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Abstract

Functional Data Analysis (FDA) is a modern branch of Statistics dealing with infinite-
dimensional data such as functions, curves, surfaces, or images. Functional data are more
and more often encountered in diverse scientific fields such as Astronomy, Envirometrics,
Chemometrics, Biometrics, Econometrics, and Medicine to name a few. This fact has
led to an increasing demand for novel statistical techniques that can account for the
infinite-dimensional nature of functional data and address the challenges arising in their
analysis. My research focuses both on methodological and applied problems involving
smooth functional data. In particular, I aim at studying pseudo-modes and gradient
flows on pseudo-densities (where the word ‘pseudo’ hints at the difficulties related to
defining proper probability density functions on infinite-dimensional spaces). My main
goals are to extend the notion of local mode (defined as a local maximum of a probability
density function) to smooth functional data belonging to an infinite-dimensional space, to
provide a solid theoretical background for modal clustering of these data, and to develop
effective algorithms for this task. The second part of my research project is devoted to the
estimation of the smooth component of the so-called Lyman-α forest portion of the light
spectrum of some astronomical objects called quasars. Here, the goal is to disentangle
the smooth component of the light spectrum in the Lyman-α forest from a non-smooth
absorption process caused by neutral hydrogen which strongly influences the observed
shape of quasar light spectra. I suggest estimating the smooth component of the light
spectrum in the Lyman-α forest by using a nonparametric functional regression model
that predicts the entire smooth light spectrum in the forest (the response) on the basis of
an estimate of the smooth light spectrum outside of the forest (the predictor). In order
to quantify the uncertainty associated to this prediction procedure, I introduce a class
of prediction bands that are specifically designed for functional responses and have finite
sample coverage guarantees. An estimate of the smooth continuum in the Lyman-α forest
is crucial to quantify the intensity of absorption at various locations in our Universe. The
intensity of absorption and its spatial distribution are scientifically relevant in modern
Cosmology as they convey precious information about the distribution of standard matter
in portions of our Universe that cannot be easily probed otherwise, if not by means of
the Lyman-α forest.
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1 Introduction

Progress in mathematical statistics correspond, at least to some extent, to an increase in the
level of sophistication of the structures that are assumed for the sample space, X (i.e. the
space to which the data X1, . . . , Xn are assumed to belong), and the space of the parameters
characterizing the distribution P of the data, Θ. In this sense, the field of Statistics has
witnessed a steady increase in the level of sophistication and, at least approximately, we can
now distinguish among the following setups (Cuevas, 2014):

• Classical inference: X = R, Θ ⊂ R; dating back to 1920’s

• Multivariate analysis: X = Rd (n >> d), Θ ⊂ Rk (n >> k); dating back to the 1940’s

• Nonparametrics: X = Rd (n >> d), Θ = a function space; dating back to the 1960’s

• Functional data analysis: X = a function space, Θ ⊂ Rk or Θ = a function space;
dating back to the 1990’s

• High-dimensional problems: X = Rd (n < d), Θ ⊂ Rk; dating back to the 2000’s.

In general, we can say that Functional Data Analysis (FDA in the following) is the branch
of Statistics dealing with data that come in the form of a sample of (possibly vector-valued)
functions X1(t), . . . , Xn(t), where t ∈ T and T usually corresponds to a compact subset
(typically a rectangle) of Rd. The distinctive feature of FDA lies in the mathematical and
methodological effort taken to account for the intrinsically infinite-dimensional nature of the
sample units and, most frequently, of the sample space X as well.

Although from a conceptual point of view we can certainly conceive the idea of observing a
sample of infinite-dimensional objects (such as a sample of curves), from a practical point of
view we never actually observe infinite-dimensional sample units. Rather, in the case of curves
for instance, we observe discretized versions of such objects, where the level of discretization
and the discretization grids depend on the technological limits of the data-acquisition appa-
ratus or on other constraints affecting the design of the experiment. Frequently, the observed
discretized curves are also perturbed by random noise, systematic errors introduced by the
data-acquisition apparatus or by other sources1. It is natural to ask why one cannot simply
analyze functional data with the rich set of tools of multivariate statistics. There are at
least two reasons why statistical methods of multivariate analysis tend to fail when applied
to functional data: first, the ratio between the sample size (the number of curves in the
sample) and the number of variables (the size of the grid at which the curves are sampled) is
generally unbalanced, with the sample size being often too small compared to the number of
variables; the other reason comes from the fact that if the curves are sufficiently smooth, then
high correlations exist among the observed variables (i.e. the values of the curves at nearby

1Two different approaches arise in the FDA literature: some authors reconstruct the curves from the noisy
observations on the grid by means of some smoothing procedure and then take these smoothed objects as the
functional sample of observations. Other authors have been developing error-in-variables functional models
in the attempt to keep account for the noise at the grid level even once the original discretized curves are
transformed into smooth functional objects.
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Figure 1: Two examples of functional data. Left panel: 215 spectrometric curves corre-
sponding to the absorbance level of finely chopped pieces of meat measured on a 100-channels
spectrum. Right panel: growth curves of 39 boys (thicker blue lines) and 54 girls (thinner red
lines) measured at 31 different ages from the age of 1 to 18 years.

points in the grid). Strong correlations and collinearity are known to induce ill-conditioned
problems in the context of multivariate statistical analyses. These facts motivate the need to
develop ad hoc methods for the analysis of functional data.

Figure 1 displays two examples of functional data. The left panel displays a sample of
215 absorbance curves of finely chopped pieces of meat. The data belong to the ‘Tecator’
dataset (Borggaard and Thodberg, 1992, http://lib.stat.cmu.edu/datasets/tecator;
the dataset is also directly accessible from the R package ‘fda.usc’). Each curve represents
the absorbance of a single piece of meat measured by a spectrometer at 100 wavelengths
between 850 nm and 1050 nm. Each sample unit is the discretized version of an underlying
smooth curve and the level of discretization (in this case 100 points/curve) depends on the
spectrograph. The right panel displays the growth curves of 39 boys and 54 girls of the
‘Berkeley Growth Study’ dataset (Tuddenham and Snyder, 1954; the dataset can be accessed
through the R ‘fda’ package). Again, each sample unit is the discretized version of an intrinsi-
cally continuous curve. In this case, the height of each individual in the study is measured 31
times between the age of 1 and 18 years; however, because of the continuous nature of time,
we could at least in principle imagine to sample such curves at arbitrarily high resolution.

Notable and interesting mathematical difficulties arise in FDA. For instance, in the high-
dimensional regime, it is well-known that the curse of dimensionality (or empty-space phe-
nomenon; see for example Section 1.2 of Lee and Verleysen, 2007) kicks in and negatively
affects the quality of the statistical inferences. Furthermore, because functional data often
belong to infinite-dimensional sample spaces, one expects the negative effects of the curse of
dimensionality to be further amplified (leading to the curse of infinite dimension; Ferraty
et al., 2006). Also, if the sample space X is infinite-dimensional, it is generally hard to
meaningfully define a density function for the probability measure P associated to the data.
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Thus, some of the challenges that arise in the analysis of functional data often come from
the following sources:

• Concentration of probability. For a random element X ∼ P valued in a semi-
metric2 space (X , d), the small ball probability function at a point x0 ∈ X is defined
as

ϕx0(h) = P (d(X − x0) ≤ h) , (1)

i.e. ϕx0(h) describes the probability content of the ball of radius h > 0 centered at
x0 ∈ X , and the balls are defined in terms of the topology induced by the semi-metric
d. In the finite-dimensional setting where X = Rd, usually ϕx0(h) ∼ Cx0h

d. In con-
trast, for general diffusion processes one typically has ϕx0(h) ∼ Cx0 e

−C/h2
for some

positive constants Cx0 and C when d is the distance induced by the supremum norm
(see Ferraty et al., 2006 for details). It is clear that for diffusion processes ϕ vanishes
at a faster rate as h → 0 compared to the finite-dimensional case, hence probability
is less concentrated. Li and Shao (2001) survey the state of the art about small ball
probabilities for Gaussian processes. However, very little is known in general about
small-ball probability functions in infinite-dimensional spaces aside from specific (and
usually Gaussian) settings. Furthermore, it is in general hard to obtain explicit expres-
sions for the shifted small ball probabilities of generic processes (i.e. expressions for
ϕx0 when the center of the ball x0 is arbitrary). Rates of convergence of nonparamet-
ric functional estimators depend explicitly on the asymptotic behavior of ϕ as h → 0
(see, for instance, Ferraty and Vieu, 2006). The difficulties associated with small ball
probabilities significantly complicate asymptotic analyses, and the infinite-dimensional
nature of the sample space can lead to negative results in terms of minimax rates of
convergence (see, for an example regarding regression, Mas, 2012).

• Lack of a natural dominating measure. Unlike the case X = Rd, an analog to
the Lebesgue measure is not directly available when the sample space X is infinite-
dimensional. This fact poses serious difficulties in terms of the definition of probability
density functions for a functional random variable and, consequently, in terms of the
definition of any density-related object (such as the notion of mode, for instance).
It should be noted that simply assuming the existence of a dominating measure for
a statistical model on a case by case basis is not a satisfying solution and neither is
subjectively choosing a dominating measure for a particular model: this would introduce
too much subjectivity in the statistical analysis of functional data. Frequently, a way to
compensate for the lack of a proper density is to introduce some type of pseudo-density
(see, for instance, Gasser et al., 1998, Hall and Heckman, 2002, Delaigle and Hall, 2010,
or Ferraty et al., 2012a). For example, for a random element X ∼ P valued in the
semi-metric space (X , d) and for some h > 0, one may take the functional

ph(x0) = EP K

(
d(X,x0)

h

)
=

∫
R
K(t) dPd(X,x)/h(t) (2)

2In a semi-metric space (X , d) the distance function d satisfies all the usual properties of a proper distance
function except for the coincidence axiom: while d must satisfy x = y =⇒ d(x, y) = 0 for all x, y ∈ X , it is
not required that d(x, y) = 0 =⇒ x = y for all x, y ∈ X .
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to be a pseudo-density for P (see, for instance, Hall and Heckman, 2002), where K is
a kernel function and Pd(X,x)/h is the probability measure induced by P through the
map X 7→ d(X,x)/h. Notice that when K is the uniform kernel K(t) = 1[0,1](t), then
ph(x0) = ϕx0(h). However, an inconvenient feature of this population functional is that
it explicitly depends on the resolution level corresponding to the bandwidth parameter
h. An alternative is to assume that

ϕx0(h) = P (d(X − x0) ≤ h) = p(x)φ(h) + o(φ(h)) (3)

as h → 0, where p is a non-negative functional only depending on the center of the
ball and φ is a concentration function only depending on the size of the ball (see, for
instance, Gasser et al., 1998 and Ferraty et al., 2012a). In this case, under appropriate
identifiability conditions, the functional p is considered a pseudo-density for P . Gen-
erally, the factorization above corresponds to a moderately strong assumption as few
processes can be shown to satisfy it. For example, in the case of Brownian motion, it can
be shown (Li and Shao, 2001) that for all absolutely continuous functions x : [0, 1]→ R
such that x(0) = 0 and

∫ 1
0 (x′(t))2 dt < ∞ the small ball probability function satisfies

the above factorization with

ϕx(h) ∼ p(x)φ(h) = exp

(
−1

2

∫ 1

0

(
x′(t)

)2
dt

)
ϕ0(h) (4)

as h→ 0. Notice, however, that the factorization is not necessarily satisfied when x is
a trajectory of the Brownian motion.

The literature and the open-source software on FDA are rapidly growing. If on the one hand
it is not possible to attempt a literature review based on research papers here, we can cer-
tainly point out some of the landmarking monographs and some of the available open-source
software for FDA. The books by Ramsay, Silverman, Hooker, and Graves (Ramsay et al.,
2002, Ramsay and Silverman, 2005, whose first edition was published in 1997, and Ramsay
et al., 2009) represent some of the monographs which helped popularizing (parametric) FDA
both from a methodological and an applied perspective. They describe the functional ex-
tension of some of the most frequently used tools of multivariate analysis (such as principal
component analysis, canonical correlation analysis, and discriminant analysis), and they also
discuss descriptive statistics for functional data, parametric functional regression, curve reg-
istration, and other topics. The methods presented in these books are illustrated by means
of various case studies. R and MATLAB implementations are available through the R ‘fda’
package. Another well-known R package for FDA is the ‘fda.usc’ package by Febrero-Bande
and Oviedo de la Fuente. This R package features various functions to carry out exploratory
and descriptive analysis of functional data; it also contains functions to perform functional
regression with scalar response, supervised and unsupervised classification of functional data
and functional analysis of variance. The book by Ferraty and Vieu (Ferraty and Vieu, 2006)
complements the aforementioned monographs in that it focuses on the nonparametric (and
doubly infinite-dimensional) setting in which both the data and the parameter space are
infinite-dimensional. The book also summarizes some of the very interesting theoretical con-
tribution of the French school about FDA on semi-metric spaces, the theoretical difficulties

7



associated with small ball probabilities, and how the curse of infinite dimension, the influ-
ence of small ball probabilities and the choice of the semi-metric are all intermingled. R code
for the implementation of the proposed nonparametric functional procedures is available on
the authors’ research group website (http://www.math.univ-toulouse.fr/staph/npfda/).
The general theory for autoregressive processes in function spaces is developed in Bosq (2000),
which is another popular book within the FDA community. The monograph by Horváth and
Kokoszka (Horváth and Kokoszka, 2012) offers a well-balanced mix of theory and applica-
tions (in particular, Chapter 2 provides a useful background reading on the theory of Hilbert
spaces). Their book, which builds on part of the recent research of the two authors, also deals
with some modern topics such as the analysis of dependent functional data, functional time
series, change-point detection and spatial statistics for functional data. Finally, it is worth
mentioning the monograph edited by Férraty and Romain (Ferraty and Romain, 2011), which
contains invited discussions by leading international experts describing original ideas, cur-
rent state of the art techniques, and avenues for future work in FDA. The book also contains
comprehensive bibliographical information.

2 Two problems in Functional Data Analysis

My research project focuses mainly on two problems involving functional data. Part of my
research is devoted to define and estimate functional modes by means of pseudo-density
functions, use pseudo-densities to perform modal clustering of functional data, and perform
statistical inference on the functional modes and on the associated clusters. Some steps in
this direction are presented in Ciollaro et al. (2014b). Another part of my research project
deals with a functional regression problem in modern Astronomy (Ciollaro et al., 2014a).

2.1 Modal clustering for functional data3

It is natural to define a functional mode as an element x ∈ X corresponding to a local
maximum of a pseudo-density function p defined on the sample space X (such as in equations
(2) or (3) for instance). Pseudo-densities can be used for clustering of functional data by
means of the partition of the sample space induced by their modes: once a set of functional
modes is estimated, the sample space is partitioned in the basins of attraction of the estimated
sample modes (the basin of attraction of a mode is defined as the set of all points in the
sample space whose gradient ascent lines converge to that mode). Figure 2 gives a visual
representation of this idea in 2D. Unlike most clustering methodologies (which define and treat
clusters exclusively as sample entities), modal clustering has a stronger inferential foundation
and has gained an increasing appeal. According to the paradigm of modal clustering, one can
clearly distinguish a population parameter to be estimated (the partition of X corresponding
to the basins of attraction of the local modes of the true density function) and an estimator
of this parameter (the partition of X corresponding to the basins of attraction of the local
modes of an estimate of the true density function). Recent work on the inferential foundation
of modal clustering includes Chacón (2012) and Chacón (2014).

3Ongoing work with Christopher Genovese, Jing Lei, Daren Wang (Department of Mathe-
matics), and Larry Wasserman.
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Modal clustering on a bivariate density

Figure 2: Top panel: a bivariate density with compact support. The density has three local
modes and therefore three well-defined clusters. Bottom panel: the three basins of attraction
of the local modes. Within each basin of attraction, the gradient ascent path starting from a
point belonging to that cluster is highlighted.
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When X = Rd and p is a density function with Lipschitz derivative, the gradient ascent path
πx0 : R+ → Rd joining an arbitrary starting point x0 ∈ X to its closest local mode is the
unique solution to the initial value problem{

π′x0
(t) = ∇p(πx0(t))

πx0(0) = x0.
(5)

The gradient ascent curve πx0 is most often referred to as a integral curve and the set of all
the integral curves associated to p is usually referred to as the gradient flow on p. In the
finite dimensional case, one can show that as long as p is a smooth function and all its critical
points are non-degenerate4 (i.e. the determinant of the Hessian at each critical point of p is
not null), the gradient flow on p satisfies some interesting properties. In particular, for an
arbitrary initial point x0 the integral curve πx0 exists and is unique, and any two gradient
ascent lines starting at different initial values x0 and y0 can only intersect at a critical point
of p. Moreover, the equivalence class of points of X whose gradient ascent lines culminate at
the same local mode of p corresponds to the basin of attraction of that local mode. Finally,
the collection of these basins of attraction forms an (‘essential’, i.e. up to a null probability
set) partition of the sample space X (Chacón, 2012, Chacón, 2014 and references therein)
and therefore a well-defined clustering of the sample space. As soon as an i.i.d. sample
S = {X1, . . . , Xn} is available, p and its gradient flows can be consistently estimated by
means of a kernel density estimator5

p̂(x0) =
1

nhd

n∑
i=1

K

(
‖Xi − x0‖

h

)
(6)

and by applying a suitable gradient ascent algorithm (Arias-Castro et al., 2013). A very well-
known adaptive gradient ascent algorithm which can be used to locate the modes of p̂ is the
mean-shift algorithm (Fukunaga and Hostetler, 1975, Cheng, 1995). Briefly, the mean-shift
algorithm is an iterative procedure that repeatedly shifts a point x ∈ Rd towards its closest
local sample mean by means of the update equation

x←

∑
X∈S K

(
‖X−x‖

h

)
X∑

X∈S K
(
‖X−x‖)

h

) . (7)

The mean-shift trajectory starting from x eventually culminates at a local mode of p̂. More
details about the connection between the mean-shift algorithm and gradient ascent can be
found in Ciollaro et al. (2014b).

In the case of functional data valued in a semi-metric space, Ferraty et al. (2012a) show that
the pseudo-density p of equation (3) can be consistently estimated by

p̂(x0) =

1
n

∑n
i=1K

(
d(Xi,x0)

h

)
1

n(n−1)
∑n

i=1

∑
j 6=iK

(
d(Xi,Xj)

h

) . (8)

4Such functions are usually referred to as Morse functions.
5Of course, the kernel density estimator can be generalized to p̂(x0) =

1
n
|H|−1/2∑n

i=1K
(
‖H−1/2(Xi − x0)‖

)
for a positive-definite bandwidth matrix H.
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Signature data - tangential accelerations
Tangential accelerations (all)

Tangential accelerations (original)

Tangential accelerations (fake)

Figure 3: Top panel: tangential accelerations corresponding to 40 signatures (20 original
and 20 forged). Mid panel: one of the two clusters of curves obtained with the FMSA. 19
of the 20 original signatures are clustered together in this cluster. The FMSA assigns the
dashed curve (corresponding to the remaining original signature) to a separate atomic cluster.
Bottom panel: all of the 20 forged signatures are correctly clustered together in a second
distinct cluster by the FMSA. The bold curves in the mid and in the bottom panels correspond
to the two estimated functional modes.

Ciollaro et al. (2014b) introduce a version of the mean-shift algorithm based on (8) which
is tailored for functional data that belong to a potentially infinite-dimensional Hilbert space
(the functional mean-shift algorithm, abbreviated FMSA in the following). An approximate
bootstrap test for the significance of the functional modes estimated by the FMSA, inspired
by Genovese et al., 2013, is also proposed in the same paper.

Figure 3 shows an example of modal clustering of a set of smooth curves corresponding to the
tangential accelerations of 40 hand-written signatures6 (20 original and 20 forged) obtained
applying the FMSA with d(x, y) = ‖x−y‖L2 . Related work on mode estimation for functional
data includes the work of Hall and Heckman (2002), who describe a non-adaptive gradient

ascent method to locate the modes of ph(·) = EP K
(
d(X,·)

h

)
, and Dabo-Niang et al. (2004).

A careful extension of the framework described above to the case where p is a pseudo-density

6The dataset is part of the 2004 Signature Verification Competition, http://www.cse.ust.hk/svc2004/
index.html. See also Geenens (2011).
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as in equations (2) or (3) and X is not a finite dimensional space, but rather an infinite
dimensional separable Hilbert space, poses some interesting challenges as I explain in the
next section.

2.1.1 Future work

If one considers the problem of equation (5) when X is an infinite-dimensional Hilbert space,
some complications arise and strong assumptions may be needed on both the pseudo-density
p and on the sample space X in order to develop a sound theory of modal clustering for
functional data. One is interested in the solution πx0 : R+ → X of the problem{

π′x0
(t) = ∇p(πx0(t))

πx0(0) = x0.
(9)

where now ∇p(x) is the functional gradient of p at x ∈ X , i.e. the element of X such that
the Fréchet derivative7 of p at x, Dp(x), can be written as

Dp(x)(·) = 〈·,∇p(x)〉 (10)

by means of the Riesz representation theorem. Our goals towards the development of a theory
of modal clustering for functional data include:

1. clarify the conditions under which the gradient flow on p exists and the gradient ascent
path starting from any arbitrary point x0 ∈ X is unique and converges; establishing
these facts is a key step to ensure that the population clustering induced by the pop-
ulation pseudo-density p is a well-defined object as it is in the finite dimensional case
considered in Chacón (2012) and Chacón (2014)

2. developing confidence regions for the functional modes of p and developing statistical
tests for the significance of the estimated functional modes

3. extending the clustering consistency theorem of Chacón (2014) to the functional case

4. obtaining uniform rates of consistency of the pseudo-density estimator p̂ of equation
(8) and of its derivatives; this would be a natural extension of the results of Ferraty
et al. (2010) and Ferraty et al. (2012a).

Regarding 1., the standard theory of partial differential equations guarantees that a unique
solution πx0 to the initial value problem of equation (9) exists if the functional gradient of p
is a Lipschitz map8. On the other hand, while the conditions required to have convergent (as
t → ∞) gradient ascent paths starting at any arbitrary point x0 ∈ X are essentially always

7The Fréchet derivative of a functional p on a Banach space X at a point x ∈ X is the continu-
ous linear operator (thus an operator that belongs to X ∗, the dual of X ) Dp(x)(·) : X → R satisfying
‖p(x+h)−p(x)−Dp(x)(h)‖

‖h‖ → 0 as ‖h‖ → 0.
8The functional gradient of p, ∇p, is a Lipschitz map if and only if there exists L > 0 such that ‖∇p(x)−

∇p(y)‖ ≤ ‖x− y‖ for any pair x, y ∈ X .
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trivially satisfied in the finite-dimensional case, when X is infinite-dimensional it is hard to
guarantee convergence in general. Thus, either one is willing to deal with a possibly large
subset of points of X for which the gradient ascent lines starting do not necessarily converge,
or some compactness condition on X has to be imposed together with appropriate conditions
on the first and the second derivatives of p to rule out divergence. Quite possibly, one has to
rely on compact embedding theorems in the latter case. For example, for the case of smooth
curves, if one decides to measure the distance between two curves by means of the L2 distance
(thus d(x, y) = ‖x− y‖L2 in equation (3)), one may have to introduce an assumption of the
type

P
(
X ∈ BH1(0,M)

L2
)

= 1 for some M > 0, (11)

where BH1(0,M)
L2

indicates the L2-closure of the H1-ball9 of radius M . In fact, BH1(0,M)
L2

can be compactly embedded in L2. An assumption of this type appears somewhat strong
and would suggest that modal clustering of functional data could be feasible only when both
the pseudo-density and its effective domain are sufficiently regular. Furthermore, another
problem likely arise at this point if one assumes (11). How can one constrain the gradient

ascent paths on p to stay within BH1(0,M)
L2

or even H1? One may naively require p to be

null outside of BH1(0,M)
L2

, or p(x)→ 0 as ‖x‖H1 →∞, but then one can show that any of
the previous two conditions together with the L2 continuity of p imply that p = 0! A different
route is imposing appropriate conditions on the Fréchet derivative of p in such a way constrain
the gradient flow; otherwise, one may consider the gradient flows on p and p̂ with respect
to the H1 norm rather than the L2 norm as in Jung et al. (2009) for instance (although the
change of norm alone is not sufficient to guarantee the convergence of the gradient ascent
paths to elements of H1). Mathematically, this last hypothesis makes the problem rather
interesting as one is then dealing with two different topologies at the same time: the L2

topology can be thought as the ‘main’ topology for the problem, since the gradient ascent
paths would converge with respect to the L2 norm; on the other hand, the H1 topology can
be seen as an ‘auxiliary’ topology used to efficiently climb the pseudo-density and locate the
functional modes.

Regarding 2., a natural starting point to perform statistical inference on the estimated clus-
tering structure associated to a pseudo-density is the development of significance tests and/or
confidence regions for the estimated functional modes and the curvature of p at the estimated
local modes. An approximate test for the significance of the estimated functional modes based
on the bootstrap is proposed in Ciollaro et al. (2014b), but a thorough theoretical justification
and the consistency of the bootstrap still need to be clearly established for that procedure.

Regarding 3., once the theory of modal clustering is rigorously adapted to functional data, it
would be of great interest to generalize the clustering consistency theorem of Chacón (2014).
Chacón (2014) shows that for a univariate density p with compact support and a sequence

of density estimators (p̂n)∞n=1 such that the corresponding sequence of derivatives
(
p̂
(j)
n

)∞
n=1

converge uniformly almost surely to p(j) for j = 0, 1, 2, the sequence of clusterings induced

9H1([0, 1]) is the Sobolev space of weakly differentiable functions on [0, 1] with finite H1 norm: ‖x‖H1 =
‖x‖L2 + ‖x′‖L2 .

13



by the estimated density,
(
Ĉn
)∞
n=1

, is such that dH

(
Ĉn, C

)
→ 0 and dP

(
Ĉn, C

)
→ 0 where

C is the unknown population clustering induced by p, and dH and dP indicate distances
between partitions based on the Hausdorff distance and on the distance in measure respec-
tively. An extension of the clustering consistency theorem to the high-dimensional or to
the infinite-dimensional setting appears a challenging goal in light of the difficulties outlined
above. Moreover, as noted by the author,

“The proof of this result [the clustering consistency theorem] is shown in the appendix and, as stated,

it covers only the univariate case. The analysis of the proposed distances between clusterings is greatly

simplified in the univariate case, since the cluster boundaries are solely determined by the points of

local minima of the density. The extension of this result for dimension d ≥ 2 seems quite challenging

and far beyond the scope and length of the present paper, since the cluster boundaries in dimension

d are (d− 1)-dimensional manifolds which may have very intricate forms.”.

Finally, regarding 4., on the basis of the previous work of Ferraty et al. (2010), we expect
that whenever X0 is a subset of X with finite Kolmogorov entropy and the pseudo-density p
satisfies

|p(x)− p(y)| ≤ db(x, y) (12)

for any x, y ∈ X0 and for some b > 0 (and if some additional technical conditions hold), then

sup
x∈X0

|p̂(x)− p(x)| = O
(
hb
)

+Oa.co.


√√√√ψX0

(
logn
n

)
nφ(h)

 (13)

as n→∞. The notation Oa.co. is used to mean boundedness in the sense of almost complete
convergence10, φ is the concentration function of equation (3), and ψX0(ε) is the Kolmogorov
ε-entropy of X0, i.e. the logarithm of the minimal number of balls of radius ε needed to
cover X0. Similar rates of consistency are expected for the derivatives of p̂ under appropriate
smoothness assumptions, although to the best of our knowledge no results exist at the moment
in this direction.

2.2 Functional regression for quasar spectra11

We observe noisy light curves fi such as that depicted in Figure 4. These curves can be
thought as being generated according to the model

fi(t) = (1− αi(t))f
∗
i (t) + εi(t), (14)

10Let (Xn)∞n=1 be a sequence of random variables. Xn converges almost completely to 0 if and only if∑∞
n=1 P (|Xn| > ε) <∞ for any ε > 0. Almost complete convergence implies almost sure convergence by the

first Borel-Cantelli lemma. If (an)∞n=1 is a sequence of positive numbers, we say that Xn = Oa.co.(an) if and
only if ∃ε0 > 0 such that

∑∞
n=1 P (|Xn| > ε0an) <∞.

11Ongoing work with Jessi Cisewski, Peter Freeman, Christopher Genovese, Jing Lei, Ross
O’Connell, and Larry Wasserman.
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Lyman-α forest

Lyman-α line: 1216 Å

Figure 4: A quasar light curve from the BOSS catalog. The Lyman-α line, corresponding to
the sharp peak in the light curve at 1216 Å, marks the boundary between the Lyman-α forest
(T0, blue) and the absorption-free region (T1, red). The goal is to predict the continuous
component of the curve on the blue side (before the absorption process) using the information
contained in the smooth component of the curve on the red side).

where f∗i is an underlying smooth function, εi are i.i.d. mean zero error processes and
αi ∈ [0, 1] are absorption processes12. The absorption processes αi are relevant because they
convey important physical information regarding the distribution of matter in regions of our
Universe that cannot be easily probed otherwise, if not by means of the Lyman-α forest.
The scientific goal is therefore drawing inferences on some features of these processes. In this
setting, the variable t ∈ T = T0 ∪ T1 is a wavelength in the ultraviolet portion of the light
spectrum, T0 ∩ T1 = ∅, and αi = 0 on T1. Our goal is to estimate f∗i (which can be thought
as a nuisance parameter from a scientific perspective) on T0 so that this estimate can be
subtracted from the corresponding observed light curve fi to finally get an estimate of the
absorption level αi on T0 (which, from a scientific standpoint, is the parameter of interest).
To do that, one can use a smooth estimate of f∗i on T1 which can be obtained by directly
smoothing fi on the absorption-free domain T1 where αi = 0 (using, say, a local polynomial
estimator) as the predictor function in the regression model

E
(
f∗i,T0(t) | f̂∗i,T1

)
= r

f̂∗i,T1
(t). (15)

In equation (15), r ∈ R is an operator mapping functions with domain T1 into functions with
domain T0, and R is a suitable class of such operators. Once an estimate r̂ of r is available,

12More precisely, equation (14) can be reparametrized as fi(t) = e−τi(t)f∗i (t) + εi(t), where τi(t) represents
the optical depth (essentially, the local density) of the intervening hydrogen absorbers at wavelength t.
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the smooth component f∗ on T0 can be estimated as

f̂∗i,T0(t) = r̂
f̂∗i,T1

(t) (16)

and the intensity of the absorption can be quantified by means of

α̂i(t) =
(
f̂∗i,T0(t)− f∗i,T0(t)

)
/f̂∗i,T0(t). (17)

Suppose that we possess a catalog of quasar spectra for which the absorption processes αi

are approximately null both on T0 and T1. Then the regression operator r can be consistently
estimated by means of the Nadaraya-Watson type kernel smoother (Ferraty et al., 2012b)

r̂
f̂∗target,T1

(t) =

∑
i∈catalogK

(
d
(
f̂∗i,T1

,f̂∗target,T1

)
h

)
f̂∗i,T0(t)

∑
i∈catalogK

(
d
(
f̂∗i,T1

,f̂∗target,T1

)
h

) , (18)

where f̂∗target,T1 is the estimated smooth component of the target quasar spectrum on the

absorption-free region T1, f̂∗i,T0 are estimates of the smooth component on T0 of the quasar
light curves in the aforementioned absorption-free catalog, h > 0 is a bandwidth parameter,
d is a semi-metric, and K is a kernel function. To get an estimate of the smooth component
f∗target,T0 for the given target spectrum, we finally set

f̂∗target,T0(t) = r̂
f̂∗target,T1

(t) (19)

for t ∈ T0.

The above methodology is described in detail in Ciollaro et al. (2014a) and applied both on
mock quasar spectra and spectra from the Hubble Space Telescope Faint Object Spectrograph
(HST-FOS) and the Baryon Oscillation Spectroscopic Survey (BOSS) catalogs. The same
paper also describes a type of prediction bands for the functional response variable that are
based on the conformal prediction principle (Vovk et al., 2005, Vovk et al., 2009, Lei et al.,
2013) and have finite sample coverage guarantees. Figure 5 depicts the prediction of the
smooth component of the Lyman-α forest on two BOSS quasar spectra when the nonpara-
metric functional regression model described above is fitted on 89 HST-FOS quasar spectra
for which the absorption component in the Lyman-α forest is essentially null. The bands
around the predicted curves on the left hand side of the pictures correspond to conformal
prediction bands with finite sample coverage of at least 90%.

2.2.1 Future work

The problem of predicting the smooth component of a quasar light curve in the Lyman-α
forest presents a series of additional methodological challenges and also raises some interesting
theoretical questions. These include:
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Figure 5: Prediction of the smooth component of the Lyman-α forest on two BOSS quasar
spectra. The nonparametric functional regression model is fitted on a sample of 89 HST-FOS
spectra for which the absorption component in the Lyman-α forest is essentially null. The
yellow bands correspond to conformal prediction bands with finite sample coverage of at least
90%.

1. improving the current model and its ability to accurately predict the amplitude of the
smooth component of the Lyman-α forest

2. analyzing from a theoretical perspective a new class of regression models in which the
‘noise’ term can be separated into two distinct components having different degrees of
smoothness

3. developing fully-functional prediction bands and confidence bands that avoid the need
to project the curves onto some finite-dimensional subspace

4. producing prediction of the smooth component in the Lyman-α forest for quasars cat-
alogs of current large scale sky surveys such as the SDSS III/BOSS survey (https:
//www.sdss3.org/surveys/boss.php), and making a thorough comparison with al-
ready available predictions obtained with other methods.

Regarding 1., in Ciollaro et al. (2014a) it is noted that while the predictions obtained by
means of the above nonparametric functional regression model tend to be accurate in terms
of the predicted shape, the amplitude of the prediction is often incorrect even on mock spectra
(see Figure 6). The same difficulty has been noted by other authors when other methods
are used to perform the prediction, and some ad hoc post-prediction adjustments have been
proposed (see for instance the mean-flux regulation procedure of Lee et al., 2012). It is known
that the smooth component of quasar spectra tends to follow, at least approximately, a power
law; however, some authors observed that a break in this behavior occurs somewhere between
1200 Å and 1300 Å (Zheng et al., 1997, Desjacques et al., 2007, Pâris et al., 2011, Lee et al.,
2012) and thus the amplitude on the right-hand side of a quasar spectrum may carry little
information about the amplitude of the smooth component of the Lyman-α forest. It is
clear that an improvement of the prediction model in this direction is both scientifically and
methodologically desirable. In light of the argument above, it appears that some information
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Figure 6: Prediction of the smooth component of the Lyman-α forest on two mock quasar
spectra. The shape of the predicted continuum matches that of the true continuum, but
the amplitude of the continuum is not correctly recovered. The yellow bands correspond to
conformal prediction bands with finite sample coverage of at least 90%.

contained in the Lyman-α forest side of the quasar spectra (the domain of the response
function) must necessarily be used to improve the accuracy of predicted amplitude.

Regarding 2., from the perspective of mathematical statistics, this application motivates the
theoretical study of a class of nonparametric regression models of the type

y = f(x) + ε = f∗(x) + α+ ε (20)

or
y = f(x) + ε = αf∗(x) + ε, (21)

where ε may be a simple white noise process and f∗ is a smooth function in an appropriate
class. The above regression models differ from the more familiar setting

y = f∗(x) + ε (22)

because of the presence of the additional (additive or multiplicative) stochastic component
α, which is assumed to have smoothness features that should make it separable both from
f∗ and ε. The goal in the context of the regression models considered above would be to
understand under which conditions one is able to disentangle the contributions from the three
distinct components f∗, α and ε, and then make inferences both on f∗ and α.

Regarding 3., the conformal prediction bands Cn for the functional response proposed in
Ciollaro et al. (2014a) exhibit the following property for any n and for any α:

P (Y ∈ Cn(X)) = P

(
sup
t
|Y (t)− r̂(X)(t)| ≤ q

)
≥ 1− α, (23)

for some q > 0 which is in practice chosen by means of a sample splitting procedure. The
adjective ‘conformal’ comes from the fact that the band is built on the basis of the score

c(x, y;X1, . . . , Xn, Y1, . . . , Yn) = − sup
t
|y(t)− r̂(x)(t)| (24)
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which represents a measure of the ‘conformity’ of the test pair (x, y) with the sample {(Xi, Yi)}ni=1.
The band guarantees coverage of at least 1 − α for any finite sample of size n. The above
probability statement concerns the joint distribution of the pair (X,Y ) (here denoting the
functional predictor and the functional response respectively), and not the conditional dis-
tribution of Y given X. This is why this type of band is said to be marginally valid. In
regression, it is often useful to have prediction bands that are valid with respect to the con-
ditional distribution of Y given X. While it is not possible to have non-trivial conformal
prediction bands that are conditionally valid and have finite sample coverage guarantees (see
Lemma 1 of Lei and Wasserman, 2014), one can in principle use the bootstrap to obtain
conditional prediction bands with asymptotic coverage guarantees. Therefore, a theoretical
future goal is the development of valid bootstrap prediction bands for the case nonpara-
metric regression model with functional predictor and functional response. Using a similar
approach, I aim at developing bootstrap-based confidence bands for the regression operator
r̂(x)(·) = E(Y | X = x)(·) that avoid the need of projecting the curve r(x) onto the finite-
dimensional subspace spanned by the first k functions of an orthogonal basis (as proposed in
Ferraty et al., 2012b, for example).

Regarding 4., we aim at complementing the set of continuum templates that are currently
available for cosmological analyses based on the Lyman-α forest. In contrast to the currently
available templates, these estimates shall include some quantitative evaluation of their pre-
dictive accuracy (e.g. the width of the associated prediction bands), and thus will improve
subsequent analyses involving optimal weighting schemes that depend on the uncertainty
associated with the prediction procedure. An example of such analyses is the estimation of
the correlation function of the relative flux absorption αi across different locations in our
Universe (i.e. across different quasar lines of sight13), as discussed in Ciollaro et al. (2014a).
Once an estimate of αi is available for a given quasar line of sight, it is clear from equation
(17) that its contribution in the computation of the correlation function should depend (also)
on the uncertainty associated to the prediction of the smooth component of the Lyman-α
forest. However, current estimates of the correlation function do not generally account for
the uncertainty associated with the prediction of f∗T0 .
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