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Abstract

The false discovery procedure introduced by Benjamini and Hochberg in 1995 has become a

mainstream method for large scale simultaneous inference in a variety of bioinformatics problems.

The procedure controls the false discovery rate (FDR) at a specified level α assuming that the

distribution function F0 of null p-values Pi is U(0, 1). In a recent paper, Efron (2004) brought to

attention that, often, the empirical null p-values do not conform to the theoretical U(0, 1) and the

biased distribution of nulls can affect the FDR. Indeed, linear regression settings aimed for genome-

wide association study provide good examples of a biased F0. Under these scenarios, the number

of covariates p is much greater than the sample size n, which eliminates the option of fitting the

full regression model. Nevertheless, a resolution of fitting an abundant number of partial models

permits an empirical estimation of the distribution of null p-values.

In addressing the bias in F0, it is more convenient to study the bias in the distribution function

G0 of z-values: Zi = Φ−1(Pi). Estimating the deviation of Zi from the N(0, 1) is tantamount to

estimating the departure of Pi from the U(0, 1). Efron (2004) proposed a location-scale correction to

the empirical distribution G0. In this proposal, we show that the bias in G0 can not be represented

by a location-scale alteration alone. We propose a skewness adaptation to G0. We show that

variants of a skewed G0 can lead to better control of FDR compared with the default N(0, 1).

To illustrate the procedure, we examine data which are generated using a stochastic process that

creates polymorphisms on chromosomal regions. The data can be analyzed using regression models.
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INTRODUCTION

Multiple hypothesis testing is a classical problem which has received renewed interests in the

recent statistical literature. These interests are due largely to the advancement of scientific tech-

nologies in various areas of bioinformatics. For example, in gene expression studies, a typical

microarray experiment requires testing the expression levels of thousands of genes simultaneously

(Lander, 1999; Brown and Botstein, 1999; Dudoit et al., 2003). At a finer genomic scale, epidemi-

ologists test hundred thousands of single nucleotide polymorphisms (SNP’s) or blocks of SNP’s for

disease associated loci (Altshuler et al., 2001; Daly et al. 2001; Patil et al., 2001; Gabriel et al.

2002; Botstein and Risch, 2003).

From a scientific perspective, problems such as analyzing microarray and SNP data for disease

association studies entail identification of a small percentage of interesting cases for further investi-

gation. As such, while the primary statistical task is minimizing the false positive rate (controlling

type I error), due to a large number of hypotheses tested, minimizing the expected ratio of false

positives to the total number of rejections (controlling the false discovery rate FDR) is of greatest

interest (Storey 2003).

The false discovery procedure, introduced by Benjamini and Hochberg in 1995, is a distribution

free, finite sample method for choosing a p-value rejection threshold to control FDR. Instead of

adhering faithfully to family-wise error rate control (Simes 1986, Hommel 1988, Hochberg 1988

and Rom 1990), FDR controls the proportion of false positives among rejected hypotheses. Apart

from the scientific relevance of the procedure, FDR was proven by Benjamini and Hochberg (1995)

to have greater power than the traditional Bonferoni method. These appealing characteristics of

FDR have drawn momentous attention in the research community in recent years, engendering a

rich FDR literature. We mention the following key extensions of the original framework.

Benjamini and Yekutieli (2001) relaxed the assumption of independent test statistics and ex-

tended FDR to a class which possessed positive regression dependence. Efron et al. (2001) consid-

ered a Bayesian model approach to obtain multiple testing procedures that control FDR. Storey

(2002) reversed the testing process: first, fix the rejection region, then estimate the corresponding

error rate. Storey’s proposal gave rise an FDR testing procedure of increased power and accuracy.

Genovese and Wasserman (2002, 2003) developed a stochastic framework and large sample theory

for FDR, enabling a deeper understanding of the original procedure and how it compares to the
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traditional Bonferoni method.

The above mentioned articles, however, are content with the assumption that the p values of

null hypotheses are uniformly distributed. In a recent paper, Efron (2004) brought to attention

that, often, the distribution of the empirical nulls do not conform to the theoretical U(0,1). Efron’s

results concur with our investigation of the distribution of null p-values from simulated data sets.

Our simulation study is based on a regression framework: p values are obtained from testing

whether particular coefficients in a linear model are significant. In two recent papers, Bunea et al.

(2003) and Devlin et al. (2003), the connection between regression models and FDR is established.

Specifically, using FDR to obtain the set of significant covariates leads to a consistent estimator of

this set. Such a finding strengthens the established applicability of FDR, motivating our regression

framework simulation study.

While the bias of the distribution of null p-values is apparent in our examples, it is not entirely

clear how to correct for such a bias. One attempt is to assume a certain parametric model for

the null p-values, estimate its distribution (by either a parametric or non-parametric method) and

adjust the calculation of FDR accordingly.

Let the collection of null hypotheses be Hi, i = 1, . . . , N and the corresponding p-values Pi, i =

1, . . . , N . Following Efron, we prefer to work with a transformed version of the Pi, namely Zi:

Zi = Φ−1(Pi), i = 1, . . . , N,

Φ is the cumulative distribution of the standard normal. Understanding the deviation of Zi from

the N(0, 1) is tantamount to comprehending the departure of Pi from the U(0, 1).

From simulations, the biased distribution of the nulls results in empirical FDR as high as

seventy percent. Efron (2004) proposed a location and scale correction for the distribution of Zi

while keeping the symmetric assumption. We found that Efron’s correction gives good reduction

of the empirical FDR.

We take a step further, allowing the presence of skewness in the distribution of the nulls and

analyzing that skewness from both a parametric and a non-parametric point of view. We give a

step-by-step partial bias correction for the null p-values. For the parametric approach, we use the

skew normal density introduced by Azzalini in 1985. We find that a skew normal fit to the data gives

considerable improvement of the empirical FDR over Efron’s location and scale correction. For the

non-parametric approach, we attempt to estimate the skewness locally by using the third derivative
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of the log-density at the mode. We then correct for the skewness by a proper transformation, and

calculate the empirical FDR accordingly. Thus far, the non-parametric correction of the skewness

shows little improvement compared to no correction, and deserves further research.

In this paper, we first discuss in greater detail the simulation method for the linear regression

model and the underlying scientific motivations. We then propose specific steps to obtain the

skewness parameter for the distribution of null z-values, and report preliminary results on the

improvement of FDR control. Finally, we discuss limitations of the current methodology and

propose specific future research steps.

SCIENTIFIC MOTIVATION AND SYNTHETIC DATA

It has been estimated that any two copies of the human genome differ from one another by

approximately 0.1% of the total number of base pairs (Gibbs et al. 2003). These differences

occur mostly at sites where a single historical mutational event took place. For instance, some

chromosomes in the population may have a G (G ”allele”) at a specific site while others have

an A (A ”allele”); these alleles are termed single nucleotide polymorphisms (SNP’s). There are

approximately three million SNP’s on the human genome.

Since the set of SNP’s captured 90% of the genetic variation in the population, an international

SNP mapping project (HapMap) has been launched (Gibbs et al. 2003). At present, there are

limited SNP data available on the public domain, and most of these data sets do not register enough

chromosomes for large scale association studies. Alternatingly, Hudson (2002)’s MS program can be

used to simulate a set of SNP’s in a genomic region of a particular length. The program generates

independent samples of SNP sets using the standard coalescent approach described in Kingman

(1982), Hudson (1990) or Norborg (2001).

Recent studies (e.g. Reich et al., 2001; Gibbs et al., 2003; Botstein and Risch, 2003) have

speculated that common diseases such as cancer and diabetes are caused by multiple genetic and

environmental factors. As such, the search for genetic variants affecting liability to complex diseases

demands substantial knowledge of both marginal and combined effect of risk factors. Our goal to

use regression framework to analyze SNP data stems from an aspiration to ultimately understand

better the combined genetic effects on phenotypic traits.

We use a modified version of Hudson (2002)’s program (Wall and Pritchard, 2003) to gen-

erate SNP’s on genomic regions where recombination ”cold spots” and ”hot spots” are present.
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For each synthetic genomic zone, we create two cold spots of length 20,000 base pairs, separated

by a hot spot of length 10,000 base pairs. The mutation rate is θ = 4Neµ = 5.6 × 10−4 ×
{#of base pairs in the region}; µ is the mutation rate per base pair, per generation; Ne=10,000 is

the effective population size.

Each simulation registers one thousand chromosomes. Each chromosome has a set of initial

SNP’s and we retain only those SNP’s which have minor allele frequency ≥ 0.10 for further analyses.

From simulation, we see that pairwise correlation between adjacent SNP’s can be high (Figure 1).

Thus, using the complete set of SNP’s for a linear model can lead to substantial redundancy and

co-linearity problem. We use a method described in Rinaldo et al. (2004), namely H-clust, to

choose tagging SNP’s (tagSNP). A good set of tagSNP’s will capture essential information about

the genomic region under investigation (Zhang et al., 2002; Ackerman et al., 2003; Ke and Cardon,

2003; Sebastiani et al., 2003). The H-clust method uses the correlation matrix among all SNP’s as

the dissimilarity matrix for the hierarchical clustering method to identify tagSNP’s.

REGRESSION AND FDR FRAMEWORKS

Regression Settings Each tagSNP serves as a covariate in the linear model, labeled from X1 to

Xm. Since a SNP is a bi-allelic marker, Xj only takes on two values; we assign 1 to the major allele

and 0 to the other. Each response variable Yi, i = 1, . . . , n, is generated by a linear combination of

the Xj ’s, altered by some stochastic fluctuations εi; n is the number of chromosomes.

Yi = β0 +
m∑

j=1

βjXij + εi.

The vector of β’s is chosen such that the proportion of non-zero β reflects the proportion of signif-

icant loci. Let the number of non-zero βj ’s be N ; let a =
N

m
.

Assume that m is large and we are unable to fit the full model (with main effects and interaction

terms). We then begin with fitting a marginal model for each Xj :

Ŷij = β̂j0 + β̂j1Xij .

Since Y is simulated with N main effects, least square estimators of βj ’s for the marginal models

are biased, leading to biased test statistics and p-values. This simple framework reflects actual

linear regression scenarios when lurking variables severely bias regression results.
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FDR Setting We obtain p-values Pi’s from testing β1j = 0. Let Hi’s be the collection of tests

corresponding to p-values Pi’s, i = 1, . . . ,m. Let I0 be the set of indices of null hypotheses, and I1

be that of alternative hypotheses.

The FDR is defined to be the expected value of the false discovery proportion FDP , where

FDP is the number of false rejections over the total number of rejections (Benjamini and Hochberg

1995). Congruent with the regression settings, a is the fraction of false nulls, Hi ∼ Bernoulli(a).

Furthermore, let Pi|Hi = 0 ∼ F0, Pi|Hi = 1 ∼ F1. The sequential p-values rejection procedure

(Benjamini and Hochberg 1995) to control FDR at level α includes the following steps:

(i) Order the p-values, P(1) ≤ P(1) ≤ . . . ≤ P(m)

(ii) Choose k = max{i : P(i) ≤
i

m
α}

(iii) Reject all H(i), i = 1, . . . , k.

Write the marginal distribution of the p-values as:

P (Pi ≤ t) = P (Pi ≤ t & Hi = 1) + P (Pi ≤ t & Hi = 0)

= P (Pi ≤ t|Hi = 1)P (Hi = 1) + P (Pi ≤ t|Hi = 0)P (Hi = 0)

= aF1(t) + (1− a)F0(t) = F (t).

We can obtain the FDR from the distributions of Pi, for i ∈ I0 and i ∈ I1,

FDP (t) =
∑

i(1−Hi)I(Pi < t)∑
i I(Pi < t)

FDR(t) = E(FDP (t)) ≈ E(1/m
∑

i(1−Hi)I(Pi < t))
E(1/m

∑
i I(Pi < t))

≈ (1− a)F0(t)
F (t)

≡ R(t).

The sequential p-values procedure is equivalent to choosing a threshold t∗ such that R(t∗) = α,

which implies:

F (t∗) =
(1− a)F0(t∗)

α

(Genovese and Wasserman, 2003). Working with the normal scale, Zi = Φ−1(Pi), the original

p-value settings translate to finding a threshold z∗ such that

G(z∗) =
(1− a)G0(z∗)

α
,
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where G is the marginal distribution function of Zi.

Based on the analogy above, calculation of the empirical FDR amounts to specification of the

marginal distributions G0 and G for Zi, i ∈ I0 & i ∈ I1, respectively. We use the empirical Ĝ for

G.

SPECIFYING A SKEWED G0

From simulations, we observe that the distribution F0 of null p-values is biased away from the

U(0, 1); consequently, the distribution G0 of null z-values departs from the N(0, 1). Figure 2 shows

the distribution of the biased nulls for an exemplary synthetic data set.

Efron (2004) suggests a location-scale correction for the distribution of the null z-values while

keeping the symmetric assumption prior to the calculation of the FDR. However, as seen in Figure

2, the realized bias cannot be characterized by a location and scale alteration alone. The apparent

skewness in the distribution of null z-values can play a significant role in misrepresenting the FDR

(see Figure 3). We propose a skewness adaptation to the distribution of the null z-values prior to

FDR calculation. Estimation of the skewness parameter can be carried out via either parametric

or non-parametric approaches.

Local estimation of skewness, a non-parametric approach By assuming a normal fit to

the distribution, Efron (2004) estimated the location and scale parameters using a non-parametric

procedure. Natural estimators of the parameters are:

µ = arg max{f̂(z)} and σ =
[
− d2

dz2
logf̂(z)

]−1/2

µ

,

where f̂ is an estimator of f . Efron’s calculations amount to assuming that local behavior of

the second derivative of the log-density at the mode reflects the true spread of the distribution.

Following Efron, we propose using the third derivative of the log-density at the mode to estimate

the amount of skewness in the distribution. For the estimation of the derivatives, we propose using

the kernel method.

The kernel method has been studied extensively; for a review, see Scott (1992). The kernel

density estimator of f at a point x is defined as:

f̂(x) =
1

nh

n∑

i=1

K(
x−Xi

h
) =

1
n

n∑

i=1

Kh(x−Xi)
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where Kh(u) = K(u/h)/h. Based on this definition, we can estimate the νth derivative of f in a

similar manner:

f̂ (ν) =
1

nhν

n∑

i=1

K
(ν)
h (x−Xi).

Loader (1999) established the connection of the kernel estimator with the class of local polyno-

mial density estimation. Writing the log-likelihood function as:

L(f) =
n∑

i=1

log(f(Xi))− n(
∫

X
f(u)du− 1),

the localized version of the log-likelihood in a neighborhood of x is:

Lx(f) =
n∑

i=1

K

(
x−Xi

h

)
log(f(Xi))− n

∫

X
K

(
u− x

h

)
f(u)du,

where K is a symmetric weight function. Assume that in a neighborhood of x the log likelihood

can be approximated by a polynomial of degree p:

logf(u) = a0 + a1(u− x) +
a2

2!
(u− x)2 + . . . +

ap

p!
(u− x)p.

Denote this polynomial by Px(a, u) the local likelihood becomes:

Lx(a0, a1, . . . , ap) =
n∑

i=1

K

(
x−Xi

h

)
Px(a,Xi)− n

∫

X
K

(
u− x

h

)
exp(Px(a, u))du.

Let â = (â0, . . . , âp) be the MLE’s of the local likelihood, âi is then the local estimate of the ith

derivative of the log of the density f.

When the local polynomial is a constant (p=0), the local likelihood density estimate coincides

with the kernel density estimate:

f̂(x) = exp(â0) =
1

nh

n∑

i=1

K(
x−Xi

h
).

The density estimator, as a consequence, is part of the family of local polynomial density estimators.

Thus far, we have only worked with the kernel estimator.

We propose using the third derivative at the mode as a measure of local skewness. Let Wi’s be

the centered Zi’s. The local skew parameter can guide us to choose a proper power transformation

of the Vi = h(Wi) such that the distribution of Vi is approximately symmetric. Once the skewness

is removed, i.e. Vi’s are specified, we can carry out a scale correction for the distribution of Vi prior

to calculating the empirical FDR.
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Global estimation of skewness, a parametric approach Azzalini (1985) introduced a class of

skew-normal distributions which allows the presence of skewness in the normal distribution. In this

report, we will mention the univariate skew normal, the multivariate version of the skew normal

can be found in Azzalini and Capitanio (1999).

A random variable Z is said to have a skew-normal distribution with parameter λ if its density

is:

ϕ(z;λ) = 2φ(z)Φ(λz)

where φ and Φ are the standard normal density and distribution functions, λ is the skew parameter.

In practice, we often work with the family of distributions generated by a linear transformation:

Y = ξ + ωZ.

Z can be viewed as a standard skew normal with mean E(Z) =
√

2
π

λ√
1 + λ2

and variance V ar(Z) =

1−E2(Z). Y can be viewed as a skew normal with location, scale parameters (ξ, ω2). The density

of Y is then:

2φ

(
y − ξ

ω

)
Φ

(
λ

y − ξ

ω

)
.

Azzalini (1985), Azzalini and Capitanio (1999) discussed issues relating to estimation of the

skew normal parameters. In particular, the Fisher information matrix becomes singular near λ = 0.

This problem can be remedied by a re-parametrization with (µ, σ, λ) (Azzalini 1985, Azzalini and

Capitanio 1999, Chiogna 1997):

Y = µ + σ
Z − µz

σz
.

For the estimation of the MLE’s, a gradient-based method can be employed. Azzalini and

Capitanio (1999) discussed an EM algorithm which entailed the introduction of a fictitious unob-

served variable. The algorithm offers reliable estimates, especially when the initial values for the

parameters are chosen by the method of moments.

In estimating the parameters of the skew-normal to obtain the marginal distribution Ĝ0 of

Zi, we face another challenge due to the fact that we do not have the set of Zi, i ∈ I0. If all

Zi, i = 1, . . . , m are used, we end up having large bias in the tail of the distribution, which leads

to an overly conservative empirical FDR. This problem is not severe when the local estimator of

the skewness at the mode is used since local estimators give high weights to observations in a

neighborhood of the mode. To remedy the problem of unknown I0 for the global estimate of the
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skewness, we use a pilot estimate of the mode and the spread to select a pilot set of Zi, i ∈ I0. Let

g0 be the density of Zi, i ∈ I0, here are the specific steps:

(i) Get pilot estimate of ĝ0(zi) using the kernel density

(ii) Obtain the mode µ̂0 = arg max(ĝ0(z))

(iii) Get estimate of the second derivative of
d2

dz2
log(g) using the second derivative c2 of a smooth-

ing spline of (z, log(ĝ0(zi))

(iv) Obtain the spread σ̂0 =
√

(−1/c2)

(v) Use Zi ∈ (µ̂0 − 3σ̂0, µ̂0 − 3σ̂0) as pilot set Zi, i ∈ I0 for the estimation of the skew normal

parameter for G0.

FDR CONTROL WITH SKEWNESS CORRECTION

In the simulation study, we set α to 0.05. Due to various sources of bias in the choice of the

distribution of null Zi’s, the empirical FDR is not controlled at the desired level α. In some cases,

the empirical FDR can be extreme (see Figure 4, panel (a)). However, with skewness adjustment

in the choice of the distribution of null Zi’s, we can reduce the bias prior to carrying out FDR

procedure. Given the marginal distribution Ĝ0 of Zi, i ∈ I0, FDR is calculated as follows:

(i) Calculate R(z) =
Ĝ0(z)

Ĝ(z)

(ii) Choose z∗ = max z such that R(z∗) ≤ α

(iii) Reject all Hi for which Zi ≤ z∗

(iv) For rejection threshold z∗, calculate the actual FDR using knowledge of I0 and I1.

Figure 4 shows FDR reduction with skewness correction in the distribution of null z-values using

the global skewness estimator approach. FDR can be as high as 70% with an average of 58% if

the chosen G0 is N(0,1). Using Efron’s location-scale correction, FDR drops to an average of 35%.

The skew-normal specification of G0 reduces FDR to an average of 16%. The skewness correction

using a local estimator such as the kernel shows little improvement over no correction (figure not

shown), and awaits further research.
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DISCUSSION AND FUTURE WORK

The false discovery procedure has become a mainstream method for multiple testing in a variety

of bioinformatics problems. Efron (2004) brought to attention that FDR calculation can be misled

by a choice of the distribution of null z-values. Particularly, when that distribution is not N(0,1),

it is hard to quantify the rejection region. We have addressed the same problem here.

While the bias in the distribution of null z-values G0 is apparent, it is not entirely clear how

to correct for such a bias. Standard practice has taken the N(0,1) as a default for G0. Efron

(2004) proposed keeping the symmetric assumption of G0 while correcting for the location and

scale parameters. In this paper, through simulations in genetics and linear model settings, we

show that deviations of the distribution of null z-values from the N(0,1) can not be quantified by a

location-scale shift alone. Rather, the discernable skewness can misdirect calculation of the FDR.

We proposed using a skew G0 for the FDR procedure. The skewness parameter can be esti-

mated using a global or local approach. So far, we have achieved better control of FDR using the

global skewness correction: representing G0 by a skew-normal distribution. The local approach to

estimation of the skewness parameter remains a challenge. We deem it be critical to explore further

the local polynomial approach to improve estimation of the skewness so as to obtain better FDR

control. In the immediate future, we would like to examine further the following directions:

• Even though we have achieved better FDR control with the global fit of a skew-normal to

the data, FDR is still higher than the preset α = .05 level. We would like to attain α

level control of FDR by (1) examining whether the features of the tail in the distribution of

null z-values plays a significant role in determining FDR and (2) studying how the level of

separation between the distribution of null z-values and that of alternative z-values affects

FDR calculation.

• The skew normal approach to obtain a global skewness parameter can potentially further

improve FDR control. In this paper, we use a pilot index set I0 of null z-values to obtain

the skew parameter. The pilot I0 is based on local estimation of the mode and the spread of

the distribution. These estimators are biased in their own way (see technical appendix which

gives details on the bias of these estimators). We would like to get a better pilot estimate of

the set I0 by studying the choice of δ for the window (µ̂0 − δσ̂0, µ̂0 − δσ̂0).
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• Alternatively, instead of choosing the pilot set I0 using a window around the mode, we can

use the one-sided interval (zm, +∞). The choice of the threshold zm reflects a bias-variance

tradeoff in estimating the skew normal parameters.

• Assuming that the true distribution of the null z-values is N(0,1), we would like to study

power loss resulting from applying the skew-normal procedure.

• The FDR is known to be conservative (Genovese and Wasserman, 2002). Recent work by

Storey (2003) and Benjamini et al. (2003) revealed that estimating the proportion m0 of null

hypotheses and incorporating such information into the FDR procedure could improve power.

We would like to examine if such suggestion can balance the power loss due to applying the

skew-normal procedure when the actual distribution of null z-values is N(0,1).

• This research is motivated by the genetics problem of analyzing SNP data to identify SNP’s

associated with complex diseases. Thus far, we have analyzed the marginal model for each

locus. Ultimately, we would like to study models in which interactions among SNP’s are

present.

• Population substructure can complicate disease association studies. In that respect, we would

like to explore admixture mapping in our simulation study and how it affects the ability to

detect liability genetic variants.

TECHNICAL APPENDIX

The technical appendix is available on the Department of Statistics Private area.
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FIGURE CAPTION

Figure 1: Image plot of the correlation matrix of 79 ,SNP’s in a genomic region. Lighter colors

signify high correlation.

Figure 2: Histograms of null p-values and the corresponding z-values for an exemplary data set.

Figure 3: Histogram of null z-values overlaid by fitted density functions. Blue curve is the

N(0, 1); brown curve is N(−0.3, 1.36) (Efron’s location-scale correction); red curve is the

SN(0.97, 2.18,−2.53). Parameters for Efron’s location-scale and skew-normal corrections are

estimated from the data.

Figure 4: Empirical FDR resulting from (a) No correction (b) Efron’s location and scale correction

(c) Skew normal correction. The plots are generated from 300 simulations.
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