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1 Summary

Stochastic volatility (SV) models play an important role in finance. Under these models,
the volatility of an asset follows an individual stochastic process. In contrast to the
GARCH model, the volatility process in the SV model is autonomous with no need to
refer to the asset price. It is often assumed that the log-volatility process follows a
standard ARMA process in an SV model. However, empirical evidence indicates that
the volatility of many assets has the “long-memory” property, which means that the
autocorrelation of the volatility decays slower than exponentially as it does in an ARMA-
type process. One way to incorporate this property into the SV model is by allowing the
log-volatility to follow a fractionally integrated ARMA (ARFIMA) process. Such a model
is called a long-memory stochastic volatility (LMSV) model. A large part of this research
is focused on developing a new inference method via the sequential Monte Carlo (SMC)
algorithm to estimate parameters in the LMSV model. In addition, we will check the
“goodness-of-fit” of the model by comparing the LMSV model with other models based
on the likelihood and other criteria. As an alternative method of model comparison, we
can also price certain financial instruments, such as stock options, with our model and
compare the results with the real market price and results based on other models.

In this research, I propose to:

1. Develop a likelihood-based estimation method for the LMSV model through the
SMC algorithm;

2. Develop a parallelization scheme for the general SMC algorithm and apply it to our
estimation method for the LMSV model;

3. Discuss how the LMSV model can be extended to the multivariate situation and
related inference methods;

4. Price options under the LMSV model and compare the results with the real market
price and results from other pricing methods; discuss possible trading strategies
utilizing the long-memory property;
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5. Compare the LMSV model with existing volatility models including the GARCH
models and the (short-memory) SV model.

2 Introduction

A time series is a collection of data observed at a sequence of time points, which are usually
spaced at equal intervals. Time series analysis is an important branch of statistics and
involves fitting time series data to statistical models and forecasting future values based
on the fitted model.

Correlations of values of a time series at different times contain important information
about the time series and are one of the basic properties to check at the beginning of
time series analysis. A good time series model fitted to data should be able to produce
theoretical correlations close to the sample correlations calculated from the data. While
correlations of a time series are expected to vanish ultimately when observations are
far apart in time, the speed of the decay can be very different. For example, in an
ARMA-type process, correlations decrease exponentially as time lag increases; in other
time series, the decline can occur at a much slower hyperbolic rate. The latter type of
time series is said to have long memory or long-range dependence and occurs frequently
in social and natural phenomena. They have been empirically observed in diverse areas
such as finance, economics, physics, biology, electrical engineering, hydrology, etc (Beran,
1994; Doukhan et al., 2003; Rangarajan and Ding, 2003).

Time series analysis has extensive applications in economics and finance. In particular,
many time series models have been studied in order to understand the behavior of price
movements of financial assets such as stocks. Besides the price itself, volatility is also of
interest for a variety of reasons. Volatility of an asset (when assumed to be a constant) is
the standard deviation of the log-returns of the asset within one year of time. It also serves
as a measurement of uncertainty about future price changes. Volatility is an important
factor in the famous Black-Scholes option pricing formula. While the formula has been
widely used in the trading business, there is also obvious discrepancy between the market
price and the theoretical price coming from the formula. Among the factors that may
account for the imperfection is the assumption of a constant volatility used in the formula.
This assumption is believed to be oversimplified because real price movements usually
display apparent nonconstant volatility. To better describe the real volatility, models
with time-varying or heteroskedastic volatility were developed. Among them are the
well-known ARCH model by Engle (1982) and the generalized ARCH model (GARCH)
by Bollerslev (1986). The GARCH model assumes an ARMA-like structure for volatility
and squared returns, and therefore the model predicts the current (conditional) volatility
as a deterministic function of past returns and volatility. While easy to implement and
largely successful in modeling financial asset prices, GARCH models can’t explain some
patterns observed in prices without considerable modifications. To break through these
limitations, more recently, SV models have been developed. SV models assume that
volatility follows an autonomous stochastic process, the specification of which does not
involve returns. Conditioning on the volatility, returns in SV models are often assumed
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to be normally distributed with the volatility being the standard deviation.

Before Ding, Granger, and Engle (1993) published their finding of long memory in the
volatility of the S&P 500 daily closing index, volatility models in the literature usually
took the assumption of a fast-decaying correlation of volatility. Afterwards, more and
more evidence of long memory in volatility was found in financial asset prices, including
intraday or high-frequency stock returns (Andersen and Bollerslev, 1997; Taylor, 2005).
Accordingly, a great deal of research has been done related to modeling of long memory
in volatility in both academic and speculative interests. In particular, a better under-
standing of this phenomenon should be able to improve option pricing.

A variety of models have been proposed to incorporate long-memory volatility in volatil-
ity models. On the basis of the GARCH model, Bollerslev and Mikkelsen (1996) provided
a long-memory GARCH model. Breidt et al. (1998) and Harvey (1998) proposed another
type of model — the LMSV model, in which the volatility is assumed to follow a latent
long-memory ARFIMA process. Although the LMSV model is attractive in several as-
pects, it is difficult to estimate the parameters in the model, mainly due to the difficulty
in evaluating the likelihood. The purpose of this research is to develop a new method for
likelihood-based estimation for both univariate and multivariate LMSV models.

This proposal document is organized as follows. The rest of section 2 is an introduc-
tion to long-memory processes, the SV model and the LMSV model. Section 3 contains
our proposed work. In section 3.1, we propose a parameter estimation method for the
univariate LMSV model that is based on the exact likelihood evaluated using the SMC
algorithm. Section 3.2 will introduce a new parallelization scheme for the general SMC
algorithm, which will be applied to the inference problem for the LMSV model. In section
3.3, we propose a multivariate LMSV model and discuss how to extend the estimation
methods for the univariate model to the multivariate model. We then discuss how the
LMSV model can be used in option pricing in section 3.4. We will also check the pre-
diction power of the LMSV model. Finally, in section 3.5, we are going to discuss model
comparison.

2.1 Long Memory

Let {Xt, t = 0, 1, 2, . . .} be a (weakly) stationary time series. The autocovariance function
γ(k, t) is defined as the covariance of the values of the time series with a time lag of k

γ(k, t) = Cov(Xt, Xt+k), ∀ t, k = 0,±1,±2, . . .

The (weakly) stationarity condition requires γ(k, t) to be independent of t, and thus
we can rewrite γ(k, t) as γ(k). When a time series is not stationary, we usually apply
certain operations on it to make it stationary before further analysis. Similarly, the
autocorrelation function (ACF) ρ(k) is defined as

ρ(k) = Corr(Xt, Xt+k) = γ(k)/γ(0), ∀ t, k = 0,±1,±2, . . .

(note by symmetry ρ(k) = ρ(−k)). In practice, we replace the autocovariance with the
sample covariance γ̂(k) = n−1

∑n−k
t=1 (xt+k − x̄)(xt − x̄). The (sample) autocorrelation
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function ρ(k) can be plotted against the time lag k to form a correlogram. This plot is a
useful aid helping us inspect a time series quickly.

The autocorrelation will finally decay to zero as the lag increases, but different time series
differ in the speed of decay. For a large family of processes including ARMA processes,
the autocorrelation decays exponentially:

|ρ(k)| ≤ Ack, A > 0, 0 < c < 1, ∀ k > 0.

These process are said to have short memory.

A long-memory process has persistent autocorrelation. To be precise, a long-memory
process is a stationary process with a hyperbolically decaying autocorrelation function:
(Brockwell and Davis, 1991),

|ρ(k)| ∼ Ak2d−1, A > 0, 0 < d < 0.5, as k →∞. (1)

d is the long-memory parameter controlling the speed of decline of the autocorrelation.
The time series is more persistent when d is closer to 0.5. Sometimes, the Hurst parameter
H = d + 1/2 is used in place of d. (Thus, for a long-memory process, 0.5 < H < 1.)

Analogous to the autocorrelation in the time domain, there is its frequency-domain
counterpart— the spectrum or the spectral density f(ν), −π < ν ≤ π. The spectrum is
defined in a relation to the autocorrelation through the Fourier transform:

f(ν) =
σ2

2π

∞∑

k=−∞
e−ikνρ(k), −π < ν ≤ π,

ρ(k) =
1

σ2

∫ π

−π

eikνf(ν)dν, k = 0,±1,±2, . . . ,

where σ2 = var(Xt) is the variance of the time series. Since ρ(k) = ρ(−k), the spectrum
also has the symmetry: f(ν) = f(−ν).

In practice, since we can only observe a finite number of observations of a time series,
we can’t determine the spectrum at all values. For this reason, we use the periodogram
to approximate the spectrum. The periodogram for a series of observations {xt, t =
1, 2, . . . , n} is defined as follows

In(νj) = n−1

∣∣∣∣∣
n∑

t=1

e−iνjtxt

∣∣∣∣∣

2

, νj = 2πj/n, −π < νj ≤ π. (2)

νj’s are the Fourier frequencies. We can show that under regular conditions, the vector
of {In(νj), 0 < νj < π} converges in distribution to a vector of independent random vari-
ables with the j-th element being exponentially distributed with mean 2πf(νj) (Brockwell
and Davis, 1991). The periodogram, like the correlogram in the time domain, is very use-
ful tool for time series analysis in the frequency domain.

When a linear filter is applied to a time series Ht with spectral density fH(ν) satisfying
certain regularity conditions, it can be shown that the spectral density of the new time
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series Xt =
∑∞

−∞ asHt−s equals

fX(ν) =

∣∣∣∣∣
∞∑

s=−∞
ase

−isν

∣∣∣∣∣

2

fH(ν) (3)

Using this property, we can show that the spectrum of a long-memory process has the
following asymptotic form around the origin (Brockwell and Davis, 1991):

f(ν) ∼ C|ν|−2d, 0 < d < 0.5, as ν → 0. (4)

The spectrum of a long-memory process therefore diverges around zero. In contrast, the
spectrum of a short-memory process has finite values.

2.1.1 Modeling of Long Memory

Before looking into long-memory processes, we want to briefly review ARMA processes,
since they are the most commonly used processes in time series analysis and many com-
plicated processes are also derived from them. An ARMA(p, q) process {Xt} satisfies the
following equation:

φ(B)Xt = θ(B)Zt. (5)

Here, {Zt} is white noise with mean 0 and variance σ2. B is the backward shift operator
that is interpreted as BsXt = Xt−s for any integer s. φ(B) and θ(B) are the autoregressive
and moving average polynomials respectively:

φ(B) = 1− φ1B − φ2B
2 − . . .− φpB

p,

θ(B) = 1 + θ1B + θ2B
2 + . . . + θqB

q,

where p and q are two nonnegative integers. The roots of polynomials φ(z) and θ(z)
are usually required to lie outside of the unit circle on the complex plane to satisfy the
causality and invertibility conditions.

It can be shown that the ACF of an ARMA process decays exponentially, and therefore,
ARMA processes are usually not used to model time series data with long memory.
However, after some modifications, we are able to construct a long-memory ARFIMA
process. An ARFIMA time series {Xt} is defined as

φ(B)(1−B)dXt = θ(B)Zt. (6)

This equation is the same as that of ARMA processes except for the extra (fractionally)
differencing term (1−B)d. d is the long memory parameter introduced earlier. If d = 0,
the differencing term disappears and Xt degenerates to an ARMA process. To model
long memory, we are interested in d in the range of (0, 0.5) and define (1−B)d as a power
series of operator B via the Taylor’s expansion:

(1−B)d =
∞∑

n=0

Γ(d + 1)

Γ(n + 1)Γ(d− n + 1)
(−1)nBn. (7)
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When p = q = 0, equation (6) becomes (1 − B)dXt = Zt. This process, {Xt}, is often
called the fractionally integrated noise. We can write its ACF in a closed-form expression
as follows (Brockwell and Davis, 1991)

ρ(t) =
Γ(t + d)Γ(1− d)

Γ(t− d + 1)Γ(d)
=

∏
0<s≤t

s− 1 + d

s− d
, t = 1, 2, . . . . (8)

By applying Sterling’s formula, Γ(x) ∼ √
2πe−x+1(x − 1)x−1/2 as x → ∞, to the above

equation, we get ρ(k) ∼ ck2d−1 for some constant c as k → ∞. The fact that the ACF
decreases hyperbolically shows that the fractional integrated noise is actually a long-
memory process. Sowell (1990) and Doornik and Ooms (1993) also developed formulae
to compute the ACF of a general ARFIMA process. It can be shown that an ARFIMA
process with 0 < d < 0.5 is a long-memory process by checking the asymptotic behavior
of the ACF.

We can also reach the same conclusion by computing the spectral density of an ARFIMA
process. Note that the spectral density of a white noise with variance σ2 is σ2

2π
. Applying

equation (3), we can get the spectral density for an ARFIMA process:

f(ν) =
∣∣1− eiν

∣∣−2d |θ(eiν)|2
|φ(eiν)|2

σ2

2π
(9)

Since |1 − eiν | = 2| sin (ν/2)| ∼ |ν| as ν → 0, f(ν) ∼ c|ν|−2d when ν is close to 0, which
is the asymptotic behavior of long-memory processes.

2.1.2 Testing of Long Memory

Two methods are often used to test for long memory in time series data. The first
test originates from the GPH estimator for the long-memory parameter d introduced by
Geweke and Porter-Hudak (1983):

d̂ = − Sab

2Saa

where Sab =
∑U

j=1(aj − ā)(bj − b̄), Saa =
∑U

j=1(aj − ā)2, aj = log |2 sin (νj/2)| and
bj = log I(νj). In fact, the GPH estimator is simply −1/2 times the slope obtained from
a simple linear regression of the log-periodogram against log |2 sin (νj/2)|. Geweke and
Porter-Hudak (1983) suggests the regression should be conducted at low frequencies to
avoid the estimator being contaminated by the short-memory component of the process.
Therefore, we usually choose a frequency as the upper truncation point for the regression.
At low frequencies, log |2 sin (νj/2)| ≈ log νj, so it is virtually a regression of the log-
periodogram against the log-frequency. Later, Robinson (1995) suggests discarding the
very first (lowest) several frequencies too in order to reduce bias. Robinson (1995) also
obtained the asymptotic distribution of the GPH estimator. He found that in a long-
memory process (d 6= 0), under some regular conditions,

√
U

(
d̂− d

)
Ã N

(
0,

π√
24

)
. (10)
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However, a similar theoretical result about the asymptotic behavior of the estimator on
a short-memory process (d = 0), which we need to construct a test for long memory, is
missing. Instead, Deo and Hurvich (2003) conducted Monte-Carlo simulation study of
the asymptotic distribution of d̂ when d = 0. Their findings indicate that equation (10)
is still valid for d = 0. These results are sufficient to construct confidence intervals for d
as well as a test for long memory.

The second test is derived from the rescaled range statistic R/S (Hurst, 1951; Mandelbrot
and Wallis, 1968). The R/S statistic is defined as

R/S =
1

S(n)

[
max
0≤i≤n

i∑
j=1

(
Yj − Ȳn

)− min
0≤i≤n

i∑
j=1

(
Yj − Ȳn

)
]

, (11)

where Ȳn = 1
n

∑n
i=1 Yi is the sample mean and

S(n) =

[
n−1

n∑
i=1

(
Yi − Ȳn

)2

]1/2

is the sample standard error. The name of the R/S statistic comes from the fact that
the numerator in R/S actually measures the range (the difference between the maximum
and minimum) of the partial sums of the deviation of a time series from its sample mean.
Mandelbrot and others showed that the Hurst parameter H can be consistently estimated
as

Ĥ =
log [R/S]

log n
.

If only short memory exists in the process, Ĥ converges to 0.5. If long memory is present,
Ĥ converges to a value greater than 0.5. To reduce bias, we can also regress log (R/S)
against log n beyond some large n.

A test for long memory using the R/S statistic can also be established with the knowledge
of its asymptotic distribution. It is known that under the null hypothesis that the time
series is IID noise, the normalized R/S statistic ( 1√

n
R/S) weakly converges to the range

of a Brownian bridge on [0, 1]. However, if we directly use the normalized R/S statistic
as the test statistic, the test will reject a long-memory process as well as a simple short-
memory process other than IID noise, e.g. an AR(1) process. The reason is that although
1√
n
R/S for other short-memory processes still generally converges to the Brownian bridge

on [0, 1] up to some multiplier constant, the mean, variance and support of the density
function of these limiting distributions can be very different.

To overcome this difficulty, Lo (1991) proposed a modified R/S statistic which is the
original R/S statistic divided by some normalizing factor to account for the multiplier
constant for non-IID short-memory processes. With proper normalizing factors, the mod-
ified R/S statistic will have the same limiting distribution for a general class of short-
memory processes, and therefore a test can be efficiently established. However, there is
no clear criterion for selecting the normalizing factor and one has to take the data into
consideration.
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2.1.3 Empirical Evidence

To demonstrate long memory in volatility, we analyze the daily closing data of the Dow
Jones Industrial Average Index from Jan 3, 1990 to Mar 27, 2006. Figure 1 contains the
correlograms of the returns of the index and three transforms of returns that serve as
proxies of volatility (see section 2.3). We use the method based on the GPH estimator
to test for long memory and choose the upper truncation point of the frequency U =
n0.45, n0.5, n0.55 and the lower truncation point L = n0.1 as Breidt et al. (1998) did.
The estimation and p-value for d are listed in table 1. We also show the regressions of
periodograms in Figure 1. The results provide strong evidence of long memory in the
volatility.

Table 1: DJIA Index data: the GPH estimator and p-value of the test for H0 : d = 0
rt |rt| r2

t log (r2
t )

Estimation (U = n0.45) -0.234 0.684 0.500 0.574
p-value 0.016 0.039 0.027

Estimation (U = n0.5) -0.155 0.416 0.302 0.457
p-value 0.037 0.076 0.029

Estimation (U = n0.55) -0.163 0.486 0.363 0.443
p-value 0.013 0.032 0.018

2.2 (Short-Memory) Stochastic Volatility Models

2.2.1 Univariate Stochastic Volatility Models

Stochastic volatility (SV) models find extensive use in modeling financial returns. In a
SV model, volatility is assumed to be a latent stochastic process. This assumption is
natural since volatility is neither observable nor traded.

A (short-memory) SV model can be written as follows,

rt = µ + σtεt,

ht = log σt,

ht − uh ∼ ARMA(p, q). (12)

where rt are the mean-corrected returns; εt are white noise with unit variance; σt is the
volatility, and the log-volatility ht follows a (short-memory) ARMA process.

The model in equation (12) is a discrete-time model and is ready for time series analysis.
There are also continuous-time SV models. In the continuous-time form, stochastic calcu-
lus and probability theories provide convenient tools to analyze properties of SV models,
and it can be shown that the (continuous-time) SV model fits well into financial theories
(see, e.g., Hull and White, 1987; Heston, 1993; Jiang, 1998). A discrete-time SV model
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Figure 1: Upper: Correlograms of daily returns of the Dow Jones Industrial Average
Index from Jan 3, 1990 to Mar 27, 2006 and three transforms of the returns (volatility
proxies). Lower: Regression of the periodograms against the frequencies on the log scale.
The lower/upper truncation point in frequency is n0.1/n0.5, denoted by two large spots.
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is often the result of discretization of a corresponding continuous-time model. However,
it is possible that some continuous-time models can be discretized into several differ-
ent discrete-time models through different discretization methods and some discrete-time
models don’t have a continuous-time counterpart. In this research, we will mainly focus
on discrete-time models.

One of the reasons that SV models become popular is that they can successfully explain
many stylized facts observed in financial data. These include volatility clustering —
grouping of high and low volatility periods; fat tails in the probability distribution of
returns; the leverage effect — negative correlation between returns and volatilities; and
the long-range dependence in the absolute or squared returns despite non-significant
autocorrelation in the returns (see §2.3). Furthermore, statistical properties of (Gaussian)
SV models are easy to derive using the well-known facts of the log-normal distribution.
And, it is also relatively straightforward to extend a univariate SV model to a multivariate
model.

2.2.2 Multivariate Stochastic Volatility Models

The financial market consists of a large number of assets and often we need to consider
a portfolio of them at the same time. In this situation, multivariate models will be very
useful. In comparison to a univariate model, a multivariate SV model needs not only
model the volatility of each asset but also address how the correlation between different
assets evolves with time. Because of this extra component, multivariate models can be
very complicated. Here, we will present a general structure of the multivariate SV model
and several specific models with the structure moving from simple to difficult.

Let rt = (r1,t, . . . , rk,t)
′ be the (log-)returns of k different assets with the mean u =

(u1, . . . , uk)
′ and the conditional variance matrix Vt. We assume that there exists a

scalar or vector stochastic process ht, such that Vt is a function of it and

rt|ht ∼ N(u,Vt).

Different multivariate SV models specify the function V(ht) in a different way.

A very natural extension of the univariate SV model to the multivariate model is the
stochastic scalar factor model (Quintana and West, 1987; Shephard, 1994)

rt = u + exp(ht)et,

et ∼ IIDN(0,Σe),

ht − uh ∼ ARMA(p, q). (13)

ht here is a stochastic scaling factor. This model is equivalent to setting Vt = exp (2ht)Σe.
Although the conditional variance matrix is changing with time, the conditional correla-
tion remains the same, which is solely controlled by Σe. To identify the model, a diagonal
element of Σe is usually set to unity.
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Instead of having a common scaling factor, we can introduce a scaling vector ht =
(h1, . . . , hk)

′ in the multivariate model (Harvey et al., 1994)

rt = u + exp{At}et,

At = diag(ht),

et ∼ IIDN(0,Σe),

ht − uh ∼ Multivariate ARMA. (14)

At = diag(ht) is a diagonal matrix with diagonal elements being ht. The exponential of
matrix At, exp{At} = diag(eht,1 , . . . , eht,k). The k-dimensional ht is assumed to follow
a multivariate ARMA process. The conditional variance matrix in this model Vt =
exp{At}Σe exp{At}. Since there are k factors in ht, the diagonal elements of Σe are
usually set to be 1 for identification purpose. The conditional variance of a single asset is
therefore e2ht,i and ht is actually a vector of the log-volatilities. Although there are more
stochastic factors in this model, the conditional correlation matrix, Σe does not change
over time.

A more general multivariate SV model allows additional idiosyncratic errors in the prices.
This model is studied in Shephard (1996); Aguilar and West (2000); Chib et al. (2005)

rt = u + L exp{At}et + wt,

At = diag(ht),

et ∼ IIDN(0, Im),

wt ∼ IIDN(0, diag(w2
1, . . . , w

2
k)),

ht − uh ∼ Multivariate ARMA. (15)

ht is an m-dimensional (m ≤ k) vector of volatility factors. et is iid standard multi-
variate Gaussian noise. L is a k ×m loading matrix. wt are independent idiosyncratic
errors. Furthermore, et, wt and ht are often assumed to be mutually independent. The
conditional variance for rt is Vt = L exp{2At}L′ + diag(w2

1, . . . , w
2
k). Both variance and

correlation are time-varying in this model.

2.3 Univariate Long-Memory Stochastic Volatility Models

Due to the structure of the SV model, long memory in the volatility can be easily incor-
porated into the SV model. In equation (12), we can assume the log-volatility follows an
ARFIMA process instead of an ARMA process:

rt = µ + σtεt,

ht = log σt

ht − µh ∼ ARFIMA(p, d, q), 0 < d < 0.5. (16)

It can be shown for any positive power s, the absolute returns raised to power s possess
long memory. In terms of the autocorrelation function, this means

ρ(k) ∼ Ak2d−1, as k →∞, for |rt|s , ∀ s > 0.
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Moreover, log (r̃2
t ) for mean-adjusted returns r̃t ≡ rt − µ can be written as

log (r̃2
t ) = ht + ξt

ξt = log (ε2
t ). (17)

Since log (r̃2
t ) is the sum of a long-memory process ht and an independent process ξt (due

to independence of εt), log (r̃2
t ) is also a long-memory process.

As a result, absolute returns, squared returns and log-squared returns are often taken as
volatility proxies and used in tests of long memory in the volatility. One issue with log-
squared returns is that returns can occasionally be zero when the return on some point
of time equals the average return. When this happens, a small number, for example,
one percent of the standard error of the squared returns 0.01 σr2 , is usually added to the
“problematic” squared returns before taking logarithm.

2.4 Option Pricing

Options are one of the most actively traded financial instruments in today’s financial
markets. Options, as a type of derivatives, have their value derived from an underlying
asset. A call/put option on a stock is a contract that gives its holder the right but not the
obligation to buy/sell the underlying stock (i.e., exercise the option) at a pre-specified
strike price at or until an expiration date (maturity). European options and American
options are two types of commonly traded options. European options only allow exercise
at maturity, while exercise of an American option can happen at any time at or before
maturity. For a European call/put option, the holder will exercise the option only if the
stock price at maturity is higher/lower than the strike price. Therefore, the European
call or put option has a payoff g(x) = (x−K)+ or (K − x)+, where K is the strike price
and x is the stock price at maturity.

Option pricing method are intended to predict (theoretical) prices of options at some
time before expiration using the information available prior to the time of interest. A lot
of research has been done on option pricing, including the Nobel prize-winning Black-
Scholes formula. The Black-Scholes formula works for a European option on a non-
dividend paying stock in a constant interest rate environment. Moreover, the formula
assumes that the underlying stock follows a geometric Brownian motion:

dS(t) = µS(t)dt + σS(t)dW (t) (18)

or S(t) = S(0) exp

(
(µ− 1

2
σ2)t + σW (t)

)
,

where rate of return µ and volatility σ are assumed to be constant and W (t) is a standard
Brownian motion. With these assumptions, the Black-Scholes formula gives the price of
a European call option with strike price K at time t before maturity T when the stock
price at t is x as follows:

Pc(t, x) = xΦ (d+(T − t, x))−Ke−r(T−t)Φ (d−(T − t, x)) , t ≤ T, (19)
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where

d−(T − t, x) =
1

σ
√

T − t

[
log

x

K
+

(
r − σ2

2

)
(T − t)

]

d+(T − t, x) = d+(s, x) + σ
√

T − t,

and

Φ(x) =

∫ x

−∞

1√
2π

e−
x2

2 dx

is the cumulative distribution function of a standard normal variable.

There are two approaches to derive this formula (see, for example, Shreve (2004)). In
one approach, we set up a portfolio consisting of the underlying stock and a savings
account to replicate or hedge the option. A stochastic differential equation can then be
established from this strategy, and we obtain the Black-Scholes formula as the solution to
this equation. The other approach takes the risk-neutral pricing principle. The principle
argues that there should exist a risk-neutral probability measure, under which the dis-
counted price (e−rt times price for a constant interest rate) of any financial instrument,
including stocks and options, forms a martingale. The principle further claims that there
will be arbitrage opportunities otherwise, which make possible strategies leading to al-
ways non-negative yet not always zero (always in a probability sense) profit with zero net
investment at the beginning. The risk-neutral probability measure is equivalent (in the
measure theory sense) to the objective probability measure that governs the random price
movements in the real world. That is, any possible events (with non-zero probability) in
the real world are also possible under the risk-neutral measure, and vice versa. Change
of measure only changes the probability of those possible events in the real world.

If the stock price follows equation (19) in the real world, we can construct the risk-neutral
measure and show that the stock price still follows a geometric Brownian motion under
the new measure,

dS(t) = µS(t)dt + σS(t)dW (t)

Θ(t) =
µ− r

σ

dW̃ (t) = dW (t) + Θ(t)dt

dS(t) = rS(t)dt + σS(t)dW̃ (t)

dP̃

dP
= exp

{
−

∫ T

0

Θ(t)dW (t)− 1

2

∫ T

0

Θ2(t)dt

}
.

The last equation defines the risk-neutral measure P̃ by giving the Radon-Nikodým
derivative of P̃ with respect to the objective measure P . It turns out that this derivative
is the exponential of a stochastic integral involving Θ(t), which is a constant in this sim-
ple situation but is a stochastic process in general. Θ(t) is called the market price of risk
and can be interpreted as the amount of excess return (return minus risk-free interest
rate) required to compensate for one unit of risk (volatility of stocks). The Girsanov’s

theorem guarantees that W̃ (t) defined above is a standard Brownian motion under P̃ .
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The Black-Scholes formula has been widely used in the financial industry. The price
given by the formula serves as a reference price by many traders. However, there are
always discrepancies between the Black-Scholes price and the actual price. To test the
validity of the model, we can use the historical stock and option prices and calculate the
value of volatility that makes the Black-Scholes price equal the real price. This value
is called implied volatility. If the Black-Scholes model is perfect, the implied volatility
of options on the same stock with the same expiration but with different strike prices
should be same. However, it is often observed that the implied volatility is lowest when
the strike price is close to the current stock price (at-the-money) and increases when
the strike price deviates from the stock price (in/out-the-money). This phenomenon is
referred to as volatility smile, as implied by the shape of the plot of implied volatility
against strike price. In some cases, the implied volatility simply decreases as the strike
price increases, which is often called volatility skew. Both volatility smile and volatility
skew demonstrate inaccuracy of the Black-Scholes formula.

To better describe the behavior of stock prices and thus more accurately predict op-
tion prices, alternative models and methods are built. In particular, a lot of work has
been done on option pricing under stochastic volatility models. Heston (1993) gave a
closed-form solution for prices of European options on stocks that are assumed to follow
a stochastic volatility model, in which the squared volatility follows a mean-reverting
square-root process:

dS(t) = µS(t)dt +
√

v(t)S(t)dW1(t)

dv(t) = k[θ − v(t)]dt + β
√

v(t)dW2(t), (20)

where θ is the long-run mean of the variance process v(t), k is the speed of mean-reversion,
and the two Brownian motions W1(t) and W2(t) are allowed to be correlated. Heston’s
model is a special case of a general class of (continuous-time) stochastic volatility model

dS(t) = µS(t)dt + σ(t)S(t)dW1(t)

σ(t) = f(v(t))

dv(t) = α(t)dt + β(t)dW2(t), (21)

where the volatility σ(t) is determined by a stochastic process v(t) through a deterministic
function f(·), and α(t) and β(t) are two arbitrary adapted processes.

The existence of two Brownian motions in these models means that the price movements
are not the only source of randomness that affects value of options. The extra randomness
comes from the volatility process. However, unlike stocks, volatility is neither a traded
asset nor observable. This makes option pricing with stochastic volatility models more
difficult. In particular, use of only the stock and a savings account is insufficient to
hedge an option under such a model. Instead, we have to include another option with
longer maturity in the hedging portfolio. To use the risk-neutral pricing principle, we
then have to construct the risk-neutral measure in a two-dimensional space. Using the
multi-dimensional Girsanov’s theorem, the change of measure is done as follows,

dW̃1(t) = dW1(t) + Θ1(t)dt
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Θ1 (t) =
µ− r

σ

dW̃2(t) = dW2(t) + Θ2(t)dt

dP̃

dP
= exp

{
−

∫ T

0

Θ1(t)dW1(t)−
∫ T

0

Θ2(t)dW2(t)− 1

2

∫ T

0

(
Θ2

1 (t) + Θ2
2 (t)

)
dt

}
.

If W1(t) and W2(t) are two independent Brownian motions under the objective measure

P , the two new Brownian motions W̃1(t) and W̃2(t) are still independent under the risk-

neutral measure P̃ . The market price of risk Θ1(t) is the same as before, chosen to make
the rate of return of the stock under the risk-neutral measure be the risk-free interest
rate. There is a second process Θ2(t) associated with the volatility process. Similarly, it
is called the market price of volatility risk. However, Θ2(t) can’t be determined directly
as Θ1(t) since volatility is not traded. Researchers have been working on a good choice
of the market price of volatility risk. For example, Heston (1993) chose Θ2(t) = c

√
v(t)

for some constant c and estimate value of c from historical option prices. However, there
are many other choices as well. Each choice of Θ2(t) defines a new risk-neutral measure
and leads to different pricing results.

3 Proposed Thesis Research

In my thesis research, I am going to work on the following problems:

1. Being able to evaluate the likelihood is often central to an inference problem. Hence,
we first propose a method to estimate the exact likelihood for an arbitrary set of
parameters in the LMSV model. Embedded in the method is the SMC algorithm,
which can simulate from the filtering and predictive densities of the state variables
in a broad class of state-space models. To compute the total likelihood, we first
write it as the product of a series of probabilities of each observation conditioning
on its past observations. We then evaluate the conditional probabilities with sim-
ulations from the filtering densities generated by the SMC algorithm. Equipped
with such a method, it seems natural to follow the maximum likelihood estimation
approach. However, this won’t work well because the random errors associated
with simulations will deteriorate the precision of the result. Instead, we propose
another approach that can be nicely integrated into the SMC algorithm. In this
approach, we mix the parameters with the states and apply the SMC algorithm to
the augmented states. When the algorithm ends at the final point in time, we ob-
tain a posterior distribution of parameters, the mode or mean of which can then be
taken as an estimate of the parameters. Besides this method, we also briefly discuss
another likelihood-based method that uses the Whittle’s approximate likelihood in
the frequency domain.

2. Since our approach relies on the SMC algorithm, the accuracy of the result depends
on the number of simulations. However, more simulations require more computing
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time. The SMC algorithm is therefore often computationally intensive. It is desir-
able to put the algorithm into some parallel scheme so that we can run multiple
processors at the same time to increase both accuracy and speed. Due to the nature
of the SMC algorithm, a straightforward (“naive”) parallelization scheme — simply
let each processor finish a part of the whole SMC algorithm without interactions
with other processors, does not work. Therefore, we propose a new method that
can efficiently utilize multiple processors.

3. In a real situation, an investor’s portfolio usually consists of multiple assets simul-
taneously (consider the stocks composing the S&P 500 or DJIA index). As in the
short-memory case, it is desirable to have a multivariate LMSV model to address
long-memory properties of several assets at the same time. For this propose, we
discuss how to establish a multivariate LMSV model and related estimation meth-
ods.

4. A stock option is a financial instrument with its value relying on the (future) prices
of the underlying stock. Options are becoming more and more important in today’s
financial market. They can be used to hedge the risk of stocks as well as for
speculative purposes. Methods that can determine option prices accurately would
be highly desirable for anyone trading options, and the SV model has proven useful
for pricing options. With evidence of long memory in volatility, it is interesting to
consider the use of the LMSV model in option pricing. We will compare the prices
generated from the model with prices observed in the market. This will show us
whether or not the market implicitly takes into account long memory, and provide
additional information about model “goodness-of-fit”.

5. Besides the LMSV model, there are other models of stochastic volatility. It is
interesting to compare the LMSV model with other models including the GARCH
model and the (short-memory) SV model. Criteria including the likelihood, AICC
and BIC will be used in model comparison.

3.1 Likelihood-based Estimation for Univariate LMSV Models

We first develop a method to evaluate the likelihood of the LMSV model via the sequential
Monte Carlo algorithm. Although we do not choose a maximum likelihood estimation
approach, the method of likelihood evaluation still provides an important framework for
a new approach to the inference problem that is embedded in the SMC algorithm. In the
following, we first show how we can use the SMC algorithm to evaluate the likelihood of a
short-memory AR1-SV model. Then we adapt the method for a LMSV model before we
move to the estimation method. Finally, we will briefly talk about a pseudo-likelihood-
based estimation method.
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3.1.1 Likelihood Evaluation for an AR1-SV Model

The following is an AR1-SV model,

rt = µ + σtεt,

ht = log σt,

(1− φB)(ht − µh) = ηt. (22)

To compute the likelihood, we first write the density function for observations {r1, r2, ..., rn}
as the product of a sequence of conditional density functions:

p(r1:n) = p(rn|r1:n−1) · · · p(r2|r1)p(r1). (23)

For simplicity, we omit parameters in the notations, e.g., we write p(r1:n|θ) as p(r1:n) and
p(h|r; θ) as p(h|r), etc. Each conditional density function can be written as an integral
involving the predictive density of log-volatility

p(rj+1|r1:j) =

∫
p(rj+1|hj+1, r1:j)p(hj+1|r1:j)dhj+1.

Since rj+1 is independent of past observations given hj+1, we can neglect r1:j in p(rj+1|hj+1, r1:j),
i.e. p(rj+1|hj+1, r1:j) = p(rj+1|hj+1) = φ(rj+1; µ, exp(hj+1)), where φ(·; µ, σ2) is the den-
sity function of a normal distribution. Therefore,

p(rj+1|r1:j) =

∫
p(rj+1|hj+1)p(hj+1|r1:j)dhj+1.

This integral can be approximated by a Monte Carlo sum

p(rj+1|r1:j) ≈ 1

N

N∑
i=1

p(rj+1|h(i)
j+1)

if we have a way to draw samples {h(i)
j+1} from the distribution p(hj+1|r1:j).

It turns out an efficient way to do the sampling is through the sequential Monte Carlo
algorithm, sometimes also called particle filtering. The algorithm is based on the sequen-
tial importance sampling (SIS) and allows us to do sampling sequentially — utilizing
samples for previous state hj to sample new state hj+1. To understand how it works in
our problem, we can start with writing p(hj+1|r1:j) as

p(hj+1|r1:j) =

∫
p(hj+1|hj, r1:j)p(hj|r1:j)dhj. (24)

Because {hj} follows an AR(1) process, its Markovian property enables us to neglect r1:j
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in p(hj+1|hj, r1:j). We can justify this statement by showing

p(hj+1|hj, r1:j) =

∫
p(hj+1|h1:j, r1:j)p(h1:j−1|hj, r1:j)dh1:j−1

=

∫
p(hj+1|h1:j)p(h1:j−1|hj, r1:j)dh1:j−1

=

∫
p(hj+1|hj)p(h1:j−1|hj, r1:j)dh1:j−1

= p(hj+1|hj)

∫
p(h1:j−1|hj, r1:j)dh1:j−1

= p(hj+1|hj). (25)

The second equation holds as r1:t provide no extra information for hj+1 when h1:t are
known, and the third equation holds for the Markovian structure of AR(1). Hence,
equation (24) can be written as

p(hj+1|r1:j) =

∫
p(hj+1|hj)p(hj|r1:j)dhj. (26)

Now suppose we have obtained N samples of h
(i)
j ∼ p(hj|r1:j−1), i = 1, ..., N . By recogni-

tion of the following equations:

p(hj|r1:j) =
p(hj, r1:j)

p(r1:j)
=

p(rj|hj, r1:j−1)p(hj, r1:j−1)

p(r1:j)

=
p(rj|hj)p(hj, r1:j−1)

p(r1:j)
= p(rj|hj)p(hj|r1:j−1)

p(r1:j−1)

p(r1:j)

∝ p(rj|hj)p(hj|r1:j−1), (27)

samples from p(hj|r1:j), ĥ
(i)
j , can be obtained by importance resampling of {h(i)

j } with

weights wi = p(rj|h(i)
j ). In view of equation (26), if we draw samples {h(i)

j+1} from

p(hj+1|hj = ĥ
(i)
j ), then the samples together with the weights {wi} serve as a good approx-

imation to the new filtering density p(hj+1|r1:j). This can be followed by an important

resampling of {h(i)
j+1} to get equally weighted samples.

Finally, we replace p(h1|r1:0) and p(r1|r1:0) with p(h1) and p(r1) =
∫

p(r1|h1)p(h1)dh1

respectively. p(h1) is the marginal distribution of the AR(1) process ht, which is a normal
distribution.
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The algorithm can be summed up in the following diagram:

h
(i)
j ∼ p(hj|r1:j−1) =⇒ p(rj|r1:j−1) ≈ 1

N

N∑
i=1

p(rj|h(i)
j )

⇓ resample h
(i)
j with importance weights p(rj|h(i)

j )

ĥ
(i)
j ∼ p(hj|r1:j)

⇓ h
(i)
j+1 ∼ p(hj+1|hj = ĥ

(i)
j )

h
(i)
j+1 ∼ p(hj+1|r1:j) =⇒ p(rj+1|r1:j) ≈ 1

N

N∑
i=1

p(rj+1|h(i)
j+1).

3.1.2 Likelihood Evaluation for LMSV Models

We now want to adapt the method above for use in LMSV models. In a LMSV model,
the latent process for log-volatility is an ARFIMA process and the Markovian property
that AR processes possess does not hold here. Without this property, equation (25) fails
to hold. Hence, in equation (24), we add all previous hj in the condition of p(hj+1|r1:j):

p(hj+1|r1:j) =

∫
p(hj+1|h1:j, r1:j)p(h1:j|r1:j)dh1:j

=

∫
p(hj+1|h1:j)p(h1:j|r1:j)dh1:j. (28)

Thus, given samples ĥ
(i)
1:j ∼ p(h1:j|r1:j), samples h

(i)
j+1 ∼ p(hj+1|r1:j) can be drawn from

p(hj+1|h1:j = ĥ
(i)
1:j). The last density can be evaluated with the methods in Doornik and

Ooms (1993) and Sowell (1990).

As in the short memory stochastic volatility model, we hope samples of previous states
can be used in sampling of a new state. Analogous to equation (27), we have the following
equation:

p(h1:j|r1:j) =
p(h1:j, r1:j)

p(r1:j)
=

p(rj|h1:j, r1:j−1)p(h1:j, r1:j−1)

p(r1:j)

=
p(rj|hj)p(h1:j, r1:j−1)

p(r1:j)
= p(rj|hj)p(h1:j|r1:j−1)

p(r1:j−1)

p(r1:j)

∝ p(rj|hj)p(h1:j|r1:j−1). (29)

Therefore, if we have obtained samples h
(i)
1:j ∼ p(h1:j|r1:j−1), i = 1, ..., N , samples from

p(h1:j|r1:j), ĥ
(i)
1:j, can be drawn by importance sampling with weights wi = p(rj|h(i)

j ). We

have shown previously h
(i)
j+1 can be drawn from p(hj+1|h1:j = ĥ

(i)
1:j). Adding h

(i)
j+1 to ĥ

(i)
1:j

forms new samples h
(i)
1:j+1.

Now we have a sequential algorithm to move from h
(i)
1:j to h

(i)
1:j+1 for each j, and we sum
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it up as follows:

h
(i)
1:j ∼ p(h1:j|r1:j−1) =⇒ p(rj|r1:j−1) ≈ 1

N

N∑
i=1

p(rj|h(i)
j )

⇓ resample h
(i)
1:j with importance weights p(rj|h(i)

j )

ĥ
(i)
1:j ∼ p(h1:j|r1:j)

⇓ h
(i)
1:j = ĥ

(i)
1:j, h

(i)
j+1 ∼ p(hj+1|h1:j = ĥ

(i)
1:j)

h
(i)
1:j+1 ∼ p(h1:j+1|r1:j) =⇒ p(rj+1|r1:j) ≈ 1

N

N∑
i=1

p(rj+1|h(i)
j+1).

3.1.3 Estimation Method for LMSV Models

The idea behind our approach is that we augment the state variable (log-volatility in
the LMSV model) to include the parameters in the model. As in the method above,
the SMC algorithm simulates from the filtering densities of log-volatilities, now it will
simulate from the filtering densities of the augmented state variables. If we give a prior
distribution to the parameters at the beginning, we will obtain a posterior distribution
at the end of the SMC algorithm. We then take the model or mean of this posterior
distribution as the estimates for the model.

A main difficulty of this approach is that while there is an equation that governs the
evolution of the log-volatility, there is no such equation for the parameters — which are
simply fixed. Hence, researchers developed methods to artificially evolute the parameters.
However, we have to choose the “dynamics” for the parameters appropriately so that the
information contained in their filtering densities won’t lose after the evolution. In this
research, we are going to adapt the method in Kitagawa and Sato (2001) and Liu and
West (2001) for use on the LMSV model.

3.1.4 Pseudo-likelihood-based Estimation

Besides the method proposed above, there exist other estimation methods. Jacquier et al.
(1994) developed a Bayesian method based on Markov Chain Monte Carlo techniques for
the ARSV model. This method depends on the Markovian structure of the AR process,
which is however lacking in an ARFIMA process. Another method is derived from the
equation set (17). There, ξt = β + log (ε2

t ) is not normally distributed. Nonetheless, if we
assume a Gaussian distribution for ξt, equation set ( 17) represents a Gaussian state-space
model, and the maximum likelihood estimator is relatively easy to obtain. Harvey et al.
(1994) discussed the method for short-memory SV models. It can also be extended to
LMSV models, but there are convergence and computing problems (Breidt et al., 1998).

A more feasible method is to use the Whittle’s estimator, which maximizes the frequency-
domain Gaussian-likelihood for the log squared returns {log r2

t }. For a Gaussian time
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series, the Whittle’s estimator is asymptotically equivalent to the traditional maximum
likelihood estimator (MLE), its time-domain counterpart. In a long-memory context, the
advantage of the Whittle’s method is its much faster speed and better numerical stability
(Fox and Taqqu, 1986; Dahlhaus, 1989). Although {log r2

t } is not Gaussian, Breidt, Crato,
and de Lima (1998) have verified the consistency of the estimator. Their simulation study
shows that the Whittle’s estimator is a relatively effective and easy-to-implement method
for LMSV models.

The Whittle’s estimator is achieved by maximizing the spectral likelihood function:

Ln(θ) =
2π

n

bn/2c∑
j=1

{
log f(λj; θ) +

I(λj)

f(λj; θ)

}
, (30)

where

λj =
2πj

n

is the jth Fourier frequency, and

f(λj) =
∣∣1− eiλj

∣∣−2d

∣∣θ(eiλj)
∣∣2

|φ(eiλj)|2
σ2

2π
+

σ2
ξ

2π

I(λj) =
1

2πn

(
n∑

i=1

rt cos λji

)2

+
1

2πn

(
n∑

i=1

rt sin λji

)2

.

f(λj) is the spectral density of log (r2
t ) at λj. It is actually the sum of the spectral density

of an ARFIMA process and a constant because the log squared returns are the sum of
the log volatility and an independent series. I(λj) is the j-th periodogram ordinate.

3.2 Parallelization of The Sequential Monte Carlo Algorithm

We have shown in earlier sections how we use the sequential Monte Carlo method to obtain
the posterior distribution of the latent volatility given the observed returns in order to
calculate the likelihood of the model. Actually, an accurate evaluation of likelihood is
very important. This is because many of the proposed models in the finance literature
perform well, and they all have log-likelihoods which are close together. Thus the Monte
Carlo error in SMC evaluation of the likelihood can be critically important in model
selection. Standard results tell us that SMC-based likelihood estimators converge to
the true likelihoods as the number of particles M approaches infinity. However, this
obviously increases computational burden. Therefore we are interested in finding ways
to “parallelize” sequential Monte Carlo schemes.

Sequential Monte Carlo methods can be applied not only to stochastic volatility models
but also to the extremely rich class of generalized state-space models. These models
consist of two components, a latent process, and an observed process. The latent process
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is assumed to be Markovian, while elements of the observation process are conditionally
independent given the latent process. Formally, we have

Xt ∼ f(·; Xt−1, θ)

Yt ∼ g(·; Xt, θ),

where {Xt} is the latent process, {Yt} is the observable process, and f(·; ·) and g(·; ·)
are some (arbitrary) conditional densities in their first arguments, which may depend
on a parameter vector θ. In particular, using the SMC approach, one can estimate
θ by maximizing the likelihood. Computation of the likelihood requires evaluating of
the filtering densities, i.e. p(xt|y1, . . . , yt) for each t, along with the one-step predictive
densities p(xt+1|y1, . . . , yt). We can also handle the case where {Xt} is non-Markovian by
modifying the method appropriately just like what we do on the long-memory stochastic
volatility model .

The SMC algorithm works by representing each πt = p(xt|y1, . . . , yt) by an approximating
collection of “particles”,

x
(i)
t ∼ p(xt|y1, . . . , yt), i = 1, . . . , M.

Here M is the number of particles used in the representation. When the particles are
indeed realizations of the distribution πt, properties of πt can be derived from the sample
{x(i)

t , i = 1, . . . , M}. The basic form of the SMC algorithm works by recursively obtaining
particle collections using the following steps.

1. Simulation. Draw x̃
(i)
t+1 from f(·; x(i)

t , θ).

2. Importance Resampling. Assign weights w
(i)
t+1 = g(yt+1|x̃(i)

t+1, θ). Then construct

a sample of size M , which will become {x(i)
t+1, i = 1, . . . , M} by sampling with

replacement from {x̃(i)
t+1, i = 1, . . . , M}, with probabilities proportional to {w(i)

t+1}.

When we have observations y1, . . . , yT , Steps 1 and 2 are repeated for t = 1, 2, 3, . . . , T to
obtain approximations to the required filtering and predictive distributions. Because of
its non-parametric representation of the required distributions, the SMC algorithm is not
bound by typical constraints placed on model structure by previously existing methods
such as the Kalman filter.

To use parallel computing on SMC, we need to design a suitable parallel algorithm.
Suppose we have Q processors available. A seemingly obvious algorithm is to let each
processor independently sample M/Q number of particles from time 1 to the final time
T . However, due to the error introduced in the resampling step (Step 2 above) of the
SMC algorithm, this method is worse than using one processor to produce M particles.
(In this paper, we demonstrate this in empirical studies.)

We have proposed a different approach to utilize parallel computing. Suppose we still
have Q processors and need to generate M particles. We start with our collection of M
particles distributed across all Q processors (as close to evenly as possible).
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At each time t, each processor carries out the simulation step for each of the particles it
is storing. (This is the same as in the obvious approach.) But we introduce a procedure
which gets around the problem of the obvious approach by genuinely resampling from the
entire collective group of M particles spread across Q processor. The idea is to perform
weighting separately on each processor, then communicate sums of weights from each
processor to a central “master” process. At this point, the master process can draw
from a multinomial distribution to decide how many samples will be drawn from each
processor. Then processors can perform individual resampling.

While the proposed procedure is functionally equivalent to an M -particle SMC algorithm,
it can become inefficient as the number of particles stored locally on a processor varies
significantly from the “balanced” number M/Q. To get around this problem, we introduce
a further “rebalancing” step, where particles with high weights are redistributed across
different processors. The rebalancing needs to be done carefully in order to prevent
communication overhead from eliminating gains in speed from parallelization.

Figure 2 is preliminary results on efficiency of the proposed algorithm and comparison of it
in terms of speed to single-processor and the aforementioned parallelized method without
rebalancing, by applying the algorithms to analysis of the following linear Gaussian model:

Yt = Xt + Zt, Zt ∼ N(0, 1)

Xt = 0.5Xt−1 + Et, Et ∼ N(0, 1)

3.3 Extension to Multivariate LMSV Models

We can modify the (short-memory) multivariate SV models to make them be able to
model long-memory volatility. For example, we can assume that ht in the one-factor
model in equation (13) follows an ARFIMA process. That is,

rt = u + exp(ht)et,

et ∼ IIDN(0,Σe),

ht − uh ∼ ARFIMA(p, d, q). (31)

In this model, although asset returns are correlated, there is only one (long-memory)
process that controls the magnitude of the variances and covariances while the conditional
correlation is constant. We expect that the likelihood-based estimation method for the
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Figure 2: Simulated observations and speed-up of the parallelization scheme of the se-
quential Monte Carlo method with different number of simulations

univariate model also applies to this model with modifications:

h
(i)
1:j ∼ p(h1:j|r1:j−1) =⇒ p(rj|r1:j−1) ≈ 1

N

N∑
i=1

p(rj|h(i)
j )

⇓ resample h
(i)
1:j with importance weights p(rj|h(i)

j )

ĥ
(i)
1:j ∼ p(h1:j|r1:j)

⇓ h
(i)
1:j = ĥ

(i)
1:j, h

(i)
j+1 ∼ p(hj+1|h1:j = ĥ

(i)
1:j)

h
(i)
1:j+1 ∼ p(h1:j+1|r1:j) =⇒ p(rj+1|r1:j) ≈ 1

N

N∑
i=1

p(rj+1|h(i)
j+1).
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In the multivariate model, p(rj|hj) = (2π|Vt|)−k/2e−(rt−u)′V−1
t (rt−u)/2, where Vt = exp (2ht)Σe.

3.4 Option Pricing under The LMSV Model

As shown in previous parts, we can model volatility persistence in the discrete-time
stochastic volatility framework with the use of ARFIMA processes for modeling log-
volatility. We are also interested in continuous-time LMSV models, since continuous-
time models are often useful in option pricing. Comte and Renault (1998) presented a
continuous-time model, which is analogous to the discrete-time LMSV model with an
ARFIMA(1, d, 0) (0 < d < 1/2) log-volatility process,

dS(t) = µS(t) + σ(t)S(t)dW1(t)

v(t) = ln σ(t)

d(v(t)) = −k(Θ − v(t)) + βdW2,d(t). (32)

The log-volatility in this model satisfies an Ornstein-Ulenbech type of stochastic differen-
tial equation, which leads to the AR order of 1. W2,d(t) is a fractional Brownian motion,
which is defined as an integration with respect to a standard Brownian motion

Wd(t) =

∫ t

0

(t− s)d

Γ(d + 1)
dW (s).

Comte and Renault (1996) and Tsai and Chan (2005) also discussed the more general
continuous-time long-memory model.

To use the LMSV model in option pricing, we have to handle the issue of non-uniqueness
of risk-neutral measure. As in short-memory models, one can either choose a specific
parametric form for the market price of volatility risk and estimate the parameters from
historical data, or just assume it is zero for the sake of simplicity. The latter strategy was
assumed in Comte and Renault (1998) and in papers cited in it. Due to the much more
complicated structure of the ARFIMA process in the discrete-time LMSV model, we also
choose a zero market price of volatility risk in this paper. Therefore, we assume that
the volatility process is the same under both the objective measure and the risk-neutral
measure.

Using the risk-neutral pricing principle, the price at the current time (time 0) of a Euro-
pean option with maturity T and payoff function g(ST ) is

V (0) = ẼRN

[
e−rT g(ST )|F(0)

]
,

where RN means the expectation is conducted under the risk-neutral measure, and σ-
field F(0) contains all the price information up to and including time 0. To evaluate
this expectation, we have to work with the model under the risk-neutral measure, under
which the stock earns a rate of return equal to the risk-free interest r,

dS(t) = rS(t)dt + σ(t)S(t)dW̃ (t)

or S(t) = S(0) exp

([
r − 1

2
σ(t)2

]
t + σ(t)W̃ (t)

)
.
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Discretization of S(t) yields
rt = (r − σ2

t /2) + σtεt,

where rt = log (S(t)/S(t− 1)) is the log-return on the t-th day and εt is Gaussian random
noise. Along with the log-volatility following an ARFIMA process, this leads us to the
model in the set of equations (16), except that the rate of return µ is replaced by r.

To price European options, our method is as follows. We first use historical returns,{
r0, . . . , r−(T ′−1)

}
(suppose that we use the historical daily prices observed in the past

T ′+1 days including the current day) to estimate the parameters in the LMSV model with
the method proposed in this paper. By our assumption, the volatility process remains
the same under both the objective measure and the risk-neutral measure, while the rate
of return of the stock changes to the interest rate r. The risk-neutral pricing method
requires simulations of the stock price at T , which in turn requires simulations of stock
returns at all future times (ST = S0e

r1+...+rT ). Since rt | Ft−1 ∼ N(r − σ2
t /2, σ

2
t ), we need

to simulate future volatilities as well.

In our inference method, we have already obtained sample trajectories of historical log-
volatilities via the SMC algorithm, and the empirical distribution of them forms an
approximation to p(log σ0, . . . , log σ−(T ′−1) | r0, . . . , r−(T ′−1)). We then simulate log σt, for
t > 0, from the conditional distribution p(log σt | log σt−1, . . . , log σ0, . . . , log σ−(T ′−1)),
conditioning on the simulated trajectory, including newly generated samples of future
log-volatilities as well. The conditional distributions can be determined using properties
of multivariate Gaussian distributions, since the ARFIMA process is a Gaussian process.
We can show the sample trajectories into the future, {log σ1

(j), . . . , log σT
(j)}, are actually

samples from p(log σ1, . . . , log σT | r0, . . . , r−(T ′−1)). The inclusion of all historical prices
is necessary since we are dealing with a non-Markovian ARFIMA process. For each
log-volatility log σt (t ≥ 0), we simulate the return rt ∼ N(r − σ2

t /2, σ
2
t ). At the end,

Many samples of ST = S0e
r1+...+rT are collected, and for each sample, e−rT g(ST ) is

calculated. Taking the average of these simulated discounted payoffs, we obtain a Monte
Carlo simulation for the option price V (0).

Pricing of American options are usually more difficult because of the early-exercise pos-
sibility. The price of an American option depends on the path of the stock price (path-
dependent). A successful pricing method should contain an algorithm that can determine
the optimum time for exercise. At any point of time before expiration, we should com-
pare the value of the option at immediate exercise with its expected discounted future
payoff under the risk-neutral measure if it continues to be hold. If immediate exercise
is more profitable, we should exercise the option; otherwise, we should continue to hold
it. Since the value of the option at a certain time depends on its value in the future,
we usually take a backward induction strategy. We first calculate the value of option
(payoff) at maturity, which of course just depends on the stock price at maturity, then
we go one step backward, do that comparison and repeat this procedure until the current
time. This algorithm works well for simulation methods, including the commonly used
tree or lattice methods.

There is also a large body of research on pricing American options under SV models.
Among them, Rambharat and Brockwell (2006) developed an algorithm based on the
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SMC algorithm. However, to my knowledge, the current simulation methods for pricing
American options are all developed for short-memory (Markovian) volatility processes.
In principle, we can extend some methods, for example, the method in Rambharat and
Brockwell (2006) to the long-memory situation. However, the inclusion of the whole his-
tory at each time step, due to the non-Markovian property of long-memory processes,
will enormously increase the computing burden and make implementation of these meth-
ods almost impossible in practice. Therefore, in this research, we will focus on pricing
European options.

3.5 Model Comparison

Besides the SV model the current research is focused on, there are other models of
stochastic volatility. In particular, the GARCH model and its variants have proven
useful in practical use. A GARCH model (Engle, 1982; Bollerslev, 1986) assumes that
the conditional variance (squared volatility) of a stock is a linear combination of the
historical conditional variances and squared returns:

rt = µ + σtεt, εt ∼ IIDN(0, 1)

σ2
t = α0 + α1r

2
t−1 + . . . + αpr

2
t−p + β1σ

2
t−1 + . . . + βqσ

2
t−q

α0 > 0, αi ≥ 0, βi ≥ 0, for i > 0

The equations above represent a GARCH(p, q) model.

Baillie et al. (1996) extended the GARCH model to FIGARCH(p, d, q) model in order to
model long memory in volatility:

φ(B)(1−B)dr2
t = ω + [1− β(B)](r2

t − σ2
t ),

where β(B) = β1B + . . . + βqB
q, α(B) = α1B + . . . + αpB

p and φ(B) = [1 − α(B) −
β(B)](1−B)−1.

We will compare the LMSV model with the (short-memory) SV model, GARCH and
FIGARCH model based on the likelihood, AICC and BIC.
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