
HOA NGUYEN’S PROPOSAL TECHNICAL APPENDIX

1 Simulating correlated random variables

The technique presented in this section can be used to generate Bernoulli random variables

which are correlated. Imagine that SNP’s in a block are highly correlated with each other but

they have low correlation with SNP’s outside the block. We can then generate Bernoulli random

variables which resemble the structure of haplotype blocks in a genomic region.

In the proposal document, the data are simulated using a modified version of Hudson (2002)’s

MS program. The technique presented here can be used as an alternate method for generating

block-like haplotypic data. In the derivation below, Xj and Xk represent SNP’s. Let ρjk be the

correlation between Xj and Xk. Assume that Xi ∼ Bernoulli(pi). Given Xk, we can generate

Xj as follows.

Cor(Xk, Xj) =
Cov(Xj , Xk)√

V ar(Xj)V ar(Xk)

Since Xi ∼ Bernoulli(pi), Cov(Xj , Xk) = ρjk

√
pj(1− pj)pk(1− pk). Furthermore, Cov(Xj , Xk) =

E[(Xj − µj)(Xk − µk)] = E(XjXk)− µjµk = P (Xj = 1, Xk = 1)− pjpk. Thus,

ρjk

√
pj(1− pj)pk(1− pk) = P (Xj = 1|X − k = 1)P (Xk = 1)− pjpk

P (Xj = 1|Xk = 1) =
ρjk

√
pj(1− pj)pk(1− pk) + pjpk

pk

P (Xj = 0|Xk = 1) = 1 − P (Xj = 1|Xk = 1)

P (Xj = 1|Xk = 0) =
P (Xk = 0|Xj = 1)P (Xj = 1)

P (Xk = 0)

=
[1 − P (Xk = 1|Xj = 1)]P (Xj = 1)

P (Xk = 0)

=
[1 − P (Xj = 1|Xjk = 1)P (Xk = 1)/P (Xj = 1)]P (Xj = 1)

P (Xk = 0)

=
[1 − P (Xj = 1|Xk = 1)pk/pj ]pj

1− pk

P (Xj = 0|Xk = 0) = 1− P (Xj = 1|Xk = 0)

I use a base variable Xk ∼ Bernoulli(pk) and simulate X11, . . . , X1b, . . . , Xb1, . . . , Xbb such that

variables in the same block have the same correlation ρjk, j ∈ {1, b} with Xk (b is the number of
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blocks) and within a block, the variables have the same correlation ρj , j ∈ {1, b}. The simulation

of Xj does not require ρj ; ρj is different from ρjk.

Based on the calculations above, there are constraints imposed upon ρij and pi’s.

2 Marginal models give biased β’s

2.1 Bias for the no-intercept model

When marginal models are considered, the parameter estimates are biased. Furthermore, when

the explanatory variables are not fixed, the variance of the parameter estimates is inflated.

Full Model : Yi =
∑m

j=1 βjXij + εi

E(Yi) =
∑m

j=1 βjXij

Xij ∼ Bernoulli(pj)

εi ∼ Normal(0, σ)

Marginal Model : Yi = βjXij + εi

Bias Calculation

For each marginal model:

β̂j =
∑

XijYi∑
X2

ij

=
∑

XijYi∑
Xij

For simplicity, assume βj = β or 0, pj = p∀j. Let Q = {j : βj = β}, Qc = {j : βj = 0},
|Q| = N .

E(β̂j) = E(E(β̂j |X))

= E(E(
∑

i XijYi∑
i Xij

|X))

= E(
∑

i Xij
∑

k βkXki∑
i Xij

)

= E(

∑
i XijβjXij +

∑
i Xij

∑
k 6=j βkXik∑

i Xij
)

= βj +
E(

∑
i

∑
k 6=j XijXikβk)∑

i Xij

Thus the bias of βj is
E(

∑
i

∑
k 6=j XijXikβk)∑

i Xij
for k 6= j. If the Xj ’s are independent, for j 6∈ Q :

βj = 0 → E(β̂j) =
nNp2β

np
= Nβp. For j ∈ Q : βj = β → E(β̂j) = β + (N − 1)βp =
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β(1 − p) + Nβp.

Variance Calculation

The calculations below are based on the assumption that Xj ’s are ⊥.

V ar(β̂j) = V ar(E(β̂j |X)) + E(V ar(β̂j |X))

E(β̂i|X) = βj +
(
∑

i

∑
k 6=j XijXikβk)

npj

V ar(E(β̂j |X)) = V ar

((
∑

i

∑
k 6=j XijXikβk)

npj

)

= V ar

(
U

V

)
= E

(
U2

V 2

)
− E2

(
U

V

)

U2 = (
∑

i

∑
k 6=j βkXijXik)2. For j 6∈ Q, βj = 0 → there are N terms in

∑
k 6=j . When calculating

E(U2), essential information is the # of terms ending up having p2, p3, or p4 after the expectation

is taken. In particular, there are nN p2 terms ( the squared terms X2
ijX

2
ik = XijXik). Now

consider the cross terms, there are
(
Nn
2

)
terms in total. p3 terms must have the i index fixed and

k index varies. Thus there are n
(
N
2

)
p3 terms. The remaining,

(
Nn
2

)− n
(
N
2

)
would be p4 terms.

E(U2) = nNβ2p2 + nN(N − 1)β2p3 + N2n(n− 1)β2p4

E(V 2) = E[(
∑

i

Xij)2] = np + n(n− 1)p2

E

(
U2

V 2

)
≈ nNβ2p2 + nN(N − 1)β2p3 + N2n(n− 1)β2p4

np + n(n− 1)p2

V ar(E(β̂j |X))j 6∈Q = E

(
U2

V 2

)
−N2β2p2 ≈ Nβ2p(1− p)

1 + (n− 1)p

Similar calculation yields:

V ar(E(β̂j |X))j∈Q =
(N − 1)β2p(1− p)

1 + (n− 1)p

V ar(β̂j |X) = V ar(
∑

i XijYi∑
i Xij

)

=
σ2

∑
i Xij

(
∑

i Xij)2
=

σ2
∑

i Xij∑
i Xij + 2

∑
j 6=l XijXil
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E(V ar(β̂|X)) =
σ2np

np + n(n− 1)p2
=

σ2

1 + (n− 1)p

↓

V ar(β̂j)j 6∈Q =
Nβ2p(1− p) + σ2

1 + (n− 1)p

V ar(β̂j)j ∈Q =
(N − 1)β2p(1− p) + σ2

1 + (n− 1)p

Again the given formulae for the bias and the variance in this section are based on the assumption

that the Xj ’s do not have any correlation.

2.2 Bias for the intercept model

Full Model : Yi =
∑M

j=1 βjXij + εi

E(Yi) =
∑M

j=1 βjXij

Xij ∼ Bernoulli(pj)

εj ∼ Normal(0, σ)

Marginal Model : Yi = βj0 + βj1Xij + εi

Least squared estimates : β̂1j =
∑

i(Xji − Xj)(Yi − Y )∑
i(Xji − Xj)2

=
∑

i Yi(Xji −Xj)∑
i(Xji −Xj)2

β̂0j = Y − β̂1jXj

(i) Assuming the Xj’s are independent:

β̂1j =
∑

i(Xji − Xj)(Yi − Y )∑
i(X1j − Xj)2

=
∑

i(XjiYi − XjYi − XjiY + XjY )∑
i(Xji − Xj)2

=
∑

i(XjiYi − (1/n
∑

i Xji)Yi − (1/n
∑

i Yi)Xji + 1/n2
∑

i Xji
∑

i Yi)∑
i(X

2
ji − 2XjiXj + X

2
j )

=
∑

i XjiYi − 1/n
∑

i Xji
∑

i Yi∑
i Xji − 2/n(

∑
i Xji)2 + 1/n(

∑
i Xji)2

= βj +

∑
i Xjiβ0 +

∑
i

∑
k#j XjiβkXki − 1/n

∑
i Xji

∑
k#j βkXki − 1/n

∑
i Xjiβ0∑

i Xji − 1/n(
∑

i Xji)2

E(β̂1j)j∈Q ≈ β0(
(n−1)

n np) + nNβp2 − 1
nnNβp2

np − 1/n(np + 2n(n− 1)p2)

=
β0 + Nβp

1 − 2p
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E(β̂1j)j∈Q ≈ β +
β0 + (N − 1)βp

1 − 2p

=
β0 + Nβp

1 − 2p
+ β − βp

1 − 2p

=
β0 + Nβp

1 − 2p
+ β

1 − 3p

1 − 2p

(ii) Assuming the Xj’s have a correlation structure:

β̂k =
∑

i Yi(Xik −Xk)∑
i(Xik −Xk)2

= βk +

∑
i

∑
j 6=k βjXij(Xik −Xk)∑

i(Xik −Xk)
+

∑
i εi(Xik −Xk)∑
i(Xik −Xk)2

= βk +

∑
j 6=k βj

1
n

∑
i(Xij −Xj)(Xik −Xk)

1
n

∑
i(Xik −Xk)2

+
∑

i(Xik −Xk)∑
i(Xik −X)2

E(β̂k) = βk +

∑
j 6=k Cov(Xk, Xj)

V ar(Xk)

Biask =

∑
j 6=k Cov(Xk, Xj)

pk(1− pk)

=
∑

j 6=k

βjCorr(Xk, Xj)

√[
pj(1− pj)
pk(1− pk)

]

=
1
σk

∑

j 6=k

βjρjkσj

3 Some notes on the kernel

Normal Reference Rule Bandwidth for estimating the derivatives using the kernel

Optimal bandwidth for estimating the derivatives using the kernel (Fan and Gijbels, 1996):

hν,opt = (2µ + 1)
1

2ν+5 αν(K)
(∫

(f (ν+2)(x))2dx

)− 1
2ν+5

n−
1

2ν+5

where αν(K) =
(∫

u2K(u)du
)−2/(2ν+5) (∫

(K(ν)(u))2du
)1/(2ν+5)

These following normal reference

bandwidths are computed using the Gaussian kernel.

• for f̂ ′:

h∗ = 0.9686σn−1/7
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• for f̂ ′′:

h∗ = 0.9398σn−1/9

• for f̂ (3):

h∗ = 0.9289σn−1/11

Using these bandwidths, the estimation of the derivatives of a symmetric curve is excellent (simu-

lation results not shown).

Exploration of different gamma distributions with various curvature at the mode show that the

kernel does quite well in estimating the third derivative at the mode.

4 Efron’s local estimators of the mode and the spread

4.1 bias of the mode

Using a kernel density estimation, bias of the mode = −h2σ2
kf

(3)(θ)
2f (2)(θ)

where σ2
k =

∫
wK(w)dw

and θ is the true mode. If we assume that the underlying distribution is the N(µ, σ), the bias of

the mode is:= −h2σ2
kφ

(3)(θ)
2φ(2)(θ)

4.2 Investigating
d2

dz2
log(f̂(z)), bias of the spread

General setting for kernel density estimators: f̂ =
1
n

∑

i

Kh(Xi − x) =
1

nh

∑

i

K(
Xi − x

h
).

l̂ = logf̂

l̂′ =
f̂ ′

f̂
=

1/n
∑

i K
′
h(Xi − x)

1/n
∑

i Kh(Xi − x)

l̂′′ =
f̂ ′′f̂ − (f̂ ′)2

(f̂)2
= func(

∑
Kh,

∑
K ′

h,
∑

K ′′
h)

Partial derivatives: (
∂

∂f̂
l̂′′,

∂

∂f̂ ′
l̂′′,

∂

∂f̂ ′′
l̂′′

)
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Define G =
w(x)u(x)− v2(x)

u2(x)
, where u(x) = f̂ , v(x) = f̂ ′ and w(x) = f̂ ′′. The distribution of

G depends on the distributions of (u, v, w).
(

∂

∂u
G,

∂

∂v
G,

∂

∂w
G

)
=

(−wu + 2v2

u3
,−2v

u2
,
1
u

)
. Let

∂G0 =
(

∂

∂u
G,

∂

∂v
G,

∂

∂w
G

)

µu,µv ,µw

G ∼ N


∂GT

0




µu

µv

µw


 , ∂GT

0

∑
∂G0




I will need the distribution of (f̂ , f̂ ′, f̂ ′′), or equivalently, the distribution of (
∑

Kh,
∑

K ′
h,

∑
K ′′

h).

f̂(x) =
1
n

∑

i

Kh(Xi − x) ∼ AN

(
f(x) +

1
2
σ2

Kh2f ′′(x),
f(x)R(K)

nh

)
(1)

f̂ ′(x) =
1
n

∑

i

K ′
h(Xi − x) ∼ AN

(
f ′(x) +

1
2
σ2

Kh2f (3)(x),
f(x)R(K ′)

nh3

)
(2)

f̂ ′′(x) =
1
n

∑

i

K ′′(Xi − x) ∼ AN

(
f ′′ +

1
2
σ2

Kh2f (4)(x),
f(x)R(K ′′)

nh5

)
(3)

Now, I need the covariances, cov(f̂ , f̂ ′), cov(f̂ , f̂ ′′), cov(f̂ ′, f̂ ′′).

cov(f̂ , f̂ ′) = E
[
(f̂(x)− Ef̂)(f̂ ′(x)− Ef̂ ′)

]

= E
(
f̂ f̂ ′

)
− Ef̂Ef̂ ′

cov(f̂ , f̂ ′′) = E
[
(f̂(x)− Ef̂)(f̂ ′′(x)−Ef̂ ′′)

]

= E
(
f̂ f̂ ′′

)
−Ef̂Ef̂ ′′

cov(f̂ ′, f̂ ′′) = E
[
(f̂ ′(x)−Ef̂ ′)(f̂ ′′(x)−Ef̂ ′′)

]

= E
(
f̂ ′f̂ ′′

)
− Ef̂ ′Ef̂ ′′

Ef̂f̂ ′ =
1
n2

E

(∑

i

Kh(Xi − x)
∑

i

K ′
h(Xi − x)

)

=
1
n2


E(Kh(Xi − x)K ′

h(Xi − x)) +
∑

i6=j

E(Kh(Xi − x)K ′
h(Xi − x))




7



=
1
n

E(KhK ′
h) +

(
n
2

)

n2
E(Kh)E(K ′

h)

=
1
n

E(KhK ′
h) +

n− 1
n

E(Kh)E(K ′
h)

= O

(
1
n

)
+

n− 1
n

E(Kh)E(K ′
h)

Ef̂f̂ ′′ =
1
n2

E

(∑

i

Kh(Xi − x)
∑

i

K ′′
h(Xi − x)

)

=
1
n2


E(Kh(Xi − x)K ′′

h(Xi − x)) +
∑

i6=j

E(Kh(Xi − x)K ′′
h(Xi − x))




=
1
n

E(KhK ′′
h) +

(
n
2

)

n2
E(Kh)E(K ′′

h)

=
1
n

E(KhK ′′
h) +

n− 1
n

E(Kh)E(K ′′
h)

= O

(
1
n

)
+

n− 1
n

E(Kh)E(K ′′
h)

Ef̂ ′f̂ ′′ =
1
n2

E

(∑

i

K ′
h(Xi − x)

∑

i

K ′′
h(Xi − x)

)

=
1
n2


E(K ′

h(Xi − x)K ′′
h(Xi − x)) +

∑

i 6=j

E(K ′
h(Xi − x)K ′′

h(Xi − x))




=
1
n

E(K ′
hK ′′

h) +

(
n
2

)

n2
E(K ′

h)E(K ′′
h)

=
1
n

E(K ′
hK ′′

h) +
n− 1

n
E(K ′

h)E(K ′′
h)

= O

(
1
n

)
+

n− 1
n

E(K ′
h)E(K ′′

h)

(f̂ , f̂ ′, f̂ ′′) ∼ AN3







f(x) +
1
2
σ2

Kh2f ′′(x)

f ′(x) +
1
2
σ2

Kh2f (3)(x)

f ′′(x) +
1
2
σ2

Kh2f (4)(x)




,
∑
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∑
=




f(x)R(K)
nh

0 0

. . .
f(x)R(K ′)

nh3
0

. . . . . .
f(x)R(K ′′)

nh5




Recall that:

l = log(f)

l′ =
f ′

f

l′′ =
f ′′f − f ′2

f2

Similarly, with f̂ as the kernel estimator,

l̂ = log(f̂)

l̂′ =
f̂ ′

f̂

l̂′′ =
f̂ ′′f̂ − f̂ ′2

f̂2

We would like to know what is the bias for estimating σ2 using
d2

d
log(f̂). From the distribution of

(f̂ , f̂ ′, f̂ ′′), we obtain:

E(l̂′′) =
−(f ′′ + 1/2σ2

Kh2f (4))(f ′ + 1/2σ2
Kh2f (3)) + 2(f ′ + 1/2σ2

Kh2f (3))
(f + 1/2σ2

Kh2f ′′)2
·

·(f + 1/2σ2
Kh2f ′′)− 2(f ′ + 1/2σ2

Kh2f (3))2

(f + 1/2σ2h2f ′′)2
+

f ′′ + 1/2σ2
Kh2f (4)

f + 1/2σ2
Kh2f ′′

=
−(f ′′ + 1/2σ2

Kh2f (4))(f ′ + 1/2σ2
Kh2f (3)) + (f ′′ + 1/2σ2

Kh2f (4))(f + 1/2σ2
Kh2f ′′)

(f + 1/2σ2
Kh2f ′′)2

=
(f ′′ + 1/2σ2

Kh2f (4))((f − f ′) + 1/2σ2
Kh2(f ′′ − f (3)))

(f + 1/2σ2
Kh2f ′′)2

=

f ′′ − f ′2

f2
+

f ′2

f2
+

1/2σ2
Kh2(f (4)(f − f ′) + f ′′(f ′′ − f (3)))

f2
+

1/4σ4
Kh4f (4)(f ′′ − f (3))

f2

(
1 + 1/2σ2

Kh2
f ′′

f

)2

=

f ′′ − f ′2

f2
+

f ′2

f2
+

1/2σ2
Kh2(f (4)(f − f ′) + f ′′(f ′′ − f (3)))

f2
+

1/4σ4
Kh4f (4)(f ′′ − f (3))

f2
(

1 + σ2
Kh2

f ′′

f
+ 1/4σ4

Kh4 f ′′2

f2

)
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=
f ′′ − f ′2

f2
+

f ′2

f2
+ o(h2)

= l′′ +
f ′2

f2
+ o(h2)

5 FDR under different variants of G0

FDP (z) =
∑

i(1−Hi)I(Zi < z)∑
i I(Zi < z)

FDR(z) = E(FDP (z)) ≈ E(1/m
∑

i(1−Hi)I(Zi < z))
E(1/m

∑
i I(Zi < z))

≈ (1− a)G0(z)
G(z)

≈ (1− a)G0(z)

Ĝ(z)
= R̂(z)

5.1 biased null distribution is Normal(µ, σ)

Now, assuming that we know the biased null G0 is N(α, σ2), denote this distribution by Φ∗.

Then

FDR(z) ≈ (1− a)Φ∗(z)
G(z)

≈ (1− a)Φ∗(z)

Ĝ(z)
≤ Φ∗(z)

Ĝ(z)

Recall that z∗ is such that
Φ(z∗)
G(z∗)

= α. Now, actual biased null is N(µ, σ2), denoted this

distribution by Φ∗.

FDR =
(1− a)G0(z∗)

G(z∗)
G0(z∗) = Φ∗(z∗)

G(z∗) = (1− a)Φ∗(z∗) + aG1(z∗)

Our goal is to get FDR as a function of (µ, σ) and investigate this rate function when there are

biases in the estimation of µ and σ. To do that, we first get an expression of the rate function,
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then carry out a Taylor series expansion for the rate function around µ = 0 and σ = 1.

Φ(z∗) =
∫ z∗

−∞

1√
2Π

e−x2/2dx

Φ∗(z∗) =
∫ z∗

−∞

1√
2Πσ

e
−

(x− µ)2

2σ2 dx

=
∫ z∗ − µ

σ

−∞

1√
2Π

e−t2/2dt

= Φ(
z∗ − µ

σ
)

G(z∗) = (1− a)Φ∗(z∗) + aG1(z∗)

= (1− a)Φ(
z∗ − µ

σ
) + aG1(z∗)

r(·) =
(1− a)Φ∗(z∗)

(1− a)Φ∗(z∗) + aG1(z∗)

=
(1− a)Φ(

z∗ − µ

σ
)

(1− a)Φ(
z∗ − µ

σ
) + aG1(z∗)

Since
1
α

= (1− a) + a
G1(z∗)
Φ(z∗)

, G1(z∗) = (
1
α
− 1 + a)

1
a
Φ(z∗). We have,

1
r

= 1 +
a

1− a
(
1
α
− 1 + a)

1
a

Φ(z∗)

Φ(
z∗ − µ

σ
)

r =
(1− a)Φ(

z∗ − µ

σ
)

(1− a)Φ(
z∗ − µ

σ
) + (

1
α
− 1 + a)Φ(z∗)

r = (1− a)α if the null is N(0,1).

Bias function:

B(z, µ, σ) =
(1− a)Φ(

z − µ

σ
)

(1− a)Φ(
z − µ

σ
) + (

1
α
− 1 + a)Φ(z)

− α

Now expand the bias function about (µ0, σ0) = (0, 1). First partial derivatives:

Bµ =
(1− a)(− 1

σ
(
1
α
− 1 + a)φ(

z − µ

σ
)Φ(z)

[(1− a)Φ(
z − µ

σ
) + (

1
α
− 1 + a)Φ(z)]2
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Bσ =
(1− a)(−z − µ

σ
)(

1
α
− 1 + a)φ(

z − µ

σ
)Φ(z)

[(1− a)Φ(
z − µ

σ
) + (

1
α
− 1 + a)Φ(z)]2

First order Taylor expansion:

B(z, µ, σ) = −aα +α2
(1− a)(−1)(

1
α
− 1 + a)φ(z)

Φ(z)
µ +α2

(1− a)(−z)(
1
α
− 1 + a)φ(z)

Φ(z)
(σ−1)+R(a, α, z)

5.2 Biased distribution is a Skewed Normal SN(λ)

Azzalini (1985) introduced a class of skew-normal distributions which allows the presence of

skewness in the normal distribution. A random variable Z is said to have a skew-normal distribution

with parameter λ if its density is:

ϕ(z;λ) = 2φ(z)Φ(λz)

where φ and Φ are the standard normal density and distribution functions.

Carrying out similar calculations. Rate function and its approximation are:

r(λ) =
(1− a)

∫ z∗
−∞ 2φ(z)Φ(λz)dz

(1− a)
∫ z∗
−∞ 2φ(z)Φ(λz)dz + (

1
α
− 1 + a)Φ(z∗)

Expanding the rate function about λ = 0. First order approximation:

r(λ) = (1− a)α + α2

(1− a)(
1
α
− 1 + a)

1
a

√
2
π

∫ z∗

−∞
zφ(z)dz

Φ(z∗)
λ + R(a, α, z∗)

If the biased distribution of the nulls is a skew-normal instead of the normal, the rate is sensitive

to the choice of z∗ and λ

6 Simulated z-values directly

In the general setting (as described in the proposal document), we obtain z-values from a

transformation of p-values: Zi = Φ(−1)(Pi) where Pi’s are p-values obtained from testing particular

β’s in the regression model. In this section, we simulate z-values directly from a known skew

distribution. We would like understand better both the parametric and non-parametric estimators
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of the skewness parameter in the distribution of nulls before we apply the methods to z-values

obtained from the regression model.

Suppose that null z-values follow a Gamma distribution; and suppose that alternative z-values

follow a normal distribution.

G(z) = (1− a)Gamma(α, β) + aN(µ, σ).

Figure 2 shows an exemplary distribution of a mixture of gamma’s and normal’s.

6.1 Global estimation of skewness parameter using the skew normal

Figure 3 shows the empirical FDR obtained from 300 simulations. G(z) = (1−a)Gamma(3, 1)+

aN(−10, 1); a=0.1. Using the default N(0, 1) to calculate FDR (i.e., no correction) leads to an

average empirical FDR of .73. Efron’s location-scale correction reduces the empirical FDR to an

average of .41. The skew-normal correction gives substantial reduction in FDR control: .18 on

average compared to the previous two figures.

6.2 Drawbacks of local method

Understanding the 3rd derivative of the Gamma

Gamma density:

f(z) =
βα

Γ(α)
xα−1e−βx

l(x) = αlogβ − logΓ(α) + (α− 1)logx− βx

l′x =
α− 1

x
− β

l′′x = −α− 1
x2

l′′′x = 2
(α− 1)

x3

Setting l′x to 0, the mode µ =
α− 1

β
. The third derivative at the mode is then l′′′x (µ) =

2β3

(α− 1)2
.

Judging from this calculation, if β is small (e.g. .1), the third derivative at the mode is close to 0

even though the distribution is asymmetrical.

Judging from the above theoretical derivatives, if we want to pursue further the local method,

we should use both the third and the second derivatives. Figure 1 shows a skew distribution:
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Gamma(5,.1), but the third theoretical derivative at the mode is quite small: 0.000125. The local

method cannot detect skewness by judging the third derivative. The variance in this example is

large, which explains why the second derivative is important in estimating the skewness.

Third derivative of the log-likelihood at the mode

Efron (2004) used the second derivative of the log-likelihood at the mode as a measure of spread.

As explained above, we need to use both the 2nd and the 3rd derivatives at the mode as a measure

of skewness:
logf (3)

logf (2)
. As shown previously, estimating the second derivative of the log-likelihood at

the mode requires estimates of the first 3 derivatives of f. Consequently, the third derivative of the

log-likelihood at the mode requires the first 4 derivatives of f. This local procedure undoubtedly

leads to considerably biased estimate of the skewness.

Power transformation

We carry out the following steps to choose a power transformation for the Zi’s:

(i) Standardize the Zi’s: Wi =
Zi − µ̂Z

σ̂Z

(ii) For a power transform γ:

Vi,γ =




−|Wi|γ , Wi < 0

W γ
i , Wi ≥ 0

(iii) Obtain the skewness λ(γ) for the Vi,γ ’s using the local derivatives.

(iv) Choose γ such that λ(γ) is close to 0.

(v) Once the skewness is removed, i.e. the set Vi,γ is specified, perform Efron’s location-scale

correction for the distribution of Vi,γ .

From simulations, we observe that the procedure does not give the desired result, i.e. producing

a set of Vi,γ whose distribution is symmetric. Instead, the chosen power favors distributions with

a long and thin tails as shown in Figure 4. These distributions are skew, however, the local third

derivative is close to 0. The procedure seems to flatten out the tail and squeeze in the shoulders of

the original distribution (see Figure 4).
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Figure 1: Histogram of Gamma(5,.1) random variables. The local 3rd derivative at the mode is

close to 0 even though the distribution is skew.
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Figure 2: Histogram of an exemplary mixture of nulls (-Gamma(3,1)) and alternatives (N(-10,1)).
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Figure 3: Empirical FDR resulting from (a) No correction (b) Efron’s correction (c) Skew normal

correction. The histograms are obtained from 300 simulations. Zi’s are simulated from a mixture

of gamma’s and normal’s.
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Figure 4: Histogram of (a)Zi’s from a mixture of gamma’s and normal’s and (b)transformed version

Vi,γ ’s of Zi’s, γ is chosen such that the third derivative at the mode is close to 0.
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