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ABSTRACT

The two fundamental approaches used to analyze survey data, design- and model-based, differ in how they
incorporate complexities of the sampling design, such as stratification, clustering and/or unequal probabil-
ities of selection, into the survey analysis. The design-based analysis uses the sampling design as the sole
source of the variability, which necessitates the use of survey sampling weights. Model-based analysis in-
cludes a model which generated the data in addition to the sampling design, which makes the role of the
sampling weights questionable. The goal of this dissertation is to investigate the use of sampling weights in
model-based analysis, and to that end, the proposed work has three major components. The first component
investigates two current proposals for incorporating sampling weights to robustly estimate mixed-effects
models in the presence of model mis-specification and/or informative sampling (Korn and Graubard, 2003;
Pfeffermann et al., 1998), comparing their advantages and disadvantages in various situations. The second
component addresses the role of sampling weights when the survey design was not formulated according to
particular statistical model of substantive interest, and will consider models other than mixed-effects mod-
els to see how the work generalizes across model-based techniques. This component will consider using
estimating equation methods (Binder and Patak, 1994) as a bridge between model-based and design-based
analyses. Both of these components will be explored analytically, through simulation, and by considering
examples involving current research questions of interest on large national surveys (such as the National
Survey of Child and Adolescent Well-Being and/or the National Long Term Care Survey). As part of the
thesis, guidelines regarding the use of sampling weights in model-based analysis will be proposed. The third
component of this work will be to develop these recommendations as a set of publishable tutorials that serve
to clarify these issues and methodologies for survey analysts.



1 Introduction

Large-scale statistical surveys seldom use simple random sampling. Two fundamental approaches (design-
and model-based) exist regarding how to incorporate complexities such as stratification, clustering and/or
unequal probabilities of selection into the survey analysis. Design-based analysis first originated around the
early 1930’s with Neyman (1934) and Fisher (1935). Model-based analysis began in the mid-1950’s to mid-
1960’s with work by Godambe (1955, 1966) and Royall (1968). In the 1970’s and 1980’s, there were debates
on the use and validity of the two types of analysis with Royall (1976), Hoem (1989) and Fienberg (1980,
1989) on the model-based side and Kalton (1968, 1989) and Hansen, Madow and Tepping (1983) on the
design-based side, to name a few. Research from the 1990’s continuing to today investigates when and how
to combine the two approaches, for example see Little (1991), Pfeffermann (1993), Pfeffermann, Skinner,
Holmes, Goldstein and Rasbash (1998), Graubard and Korn( 1996) and Korn and Graubard (2003). The
survey world has been polarized regarding design and model-based analysis, and current research focuses
on understanding how and when to combine them. The goal of this dissertation is to investigate the use of
design-based sampling weights in model-based analysis, which involves three major components.

The first component investigates the use and estimation of mixed-effects models with complex survey
sampling data. Research to date estimates mixed-effects model parameters (both fixed components and
variance components) using both model- and design-based analysis (Pfeffermann et al., 1998 and Korn
and Graubard, 2003). While these methodologies merge design- and model-based methodologies in one
analysis, they lack guiding principles (Little, 2004). Current research focuses how to incorporate weights
into mixed-effects models, and I will focus on when it is appropriate to incorporate weights into mixed-
effects models. An example will be drawn from the National Survey of Child and Adolescent Well-Being
(NSCAW), which analyzes fundamental questions about the outcomes of abused and neglected children who
come into contact with the child welfare system.

The second component investigates the use of weights when the sampling design/data collection induces
variance components not related to the researcher’s question of interest, especially when it is addressed
with a model other than a mixed-effects model in order to broaden the research on the use of weights
beyond mixed-effects models. An example of this will be drawn from the National Long Term Care Survey
(NLTCS), a national survey investigating health and behavioral factors associated with changes in chronic
disability and mortality. A model which analyzes the cross categorical outcomes will be investigated.

The third component proposes better guidelines for the use of weights in model-based analysis. These
guidelines will be explained and demonstrated through a series of tutorials designed to clarify the use of
weights for survey analysts. These tutorials will include comparisons between design- and model-based
analyses, and will examine different approaches to model-based analysis using both weighted and un-
weighted methods. The goal is to help analysts understand the issues for the use of sampling weights,
and to aid them in making informed decisions regarding the weights in their own analyses.

The first component of this research regards the use of sampling weights specifically in mixed-effects
models. The second component of this research is to investigate the use of weights when the sampling
design and the model which generated the data do not have parallel variance components, specifically with
the use of a model other than a mixed-effects model. The third component is to propose a set of guidelines
and demonstrate them through a series of tutorials. The rest of this document proceeds as follows. Section
2 reviews background information on design-based versus model-based approaches and different optimality
criteria used to judge estimators. Section 3 discusses the current research on the use of weights. Section 4
outlines the preliminary results obtained for this research. Section 5 proposes the work needed to complete
this thesis.
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2 Background

A goal of this research is to investigate the role of the sampling weights in design- and model-based analysis.
This section describes both the traditional design-based approach and the model-based approaches. Key
differentiating points between design- and model-based analyses include:

1. The population or estimand(s) about which we wish to make inference;

2. The source(s) of variability in the data we observe;

3. The role(s) of sampling weights.

The differences between design- and model-based analysis are summarized in Table 1. In addition to dif-
ferences between design- and model-based analyses, many types of model-based analyses exist. This paper
outlines three types, frequentist, alternate frequentist and Bayesian. A common example, when the sampling
design is a stratified design, with simple random sampling within each strata (a non-informative sampling
design), is used to compare the methods. This example is for the purpose of reviewing basic methodology.
These assumptions are relaxed in Sections 3, 4 and 5, allowing for more complex designs (clustering and
multi-stage sampling) and for informative sampling at any stage of the design.

2.1 Design-Based Analysis

The key differentiating points for design-based analysis are: 1) the population of interest is the specific finite
population which was sampled, 2) the variability is induced by the sampling design and 3) the sampling
weights are crucial for the analysis. See the solid arrows in Figure 1 . More formally, let U represent the
finite population of N elements, and βU be the target parameter to be estimated. This target parameter is a
function of the finite population quantities, however census is not taken, so the parameter must be estimated
from a sample of n elements. For a given sampling design, pU (.), suppose there are tn possible samples of

size n from the population. Let pU (i) be the probability of selecting the ith sample and define β̂
(i)
pU to be the

estimate of βU from the ith sample. Then {(β̂
(i)
pU , pU(i))}tn

i=1 defines the randomization distribution (Lohr,
1999). The randomization distribution is also referred to as the sampling distribution.

As defined above, the estimates of the parameter from all the possible samples from the population are
needed to know the randomization distribution. However, only one sample is taken from the population.
To account for this, the sampling weights are used in the analysis. To define the sampling weights, let Zki

be a random variable taking on the value 1 if, for example, the element ith element in the kth strata is
included in the sample, and 0 otherwise. Note that the ki subscripts will vary according to the sampling
design, for example, k may refer to clusters instead of strata, etc. Note that E(Zki) = πki, where πki is the
probability that the kith element is included in the sample. The sampling weight is defined as wki = 1

πki

(Korn and Graubard, 1999). An interpretation is that wki corresponds to the number of people which element
ki represents in the population. These weights are important for two reasons; 1) in all but the simplest of
sampling designs, design-based analyses without the weights have very large bias and 2) the design-based
analysis gains information about the non-realized samples from the sampling weights and the sampling
structure.

As an example of a design-based analysis, assume a stratified sampling design with K strata, and within
each stratum there is simple random sampling (the sampling design is non-informative). The ith element in
the kth stratum has an associated fixed quantity yki and random inclusion variable Zki. Let Uk represent the
population in the kth strata. Assume the population has N population elements, that stratum k has Nk popu-
lation elements of which nk are sampled. Suppose that target of interest is the mean of the finite population,
denoted ȳ(D) where the superscript (D) denotes a design-based analysis. Let ȳ (D) = 1

N

∑K
k=1

∑

i∈Uk
yki.
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A common estimator for the mean is the Horvitz-Thompson estimator (Horvitz and Thompson, 1952), ˆ̄y
(D)
HT

which is the weighted estimate of the sample elements. Thus,

ˆ̄y
(D)
HT =

1

N

K
∑

k=1

∑

i∈Uk

wkiZkiyki.

Though the sum in the Horvitz-Thompson estimator appears to be over the entire population, the random
inclusion indicator variables only allow elements in the sample to add to the sum term. This estimator is
unbiased, because E(Zki) = 1

wki
. When considering the variance of the estimator, the covariance between

the Z random variables is necessary. With this, the variance is

Var(ˆ̄y(D)
HT ) =

1

N2

K
∑

k=1

N2
k

(

1 −
nk

Nk

)

S2
k

nk

.

In the above equation, S2
k represents the sample variance of the sampled elements in the k th stratum (Sarndal,

Swensson and Wretman, 1992). The 1 − nk

Nk
term is often referred to as the finite population correction.

Note that if a census is taken and nk = Nk then the variance becomes zero.

2.2 Model-Based Analysis

The key differentiating points for model-based analysis are: 1) the population of interest is either the specific
finite population which was sampled or a superpopulation quantity, 2) the variability is induced a stochas-
tic model assumed to generate variables associated with each element of the finite population and by the
sampling design and 3) the use sampling weights is very controversial.

In model-based analysis, assume that for element ki there is an associated value Yki which was randomly
generated by a model ξ. Consider this as a two-stage process, where the first stage generated the finite
population of size N from the ξ model, and the second stage sampled the finite population. In this scenario,
the estimation can be to a finite population parameter, or a superpopulation parameter. The finite population
parameter estimation mimics the design-based analysis, while still assuming that the Yki value associated
with element ki is random. A superpopulation estimand refers to a parameter (or function of parameters)
from the generating stochastic model. See the dashed arrows in Figure 1.

The use of sampling weights in model-based analysis is controversial. Some researchers use sampling
weights because they believe that they add robustness to the model-based analysis, reducing the dependence
on the model assumptions (Kalton, 1989). Others estimate the parameters based on census data, and then
include the weights as estimating the census estimates from the sample estimates (Pfeffermann et al. 1998,
Korn and Graubard, 2003). Some researchers do not add sampling weights because adding the weights
themselves imposes a model and assumptions which are not clearly explained. In addition, adding weights
clouds interpretation and inflates variances (Hoem, 1989, Fienberg, 1989). As an interesting example,
Hoem (1989) and Kalton (1989) debate over the use of weights in a Markov chain analysis. The controversy
over the weights is whether or not to systematically put the sampling weights in as a way of including the
randomization distribution, not whether they appear in the final estimate.

Three types of model-based analyses are presented in more detail in this section: frequentist, alternate
frequentist and Bayesian. The frequentist is based on methods such as maximum likelihood estimation
where the likelihood is based on both the sampling design and the generating model, see the dashed lines
in Figure 1. The alternate frequentist approach uses frequentist methodology to obtain an estimate as if
a census was taken, and then estimates that census estimate using design-based techniques, see Figure 2.
The Bayesian approach takes the census likelihood, and integrates out the non-sampled values and makes
inference based on posterior distributions. In some cases, the three model-based approaches produce the
same estimates, however the assumptions behind them are quite different.
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2.2.1 Frequentist Model-Based

As an example of frequentist model-based analysis, consider the superpopulation average, that is, the ex-
pected value of the average of any similarly constructed population created by the stochastic mechanism.
Assume there is a stratified sampling design with K strata, and within each stratum there is simple random
sampling (the sampling design is non-informative). The ith element in the kth stratum has an associated ran-
dom quantity Yki and random inclusion variable Zki. Let Uk represent the population in the kth strata, and
Sk represent the sample from the kth strata. Assume the population has N population elements, that stratum
k has Nk population elements of which nk are sampled. Let the data be generated as Yki = µk + εki where
εki ∼ N(0, σ2

k). The parameter of interest is Ȳ (FM), where the (FM) superscript denotes the frequentist
model-based approach. Thus, Ȳ (FM) = 1

N

∑K
k=1 Nkµk. To estimate Ȳ (FM), µk needs to be estimated. We

know that the MLE for the mean of each stratum is the sample mean for the stratum. Inserting the MLE for
µ, we get

ˆ̄Y
(FM)

=
1

N

K
∑

k=1

Nk

∑

i∈Uk

1

nk

ZkiYki =
1

N

K
∑

k=1

∑

i∈Sk

wkiYki.

The weights are included in this model-based analysis, not because they were inserted for the randomization
distribution, but because they appeared due to numerical computations (wki = Nk/nk because of the simple
random sampling). This estimator matches the design-based estimator, though it was derived under different
assumptions. When taking the expected value of this estimator, both the distribution of the Y variables and
the distribution of the Z variables are considered. As a result

E( ˆ̄Y
(FM)

) = EξEp(
1

N

K
∑

k=1

∑

i∈Uk

wkiZkiYki) = Eξ(
1

N

K
∑

k=1

∑

i∈Uk

Yki) =
1

N

K
∑

k=1

Nkµk. (1)

The variance is computed by conditioning on the finite population, YC ,

Var( ˆ̄Y
(FM)

) = Varξ(Ep(
ˆ̄Y

(FM)
|YC)) + Eξ(Varp( ˆ̄Y

(FM)
|YC))

=
1

N2

K
∑

k=1

Nkσ
2
k +

1

N2

K
∑

k=1

N2
k

(

1 −
nk

Nk

)

σ2
k

nk

. (2)

The first term of the variance is the variance if a census were taken, and the second term of the variance is
the added variance because a census was not taken. When a census is taken, the second term becomes zero.

2.2.2 Alternate Frequentist Model-Based Analysis

In the alternate frequentist model-based analysis, the estimate of the parameter is computed as if a census
had been taken. This census estimate is estimated with the sample data using design-based techniques. This
is one way to intentionally insert weights into a model-based analysis, see Figure 2.

As an example of an alternate frequentist model-based analysis, consider the superpopulation average,
that is, the expected value of the average of any similarly constructed population created by the stochastic
mechanism. Assume there is a stratified sampling design with K strata, and within each stratum there is
simple random sampling (the sampling design is non-informative). The ith element in the kth stratum has
an associated random quantity Yki and random inclusion variable Zki. Let Uk represent the population in
the kth strata, and Sk represent the sample from the kth strata. Assume the population has N population
elements, that stratum k has Nk population elements of which nk are sampled. Let the data be generated as
Yki = µk + εki where εki ∼ N(0, σ2

k). The estimand is Ȳ (AFM), with the (AFM) superscript denoting the
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alternate frequentist model-based approach. Let Ȳ (AFM) = 1
N

∑K
k=1 Nkµk. Next assume that we have the

census data. We know that the MLE for µk is the mean of the data, in this case, the mean of the census values

in stratum k. Substituting this in, we get ˆ̄Y
(AFM)

C = 1
N

∑K
k=1

∑

i∈Uk
Yki. Next, estimate this using design-

based methods. This was done in the design-based section above. Thus we get the alternate frequentist
model-based estimator based on the sample data,

ˆ̄Y
(AFM)

=
1

N

K
∑

k=1

∑

i∈Sk

wkiYki.

The weights were explicitly added because of the randomization distribution. The expected value and vari-
ance of this estimate is evaluated with respect to both the p and ξ distributions. This AFM estimator is the is
same as the FM estimator. Because the evaluation of the estimators is with respect to the same distributions,
the expected value and variance are the same as in Equations 1 and 2.

E( ˆ̄Y
(AFM)

) =
1

N

K
∑

k=1

Nkµk

Var( ˆ̄Y
(AFM)

) =
1

N2

K
∑

k=1

Nkσ
2
k +

1

N2
N2

k

(

1 −
nk

Nk

)

σ2
k

nk

In this example the frequentist model-based and alternate frequentist model-based estimators were the same.
This only occurs in simple examples.

2.2.3 Bayesian Model-Based Analysis

The Bayesian model-based approaches differ from the frequentist model-based approaches, in that prior
distributions are placed on the parameters of the model. All inference then is with respect to the posterior
distributions of the parameters. Another difference is that the Bayesian model-based approach treats the
non-sampled elements as missing values, and they are integrated out of the likelihood (Gelman, Carlin,
Stern and Rubin, 1995). Links between Bayesian analysis and design-based analysis have been studied by
Holt and Smith (1979) and Little (1991, 1993), to name a few.

As an example of Bayesian model-based analysis, consider the finite population average. This example
differs from the others for two reasons: 1) the use of Bayesian methodologies instead of frequentist method-
ologies and 2) the use of a finite population estimand instead of a superpopulation estimand. The sampling
design and generating stochastic mechanism are the same as the previous frequentist examples. Assume
there is a stratified sampling design with K strata, and within each stratum there is simple random sampling
(the sampling design is non-informative). The ith element in the kth stratum has an associated random
quantity Yki and random inclusion variable Zki. Let Uk represent the population in the kth strata, and Sk

represent the sample from the kth strata. Assume the population has N population elements, that stratum k
has Nk population elements of which nk are sampled. Let the data be generated as Yki = µk + εki where
εki ∼ N(0, σ2

k) are independent. The parameter of interest is Ȳ (B), where the (B) superscript denotes
the Bayesian model-based approach. Let YC , YS and YC\S represent the census, sampled and non-sampled
elements respectively. Then

Ȳ (B) =
1

N

K
∑

k=1

∑

i∈Uk

Yki =
n

N
ȲS +

N − n

N
ȲC\S .
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In addition, assume that µk ∼ N(µ0k, σ
2
0k) where µ0k and σ2

0k are known and the µk’s are independent. The
census likelihood equation can be written as

p(YC , Z|µ) =
K
∏

k=1

∏

i∈Uk

φ(Yki|µk, σ
2
k)p({Zki = 1}),

where µ refers to all the µk values and φ(Yki|µk, σ
2
k) refers to the value of the normal density, with mean µk

and variance σ2
k, at Yki. This assumes that the sampling mechanism is independent of the data, or that the

sampling is non-informative, which is the case with simple random sampling (SRS). In addition, the SRS in
each strata is independent, so p({Zki = 1}) = nk

Nk
. The sample likelihood can be obtained by integrating

non-sampled elements,

p(YS , Z|µ) =

∫ K
∏

k=1

∏

i∈Uk

nk

Nk

Zkiφ(Yki|µk, σ
2
k)
∏

j∈Uk

(1 − Zki)φ(Ykj |µk, σ
2
k)dYC\S

=
nk

Nk

K
∏

k=1

∏

i∈Uk

Zkiφ(Yki|µk, σ
2
k).

Next, the posterior is calculated as

p(µ|YS , Z) ∝ p(µ)p(YS , Z|µ)

∝

(

K
∏

k=1

φ(µk|µ0k, σ
2
0k)

)





K
∏

k=1

∏

i∈Uk

Zkiφ(Yki|µk, σ
2
k)





=
K
∏

k=1



φ(µk|µ0kσ
2
0k)

∏

i∈Uk

Zkiφ(Yki|µk, σ
2
k)





=
K
∏

k=1

p(µk|YS).

Let ȲSk
be the sample average of the Y values in the kth stratum. Thus we see that the posterior of the µk’s

are independent and normally distributed, with the following mean and variance.

E(µk|YS, Z) = ȲSk

(

nkσ
2
0k

nkσ
2
0k + σ2

k

)

+ µ0k

(

σ2
k

nkσ
2
0k + σ2

k

)

Var(µk|YS, Z) =
σ2

kσ
2
0k

nkσ
2
0k + σ2

k

Note that the posterior distribution of 1
N

ΣK
k=1Nkµk would be used for Bayesian inference for the superpop-

ulation parameter. To get the finite population estimate, the posterior predictive distribution is needed. We
know that p(ȲC\S |µ) is a normal distribution with mean 1

N−n
ΣK

k=1(Nk−nk)µk and variance 1
(N−n)2 ΣK

k=1(Nk−

nk)σ
2
k. We showed above that p(µ|YS) is normal. It can be shown that their multiplication, p(ȲC\S , µ|YS)

provided YC\S⊥YS|µ, is normal. Thus, ȲC\S |YS is a normal. By further conditioning on µ the mean and

variance can be computed. To get this posterior, assume that Nk → ∞, nk → ∞ and Nk

nk
is constant. Pulling

this together we get p(ȲC\S |YS).

p(ȲC\S |YS) ∼ Normal Mean ≈ ȲS Variance ≈
1

(N − n)2

K
∑

k=1

N2
k (1 −

nk

Nk

)
σ2

k

nk
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Recall the goal is to estimate ȲC = n
N

ȲS + N−n
N

ȲC\S . Because ȲS is considered a constant to the posterior
distribution, we can easily find the posterior distribution of ȲC .

ȲC ∼ Normal Mean ≈ ȲS Variance ≈
1

N2

K
∑

k=1

N2
k (1 −

nk

Nk

)
σ2

k

nk

Note that the mean and variance of this posterior distribution match the mean and variance of the design
based estimator.

2.3 Evaluation Criteria

Model-based survey sampling consists of two stages, first creating the finite population from the generating
stochastic mechanism, and secondly obtaining a sample from the finite population. The criteria to evaluate
the estimators becomes complicated in model-based analysis because of the need to take into account both
the randomization distribution and the generating model distribution.

First consider the definition of these common criteria in the standard statistical theory. The bias of an
estimator θ̂ for θ is E(θ̂) − θ, and θ̂ is unbiased if the bias is zero. The definition of the variance of θ̂ is
E((θ̂ − E(θ̂))2) and the mean squared error (MSE) is defined as E((θ̂ − θ)2). The definitions of these
quantities in survey sampling are very similar, as seen below. Now consider some asymptotic properties.
Specifically, suppose that θ is estimated by θ̂n, where θ̂n is a function of n independent and identically
distributed random variables, say τ1, τ2, ..., τn. Then θ̂n is asymptotically unbiased if limn→∞ θ̂n = θ, and
it is consistent if, for any fixed ε, limn→∞ P (|θ̂n − θ| > ε) = 0. The problem with these criteria in survey
sampling, is that the finite population size is fixed at N , and the sampling size n < N . Thus, another
framework is needed to discuss these properties.

To properly define the asymptotic properties, consider the following notation (Hansen, et al. 1983 and
Sarndal, Swensson and Wretman 1992). Let y1, y2, y3, ... be a sequence of variables of interest from an
associated sequence of elements in the population, labeled k = 1, 2, 3, .... A corresponding sequence of
populations, U1,U2,U3, ..., can be defined, where Uv consists of the first Nv elements from the infinite
sequence of elements. In this construction U1 ⊂ U2 ⊂ U3, ... and N1 < N2 < N3 < .... Let θUv be
the value of a parameter in population Uv . Each population Uv has a sampling design pUv() which assigns
probability pUv(sv) to sample sv .

Assume the sample sizes are fixed at nv, where n1 < n2 < n3 < .... Let θ̂pUv
be an estimator of θUv

based on the sampling design pUv . Hansen, et al. (1983) and Sarndal, Swensson and Wretman (1992) define
the following:

• p-bias and p-variance – An estimator θ̂pUv
is said to be p-unbiased for a parameter θUv in population

Uv if EpUv
(θ̂pUv

) =
∑

sv∈Uv
θ̂pUv

(sv)pUv (sv) = θUv , where sv ∈ Uv represents all possible samples

in the finite population Uv and θ̂pUv
(sv) is the estimator of θUv based on the sample sv . Similarly, the

p-variance of the estimator θ̂pUv
is defined as Var(θ̂pUv

) = EpUv
(θ̂pUv

− EpUv
(θ̂pUv

))2.

• p-MSE – The p-mean squared error for θ̂pUv
is defined as EpUv

(θ̂pUv
− θUv)

2

• p-asymptotically unbiased – An estimator θ̂pUv
is p-asymptotically unbiased for θUv if

limv→∞[EpUv
(θ̂pUv

) − θUv ] = 0

• p-consistent – An estimator θ̂pUv
is p-consistent for θUv if limv→∞ Pr(|θ̂pUv

− θUv | > ε) = 0

• p-consistent for a finite population – An estimator θ̂pUv
of θUv is p-consistent for a finite population

under a given class of designs if the sample equals the population, i.e. sv = Uv implies that θ̂pUv
(sv) =

θUv .
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The definitions regarding the asymptotics are still somewhat nebulous because the limit process has not been
fully specified. For example, in a cluster sample design, as the size of the population grows, the number of
sampled clusters can grow while the number of people within each cluster remain constant, or the number
of clusters can remain constant as the number of people within each cluster grow.

To evaluate the model-based estimators, both the p and the ξ distributions are important. There are many
different ways they can be combined, to create many different criteria (Sarndal, 1978). For example: ξp un-
biased (EξEp(θ̂p) = θ) and ξp variance (Varξ(Ep(θ̂|YC))+Eξ(Varp(θ̂|YC))) as used in the previous section.
These types of criteria will be used when comparing and evaluating the different estimators presented.

3 Current Approaches

With a basic understanding of the differences between design- and model-based analysis, along with how
each uses the weights, current research on the three components of this dissertation will be reviewed.

3.1 Weights in Mixed-Effects Models

The first component of this research is to investigate the use of sampling weights, specifically in mixed-
effects models. Before doing this, it is necessary to understand how to incorporate the weights in these
models. This section reviews linear mixed-effects models and compares current weighting methods.

Linear mixed-effects (LME) models are used to analyze clustered data, for example for analyzing
children in classrooms. These models quantify the variation between and within groups, for example
variation between classrooms and within a classroom. A specification for the mixed-effects model is
Y = Xβ + ZU + ε, where X is a matrix of fixed covariates, Z is a matrix of the random covariates,
and U ∼ N(0,ΣU ) is independent from ε ∼ N(0, σ2

ε ) (Milliken, Stroup and Wolfinger, 1996). The goal is
to estimate the β coefficients, as well as the variance components in ΣU and σ2

ε . These unknowns are often
solved for using maximum likelihood estimaton, and closed form solutions exist only for simple cases. Thus,
solution is often estimated using iterative techniques, such as iterative generalized least squares (IGLS).

There are two model-based approaches to incorporating sampling weights in LME models due to Pfef-
fermann et al. (1998) and Korn and Graubard (2003), PSHGR and KG respectively. Both of these methods
focus on how to insert weights into the analysis, not if or when the analysis should include weights. Both
utilize a standard practice in survey sampling by starting with the census maximum likelihood equations,
writing them in terms of sums, and unbiasedly estimating each of the sums individually using weighted
design-based techniques similar to the alternate frequentist model-based method. However, they use differ-
ent sampling weights and insert them in the analysis in different ways. For simplification, assume that the
sampling design first samples clusters and then samples individuals within clusters. To describe the weights
used, assume s and t denote subjects, and j represents a cluster, then: wjs - the inverse probability that
individual s in cluster j is included in the sample, wj - the inverse probability that cluster j is included in the
sample, ws|j - the inverse probability that individual s is included in the sample given cluster j is sampled,
and wst|j - the inverse probability that individuals s and t are both included in the sample when cluster j is
sampled. The wst|j are referred to as the joint conditional weights.

3.1.1 The PSHGR Approach

PSHGR solve the census likelihood equations using IGLS, and it is within this that they introduce the
design-based analysis. To illustrate, suppose they have the random intercept model

yji = xjiβ + uj + εji, uj ∼ N(0, τ 2), εji ∼ N(0, σ2). (3)
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From the likelihood equations, a closed form solution for β is available, however not for σ2 or τ2. To
solve for these, a separate ordinary least squares (OLS) regression is performed where σ2 and τ2 corre-
spond to slopes. It is within this secondary OLS and in the closed form solution for β that the sampling
weights are inserted. Basically, in solving for these equations, all matrix notation is put in summand format.
Then, in sums over clusters indexed by j, the wj are inserted, and in sums over individuals in clusters,
individuals indexed by i and the cluster indexed by j, the wi|j weights are included. This makes the sums
design unbiased. This method is referred to as the weighted unscaled method. Thus, PSHGR introduce the
design-based methodology within the IGLS to provide census instead of sample estimates. Current work
is to determine the effect on the likelihood equations of adding the weights in this manner. In addition to
providing estimates of the fixed- and random-effects, PSHGR also provide an algorithm for determining the
variances of their estimates.

These estimators are consistent for the fixed-effects and the variance components, where consistency
requires both the number of clusters and the individuals in a cluster to increase to infinity. PSHGR show
that if only the number of clusters increases, then the fixed-effects remain consistent, but not the variance
components. These methods will not do well in small area estimation, a branch of survey sampling in which
sample sizes within a cluster are held constant.

A downside to the PSHGR method is that the variance components estimators are biased. To adjust
for this, they note that multiplying the wi|j weights by scalar does not affect the consistency argument
above, but can reduce the bias. Two types of scalars are proposed, and resulting in weighted scaled 1 and
weighted scaled 2 estimates. The difference between the two scaled estimates is in the way the sample
size is estimated. The two weighted scaled estimates are the same if all elements in a cluster have the
same weight. PSHGR tentatively recommend the weighted scaled 2 approach for reducing bias caused by
informative sampling based on some simulation results, and acknowledge that the simulations represent a
limited number of cases.

Criticisms of the PSHGR approaches include 1) they are computationally difficult for someone in the
field to use unless implemented into prepackaged software 2) they are not consistent if the number of indi-
viduals in a cluster is held constant and 3) the motivation behind their approach is not very clear, and their
suggestions lack general guiding principles making it difficult to generalize to other types of models.

3.1.2 The KG Approach

KG also start with the census likelihood equations. They then write the likelihood equations in terms of
sums, and insert the weights into the equations to make them design unbiased. For example, the likelihood
equations with the weights for a random intercept model are

K
∑

j=1

wj
1

λj

Mj
∑

i=1

wi|jYji − β
K
∑

j=1

wj
Mj

λj
= 0 (4)

1

2

K
∑

j=1

wj
1

λ2
j

Mj
∑

i=1

wi|j(Yji − β)2 +
K
∑

j=1

wj
1

λ2
j

Mj
∑

s=1

∑

t<s

wst|j(Yjs − β)(Yjt − β) −
1

2

K
∑

j=1

wj
Mj

λj
= 0 (5)

where λj = 1
Mjσ2

a+σ2
e

and Mj is the size of the population in cluster j. This is referred to as the joint
conditional weighted analysis, as they use the wst|j weights. They suggest using the jackknife method for
survey sampling to compute variances. While developing their technique, they looked for consistency under
different asymptotic schemes (Korn, personal communication, December 8, 2003). KG provide simulations
with comparable estimators based on the method of moments that perform well when the sample sizes within
a cluster are small, though it is not clear that this will be the case for the MLE estimation. KG believe these
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estimators are not expected to perform well when the number of clusters sampled is small relative to the
number of clusters in the population, though the reasoning is not specified. The joint conditional weights,
wst|j are more difficult to obtain in practice than the weights needed for the weighted unscaled, weighted
scaled 1 and weighted scaled 2 PSHGR analyses.

Criticisms to the KG approaches include 1) they require weights which currently are not calculated
routinely, namely wst|j 2) they are difficult to obtain computationally for field workers until they are added
to software packages and 3) the authors are not very clear in describing their approach, and it is difficult to
see their optimality/evaluation criteria and hence, it can be difficult to generalize.

3.2 Sampling Design/Data Collection Induces Variance Components

The second component of this research is to investigate the use of weights when the sampling design and
the model which generated the data do not have parallel variance components, specifically with the use of
a model other than an mixed-effects model. Three areas of research apply when the sampling design/data
collection induces variance components. The first approach reviews mixed-effects models, with the goal of
expanding this to other models. Crossed random-effects are used to account for these variance components
in mixed-effects models. Goldstein (1987) introduced these and Raudenbush (1993) and Hill and Goldstein
(1998) expanded upon them. Suppose the generating model is Yji = β0+ΣP

p=1βpxpji+U0j+ΣQ
q=1Uqjzqji+

εji, εji ∼ N(0, σ2
e), Uq ∼ N(0, τ 2

q ). To add a cross effect, say for interviewers, more notation is needed. Let
F be the number of interviewers in the data. The random-effect of interviewer f,Wf is added to the model
to produce Yji = β0 + ΣP

p=1βpxpji + U0j + ΣQ
q=1Uqjzqji + Wf(i,j) + εji where f(i, j) is the interviewer of

individual i in cluster j. There are F new random variables, W1, ...,WF , which have a normal distribution
with mean 0 and variance τ 2

W . Generalizations of this model can include crossed slopes and effects that are
both nested and crossed. The full model can be written as Y = XB +ZU +TW + ε where XB represents
the fixed effects, ZU represents the random effects, and TW represents the crossed random effects.

The second approach, described by Fienberg and Tanur (1987, 1988), involves embedding an experiment
into the survey including models other than mixed-effects models. They explain and build upon the work of
Mahalanobis (1946) who embedded an experiment to test for differences between interviewers in a survey
on economic conditions of factory workers in India. This work may be expanded to include other sampling
design and data collection issues. One aspect of this work is that it necessitates involvement upfront, when
the survey is being designed.

A third approach involves estimating equations, as discussed in Binder and Patak (1994). They take
the core estimating equation and add additional terms to represent auxiliary data regarding a model. For
example, suppose the mean of a population is of interest. Then the core estimating equation is

∫

(y −
θ)dF̂Y (y) = 0 where F̂Y (y) = Σn

i=1I(Yi < y)/n, n is the number of elements in the sample and I(Yi < y)
is the indicator as to whether Yi < y. However, assume that the mean is equal to Xβ where X is known and
β is to be estimated. Then the new estimating equation would be

∫

(y − θ)dF̂Y (y) +
∫

(Xβ − θ)d[FX(x)−
F̂X(x)] = 0. This approach can be used towards both finite and superpopulation parameters. This work can
be expanded to include, say, a term for data collection and a model for data generation.

3.3 Guidelines For the Use of Weights

The third component to this research is to propose a new set of guidelines and demonstrate them through
a series of tutorials. Currently, there are main three groups of guidelines for the use of weights in model
based analysis. The first set of guidelines advocated by, for example, Hoem (1989) and Fienberg (1989
suggests that weights should not be used in model based analysis, with the possible exception of when there
is informative sampling. The second guidelines, supported by, for example, Kalton (1989), suggests that
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the weights should always be used, as they help protect against model mis-specification. The third set of
guidelines, supported by Lohr and Liu (1994) among others, suggest running two analyses, one with the
weights and one without. If the two analyses ”match,” then the use of weights does not matter, otherwise,
adjust the model until the weighted and unweighted analyses match. In contrast, DuMouchel and Duncan
(1983) propose guidelines based on estimands of interest in fixed-effects regression models, with some using
weights, and others not. My research will expand this to different types of model-based analyses.

4 Preliminary Results

4.1 Weights in Mixed-Effects Models

4.1.1 Preliminary Results - Simulations

No existing commercial software computes the PSHGR or KG methods, so I developed a c-program to
implement them. The program computes the unweighted analysis, the three PSHGR methods and the KG
method, and presents them side by side. I expanded the method proposed in KG to include fixed covariates,
as their published method focuses on random intercept models with no covariates. Currently, the program
supports only random intercept models with any number of fixed covariates.

To compare the methods with simulations, hierarchical data were generated according to a model ξ to
create the finite population, and then the finite population is sampled according to a sampling scheme p.
The ξ model is Yji = β0 + β1xji + Ui + εji, Ui ∼ Normal(0, τ 2), εji ∼ Normal(0, σ2). The xji values
were created as Normal random variables, with mean one and variance 25. The goal is to estimate β0, β1, τ

2

and σ2 whose true values in the simulation are 1, -2, 0.2, and 0.5. The number of simulated clusters in the
population was 300, of which 35 were sampled. The population sizes within each cluster were randomly
generated as in PSHGR and ranged from 38 to 147, of which 20 were sampled.

For each simulation, one thousand finite populations were created using the ξ model and each population
was sampled independently according to the p-distribution. Three different simulations were conducted,
with different p distributions, as in PSHGR. The first simulation contained informative sampling at the
cluster level (proportional to the random-effect Uj) and individual levels (individuals with positive εji being
undersampled). The second simulation sampled the groups informatively (as in the first simulation), but the
individuals were sampled with simple random sampling. The third simulation was non-informative, with
the sampling of groups being proportional to the number of people in the group.

My simulations improved upon the PSHGR/KG simulations in three ways. First, the PSHGR/KG sim-
ulations included only random intercept models with no fixed covariates, whereas my simulations included
a fixed effect. Second, MSE was computed as a basis of comparison. Third, because of the 1000 iterations
in the simulation, a sample distribution for the differences between the different estimands (i.e. subtracting
the KG and scaled 2 estimates for β0) were used for testing significant differences between methods.

The first simulation oversampled clusters with larger random effects and individuals with smaller error
terms. The results of this simulation are in Table 2. From this table, we see the unweighted β0 is borderline
biased, corrected in all the weighted analyses. The scaled 2 analysis has the lowest MSE for β0 (though the
differences are very small), and the unweighted has the lowest MSE for β1. Overall, the weighted approaches
appear comparable for the fixed-effects. For τ 2 all estimates are unbiased and for σ2 the unweighted is biased
low. The smallest MSE for τ 2 is the unweighted estimate, and for σ2 is the scaled 2 estimate. The significant
pairwise tests with α = 0.05 are in Table 3. Overall, comparing the KG, scaled 1 and scaled 2 estimates,
the scaled 2 estimates appear to have the smaller MSE’s, but often by a small amount.

The second simulation oversampled clusters with larger random effects. The results of this simulation
are in Table 4. In this simulation, the Scaled 1 and Scaled 2 estimators are identical, because the weights
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of subjects in a cluster are constant. From the table, we see the unweighted β0 estimate is biased, corrected
in all the weighted analyses, and the scaled 1/scaled 2 estimates have the lowest MSE’s for β0, but the
difference is very small. The unweighted has the lowest MSE for β1. Overall, the weighted approaches
appear comparable for the fixed-effects. For τ 2 and σ2, all estimates are unbiased and the unweighted has
lowest MSE for both. The significant pairwise tests with α = 0.05 are in Table 3. Overall, some of the
KG estimates have smaller MSE than the scaled 2 estimates (τ 2), and some of the scaled 2 estimates have
smaller MSE than the KG estimates (β0, β1, σ

2), but the differences are small.
The third simulation was non-informative for clusters and individuals. The results of this simulation

are in Table 5. In this simulation, the scaled 1 and scaled 2 estimators are identical, because the weights
of subjects in a cluster are constant. From the table, we see that the unweighted estimate always has the
smallest MSE. For β0 and β1 all the estimates are unbiased, and of the scaled 1, scaled 2 and KG estimates,
the KG has the smallest MSE, though the difference is small. For τ 2 and σ2, the estimates are all unbiased,
and of the scaled 1, scaled 2 and KG estimates, the KG has the smallest MSE, though the difference is small.
The significant pairwise tests with α = 0.05 are in Table 3. While some of these tests showed differences
between the scaled 1/scaled 2 estimators and the KG estimators, the differences were very small.

A problem with these simulations was that they did not separate the strengths and weaknesses of the dif-
ferent methods. The simulations mimicked the simulations in PSHGR, but better simulations are necessary
to demonstrate the differences in the methods, for example expanding the model beyond random intercepts,
varying the percentage of clusters and or individuals within a cluster which are sampled.

For these simulations, the generating model was Y = β0 +β1X +U +ε which matched the model being
estimated. However, for the first and second simulations (those which included informative sampling), the
model being estimated did not take into account the informativeness in the sampling design, and thus was
not the correct model. In these simulations, the unweighted β0 estimates (and the σ2 estimate) were biased,
which was corrected for by the weights. Thus, the use of the weights may be appropriate under types of
model mis-specification and/or informative sampling. A goal of this research is to better quantify this.

4.1.2 Preliminary Results – Real Data

Next, lessons learned from the simulations are applied to the National Survey of Child and Adolescent Well-
Being (NSCAW). NSCAW is a three year longitudinal survey conducted by the Department of Health and
Human Services to investigate fundamental questions about the outcomes of abused and neglected children
who have come into contact with the child welfare system. NSCAW uses a complex multi-stage sampling
strategy (Dowd, Kinsey, Wheeless, Thissen, Richardson, Mierzwa and Biemer, 2001) which first stratifies,
then clusters, then stratifies. There is oversampling of subpopulations, such as children entering the child
welfare system as infants, families who received child welfare services, and sexual abuse cases. Of interest
is the association between the cognitive stimulation of a child and the presence or absence of maternal
depression and substance abuse. Based on the sampling design, expert knowledge and exploratory data
analysis, the model being estimated includes the variables in Table 6 and is specified as

CSji = β0 + Uj + βDEPR ∗ DEPRji + βSUBSABU ∗ SUBSABUji + βSEXABU ∗ SEXABUji

+βINFANT ∗ INFANTji + βSERV C ∗ SERV Cji + βCGDRACE ∗ CGDRACEji

+βDEPR.SUBSABU ∗ DEPRji ∗ SUBSABUji + εji, (6)

where Uj ∼ N(0, τ 2) is a random intercept and εji ∼ N(0, σ2) is the random error term. The wsj weights
are provided with the standard NSCAW data package. Follow-up discussions with the NSCAW designers
provided conditional and cluster weights. For simplicity, it was assumed that wst|j = ws|jwt|j . The weights
in this example add many assumptions to the analysis. The weights are adjusted for a subject’s non-response,
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post-stratification, and times when a specific child welfare agency could not respond for, possibly, months
at a time.

The estimates for this model are in Table 7. The standard errors used for the PSGHR approaches are
from the derivations in their paper. The standard errors used for the KG method were obtained by a jackknife
approximation described Korn and Graubard (1999). The fixed-effects coefficients marked with an asterisk
(”*”) were significantly different from zero at the 0.05 level.

From Table 7, we observe that the DEPR, SUBSABU, and SEXABU variables are not significant under
any of the methods, the intercept, INFANT, SERVC, and CGDRACE are significant under all the methods,
and DEPR*SUBSABU is significant under the unscaled and KG methods, and not the others. The interpre-
tation of this model will be restricted to the variables which were considered significant under any of the
five estimation methods, and to the variance components.

Under each simulation, the sampling design did not depend on the fixed-effect variable X and the
estimate for β1 was unbiased. From the NSCAW data, the fixed coefficient estimates (not including β0)
change between 16% (βINFANT ) to 50% (βCGDRACE ). From this, it appears that there is informative
sampling related to the INFANT, SERVC and CGDRACE variables, though the magnitude of the differences
needed for this assertion needs more investigation. The β0 estimate changes only 5%, so it is not clear if
this is related to informative sampling. For the substance abuse/depression interaction, the KG and unscaled
estimates two to three times higher than the unweighted scaled 1 and scaled two estimates. It appears that
the sampling design is informative with respect to this interaction, but it is difficult to determine if it is
significant in the model. We see that the KG estimate for τ 2 is smaller than the unweighted estimate, but
the σ2 estimate for KG is the largest of the weighted estimates, but smaller than the σ2 unweighted. This
is similar to the pattern observed in the informative cluster/informative individual sampling design. In the
simulations, observe that the estimates for σ2 are fairly steady across the second and third simulations where
there is no informative sampling of subjects. In the first simulation, with informative sampling of subjects,
there are estimates whose confidence intervals for σ2 do not overlap (unweighted and KG). In the NSCAW
data, there are confidence intervals that do not overlap for σ2.

Pulling this together, it appears that the NSCAW data has informative sampling with respect to both
the clusters and the subjects within a cluster. This informative sampling appears related to the INFANT,
SERVC and CGDRACE variables. We know from the sampling design, that the INFANT and SERVC vari-
ables were used in the oversampling scheme, and it appears that they directly affect the cognitive stimulation
scores also. Thus, comparing the different weighted techniques provides us with information regarding pos-
sible informative sampling/model miss-specification, however it does not help us determine which weighted
analysis is the better one to use. Better simulations are needed to justify these results.

5 Proposed Work

This section outlines work I propose to do to complete the thesis.

1. Investigate two current proposals for incorporating sampling weights to robustly estimate mixed-
effects models in the presence of model miss-specification and/or informative sampling, comparing
their advantages and disadvantages in various situations.

First, the c-program which compares the two current proposals (PSHGR and KG) will be expanded
beyond random intercept model to allow for random slopes and intercepts. Next, various simulations
will be conducted to evaluate the effect of the weights on the robustness of the analysis. The simula-
tions will 1) vary the properties of the sampling design (i.e. informativeness, sampling sizes, etc.), 2)
vary the property of the weights (i.e. inverse probability weights or adjusted weights), 3) assume inde-
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pendence on the weights (i.e. wst|j = ws|jwt|j), 4) include different types of model miss-specification
and 5) vary the model to include different types of random-effects.

2. Address the role of sampling weights when the survey design was not formulated according to a
particular statistical model of substantive interest, thus introducing additional variance components,
and consider models in addition to mixed-effects models to see how the work generalizes across
model-based techniques.

In expanding beyond mixed-effects models and to another survey with a different complex design,
the investigation of weights will be expanded beyond mixed-effects models and the NSCAW survey.
Although the first attempt at addressing additional variance components is with mixed-effects models,
it will be expanded beyond them. In mixed-effects models, the literature focuses on the generating
models which may have crossed random-effects, for example, when students are nested in schools
and there is a suspected neighborhood effect. Many neighborhoods feed one school and there are
often multiple schools in a neighborhood, so schools and neighborhoods would be crossed. this will
be expanded to include crossed effects for sampling design/data collection issues. To incorporate the
weights, methods such as PSHGR and KG could be applied.

Incorporating an experiment into the survey necessitates upfront work when the survey is being de-
signed. For secondary analysts working with large national surveys, this may not be possible. How-
ever, if the survey is designed so that it is possible to do, this will be investigated further. The insertion
of survey weights is not so clear, and would need further investigation.

Estimating equations are used in the literature for survey sampling, especially model-based survey
sampling. However, often the estimating equations are weighted by the sampling weights to be de-
sign unbiased, and then the solution of the weighted estimating equation estimates the parameter of
interest. This is considered controversial, as it intentionally uses the weights to compensate for the
randomization distribution. Adding different terms to the estimating equations (as described in Sec-
tion 3.2) is way to use estimating equations without systematic use of the sampling weights.

With each of the methods above, many questions of interest will be addressed. For example, is there
a difference in the insertion of weights if the data collection induces variance components as opposed
to the sampling design? What happens when the model (or sampling design or data collection) is
miss-specified? Under what conditions do the weights make the analysis more robust? What is the
role of weights if there is informative sampling?

3. Apply to data from national surveys

For the mixed-effects analysis, the NSCAW example presented in Section 4.1.2 will be expanded.
From applying what is learned about the weights in the additional simulations, the analysis from the
preliminary results will be interpreted to understand if the differences in the weighted analyses are due
to informative sampling or model mis-specification. Then model will be updated if needed, and the
weights will be used if needed. These changes will aid in the interpretation of the interaction between
depression and substance abuse, which is directly relevant to the question of interest.

To address the role of the sampling weights when the variance components induced by the sampling
design/data collection, another survey and model will be used. The National Long Term Care Survey
(NLTCS) is administered by the Census Bureau with the goal of examining health and behavioral fac-
tors associated with changes in chronic disability and mortality. It is a longitudinal survey started in
1982, with the sixth wave currently in progress. The core aspects of the survey gather information re-
garding medical conditions of the individual, activities of daily living, support people, nutritional and
social activities, cognitive functioning, housing and neighborhood characteristics, health insurance,
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military service, ethnicity, income, and assets, both of individuals outside and inside of institutions.
Sample research areas in the NLTCS include changes in chronic disability in the U.S. Elderly Pop-
ulation, severe cognitive impairment and its impact on the individual and his/her family, effects of
disability on medicare and social security expenditures, and age and gender specific effects of nutri-
tion on functioning of U.S. elderly, to name a few. The data from the NLTCS is categorical and a class
of models which analyzes cross categorical outcomes, instead of sums of scores, will be investigated.

4. Propose and illustrate guidelines regarding the use of sampling weights in model-based analysis, and
develop these recommendations into a series of publishable tutorials that survey to clarify the issues
and methodologies for survey analysts.

In working with two different models, mixed-effects models and a categorical model, the study re-
garding the weights in model-based analysis will be generalized. Types of guidelines which I would
like to make include the conditions under which weights help provide more robustness to the analysis,
and consequently, conditions upon which the weights should not be used. This robustness may be
against model mis-specification and/or informative sampling.

A series of tutorials comparing/combining design- and model-based analyses will be developed to
help clarify issues and methodologies regarding modeling and weights for survey analysts. These will
include the four analysis methods outlined in Section 2 and cover different estimands and sampling
schemes, starting with simpler models/designs and moving towards more complex models/designs.
These tutorials will be designed to help practitioners understand situations in which the weights should
be used, consequences of using the weights when they aren’t needed (and vice versa) and examples
of how to do their own investigations if there is a specific model of interest to investigate.
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Tables and Figures

Design Based Inference

Sample

Generating Model
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Figure 1: Design-Based (solid lines) and Model-Based (dashed lines) Schematic
Thick Lines Indicate Direction of Inference
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Design Based Estimates
of Model−Based Census

Figure 2: Alternate Frequentist Schematic
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Design-Based Model-Based

Data Variability Fixed Random
Variability definition Difference across samples Model error term
Underlying distribution Randomization distribution Model distribution
Target of inference Finite population Underlying stochastic model or

finite population
When sample = census Parameter known exactly Model parameter not known exactly

Finite population parameter known exactly
Sampling design Define underlying distribution Identify dependencies

and additional variation

Table 1: Summary of Design- vs. Model-Based Methodologies

Parameter Unweighted Unscaled Scaled 1 Scaled 2 KG
(true value) Estimate Estimate Estimate Estimate Estimate

(std. dev.) (std. dev.) (std. dev.) (std. dev.) (std.dev)
[MSE] [MSE] [MSE] [MSE] [MSE]

β0 (1) 0.87 (0.075) 0.99 (0.090) 0.99 (0.090) 0.99 (0.090) 0.99 (0.090)
[21.629e-3] [8.199-3] [8.211e-3] [8.183e-3] [8.198e-3]

β1 (-2) -2.00 (5.056e-3) -2.00 (7.433e-3) -2.00 (6.800e-3) -2.00 (6.792e-3) -2.00 (7.430e-3)
[2.557e-5] [5.526e-5] [4.619e-5] [4.614e-5] [5.521e-5]

τ2 (0.2) 0.17 (0.046) 0.20 (0.054) 0.17 (0.054) 0.18 (0.054) 0.16 (0.051)
[2.873e-3] [2.936-3] [3.683e-3] [3.245e-3] [3.937e-3]

σ2 (0.5) 0.43 (0.024) 0.49 (0.035) 0.52 (0.034) 0.51 (0.033) 0.53 (0.037)
[5.273e-3] [1.381e-3] [1.413e-3] [1.165e-3] [2.124e-3]

Table 2: Results from Simulation with Informative Clusters/Informative Subject Sampling
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β0 β1 τ2 σ2

Simulation 1 UNWGT < UNSCAL KG <UNWGT UNWGT < UNSCAL
informative clusters UNWGT < S1 KG < UNSCAL UNWGT < S1

informative individual UNWGT < S2 KG < S1 UNWGT < S2
UNWGT < KG KG < S2 UNWGT < KG

S1 < UNSCAL UNSCAL < KG
S2 < UNSCAL UNSCAL < S1

S1 < S2 S2 < S1
Simulation 2 UNSCAL < UNWGT KG < S1/S2 UNSCAL < KG

informative cluster S1/S2 < UNWGT S1/S2 <UNSCAL
non-informative individual KG < UNWGT KG < UNSCAL

Simulation 3 KG<S1/S2 UNWGT < KG
non informative cluster UNSCAL < UNWGT

non informative individual UNSCAL < KG

Table 3: Significant Differences from Pairwise Simulation Testing

Parameter Unweighted Unscaled Scaled 1 Scaled 2 KG
(true value) Estimate Estimate Estimate Estimate Estimate

(std. dev.) (std. dev.) (std. dev.) (std. dev.) (std.dev)
[MSE] [MSE] [MSE] [MSE] [MSE]

β0 (1) 1.16 (0.076) 1.00 (0.086) 1.00 (0.086) 1.00 (0.086) 1.00 (0.086)
[32.035e-3] [7.389e-3] [7.381e-3] [7.381e-3] [7.389e-3]

β1 (-2) -2.00 (5.72e-3) -2.00 (6.61e-3) -2.00 (6.19e-3) -2.00 (6.19e-3) -2.00 (6.62e-3)
[3.256e-5] [4.377e-5] [3.839e-5] [3.839e-5] [4.384e-5]

τ2 (0.2) 0.18 (0.054) 0.21 (0.060) 0.19 (0.060) 0.19 (0.060) 0.18 (0.058)
[3.008e-3] [3.709e-3] [3.707e-3] [3.707e-3] [3.626e-3]

σ2 (0.5) 0.50 (0.028) 0.48 (0.030) 0.50 (0.030) 0.50 (0.030) 0.51 (0.032)
[0.805e-3] [1.258-3] [0.897e-3] [0.897e-3] [1.079e-3]

Table 4: Results from Simulation with Informative Clusters/Non-Informative Subject Sampling
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Parameter Unweighted Unscaled Scaled 1 Scaled 2 KG
(true value) Estimate Estimate Estimate Estimate Estimate

(std. dev.) (std. dev.) (std. dev.) (std. dev.) (std.dev)
[MSE] [MSE] [MSE] [MSE] [MSE]

β0 (1) 1.00 (0.078) 1.00 (0.083) 1.00 (0.083) 1.00 (0.083) 1.00 (0.083)
[6.042e-3] [6.834e-3] [6.906e-3] [6.906e-3] [6.821e-3]

β1 (-2) -2.00 (5.50e-3) -2.00 (5.48e-3) -2.00 (5.94e-3) -2.00 (5.94e-3) -2.00 (5.49e-3)
[2.996e-5] [3.012e-5] [3.534e-5] [3.534e-5] [3.023e-5]

τ2 (0.2) 0.19 (0.055) 0.21 (0.057) 0.19 (0.058) 0.19 (0.058) 0.19 (0.055)
[3.037e-3] [3.367e-3] [3.376e-3] [3.376e-3] [3.253e-3]

σ2 (0.5) 0.50 (0.027) 0.48(0.026) 0.50 (0.029) 0.50 (0.029) 0.51 (0.027)
[0.732e-3] [1.057e-3] [0.856e-3] [0.856e-3] [0.781e-3]

Table 5: Results from Simulation with Non-Informative Clusters/Non-Informative Subjects

Variable Name Variable Meaning
CSji The cognitive stimulation score of the child

DEPRji An indicator of depression in the mother of the child
SUBSABUji An indicator of substance abuse in the mother of the child
SEXABUji An indicator as to whether the child was sexually abused
INFANTji An indicator as to whether the child was under one year
SERV Cji An indicator as to whether the family received child welfare services

CGDRACEji An indicator if the mother’s race was Caucasian
DEPRji ∗ SUBSABUji The interaction between DEPR and SUBSABU

Table 6: Variables Included in the NSCAW Analysis
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Parameter Unweighted Unscaled Scaled 1 Scaled 2 KG
Estimate Estimate Estimate Estimate Estimate
(std. dev) (std. dev) (std. dev) (std.dev) (std.dev)

β0 6.70* 6.93* 6.95* 6.98* 6.89*
(0.106) (0.186) (0.232) (0.183) (0.173)

βDEPR 0.092 0.224 0.138 0.241 0.220
(0.099) (0.176) (0.185) (0.197) (0.172)

βSUBSABU -0.099 0.446 0.419 0.364 0.460
(0.254) (0.293) (0.369) (0.275) (0.319)

βSEXABU 0.323 -0.017 -0.443 -0.444 -0.016
(0.252) (0.282) (0.378) (0.338) (0.234)

βINFANT -0.586* -0.504* -0.553* -0.545* -0.521*
(0.092) (0.109) (0.144) (0.116) (0.105)

βSERV C -0.363* -0.467* -0.373* -0.472* -0.432*
(0.104) (0.198) (0.159) (0.139) (0.207)

βCGDRACE 0.607* 0.487* 0.449* 0.417* 0.494*
(0.081) (0.180) (0.177) (0.144) (0.186)

βDEPR.SUBSABU -0.656 -1.653* -0.577 -0.680 -1.638*
(0.364) (0.573) (0.456) (0.391) (0.656)

τ2 0.085 0.339 0.111 0.170 0.064
(0.035) (0.086) (0.086) (0.064) (0.095)

σ2 2.066 1.268 1.408 1.341 1.563
(0.096) (0.107) (0.105) (0.096) (0.134)

Table 7: Results on NSCAW data
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