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Introduction

The past two decades have seen the rise of automated continuous double auction (CDA) trading
systems in stock exchanges throughout the world. In these markets, orders are matched and ex-
ecuted by computer systems while unmatched orders are stored in the limit order books (LOB).
The LOB contains rich information about market demand and supply and is of great theoretical
and practical value. Theoretically, the LOB will help us understand important aspects of market
microstructure, such as price formation and market liquidity. Practically, it will help market par-
ticipants to form optimal trading strategies, lowering trading costs.

This thesis is about modeling the dynamics of the LOB in some particular markets. First, we
propose a model - Event-Type model - for the evolution of the LOB. This model describes an
“Ideal” data set, in which all the order arrivals and cancelations are recorded in great detail in real
time. However, such data are not accessible to us (and not only not to us). Instead, what we have
is “Five-Tick” data, which contains only an aggregated level of information regarding the best five
buy and sell order prices and sizes. Estimating the Event-Type model directly on such data is very
difficult. Therefore an “indirect” inference approach is proposed to link the Event-Type model with
our data set via some auxiliary models, which are predictive models on the Five-Tick data.

This proposal is organized as follows. Section 1 introduces the mechanics of the limit order book.
Section 2 briefly reviews models related to the evolution of LOB, and literature on indirect infer-
ence. Section 3 introduces data and models. In this section, we propose the Event-Type model for
the Ideal data, and explain the difficulty of estimating the Event-Type model based on the Five-
Tick data set. Section 4 introduces the indirect inference estimation approach for our Event-Type
model. In particular, we propose a new technique - functional indirect inference. The last section
describes future work.

1 Mechanics of the Limit Order Book

Here we introduce frequently-used concepts and terminology related to the LOB. There are two
basic types of orders - market orders and limit orders. Traders who submit market orders specify
the amount to buy or sell, at the best available price, while traders who submit limit orders specify
not only the amount to buy or sell, but the worst acceptable price. At each limit price in the limit
order book, there is a total outstanding order size associated with that price, and we use depth
to refer the total outstanding order size at that price. The highest price of all buy limit orders
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outstanding is the bid price, and the lowest price of all sell limit orders is the offer price or the
ask price. “Best orders” denotes orders with the best prices. The difference between the ask price
and the bid price is called the spread. Traders can only submit orders with prices along a grid of
possible prices. The minimum price difference in the LOB is called a tick and the magnitude of
the tick varies according to the security and the markets.

There is no need to wait for the incoming orders before executing market orders. When mar-
ket orders arrive, they are matched immediately against limit orders on the opposite side of the
LOB. If the size of a buy market order is greater than the depth at the current ask price, the excess
part of this demand is matched at prices higher than the current ask price. Such a buy market
order is a walking-up market order. Correspondingly, there is also a walking-down market order on
the sell side. But on some exchanges, such as Paris Bourse, a market order is not allowed to walk.
In these exchanges, a market order will only be partially executed if it can not be fully matched
at the current best price, and the unmatched part of the market order becomes a limit order with
price at the best price on the opposite side before execution. Although limit orders can control
transaction prices, they are not usually executed immediately. However, sometimes limit orders
are executed at once when a buy limit order arrives whose limit price is greater than the ask, or
a sell limit order whose limit price is less than the bid. Such limit orders are called crossing or
marketable limit orders, and are executed like market orders. Therefore, the term effective limit
orders is sometimes used for non-crossing limit orders including the unexecuted part of crossing
limit orders, and effective market orders for all orders that bring immediate trades including the
executed part of crossing limit orders. Unmatched limit orders will be stored into the LOB accord-
ing to price priority then time priority. Limit orders can be canceled before expiration and will
then be removed at once from the LOB, while market orders can not.

2 Background

Modeling the dynamics of the limit order book is practically attractive. Knowing how the LOB
evolves helps traders to take corresponding strategies and lower their trading costs. However, due
to its complexity, this problem is not yet systematically solved. A lot of partial research has been
done, laying the background for our proposed Event-Type model. Some representative work is
summarized in this section. In addition, we briefly review indirect inference, the main estimation
approach to our model.

The state of the LOB changes over time in response to traders’ order submissions and cancela-
tions, which in turn are affected by the LOB. It is such interactions that make the LOB modeling
difficult. Although the effect of traders’ behavior on the LOB has been studied, the difficulty of
quantifying traders’ behavior limits this approach. Instead of attempting to anticipate how traders
will behave, Garman (1976) studied the market by assuming that traders’ net effect is to generate
order flows with some distribution. His work leads the study of the LOB in its steady-state, see
Domovitz and Wang (1994) and Luckock (2003). These results have not yet lead to a tractable
model of LOB dynamics, but the idea that a market could be characterized by order flows inspires
our model. Several aspects of order flows have been explored: the distributions of order prices, the
occurrences of order arrivals and cancelations, and order decisions.

Studies of the distributions of order prices have mostly concentrated on the distributions of the
relative prices (the difference between buy/sell limit order prices and bid/ask prices). Potters and
Bouchaud (2002), Zovko and Farmer (2002), Gabaix et al. (2003) and Lillo (2006) all find that the
relative prices follow distributions with fat-tails among different markets. These analyses present
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static results. Some scholars investigate what information in the LOB contributes additional pre-
dictive power for the price changes other than lagged best prices. Maslov and Mills (2001) find that
a large imbalance in the number of limit orders placed at the bid and ask sides of the book leads
to a predictable short term price change, which is in accord with the law of supply and demand.
Cao et al (2004) use the data of 21 stocks from the Australian Stock Exchange and find empirical
evidence that the LOB beyond the best prices, specifically the lagged limit order book imbalance,
is informative about future price movements. Harris and Panchapagesan(2004) and Pascual and
Veredas (2004) find the limit order book is informative about future price movements. Hellstrom
and Simonsen (2006) use the integer-valued autoregressive model and obtain similar results. In ad-
dition, they argue that the value of the information is short-term. All these papers use parametric
linear models only. There is some work on using nonlinear modeling, such as neural networks and
genetic algorithms, to predict prices in high frequency time series (Bunis and Zhou,1998).

In the LOB, the occurrences of order arrivals and cancelations are recorded at irregularly spaced
time intervals. Standard time series techniques relying on fixed-time intervals do not apply. The
clustering of these time intervals led Engle and Russell (1998) to introduce an autoregressive condi-
tional duration model (ACD) to model the intervals between trades. However, it is hard to extend
these models to multiple occurrence processes. The irregular occurrences are suitable to be consider
as point processes, therefore conditional intensity functions can be used to characterize these point
processes. Russell (1999) provides autoregressive conditional intensity models (ACI), which use the
framework of ACD and apply it to conditional intensity functions. This ACI model can be used to
deal with multiple occurrence processes.

Optimal choices between limit orders and market orders are studied by many scholars. Biais,
Hillion and Spatt(1995) present an empirical analysis of the order flow of Paris Bourse, and find
that when the spread is larger or the order book is thin, limit orders are submitted more often than
market orders. In addition, improvement in the best prices is especially frequent when the depth at
the quotes is large. Harris and Hasbrouck (1996), using NYSE data, find that limit orders placed
at or better than the prevailing quote perform better than do market orders, even after imputing
a penalty for unexecuted orders. Chakravarty and Holden (1995), Handa and Schwartz (1996),
Harris (1998), Foucault, Kadan and Kandel (2003), Goettler, Parlour and Rajan (2004, 2005) also
address the choice between market orders and limit orders. Few researchers study jointly the price
and quantity aspects of the order decision, such as Ellul, Holden, Jain and Jennings (2003) and
Ronaldo (2004). However, they focus on specific price-quantity combinations. Lo and Sapp (2005)
model quantity simultaneously with the levels of the price aggressiveness, which is defined in terms
of how quickly an order is executed, similar to the classification in Bias et al.(1995). In addition,
changes in the off-best depth, which may not be observable to the traders, is still significantly
related to the price aggressiveness and quantity decision.

The approach we take is to start by supposing that there are some history dependent distribu-
tions of these order flows, which need to be calibrated by the data, then we jointly model the price,
time, order size and order type. In addition, the model simultaneously considers events’ types.
However, such a model is difficult to estimate directly due to the need for very detailed data, which
are not available to us. Hence we use the “indirect inference” approach, a simulation-based method
for estimation. Its main idea is to connect the original model to the data through an auxiliary
model. This estimation approach was first introduced by Smith (1990, 1993) and later extended
in important ways by Gourieroux, Monfort and Renault (1993) and Gallant and Tauchen (1996).
There have been many interesting applications of indirect inference to the estimation of economic
and financial models. Because of its flexibility, indirect inference can be a useful way to estimate
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some complex models. It does not, however, appear to ever have been used to estimate LOB
models.

3 Models and Data
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Figure 1: An order arrival

Dashed bracket means that this order will not affect the Level-1 data and therefore will not be recorded in the Level-1 data.

In this section, we first introduce several data sets: the Ideal data, the Level-1 data and the Five-
Tick data, where the last two data sets contain only partial information from the first one. Secondly,
we propose a model for the Ideal data. The proposed model is based on the idea of distinguishing
different types of event, hence it is called the Event-Type model. Then we derive a model for
the Level-1 data from the Event-Type model. Finally, we briefly explain the difficulty of directly
estimating the Event-Type model based on the Five-Tick data, which calls for some estimation
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approaches other than maximum likelihood estimation.

3.1 Data

The Ideal data, which we refer to as the complete LOB, consists of depths at each limit order price
at any time. Whenever there is a change to any depth, the complete LOB is updated. In addition,
whenever there is a trade, information about trade price and size is also recorded.

The Ideal data, a very rich source of information of the trading securities, is not accessible to
most traders. Instead, based on their subscription priorities, traders gain access to different levels
of data. Most traders have access to the Level-1 data, which only has information about the bid
and the ask prices and their depths when any of them changes, and information of trades (trade
prices and sizes). Some order arrivals or cancelations may change the complete LOB, while they
may not affect the Level-1 data. Figure 1 describes how the Level-1 data will be changed when an
order arrives.

The data set we have contains only information of the best five buy and sell prices, which we
refer to as the Five-Tick data. It has the following properties:

• Each record in the data contains the depth information at the best five sell and best five buy
prices. Trades information is also included.

• The data are aggregated. When more than one event happens within a very short time
interval (for example, within less than 100 milliseconds when the market is very active), only
the net effect of all the events is recorded in the Five-Tick data. Therefore, there could be
more than one depth change in one record.

• The time unit in the Five-Tick data is one second. Several different records may be recorded
within one second. Although they are recorded sequentially, the exact time difference between
these records is not known.

Table 1 shows a small sample of the 10-year Treasury Note (TNOTE) data , which was traded at
CBOT (Chicago Board of Trade) on April 7, 2005. It can be seen that there is more than one record
within a one-second interval. In addition, there is more than one event per record, as reflected by the
difference between two consecutive records. Another data set we have is International Petroleum
Exchange (IPE) data, which is of the same format as TNOTE data.

3.2 Models

3.2.1 The Event-Type Model

In the limit order market, traders’ order submission and trading strategies will affect the state of
the LOB since traders choose when and at what prices they submit orders. At the same time,
the state of the LOB also delivers or disseminates information regarding possible future trades to
traders. In other words, traders’ trading strategies and the state of limit order book interact with
each other. Instead of attempting to anticipate how these interactions work and how traders’ orders
affect the limit order book, we focus on the evolution of the limit order book by assuming that
the aggregated effect of the traders generates order flows with price and order distribution. In the
following, we propose a model, which is called the Event-Type model for the complete limit order
book within one trading day.

Let {ti} be the point process of times within one trading day when orders either arrive or are
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Table 1: 10 year T-note traded on CBOT (4/7/2005)
Bid Ask Low High Total

08:56:04 1162x109.215 08:56:04 984x109.22 08:56:04 0x109.21 08:56:04 0x109.275 08:56:04 170236x0
08:56:04 1162x109.215 08:56:04 1005x109.22 08:56:04 0x109.21 08:56:04 0x109.275 08:56:04 170236x0
08:56:04 1162x109.215 08:56:04 1158x109.22 08:56:04 0x109.21 08:56:04 0x109.275 08:56:04 170236x0
08:56:04 1162x109.215 08:56:04 1165x109.22 08:56:04 0x109.21 08:56:04 0x109.275 08:56:04 170236x0
08:56:04 1156x109.215 08:56:04 1159x109.22 08:56:04 0x109.21 08:56:04 0x109.275 08:56:04 170242x0

Last[0] Last[1] Last[2] Last[3] Last[4]
08:56:03 5x109.22 08:56:03 5x109.22 08:56:02 20x109.22 08:56:02 2x109.22 08:56:01 100x109.22
08:56:03 5x109.22 08:56:03 5x109.22 08:56:02 20x109.22 08:56:02 2x109.22 08:56:01 100x109.22
08:56:03 5x109.22 08:56:03 5x109.22 08:56:02 20x109.22 08:56:02 2x109.22 08:56:01 100x109.22
08:56:03 5x109.22 08:56:03 5x109.22 08:56:02 20x109.22 08:56:02 2x109.22 08:56:01 100x109.22
08:56:04 6x109.22 08:56:03 5x109.22 08:56:03 5x109.22 08:56:02 20x109.22 08:56:02 2x109.22

BidDST[0] BidDST[1] BidDST[2] BidDST[3] BidDST[4]
08:56:04 1162x109.215 08:56:04 4232x109.21 08:56:04 2275x109.205 08:56:04 2015x109.2 08:56:04 2279x109.195
08:56:04 1162x109.215 08:56:04 4232x109.21 08:56:04 2275x109.205 08:56:04 2015x109.2 08:56:04 2279x109.195
08:56:04 1162x109.215 08:56:04 4159x109.21 08:56:04 2275x109.205 08:56:04 2015x109.2 08:56:04 2279x109.195
08:56:04 1162x109.215 08:56:04 4159x109.21 08:56:04 2275x109.205 08:56:04 2015x109.2 08:56:04 2279x109.195
08:56:04 1156x109.215 08:56:04 4159x109.21 08:56:04 2275x109.205 08:56:04 2015x109.2 08:56:04 2279x109.195

AskDST[0] AskDST[1] AskDST[2] AskDST[3] AskDST[4]
08:56:04 984x109.22 08:56:04 3014x109.225 08:56:04 3642x109.23 08:56:04 2222x109.235 08:56:04 2564x109.24
08:56:04 1005x109.22 08:56:04 3014x109.225 08:56:04 3642x109.23 08:56:04 2222x109.235 08:56:04 2564x109.24
08:56:04 1158x109.22 08:56:04 2993x109.225 08:56:04 3642x109.23 08:56:04 2222x109.235 08:56:04 2564x109.24
08:56:04 1165x109.22 08:56:04 2993x109.225 08:56:04 3642x109.23 08:56:04 2222x109.235 08:56:04 2564x109.24
08:56:04 1159x109.22 08:56:04 2993x109.225 08:56:04 3642x109.23 08:56:04 2222x109.235 08:56:04 2564x109.24

All the columns are of the format “time size × price”. Columns named “Bid” and “Ask” are the information about the bid
price, the ask price and their depths. “ Low ” and “High” are respectively the lowest and highest traded price up to the
recorded time. “ Total” is the total traded order size up to the recorded time. “Last[0]” is the last traded price and sizes,
“Last[1]” is the traded price and sizes before “Last[0]”, “Last[n]” is the traded price and sizes before “Last[n-1]” and so on.
BidDST[n] indicated the depth at (n + 1)th best buy price, which is n ticks less than the bid price in this T-note data, and
AskDST[n] is the depth at the (n + 1)th best sell price, which is n ticks greater than the ask price in this T-note data. For
this T-note data, the tick size is 5

320
. For example, price 109.215 is really 109 + 215

320
.

canceled. In order to distinguish these two events, we introduce the random vector Eti to denote
the event type at time ti:

Eti =
{

e1, if a new order arrives at ti
e2, if an order in the LOB is partially or fully canceled at ti.

where e1 = (1, 0)′ and e2 = (0, 1)′. Each event is associated with either the buy side or the sell side
of the LOB. The indicator variable Qti says which side an event comes from at time ti, which takes
value 1 if the event is related to sell side and 0 otherwise. We make the following assumptions for
the model:

A1: Depth at any price is known at time 01.

A2: {ti} is an orderly point process, meaning no more than one event happens at each time point.
Let λ(t|Ht−) be its conditional intensity process, where Ht is the information of the complete
LOB up to time t.

A3: P (Eti = e1|Hti−) = Pi and P (Eti = e2|Hti−) = 1− Pi depend on the book history. P (Qti =
1|Eti = ej ,Hti−) = γj

i for (j = 1, 2) also depend on the history.

A4: If an order is submitted at time ti, the price is pti = bti−1 + ∆ha
ti for a sell order and

pti = ati−1 −∆hb
ti for a buy order, where at and bt are the ask and bid price at time t, and ∆

1In the markets we are modeling, time 0 corresponds to the start of the continuous trading session, not the start
of the trading day.
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is the tick. Both ha
ti and hb

ti are integer-valued random variables whose distributions depend
on the history of the LOB. Let Pa(ha

ti |Hti−) and Pb(hb
ti |Hti−) denote these two conditional

probabilities, respectively. The size Vti of order submitted at time ti may depend on the order
price, the order type and the history of the LOB, its conditional distribution of Vti follows
Pv(v|pti , Qti ,Hti−).

A5: If a cancelation event happens at time ti, it happens at the price pc
ti = ati−1 + ∆hac

ti for a
sell order cancelation and pc

ti = bti−1 −∆hbc
ti for a buy order cancelation, respectively, where

both hac
ti and hbc

ti are nonnegative integer-valued random variables whose distribution depend
on the history of the LOB. Let Pac(hac

ti |Hti−) and Pbc(hbc
ti |Hti−) denote these two conditional

probabilities, respectively. The proportion of the size canceled relative to the depth at the
limit price where the cancelation happens is assumed to be distributed with conditional
density fa

cp(pc|pc
ti ,Hti−) and f b

cp(pc|pc
ti ,Hti−) for the sell order cancelation and the buy order

cancelation, respectively, where 0 < pc ≤ 1.

Under our assumptions, the LOB is a marked point process if we treat the event type, order price
and size as “marks” associated with the time that either order submission or cancelation happens.
For the proposed Event-Type model, the likelihood function can be derived, which we do in the
Appendix.

In the Event-Type model, the order arrival rate, order price and order size submitted, order can-
celation rate and cancelation proportion are jointly modeled. This model may be used to describe
the evolution of the LOB within one trading day without any significant disturbing, such as the
releasing of significant news or reports. Incorporating these exogenous effects into the Event-Type
model will not be considered in my thesis, but may be investigated in further research.

3.2.2 Model for the Level-1 Data

Here we derive a model for the Level-1 data from the Event-type model by treating the Level-1
data as the result of a stochastic thinning process from the Ideal data. Let {ti} be the occurrence
times of events for the complete LOB, {t∗j} be the occurrence times of events in the Level-1 data,
which is a thinned process obtained from the point process {ti}, and λ∗(t|Ft−) be the conditional
intensity for the Level-1 data, with filtration {Ft}. If ti is recorded into the Level-1 data, we say
ti is retained; Kti is the indicator that ti is retained. The conditional probability of Kti can be
calculated as:

P (Kti = 1|Hti−)
= Pi[P (Qti = 1, pti ≤ ati−1 |Eti = e1,Hti−) + P (Qti = 0, pti ≥ bti−1 |Eti = e1,Hti−)]

+(1− Pi)[P (Qti = 1, pc
ti = ati−1 |Eti = e2,Hti−) + P (Qti = 0, pc

ti = bti−1 |Eti = e2,Hti−)]

= Piγ
1
i Pa(ha ≤ Sti−1

∆
|Hti−) + Pi(1− γ1

i )Pb(hb ≤ Sti−1

∆
|Hti−)

+(1− Pi)γ2
i Pac(hac

ti = 0|Hti−) + (1− Pi)(1− γ2
i )Pbc(hbc

ti = 0|Hti−) (1)

where Sti−1 is the spread at ti−1. Sti−1 can be obtained from the Level-1 data by Sti−1 = St∗j where
t∗j is the last retained point before time ti,

In our modeling, we assume that no more than one event happens at a time, hence there can
never be a case of infinitely many events within one day, and λ(t|Ht−) is universally bounded by,
say M , so is λ∗(t|Ht−). Therefore, by the Ogata thinning algorithm (see Appendix), the event
occurrence processes for the complete LOB and for the Level-1 data can be thinned from a Poisson
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process with rate M with retaining probabilities λ(t|Ht−)
M and λ∗(t|Ht−)

M , respectively. Therefore, we
have λ∗(t|Ht−) = λ(t|Ht−)P (Kt = 1|Ht−). But to get the likelihood function for the Level-1 data,
we need λ∗(t|Ft−). We imposed some mild assumptions: the Level-data is informative enough
such that Pi, Pa, Pb,Pac, Pbc and γj

i depend only on Fti−, and λ(t|Ht−) = λ(t|Ft−). Thus, the
retaining probability P (Kti = 1|Hti−) = P (Kti = 1|Fti−) depends only on the Level-1 data, and we
have λ∗(t|Ft−) = λ(t|Ft−)P (Kt = 1|Ft−). Under these assumptions, we can derive the likelihood
function for the Level-1 data (see Appendix), which has a similar form as the one for the Ideal
data.

3.3 Tension between Model and Real Data

In principle, since the Five-Tick data consists of partial information of the complete LOB, one may
derive a likelihood function from the one for the complete LOB by incorporating all possible event
flows that could generate our data set. However, in practice, this is very difficult. For example,
the number of events may be much more than the number of depth changes, and may not be
deducible from the Five-Tick data. It is not only very difficult, but almost numerically infeasible to
incorporate every possible number of events whose combined effect can generate the same record,
as there could be arbitrarily many. Besides, the exact occurrence times of events and the sequential
orders of these events sometimes can not be deduced from the Five-Tick data. In addition, events
that take place at prices other than the best ten prices can not be identified from the Five-Tick
data. Because the Five-Tick data contains only aggregated information, which does not meet high
requirements of the Event-type model, estimation of the Event-type model directly using such data
set will be intractable.

4 Estimation Approach - Indirect Inference

As explained before, it is infeasible to directly estimate the Event-Type model with the Five-Tick
data. Instead, we use a simulation based method - indirect inference - to estimate this model. The
fully specified probabilistic structure of the Event-Type model allows us to simulate a complete
LOB, from which a Five-Tick data can be extracted and compared with the real Five-Tick data via
some auxiliary models. In this section, we first explain indirect inference in detail. Then we state
the auxiliary models used in parametric indirect inference. Finally we state our functional indirect
inference, a nonparametric approach, and use it to estimate our Event-Type model.

4.1 Introduction to Indirect Inference

Indirect inference is a simulation-based method, which estimates the original model via an auxiliary
model. This approach only requires that it be possible to simulate data from the original model
for different values of its parameters, and therefore is especially useful when the likelihood function
(or other criterion function used to estimate the original model) is intractable. Its principle is
the following: for each choice of the parameters in the original model, a simulated data series is
generated. The auxiliary model, which can be a misspecified model, is then estimated on both the
real data and the simulated data, and compatibility between these two data sets may be gauged
by the closeness of the corresponding auxiliary parameter estimates. Indirect inference chooses the
parameters that minimizes the distance between the auxiliary parameters estimated from the real
data and the simulated data series.

To illustrate how indirect inference works, we cite details from Gourieroux and Monfort (1996).
Suppose that the original model(MO) takes the form: yt = F (yt−1, zt, ut; θ), where {yt}T

t=1 is a
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sequence of observed endogenous variables, yt−1 = (y0, y1, ..., yt−1), {zt}T
t=1 is a sequence of ob-

served exogenous variables, zt = (z0, z1, ..., zt), and {ut}T
t=1 is a sequence of unobserved random

errors whose distribution G is known. For convenience, we define the auxiliary model (MA) by a
conditional probability density function fa(yt|yt−1, zt;β). The parameters of model (MA) can be
estimated by

β̂T = argmax
β

T∑

t=1

log fa(yt|yt−1, zt;β).

In parallel, we pick a parameter vector θ and generate a simulated sequence of endogenous variables
ys

t (θ) using model (MO). We replicate such simulations S times. Then the estimated auxiliary
parameters are obtained on the simulated series by

β̂ST (θ) = argmax
β

S∑

s=1

T∑

t=1

log fa(ys
t |ys

t−1, z
s
t ;β),

which is a function of θ. This β̂ST (θ) can be replaced by 1
S

S∑
s=1

[argmax
β

T∑
t=1

log fa(ys
t |ys

t−1, z
s
t ;β)].

The final step in the indirect inference is to choose θ̂ such that β̂ST (θ) and β̂T are as close as
possible, where their distance is measured by

θ̂ST (Ω) = argmin
θ

[β̂T − β̂ST (θ)]′Ω[β̂T − β̂ST (θ)], (2)

and Ω is a predefined symmetric nonnegative definite matrix.

The above approach can be generalized to estimate auxiliary parameters based on maximizing a
criterion function (auxiliary function) ψT satisfying some conditions, then the auxiliary parameters
for the real data and the simulated data are estimated by

β̂T = argmax
β

ψT (yT , zT ;β),

β̂ST (θ) = argmax
β

S∑

s=1

ψT (ys
T (θ), zT ;β).

This β̂ST (θ) can be replaced by 1
S

S∑
s=1

argmax
β

ψT (ys
T (θ), zT ;β). Then minimizing the above distance

metric, we get the indirect inference estimator.

Intuitively, the quality of indirect inference may depend on how well the auxiliary model approx-
imates the original model. In fact, such intuition is formalized by Gallant and Tauchen (1996).
They showed that when the auxiliary model is correctly specified, the indirect inference estimator
is as efficent as maximum likelihood. Therefore, from the perspective of efficiency, it is important
to choose an auxiliary model that could provide a good statistical description of the observed data.

To do the indirect inference, we need to estimate the auxiliary parameters, either parametrically
or nonparametrically. We say “parametric” indirect inference when these auxiliaries are estimated
parametrically, such as, maximizing a (quasi-)likelihood function; otherwise we call it nonparamet-
ric indirect inference. In the following, we will use both parametric and nonparametric indirect
inference to estimate the Event-Type model.
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4.2 Parametric Indirect Inference

In our parametric indirect inference, we use some parametric predictive models for the Five-Tick
data as auxiliary models. These predictive models for the Five-Tick data focus on two critical price
processes: bid and ask prices. Let {rb

t = ln bt − ln bt−1} and {ra
t = ln at − ln at−1} be the two

logarithmic price changes (we may simply refer to them as price changes sometimes) for the bid
price process {bt} and the ask price process {at}, respectively. Our focus is to model the conditional
mean of the two price change processes, instead of their conditional distribution.

Firstly, we need to specify what time index is used here. Our Five-Tick data set is recorded
at irregularly spaced time intervals. Thus, the standard time series techniques relying on fixed
time intervals can not be applied. We solve this problem by sampling the original data at regular
intervals with a chosen length (use the nearest record as approximate if there is no record at some
regular time intervals). As to the choice of the length of the time interval, we use the average time
gaps of bid and ask price changes. The sensitivity of our results to the choice of the interval length
will be investigated.

Both {ra
t } and {rb

t} have significantly negative first-lag autocorrelation in the Five-Tick data,
but have strong positive cross-correlations. Hence, vector autoregressive models (VAR) can be
considered as baseline models. For convenience, we use Yt to stand for (ra

t , rb
t ) at time t. The VAR

model is

Yt =
p∑

k=1

AkYt−k + Et (3)

where Et is the vector of error terms, and Ak’s are matrices. This only uses the best quotes. For the
Five-Tick data, additional information is available to predict future prices, such as the imbalance
between the buy and sell order sizes (the difference between the depths at some buy and sell limit
prices). We use several variables (see Appendix), similar to Cao et al (2004) and Pascual and
Veredas (2004), which summarize some information from the LOB, and use Zt to denote the vector
of these variables at time t. Incorporating these covariates Zt into the VAR model, we have the
following vector autoregressive models with exogenous variables model (VARX):

Yt =
p∑

k=1

AkYt−k + BZt−1 + Et. (4)

The estimation procedures for VAR and VARX models are quite standard and will not be explained
in this proposal. These coefficient matrices are the auxiliary parameters in our parametric indi-
rect inference. The estimator for our Event-Type model will be chosen such that the difference
between these VAR(X) coefficients estimated from the Five-Tick data and from the simulated data
is minimized.

4.3 Functional Indirect Inference

As compared with parametric indirect inference, we use kernel-based nonparametric predictive time
series models as auxiliary models in our nonparametric indirect inference. The auxiliary parameters
in our nonparametric indirect inference are kernel regression functions. These functional forms
estimated from the simulated data and the Five-Tick data are compared to obtain the indirect
inference estimator for our Event-Type model, thus we call this new technique - functional indirect
inference.
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4.3.1 Nonparametric Auxiliary Models

As in parametric indirect inference, we still consider the predictive models for the bid and ask
price processes as auxiliary models. The difference is that our focus now is nonparametric pre-
dictive models. Since these two processes are the results of interaction among a large number of
heterogeneous market participants. It would be a surprise if all these complex interactions were
to average out in a linear way, and simple VAR(X) models would provide a good description of
the real data. Therefore, it is natural to use nonparametric methods. Instead of predicting the
conditional distribution of the bid and ask price changes Yt, we focus on predicting the conditional
mean E(Yt|Yt−1, .., Y1) by a nonparametric approach.

We approximate the conditional changes by

E(Yt|Yt−1, .., Y1) ≈ f(Yt−1, ..., Yt−k), (t > k), (5)

where function f and integer k in (5) are estimated using kernel-based nonparametric approach.
When an output Vt is regressed on a vector input Ut, the general form of the kernel estimate of the
regression function is

rn(u, hn) =
n∑

t=1

K(u−Ut
hn

)
n∑

s=1
K(u−Us

hn
)
Vt (6)

where K is the kernel function and hn ∈ R is the bandwidth. For our time-series prediction, the
input Ut = (Yt, . . . , Yt+k−1), the output Vt = Yt+k, and n = N − k. However, k is unknown.
Cross-validation is applied to estimate the integer k and bandwidth h. Let CV (k, h) be the cross-
validation score for k and h,

CV (k, h) =
1

N − k

N∑

t=k+1

||Yt − r(−t)(Ut, h)||2. (7)

For each fixed k within [1, k0], we choose bandwidth by ĥk = argmin
0<h≤h0

CV (k, h). We define CV (k) =

CV (k, ĥk), and estimate k by k̂: k̂ = argmin
1≤k≤k0

CV (k). For such estimator k̂, we use h
n−bk to denote the

optimal bandwidth ĥk̂. Then the estimator for (5) is given by Ê(Yt|Yt−1, .., Y1) = f̂(Yt−1, ..., Yt−bk) =
r
N−bk(Ut−bk, hn−bk)

Parallel to the VARX model in parametric indirect inference, we may incorporate the effect of
covariates {Zt} and consider the model

E(Yt|Yt−1, .., Y1, Zt−1, ..., Z1) = f(Yt−1, ..., Yt−k, Zt−1) (8)

This model assumes that, in addition to the conditional stationarity of {Yt}, only lag-1 covariates
may have non-negligible effect on the price changes. The above nonparametric prediction method-
ology can also be used with covariates. Now Ê(Yt|Yt−1, .., Y1, Zt−1, ..., Z1) = f̂(Yt−1, ..., Yt−bk, Zt−1)
= r

N−bk(Ut−bk, hN−bk) and Ut = (Yt, ..., Yt+k−1, Zt+k−1).

4.3.2 Estimation Procedure for Functional Indirect Inference

We present the functional indirect inference estimation for our Event-Type model in this subsection.
The presented procedures are for the functional indirect inference that uses model (5) or, similarly,
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model (8), as the auxiliary model. Our functional indirect inference procedure for the Event-Type
model is the following:

(1) Based on the observed bid and ask price changes {Yt}, we use the kernel-based nonparametric
approach to estimate model (5). β̂ denotes the estimated auxiliary parameters, that is,
β̂ = (f̂(·), k̂, ĥ), where Ê(Yt|Yt−1) = f̂(Yt−1, ..., Yt−k̂) = rn−k̂((Yt−k̂, ..., Yt−1), ĥ) is the kernel
estimator for model (5), k̂ is the estimated lag, ĥ is the estimated optimal bandwidth, and
Yt−1 stands for the history of price change processes up to time t− 1.

(2) For a chosen parameter vector θ ∈ Θ , simulate S paths of the bid and ask price changes
{Y s

t (θ)} based on Event-Type model (MO) (s = 1, ...S). We use the same kernel function
as in the first step, and estimate model (5) for the simulated data. The estimated auxiliary
parameters β̂s(θ) = (r̂s(·, θ), k̂s(θ), ĥs(θ)), where the estimator of the function of model (5)
based on this simulated data is denoted by r̂s(·, θ) = rn−k̂s(θ)(·, ĥs(θ)), and k̂s(θ) and ĥs(θ)
are the estimated lag and bandwidth, respectively.

(3) We use Pd(g, {at}) to denote the sequence of predicted values for {at} using the predictor g.
So Pd(β̂, {Yt}N

t=1) is the sequence of predicted values based on the model associated with aux-
iliary parameters β̂ for data set {Yt}N

t=1 (note that Pd(β̂, {Yt}N
t=1) is of length N − k̂). Corre-

spondingly, we can obtain Pd(β̂s(θ), {Yt}N
t=1), Pd(β̂, {Y s

t (θ)}N
t=1), and Pd(β̂s(θ), {Y s

t }(θ)N
t=1),

which are sequences of length N − k̂, N − k̂s(θ) and N − k̂s(θ) respectively. We introduce the
following error statistic

D(θ) =
S∑

s=1

[||Pd(β̂, {Yt})− Pd(β̂s(θ), {Yt})||2∗ + ||Pd(β̂, {Y s
t (θ)})− Pd(β̂s(θ), {Y s

t }(θ))||2∗]
N −max(k̂, k̂s(θ))

(9)
where || · ||∗ denotes the Euclidean distance between the common parts of the two sequences.

(4) The indirect inference estimator θ̂SN is chosen by

θ̂SN = argmin
θ

D(θ) (10)

which relies on the replicate number of simulation S and the number of observations N .

The logic behind our functional indirect inference estimation is the following. Assuming that there
exists a unique θ0 ∈ Θ of Event-Type model (MO), such that the observed data set {Yt} evolves
like a simulated path {Y ∗

t (θ0)} from model (MO), the estimated auxiliary parameters from these
two time series should be very close, that is, β̂(θ0) ≈ β̂. In particular, the predictions Pd(β̂, {Yt})
and Pd(β̂(θ0), {Yt}), Pd(β̂, {Y ∗

t (θ0)}) and Pd(β̂(θ0), {Y ∗
t (θ0)}) should be very similar. Hence if

such θ0 exists, our defined D(θ) should be able to pick it up and attain its minimum at θ = θ0.

5 Future Work

The goal of this thesis is to estimate the Event-Type model for the limit order book. Due to
the limitation of our Five-tick data, this model can not be directly estimated. We apply an indi-
rect inference approach to estimate our model instead. The model, the data and the estimation
methodology have already been introduced above. Here, we state the detailed work that needs to
be done.
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5.1 Conditions Checking for Indirect Inference

To implement indirect inference, there are several requirements. First, the original model should be
able to be used to simulate data for different parameter values (“Feasibility requirement”). Second,
the auxiliary parameter space should be rich enough to distinguish the parameters in the original
model. (“Identification requirement”). Finally, an auxiliary model should be chosen so that a
consistent estimator of the original model can be obtained (“Consistency requirement”).

The complete probabilistic structure of the Event-Type model allows us to simulate a limit or-
der book. Therefore, the feasibility requirement is satisfied. As to the identification requirement,
for different parameter vectors in the Event-Type model, it is unlikely that the bid and ask price
processes extracted from the simulated Five-Tick data would exhibit the same probabilistic struc-
ture. Therefore they will lead to different estimated VAR(X) models and kernel regression functions.

The major and important task is to verify the consistency requirement for both parametric and
functional indirect inference. In the case of parametric indirect inference, Gourierous and Monfort
(1996) showed that some regularity conditions for auxiliary models are needed to ensure the con-
sistency of parametric indirect inference estimators. Hence we will validate whether our auxiliary
VAR(X) models satisfy these regularity conditions. In the case of functional indirect inference,
there are no theorems that we can use directly to verify consistency. Therefore, one challenge work
in our functional indirect inference estimation is that consistency needs to be proven theoretically,
presumably under some specific regularity conditions. Moreover, we will use simulation to provide
evidence of the consistency of our functional indirect inference estimator. The main steps are as
follows:

(1) Pick a θ∗ ∈ Θ and treat it like the true value for the Event-Type model. Fix an integer S.

(2) Simulate a {Yt}N
t=1 from the Event-Type data, and treat this sequence as the observed data.

(3) Perform the functional indirect inference method to get an estimator θ̂SN .

(4) Let N increase gradually, then repeat (2) and (3) for these different N .

(5) Check whether the distance between θ̂SN and θ∗ gradually approaches zero as N increases.

5.2 Implementing Indirect Inference

There are three main steps in our indirect inference estimation: simulation of the Event-Type model,
estimation of auxiliary models, and optimization (minimization) of parameter distance functions.
The estimation procedures for parametric auxiliary models (VAR/ VARX) are standard. As for
nonparametric auxiliary models, the estimation methodologies have been explained in detail in the
previous section. Hence we will only address the work related to the other two steps.

5.2.1 Simulation from Event-Type Model

To simulate a limit order book, we need to specify the full probabilistic structure. As an initial trial,
we will use a simple structure, where most distributions are path independent. Simple constant
distributions are used for event types and event directions. Since almost all relative limit prices in
order arrivals and cancelation concentrate on integers within some range, we assign constant prob-
abilities for relative limit price at each of these integers. As to the order size, we use the fat-tailed
Pareto distribution. The uniform distribution is used for the cancelation proportion distribution.
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One major task is to simulate a point process with a given conditional intensity function. In

our model, a self-exciting intensity function is used, λ(t|Ht−) = λ0 + ξ
∞∑
i=0

g(t − ti), where g is a

scaled beta density with shape parameters α and β and effect window δ; δ, α, β, ξ and λ0 are
all constants. Such an intensity function makes durations between events dependent, and captures
the delayed effects of events. We use the Ogata thinning algorithm (Y. Ogata (1981) ), which only
requires that the intensity be bounded sequentially by constants, true for our intensity function, to
simulate the event occurrence process for the LOB.

We have already simulated a LOB based on the simple structure. The number of parameters
is fairly high, which already makes our optimization step difficult. So only if the initial structure
fails to provide a good model of the LOB, will we consider complicated path-dependent probabilistic
structures.

5.2.2 Optimization

To get the indirect inference estimator, we need to minimize the distance functions (2) and (9). Since
the number of parameters in the Event-Type model is big, it is infeasible to use an exhaustive-search
minimization method. Instead, we use the simulated annealing algorithm, which is an effective op-
timization method to locate a good approximation to the global optimum of a given function in a
large search space (for details of the algorithm, see Belisle (1992)). Other global optimization may
be considered if the simulated annealing algorithm performs poorly.

Currently, we are using R for both the simulation and optimization. One future work is to port the
computations to C/C++, so that the computational efficiency of the indirect inference estimation
could be increased.

5.3 Model Specification Checking

The specification checking for our Event-Type model will be conducted in several ways: stylized
facts, pattern matching, and quantitative testing.

(1) Stylized facts.
There are some stylized facts that are commonly observed in financial high-frequency data
(see Rama Cont (2001)). Limit order book, one special type of high-frequency data, should
present some of these stylized facts. Furthermore, we do find some of these stylized facts in our
Five-tick data set, such as, heavy tails of distribution of returns, absence of autocorrelations
of returns for long time scales, and slow decay of autocorrelation in absolute returns. We
will use these stylized facts observed in our Five-tick data to test our Event-Type model.
Specifically, if the LOB simulated from our Event-Type model does not exhibit these stylized
fact, the model is misspecified.

(2) Pattern matching.
Even if all these testable stylized facts appear in our simulated LOB, we can not conclude that
our model is correctly specified. Simulated Five-tick data (extracted from simulated LOB)
should also show patterns similar to the real data. The patterns used in our test include:
distribution of traded prices and sizes, distributions of spreads, bids, asks, and relative limit
prices and their autocorrelations, distributions of depths at each limit price, and distributions
of shapes of depth profile at some random chosen time.

(3) Quantitative testing.
Model specification test will also be conducted quantitatively. We use MSR(β̂, {Yt}) to denote
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the mean square residual between {Yt} and {Pd(β̂, {Yt}}, similarly, for MSR(β̂s(θ), {Yt}),
MSR(β̂, {Y s

t (θ)}), and MSR(β̂s(θ), {Y s
t (θ)}). In addition, we define the cross mean square

residuals,

MSR(β̂s(θ), {Y s′
t (θ)}) = ||{Y s′

t (θ)}N
t=1 − Pd(β̂s(θ), {Y s′

t (θ)})||2∗/(N − k̂s(θ)) (s 6= s′).

If the Event-Type model is correctly specified, then there exists a θ0 such that the model
(ME(θ0)) corresponds to the observed time series {Yt}. Therefore, {Yt} and {Y s

t (θ0)}(s =
1, ..., S) will lead to similar functional estimators in model (5). Hence, conditioning on θ0,

MSR(β̂, {Yt}) ∼ {MSR(β̂s(θ0), {Y s
t (θ0)}), s = 1, ..., S} (11)

In order to perform the test, we will use S À 20. If (11) holds, MSR(β̂, {Yt}) should fall into
the 95% confidence interval of the empirical distribution calculated from the RHS of (11).
However, since θ0 is unknown exactly, we can not obtain accurate values of RHS of (11), but
only estimated values. Hence, when implementing, we may use a wide confidence interval to
compensate for the uncertainty of θ0.
As to the cross mean square residuals, conditioning on θ0, for each s′ = 1, ..S,

{MSR(β̂, {Y s
t (θ0)}), s = 1, ..., S} ∼ {MSR(β̂s′(θ0), {Y s

t (θ0)}), s = 1, ..., S, s 6= s′} (12)

{MSR(β̂s(θ0), {Yt}), s = 1, ..., S} ∼ {MSR(β̂s(θ0), {Y s′
t (θ0)}), s = 1, ..., S, s 6= s′} (13)

That is, if such θ0 exists, then the distribution of the cross MSR between the simulated
data and its predicted values using the predictor estimated from the real data, and the
one between the real data and its predicted values using the predictor estimated form the
simulated data should both be representative of the cross MSR between the simulated data
and its predicted values using predictors estimated from another simulated data. We will find
a suitable approach to test these implications.

If the Event-Type model behaves reasonably well in all three tests, we would like to believe that it
is a suitable model for the LOB market.

In summary, this thesis provides a new way to model the evolution of the limit order book, which
considers the joint effects of all the order flows in the market. To overcome the difficulty of the
model estimation due to the limitation of Five-tick data, the indirect inference approaches are used.
Moreover, we provide a new nonparametric indirect inference method - functional indirect inference,
for the estimation. A theory of the consistency of our functional indirect inference estimator will be
shown, and also used to guide our estimation procedure. As to practical applications, our model,
if proven to be correctly specified, will help market participants to better understand the dynamics
of the LOB. In addition, our estimation approach will help them to quantify the processes of the
LOB, even using only Five-tick data, so that some predictable results can be used to improve their
trading strategies.
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A Appendix

A.1 The Likelihood Function for the Event-type Model

For an orderly point process {ti}n
i=1 in [0, T ] with conditional intensity λ(t|Ht−) (0 = t0 < t1 <

· · · < tn ≤ T ), the log-likelihood function is

lnL(λ) =
∫ T

0
(1− λ(s|Hs−))ds +

∫

(0,T ]
lnλ(s|Hs−))dN(s)

=
∫ T

0
(1− λ(s|Hs−))ds +

n∑

i=1

lnλ(ti|Hti−) (14)

If we treat the event type, order price, order size submitted and cancelation size as “marks”
associated with the time that an event happens, the LOB is just a marked point process. Based on
our model assumption, the likelihood function of our marked point process can be specified ( see
[11] ),

L = L(λ)
n∏

i=1

〈(Fi1, Fi2)′, eti〉 (15)

where 〈·, ·〉 is an inner product of vectors, L(λ) is the likelihood function regarding λ’s, that are of
the form as equation (14), and

Fi1 = Pi[γ1
i Pa(ha

ti =
pti − bti−1

∆
|Hti−)]qti [(1− γ1

i )Pb(hb
ti = −pti − ati−1

∆
|Hti−)]1−qti

·Pv(vti |pti , Qti = qti ,Hti−) (16)

Fi2 = (1− Pi)[γ2
i Pac(hac

ti =
pc

ti − ati−1

∆
|Hti−)]qti [(1− γ2

i )Pbc(hbc
ti = −pc

ti − bti−1

∆
|Hti−)]1−qti

·fcp(pcti |pti , Qti = qti ,Hti−) (17)

A.2 The Likelihood Function for the Level-1 data

The Level-1 data consists of time series observations which contain: (1) the ask price at and the bid
price bt, (2) the depths V ask

t and V bid
t at the ask and the bid, respectively, (3) the trade size V trade

t

and the traded price ptrade
t

2. The time series are recorded whenever one of these quantities changes.

In the main text, we argued that the conditional intensity for the Level-1 data λ∗(t|Ft−) =
λ(t|Ft−)P (Kt = 1|Ft−) under some assumptions. But to derive the likelihood function of the
Level-1 data, we need to deduce the price and size information of order submission and cancelation
from the Level-1 data. For the order cancelation in the Level-1 data, the prices and sizes are easily
deduced. Hence we only address the order submission case. Let pt∗i and Vt∗i denote the order price
and size submitted into the complete LOB, which causes t∗i to be recorded into the Level-1 data.
Suppose that it is a sell order submission, then the price and the size can be deduced as follows:

1. If at∗i = at∗i−1
and V ask

t∗i
> V ask

t∗i−1
, then this sell order is submitted at ask price at∗i−1

, that is,

pt∗i = at∗i−1
, with the size Vt∗i = V ask

t∗i
− V ask

t∗i−1
.

2. If at∗i = at∗i−1
and V ask

t∗i
= V ask

t∗i−1
, then this sell order is submitted at price equal to or lower

than bt∗i−1
and is fully executed, hence pt∗i = ptrade

t∗i
and Vt∗i = V trade

t∗i
.

2This price usually is the traded price of the last traded share
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3. If bt∗i−1
< at∗i < at∗i−1

, then this sell order brings a new ask price, hence pt∗i = at∗i−1
and

Vt∗i = V ask
t∗i

.

4. If at∗i = bt∗i−1
, then this sell limit order is submitted at price bt∗i−1

with size more than V bid
t∗i−1

,

hence pt∗i = bt∗i−1
and Vt∗i = V trade

t∗i
+ V ask

t∗i
= V bid

t∗i−1
+ V ask

t∗i
.

5. If at∗i < bt∗i−1
, then this sell limit order is submitted with price lower than bt∗i−1

and is partially
executed, hence pt∗i = at∗i−1

and Vt∗i = V ask
t∗i

+ V trade
t∗i

.

Similarly, we can deduce the price and size of a buy order submission. However, this reasoning
is based on the assumption that we know the order type submitted. Therefore the order type
submitted needs be inferred before we deduce the order price and size information. One common
way to identify the order type is to judge by the change direction of the middle price (the average
of the bid and the ask price). If the middle price increases as compared with the previous middle
price, then the order submitted is considered as a buy order. If the middle price decreases, then the
order is considered as a sell order. It may happen that the middle price remains the same as the
previous middle price. When this happens, the bid and ask price do not change according to the
data recording properties of the Level-1 data, therefore one of the depths at the bid and ask price
must change. If it is the depth at the bid that changes, then we conclude that the order submitted
is a buy order, otherwise it is a sell order. Hence, the order types, prices and sizes can be deduced
from our Level-1 data.
The likelihood function for the Level-1 data can be similarly derived as the following,

L = L(λ∗)
m∏

i=1

〈(F ∗
i1, F

∗
i2)
′, et∗i 〉 (18)

where F ∗
i1 and F ∗

i2 have the similar forms as (16) and (17), respectively, but with different filtration.

A.3 Ogata thinning algorithm

When simulating a point process with a given intensity function, an effective way is to use a thinning
algorithm. Here we introduce the Ogata thinning algorithm, which generalize the Shedler-Lewis
thinning algorithm. The Ogata thinning algorithm states that for a point process (N,F , P ) =
{Nt,Ft, (0 < t ≤ T ), P} with conditional intensity λ(t|Ft−), there exist a positive F-predictable
piecewise constant process M = {Mt} such that λt ≤ Mt a.s., then the point process can be thinned
from a locally homogenous Poisson process (NM ,F , P ) with intensity process {Mt}. When Mt is
a fixed constant for all t, we get the Shedler-Lewis thinning algorithm. The main step of the Ogata
thinning algorithm is as follows (cited from Ogata (1981)):
(1) Suppose that the last point ti before time t has just been obtained. Then construct Mt which
is F-predictable, piecewise constant, and λt ≤ Mt for t ≥ ti.
(2) Simulate homogeneous Poisson points tMj (> ti) according to the intensity Mt.
(3) For each of the points {tMj }, retain tMj with the probability λtMj

/MtMj
, which is given condition-

ally independent of tMj under the past history FtMj
.

(4) ti+1 is the first accepted point among tMj (> ti).

A.4 Variables related to Information Summarized from the LOB

The following variables summarize some of the information from the limit order book, and are used
in Cao et al (2004) and Pascual and Veredas (2004).
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V1: The imbalance in the limit order book:
Volume imbalance: DQi

t = Qa,i
t −Qb,i

t

Qa,i
t +Qb,i

t

, where i stands for i-th price level (i = 1, ..5).

Price imbalance: DP i
t = pa,i+1

t −pa,i
t

pb,i
t −pb,i+1

t

(i = 1, ...4).

V2: The shape of the limit order book:
spread: St = at − bt.

weighted spread: WSt =

5P
i=1

Qa,i
t pa,i

t

5P
i=1

Qa,i
t

−
5P

i=1
Qb,i

t pb,i
t

5P
i=1

Qb,i
t

.

weighted prices: wpi
t = Qa,i

t pa,i
t +Qb,i

t pb,i
t

Qa,i
t +Qb,i

t

− pa,1
t +pb,1

t
2 (i = 1, ..5).

V3: The changes of variables in V1 and V2.

V4: Trade information:

dt =





1 if there is trade at time t with price above the midprice
−1 if there is trade at time t with price below the midprice
0 if there is no trade at time t

A.5 Kernel-based nonparametric prediction method

Let {(Ut, Vt)}n
t=1 be a Rd × R -valued process. We use rn(·) to denote the function from Rd to R

with kernel function K and bandwidth hn ∈ R,

rn(u, hn) =
n∑

t=1

K(u−Ut
hn

)
n∑

s=1
K(u−Us

hn
)
Vt (19)

Let {ξt}N
t=1 be a general Rd0-valued Markov process of order k. To predict m(ξn+1) based on

the observed values {ξ1, ..., ξn} , where m is real-valued measurable function and bounded on
compact sets, one can construct the associated process Wt = (Ut, Vt) with Ut = (ξt, ..., ξt+k−1) and
Vt = m(ξt+k), and consider the kernel regression estimator based on observed Wt(1 ≤ t ≤ n − k)
by the following formula:

Ê[m(ξn+1)|ξn, ..., ξn−k] = rn−k(Un−k+1, hn−k) (20)

where K(·) is a chosen kernel function and hn−k is the corresponding bandwidth satisfying some
conditions. However, for a general time series, the Markovian assumption may not be satisfied.
Carbon and Delecroix (1993) provide a nonparametric predictor to non-Markovian stationary time
series. Assuming that {ξt} is stationary, we know under appropriate theoretical assumptions, we
have E[m(ξt+1)|ξt, .., ξ1] and E[m(ξt+1)|ξt, .., ξt−k+1] are close for t large enough and suitable k.
Once k is chosen, the above nonparametric prediction method of a Markov process can be used.
Bosq(1998) suggests that a suitable k can be chosen to be the one that minimizes

∆(k) =
N∑

t=k+1

||m(ξt)− m̂k(ξt)|| (21)

for 1 ≤ k ≤ k0, where k0 is a predefined bound and m̂k(ξt) is evaluated using (20).
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A.6 Consistency of Indirect Inference Estimator

To get the consistency of the indirect inference estimator, we need some regularity conditions (see
Gourieroux and Monfort (1996)),

(A1) ψT (ys
T (θ), zT ;β) tends almost surely to a deterministic limit function ψ∞(θ, β) uniformly in

(θ, β) when T →∞.

(A2) ψ∞(θ, β) has a unique maximum with respect to β: b(θ) = arg max
β

ψ∞(θ, β). This b(θ) is

referred as binding function.

(A3) The equation β = b(θ) admits a unique solution in θ.
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