since
different witnesses may have different memories of the victims and the events.

10



Table 1: Toy example to illustrate that different sets of records may be considered as coreferent
in different contexts.

Record Given Name Family Name Year Month Day Municipality

1. JULIAN ANDRES RAMOS ROJAS 1985 5 29 A
2. JULIAN RCJAS 1985 5 29 A
3. ANDRES RAMCS 1985 5 29 A
4. JOSE FLORES CANALES 1986 10 1 B
5. JOSE FLORES 1986 8 5 B

In the second scenario, the records in Table 1 come from tax forms, and the information was self reported.
In this case, year, month, day, and municipality in Table 1 correspond to date and place of birth. The reader
may agree that in this case we may expect the levels of error in all fields to be much smaller compared to the
first scenario, since it is quite unlikely for one person to misreport his/her information.

In Table 2 we show a summary of how the agreement levels are constructed for the data in our toy example.
The Levenshtein edit distance between two strings measures the minimum number of deletions, insertions,
or replacements that we need to transform one string into the other. We use a simple modification of the
Levenshtein edit distance to account for the fact that Hispanic names may have missing pieces. Basically,
if name A contains one token and name B contains two tokens, the modified Levenshtein measure between
A and B corresponds to the minimum of the Levenshtein distances that compare the token of name A with
each token of name B. Finally, this measure is transformed to the 0–1 interval by dividing by the maximum
Levenshtein distance possibly obtained between names with the lengths of A and B. In this scale, 0 means
total agreement (up to missing tokens), and 1 means extreme disagreement.

In order to implement the proposed method for duplicate detection, we need to choose the prior truncation
points of the parameters mfl. For the sake of simplicity, we consider that our prior beliefs about each field of
information can be classified in two categories: either the field is accurate or inaccurate. If field f is accurate,
we take the prior truncation points for all the parameters related to this field (all mfl, l = 1, . . . , Lf ) as 0.95,
whereas if field f is inaccurate, the prior truncation points for all mfl, l = 1, . . . , Lf , are set to 0.7.

For simplicity, we fix the prior truncation points for Year and Municipality parameters at 0.95 for all data
collection scenarios presented here. For the remaining parameters, in the killings scenario we expect the fields
to contain large amounts of error, and so the prior truncation points for all parameters are set equal to 0.7
(case 1 of Figure 1), whereas for the taxes scenario, the prior truncation points are all set equal to 0.95 since
a priori we expect errors to be rare (case 4 of Figure 1). We also explore two intermediate cases that fall
between the previous two extreme scenarios. In the first one, we expect day and month to be pretty accurate,
but given and family names to be inaccurate (case 2 of Figure 1). In the second intermediate scenario, given
and family names are considered to be accurate, but day and month are considered to be inaccurate (case 3
of Figure 1).

For each set of priors, using the comparison data obtained from the records in Table 1, we run 10,000
iterations of the Gibbs sampler presented in Section 3.8, and in each case 1,000 iterations are discarded as
burn–in. Figure 1 presents the posterior frequencies of the six most frequent partitions across all scenarios.
Although a file with five records can be partitioned in 52 ways (5th Bell number), the six partitions presented
in Figure 1 concentrate at least 99% of the posterior probability in each case. If a partition of {a, b, c, d, e}
groups records a and b together, c and d together, and e alone, it is denoted ab/cd/e.

Table 2: Construction of levels of agreement for the toy example in Table 1.

Levels of Agreement

Field Similarity Measure 1 2 3 4

Given Name Modified Levenshtein 0 (0, 0.25] (0.25, 0.5] (0.5, 1]
Family Name Modified Levenshtein 0 (0, 0.25] (0.25, 0.5] (0.5, 1]
Year Absolute Difference 0 1 2–3 4+
Month Absolute Difference 0 1 2–3 4+
Day Absolute Difference 0 1–2 3–7 8+
Municipality Binary Comparison Agree Disagree
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Prior Truncation Points for {mfl}

Given and
Family Names

Day and
Month

Posterior Frequencies

1. 0.70 0.70

0.0

0.5

1.0

2. 0.70 0.95

0.0

0.5

1.0

3. 0.95 0.70

0.0

0.5

1.0

4. 0.95 0.95

0.0

0.5

1.0

Coreference Matrices

123/45 12/3/45 13/2/45 123/4/5 12/3/4/5 13/2/4/5

Figure 1: Posterior distributions of the partition of the file presented in Table 1, for different
sets of priors corresponding to different contexts. The six partitions presented here concentrate
at least 99% of the posterior probability in each case. Prior truncation points for Year and
Municipality parameters are set at 0.95 for all cases. Posterior frequencies are obtained from
9,000 iterations of a Gibbs sampler. The coreference matrices depicted here have black entries
representing ones, and white entries representing zeroes.

From Figure 1 we can see that for case 1, this is, when given and family names, and day and month are
inaccurate, the posterior distribution is concentrated in partitions 123/45 and 123/4/5, and from these two, it
assigns more probability to 123/45. These results are reasonable given that our priors indicated that the fields
were potentially inaccurate, and therefore the disagreements between fields are not taken as strong evidence
of the records being non–coreferent. In case 2, we present a scenario where given and family names are still
thought to be inaccurate, but day and month are believed to be accurate, and therefore we can see that in
this case the posterior gets completely concentrated in the partition 123/4/5, this is, now disagreements in
day and month become important for distinguishing non–coreferent records, and therefore records 4 and 5
are probably non–coreferent. In case 3, given and family names are thought to be accurate, whereas day
and month to be inaccurate. In this case, the partitions where records 2 and 3 are coreferent get probability
zero, since the strong disagreements between those two records now become important. Finally, in case 4,
given and family names, and day and month are thought to be accurate, and therefore the partitions where
records 4 and 5 are coreferent are unlikely aposteriori, as well as the partitions where records 1, 2 and 3 are
clustered together. Since records 1 and 2 strongly agree, as well as records 1 and 3, but records 2 and 3 have
strong disagreements, the posterior assigns equal probability to the partitions 12/3/4/5 and 13/2/4/5, which
accounts properly for the uncertainty of deciding whether records 1 and 2 are coreferent, or records 1 and 3
are coreferent.

Finally, it is important to emphasize that although in this example it seems that the priors of the mfl

parameters completely determine the posterior of ∆, from Equation (15) we can see that both the mfl

and ufl parameters influence the evolution of the memberships Z in the Gibbs sampler. In particular, if
these five records were contained in a larger file, the resolution of their coreference status would depend on
the distribution of the comparison data for the complete file, since for instance the distributions of the ufl
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parameters are heavily influenced by the observed frequencies of the corresponding levels of agreement.

3.10 Reducing the Inferential Complexity

Until now we have intended to make inference on the complete coreference matrix ∆, which represents a
partition of the datafile. There are different ways to argue that this is both inefficient and unnecessary. First,
the number of ways in which a datafile with r records can be partitioned is given by the rth Bell number (see
e.g. Rota, 1964), which grows exponentially with r. For example, the number of possible partitions of a file with
10 records is 115,975, and if the file contains 15 records, the Bell number grows to 1,382,958,545. In practice,
most files are much larger, and therefore exploring the complete space of partitions would be unfeasible.
Similarly, each update of the record memberships Zi in the Gibbs sampler requires the computation of r̃
probabilities given by Equation (14), which is computationally expensive. In most applications however,
most record pairs refer to different entities, and therefore detecting obvious non–coreferent pairs may reduce
tremendously the inferential and computational complexity of the problem.

Blocking is a common way to declare records as non–coreferent a priori, which consists of dividing the
datafile into different blocks of records according to some reliable categorical field, or combinations of them,
such that records in different blocks are considered non–coreferent. For example, if a field like gender or
postal code is believed to be free of error, we could a priori declare records disagreeing on that field to be
non–coreferent. We heavily rely on being able to block in order to apply the method to medium or large size
datafiles.

In addition to blocking, to further reduce the complexity of the inferential task, we can a priori declare
pairs of records as non–coreferent whenever they strongly disagree according to some user defined criteria.
For instance, in the example presented in Section 3.9, a criterion for declaring a pair as non–coreferent
could be having strong disagreements in both given and family name. Another criterion could be having
strong disagreements in year, month, day, and municipality. Further criteria can be created depending on
the availability of additional fields. Finally, if a pair of records meet any of the established criteria, then it is
declared as non–coreferent a priori.

Notice that if records i and j are declared as non–coreferent a priori, this means that we are fixing ∆ij = 0,
which in turn can be seen as a truncation to the prior distribution of ∆, since now all the partitions where
records i and j are grouped together get prior probability zero. The Gibbs sampler presented in Section 3.8
can be easily modified to take into account that some ∆ij ’s are fixed as zero, and therefore only the remaining
pairs enter the duplicate detection process. Let us denote C the set of candidate pairs for duplicate detection,
this is, the pairs for which ∆ij is not fixed as zero a priori. Notice that, ∆ij = 0 means ZTi Zj = 0, and
therefore we can write

a1fl(z) =
∑

(i,j)∈C

Iobs(γ
f
ij)I(γfij = l)zTi zj , (17)

a0fl(z) =
∑

(i,j)/∈C

Iobs(γ
f
ij)I(γfij = l) +

∑
(i,j)∈C

Iobs(γ
f
ij)I(γfij = l)(1− zTi zj), (18)

for each field f and level of agreement l. Notice that the first summand of Equation (18) does not change
for different values of z, and therefore the terms that are now constants in the a0fl(z)’s can be incorporated
in the priors of the ufl’s, leading to the same expressions in the Gibbs sampler for updating the ufl’s, as
in Section 3.8. Finally, when sampling the membership of record i conditioning on the remaining records’
memberships, Zi cannot be equal to zj whenever ∆ij = 0 a priori, and therefore the truncation of the prior
of ∆ constrains the number of memberships where i can be assigned, reducing the complexity of this step in
the Gibbs sampler.

3.11 A Simulation Study

We now present a simulation study to explore the performance of the proposed methodology under different
scenarios of measurement error. Peter Christen and his collaborators (Christen, 2005; Christen and Pudjijono,
2009; Christen and Vatsalan, 2013) have developed a sophisticated data generation and corruption tool to
create of synthetic datasets containing various types of fields. This tool, written in Python, can include
dependencies between fields, permits the generation of different types of errors, and can be easily adapted to
generate additional fields that are not included in the default settings.

We now describe the characteristics of the datafiles generated here. The synthetic files contain seven
fields: gender, given name, family name, postal code, phone number, age, and occupation. The fields gender
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Table 3: Fields and types of errors to which they are subject in the simulation study of Section
3.11.

Type of Error

Field Missing Values Edits OCR Keyboard Phonetic Misspelling

Family Name X X X X X
Given Name X X X X
Phone Number X X X X
Postal Code X X X X
Age Interval X
Gender X
Occupation X

and given name are sampled jointly from a table that contains frequencies of given names per gender, and
therefore popular given names appear with higher probability in the synthetic datasets. Family name and
postal codes are generated independently from additional frequency tables. The three tables mentioned so
far were compiled by Christen and his collaborators from public sources in Australia. Phone numbers are
randomly generated following the Australian format which consists of a two–digit area code and an eight–digit
number made of two blocks of four digits. The five previous fields were included in the default configuration
of Christen’s generator. In addition, age and occupation are jointly sampled from a contingency table that
serves as an estimate of the distribution of age and occupation in Australia. The table was obtained from the
webpage of the Australian Bureau of Statistics, and it contains eight categories of occupation and eight age
intervals.

The generator first creates a number of original records, which are later used to create distorted duplicates.
The duplicates are allocated by randomly selecting an original record, and assigning a random number of
duplicates to it. The number of duplicates is generated according to a Poisson(1) truncated to the interval
[1, 5]. Each duplicate contains a fixed number of errors distributed randomly among the different fields,
but each field contains maximum two errors. The types of errors are selected at random from a set of
possibilities which vary from field to field, as summarized in Table 3. Missing values means that the value of
the field becomes missing. Edit errors represent random insertions, deletions, or substitutions of characters
in the string. OCR errors happen typically when a document has been digitalized using optical character
recognition. Keyboard errors use a keyboard layout to simulate typing errors. Phonetic errors are simulated
using a list of predefined phonetic rules. Finally, misspelling errors are generated by randomly selecting one
of possibly many known misspellings of a family name. For further details on the generation of these types
of errors, see Christen and Pudjijono (2009) and Christen and Vatsalan (2013).

In the simulation presented here, each synthetic dataset is composed by 450 original records and 50
duplicates. To explore the performance of the method as a function of the amount of error in the datafile,
we generate 100 synthetic datasets for each of four levels of error, which correspond to the number of errors
per duplicate being 1, 3, 5, and 7. For each file, comparison data were created as indicated in Table 4. The
record pairs having the fourth level of agreement in both given and family name were declared non–coreferent
a priori, and therefore excluded from the duplicate detection process, although the frequencies of the levels
of agreement among them were included in the prior, as explained in Section 3.10. The methodology is then
applied to the remaining pairs under three different sets of priors. For simplicity, each set of priors have the
same prior truncation point for all the mfl parameters, although in a real applications the priors should be
chosen carefully. The prior truncation points are 0.5, 0.8, and 0.95, which correspond to one scenario where
we believe the amount of error in the file to extremely large, one where we believe it to be moderate, and
one where we are overly optimistic and believe the amount of error is very limited. For each dataset, and
for each set of priors, we ran 1,000 iterations of the Gibbs sampler, and discarded the first 100 as burn–in.
The average runtime using an implementation in R, including the computation of the comparison data and
the Gibbs sampler, was 3.4 minutes per file, on a laptop with 1.87 GHz processor and 3 GB of RAM. Before
starting the complete simulation study, we obtained some longer chains for some datasets and all priors, and
we could check that 900 iterations provided roughly the same frequencies of partitions as when we run longer
chains.

For each datafile, and each set of priors, we obtain a sample of partitions which approximate the posterior
distribution of the partition of the file. We can assess how good each partition is in terms of classifying pairs
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Table 4: Construction of levels of agreement for the simulation study of Section 3.11.

Levels of Agreement

Field Similarity Measure 1 2 3 4

Given Name Levenshtein 0 (0, 0.25] (0.25, 0.5] (0.5, 1]
Family Name Levenshtein 0 (0, 0.25] (0.25, 0.5] (0.5, 1]
Phone Number Levenshtein 0 (0, 0.25] (0.25, 0.5] (0.5, 1]
Postal Code Levenshtein 0 (0, 0.25] (0.25, 0.5] (0.5, 1]
Age Interval Binary Comparison Agree Disagree
Gender Binary Comparison Agree Disagree
Occupation Binary Comparison Agree Disagree

of records as coreferent and non–coreferent. If a record pair appears in the same component of a partition,
then they are coreferent according to that partition. We therefore can compute the measures of recall and
precision for each partition appearing in the sample. For a given partition, the measure of recall is defined as
the proportion of true coreferent pairs that appear together in the same element of the partition, this is, are
classified correctly by the partition. Similarly, for a given partition, the measure of precision is defined as the
proportion of record pairs belonging to the same elements of the partition that are truly coreferent, this is, the
proportion of pairs declared as coreferent (according to the specific partition) that are truly coreferent. These
two measures are preferred for evaluating performance in duplicate detection problems, where the amount of
non–coreferent pairs is large compared to the proportion of coreferent pairs, and therefore traditional measures
of performance in classification, such as the misclassification rate, are misleading (Christen, 2012b, p. 165).

The results of the simulation are presented in Figure 2. Notice that for each dataset, and each set of
priors, we obtain a distribution of recall and precision measures, since both of these measures are computed
for each partition in the posterior. Therefore, we compute the median, the first and 99th percentile of each
measure, and average over all the 100 datasets corresponding to each level of error. In Figure 2 the gray solid
lines show the average of the median precisions, and the gray dashed lines show the average of the first and
99th percentiles of each measure.

We can see that when the amount of errors is small, say one and three errors per duplicate, the method
works pretty well in terms of both recall and precision for the prior truncation points of 0.8 and 0.95. When
the prior truncation points are equal to 0.95, and the amount of error is large, the performance of the method
deteriorates in terms of recall, although the precision stays high, meaning that using this prior, any pair
declared as coreferent will be truly coreferent with high probability, although it will fail detecting many
coreferent pairs. When the prior truncation points are equal to 0.5, the precision of the method is low for
all scenarios, which indicates that the method introduces many false coreferent pairs. Among these three
priors, the best balance between recall and precision across all levels of error was obtained by setting the prior
truncation points at 0.8.

1 3 5 7

0.4

0.6

0.8

1.0

Errors per Duplicate

P
er

fo
rm

an
ce

Prior Truncation Points = 0.5

1 3 5 7

0.4

0.6

0.8

1.0

Errors per Duplicate

P
er

fo
rm

an
ce

Prior Truncation Points = 0.8

1 3 5 7

0.4

0.6

0.8

1.0

Errors per Duplicate

P
er

fo
rm

an
ce

Prior Truncation Points = 0.95

Figure 2: Recall (black lines) and precision (gray lines) for different priors in the simulation of
Section 3.11.
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In general, we can see that when the amount of error is small, the recall seems to be robust to prior
specification, but the precision seems to be more sensitive, which indicates that when there are not many
errors, it is easy to identify the truly coreferent pairs, but if our priors are overly pessimistic indicating that
the amount of error is potentially much larger than what it really is, then we will end up obtaining many
false coreferent pairs. On the other hand, when the amount of error is large, it seems that no prior allows us
to recover all the truly coreferent pairs, and if the prior indicates that the amount of error is much smaller
that what it really is, then a large proportion of the truly coreferent pairs will not be detected. The general
performance can be seen as a tradeoff between recall and precision: if the priors indicate that the amount of
error is too small when it is actually large, then we may end up missing too many true coreferent pairs; if the
priors indicate that the amount of error is too large when it is actually small, then we may end up having too
many false coreferent pairs. To have general recommendations on how to set the priors, we require further
exploration of how they affect the performance of the method under different situations of error.

3.12 Extension to Joint Duplicate Detection and Record Linkage

We now propose an extension of the model presented in the previous sections to the scenario where we want
to link multiple files that may contain duplicates.

As we mentioned in the Introduction, when linking multiple files it is important to bear in mind the
different characteristics of each of them, including the data collection processes, and the possible errors that
they may contain. For instance, the illustrative example presented in Section 3.9 shows that a pair of records
may be considered coreferent under a certain data collection scenario, but non–coreferent under another.

Let Di denote the datafile where record i belongs, this is Di takes values in 1, . . . ,K. The model presented
in Equation (5) can be extended as follows

Γij |∆ij = 1, Di = k,Dj = l
iid∼ Gkl1 , Γij |∆ij = 0, Di = k,Dj = l

iid∼ Gkl0 , (19)

where without loss of generality we can take k ≤ l. In this model, the different distributions Gkl take into
account different characteristics of different pairs of files. For instance, the way of comparing a pair of records
may change depending on the files where the records belong, since for instance some fields might have been
recorded differently in different files. Also, if files k and l are believed not to be accurate, and files k′ and
l′ are believed to be accurate, the distributions Gkl and Gk

′l′ will be very different, as well as the priors
for the parameters in both models. Using the model presented in Equation (19) we can treat differently the
duplicate detection for different files. For example the distributions Gkk and Gk

′k′ will be different since the
information in file k is believed to be inaccurate, whereas file k′ is believed to contain accurate information.

In principle, the prior distribution of the coreference matrix for the combined file X can also be taken as
in Section 3.3. Notice however that in this case we may believe that different files may contain different rates
of duplicates. If this is the case, it might be important not to treat all the records as exchangeable a priori.
This scenario requires considering priors different from the one considered here so far.

4 Accounting for Uncertainty from Record Linkage and Duplicate
Detection in Some Bayesian Inferential Procedures

As we mentioned in Section 2.4, in principle we can propose a model for X|φ,∆, and using Bayesian inference
we can obtain p(φ,∆|X) ∝ p(X|φ,∆)p(φ,∆). This is the approach taken by Tancredi and Liseo (2011)
in the context of capture–recapture estimation using two linked samples, and by Gutman et al. (2013) in a
rather general framework for analyzing linked data from two files using Bayesian methods. Although their
approach is certainly sensible, here we want to explore scenarios where the simple application of Equation (4)
leads to valid inferences. The reasons for doing this is that the posterior p(∆|X) could be reused in different
analyses, whereas otherwise we would have to design specific estimation methods for each different situation,
and p(∆|X) can be obtained using comparison data as in Section 3. We now provide specific cases that fit
under conditions 1 and 2 presented in Section 2.4.

4.1 Population Size Estimation Using Capture–Recapture Methods

A number of capture–recapture/ multiple systems estimation models have sufficient statistics that depend
only on the “capture histories” of the different individuals in the files (e.g. Bishop et al., 1975; Castle-
dine, 1981; George and Robert, 1992; Madigan and York, 1997; Fienberg et al., 1999). For example, in
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a triple–systems estimation, let us denote the observed frequencies of the different capture histories as
v = (v111, v110, v101, v011, v100, v010, v001), where, for example, v101 represents the number of individuals in
files one and three, but not in file two, and the remaining elements of v are defined similarly. Many models
for estimating the population size N only depend on v, this is, their likelihood can be expressed as L(N |v).
Interestingly, the vector v is a deterministic function of the coreference matrix ∆, and therefore this inferential
scenario fits under Condition 1 of Section 2.4.

Let us remember from Section 2.1 that the coreference matrix ∆ for the combined file X can be partitioned
into different submatrices. Using the notation of this section, in the case of three samples, v1++ = rank(∆11)
denotes the number of entities represented in file 1, and we can obtain v+1+, and v++1 in an analogous
way. Similarly, v11+ = rank(∆12) denotes the number of entities represented in both files 1 and 2, ac-
cording to the coreference matrix ∆, and we can obtain v1+1 and v+11 analogously. To obtain the vector v
associated with ∆, we now only need v111, which can be obtained from the following general result for K files:

Result. For K files, for a given ∆ we have that the number of entities represented in all files is given by

v11...1 = rank(∆12∆23 . . .∆(K−1)K) = rank(∆q1q2∆q2q3 . . .∆qK−1qK )

for any permutation q1, q2, . . . , qK of 1, 2, . . . ,K.

Although we omit further details on how to compute in general v from ∆, we want to emphasize that
v is a deterministic function of ∆, and therefore we can make inference on N accounting for uncertainty
from record linkage and duplicate detection simply as p(N |X) =

∑
∆ p(N |v(∆))p(∆|X), where the posterior

p(N |v(∆)) is obtained using L(N |v(∆)). If the set of partitions with non–zero probability is very large, then
p(N |X) can be approximated using a sample of ∆’s.

4.2 Inference for Association Between Variables Contained in Different Files

Let us suppose that we are linking K files that do not contain duplicates, and all of them contain information
on exactly the same entities, this is r1 = n1 = r2 = n2 · · · = rK = nK . Let X1

k represent a set of fields in file
k that are not available in the remaining files, k = 1, . . . ,K. This scenario is more general than the one of
Lahiri and Larsen (2005), since they focus on K = 2 in a regression setting. Let us suppose that we would
be interested in a model with likelihood L(φ|X1

1,X
1
2, . . . ,X

1
K) if all fields X1 = (X1

1,X
1
2, . . . ,X

1
K) had been

observed in the same file. Unfortunately, we are not able to use this model immediately since we do not know
which records are coreferent in the different files. Notice that in this scenario, ∆kl is a permutation matrix,
whose ith row indicates the record in file l that is coreferent with record i in file k. If we knew the true value
of ∆, we could simply write the likelihood that we desire as L(φ|∆k1X

1
1,∆k2X

1
2, . . . ,X

1
k, . . . ,∆kKX1

K) :=
L′(φ|X1,∆), for any k = 1, . . . ,K, and we would be able to make traditional Bayesian inference on φ,
obtaining a posterior p(φ|X1,∆). However, the uncertainty on ∆ is summarized by a posterior distribution
p(∆|X2), perhaps p(∆|Γ(X2)) as in this thesis, where X2 is disjoint with X1. In this context, the simple
formula p(φ|X) =

∑
∆ p(φ|X1,∆)p(∆|X2) allows us to account for the uncertainty on ∆ as summarized by

p(∆|X2). Notice that for this scenario to fit under Condition 2 of Section 2.4 we are assuming that no prior
information on the relationship between the X1

1,X
1
2, . . . ,X

1
K variables is known.

5 Future Work

The proposed work is divided in two parts. The first part includes the minimal elements that this thesis will
contain, and the second part includes additional pieces that could be explored if time allows. In each part,
we present the tasks following the order in which they will be performed.

• Minimal elements of the thesis.

– Feasibility study to explore the performance of the duplicate detection method on data coming
from the Commission on the Truth (CT) for El Salvador. This dataset contains 5,675 records of
killings that occurred during the civil war of El Salvador. The killings were reported by witnesses
and therefore many victims were reported multiple times, but no unique identifiers are available,
and the levels of error in this dataset are high, which makes it a good test bed for the proposed
methodology. In this context, it is important to detect records that refer to the same victim as to
not overestimate the number of victims that have been reported.
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– Extension of the model presented in Sections 3.2 through 3.11 to the task of joint duplicate detection
and record linkage, as explained in Section 3.12. This task includes the extension of the Gibbs
sampler presented in Section 3.8, simulation studies, and a comparison with the approach of Sadinle
and Fienberg (2013) and Steorts et al. (2013).

– Development of the methodology for population size estimation with linked files proposed in Section
4.1. Notice that this methodology is quite general, and therefore we will focus on a couple of models
for capture–recapture estimation, specifically the models of George and Robert (1992) and Madigan
and York (1997), since they are some of the most basic approaches to Bayesian capture–recapture
estimation. This step will include simulation studies to illustrate how the variability in the estimated
population sizes vary as a function of the uncertainty in the linkage step, which in turn is a function
of the amount of error in the files.

– Application of the proposed framework to provide estimates of the number of killings occurred
during the civil war of El Salvador, accounting for uncertainty from record linkage and duplicate
detection. In addition to the dataset from the CT for El Salvador, two NGO’s collected information
on killings that occurred during the war. These three sources can be used to provide capture–
recapture estimates of the total number of killings.

• Additional pieces to be explored if time allows.

– Scalability of the methodology. We plan to consider faster alternatives to the estimation procedures
presented here as to allow the methodology to scale up to large datafiles.

– Feasibility study to explore the performance of the duplicate detection method on data coming from
the US census. This step will explore how the method performs on US census data corresponding
to a sample of census blocks.

– Developing the methodology presented in Section 4.2 for various scenarios. For example, the vari-
ables X1

1,X
1
2, . . . ,X

1
K may be categorical, and we may be interested in a model of their association.

Another example is when we are interested in regressing X1
1 on X1

2, . . . ,X
1
K . The amount of pos-

sibilities here is large, and so we would focus on a couple of simple cases.

– Exploration of other modeling contexts and conditions where uncertainty of record linkage and
duplicate detection can be taken into account using Equation (4). This includes, for instance,
extending the scenario of Section 4.2 to the more general case where the files have different sizes
and different overlaps. It would also be interesting to consider the scenario where the files have
duplicates, in which case measurement error models will probably play an important role.
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