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Abstract

It is common for the components in a homogeneous metallic alloy to
separate at its surface. This phenomenon is known as surface segregation. For
example, under certain conditions, the surface layer of atoms in a Cu85Pd15 is
pure copper, while the second layer of atoms is 50% copper. The bulk retains
its 85/15 composition. A depth-profile characterizes the surface segregation by
describing the atomic fraction of each element as a function of depth.

To study the effects that each alloy composition has on the degree of surface
segregation, researchers have developed a composition spread alloy film, a ma-
terial that contains all possible alloy compositions on a single substrate. We use
angle-resolved x-ray photospectroscopy data collected from a copper-palladium
composition spread alloy film to estimate the depth-profiles for sampled alloys
using both a constrained linear regression and a full Bayesian model. We extend
these models to predict the depth-profile for any alloy composition while allow-
ing for measurement error given the novelty of the composition spread alloy
film.

1 Introduction

It is common for the components in a homogeneous metallic alloy to separate at its surface.
This phenomenon, known as surface segregation, results in a surface composition that can
be quite different than the deeper depths of the alloy known as the bulk. For example,
Newton, et al. showed that under certain conditions, the surface layer of atoms in a
85% copper, 15% palladium alloy is pure copper, while the second layer of atoms is 50%
copper.[18][17] See Figure 1. Hereafter, we will use the standard notation for binary alloys:
YxZ100−x, where Y and Z are the symbols of the elements found in the alloy and x and
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100 − x are the atomic fractions for those respective elements. The above 85% copper,
15% palladium alloy is denoted Cu85Pd15. The degree of surface segregation is affected
by a number of factors including: the component metals, including their proportions in
the alloy, their atomic size, and how they interact; any foreign components that may have
adsorbed into the system; and environmental factors including temperature and pressure.

Surface segregation can be advantageous and thus has practical uses. Industrial uses
of surface segregation include catalysis, where a surface-segregated bimetallic alloy is a
superior catalyst to its monometallic counter-parts.[6] Of particular interest is that of
functional coating, where surface segregation induces a protective barrier of the alloy if the
component metal that migrates to the surface is particularly resistant to corrosion.

An important application of functional coatings is in the creation of palladium-based
membranes. A palladium membrane can be used to separate hydrogen from any one of
a number of hydrogen mixtures, including hydrogen-carbon monoxide. By exploiting the
surface-segregation of a Pd70Cu30 alloy, Miller, et al. use the predominantly copper surface
as a functional coating to protect a palladium-membrane interior from hydrogen sulfide,
H2S, a corrosive gas commonly found in fossil fuel plants.[15][16] Adhikari, et al. also report
the use of copper as a functional coating and further note that a copper-palladium alloy
in the correct proportions has a higher hydrogen permeation rate and is more thermally
and chemically stable than palladium alone, allowing the alloy to separate more hydrogen
than a pure palladium membrane.[1]

Understanding the impact that different alloy compositions has on the degree of seg-
regation is not trivial. Previous research required scientists to create a series of alloys
with specific compositions then analyze them with a preferred method to investigate their
surface and bulk compositions. To advance this process, Gellman, Miller and their group
in the Department of Chemical Engineering at Carnegie Mellon University have developed
a method to create a Composition Spread Alloy Film (CSAF). A CSAF is a multimetallic
substance that contains all possible combinations of an alloy, in this case, PdXCu100−X , on
a single substrate. Figure 2 depicts a copper-palladium CSAF, where the ratio of copper
to palladium increases continuously and linearly from 0:1 to 1:0, that is, every alloy com-
position is represented including pure palladium (Pd100Cu0) and pure copper (Pd0Cu100)
on the left and right sides of the material, respectively.

Angle-resolved x-ray photospectroscopy (ARXPS) is a technique to extract composi-
tional information at near surface depths. The result is a depth-profile which gives the
atomic concentration of each element as a function of depth. Depth-profiles can then be
used to examine surface segregation. With ARXPS data collected from numerous locations
on a copper-palladium CSAF, the primary goal of this research is to build a model
which predicts the depth-profile for any composition of a copper-palladium al-
loy. Our initial model will be a high-order polynomial fixed-effects regression model which
includes the alloy composition as a predictor. If an examination of residuals shows a lack
of fit, then the data may be fit using splines.

If the gradient in the alloy compositions of the CSAF was exactly linear, then we
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would know which alloy composition was sampled if we know where on the CSAF the data
was collected. However, because of the variation that can occur when creating a CSAF,
it is unclear as to the nature of this gradient. Consequently, although we can be fairly
certain as to where on the CSAF the data is collected, we cannot be sure as to which alloy
composition was sampled. Therefore, the second goal of this research is to extend
this regression model to allow for measurement error of the alloy compositions
in the CSAF.

We also note that estimating the depth-profiles from raw ARXPS data is not trivial.
Many of the current methods are based on older ARXPS machines which were limited in the
amount of data they could collect. Consequently, many of these methods are iterative and
may be time-consuming. Gellman, Miller and their group have acquired a Theta-ProbeR©,
a new type of an ARXPS machine capable of rapidly collecting numerous sources of data.
Because of the large amount of additional data, we believe a constrained least squares
approach and/or a Bayesian model will be at least as accurate as the standard methods
in estimating depth-profiles. Our third goal is to compare one current method,
maximum entropy, with our linear and Bayesian models. Our fourth goal is
to use our estimates and variances, and incorporate it into the measurement
error model as described above.

2 Angle-Resolved X-Ray Photospectroscopy

2.1 Electron Binding Energy

Binding energy is the amount of energy necessary to remove an electron from its orbital.[20]
An electron orbital is the probability distribution of the location of a single or pair of
electrons around its nucleus. The shape and location of the orbitals are distinguished
by their three quantum numbers: the principal number which gives its main location or
shell (also characterizes its overall size) - this is given as n = 1, 2, 3, . . . ; the azimuthal
number which characterizes its distribution shape - this is given as l = 0, 1, 2, 3, . . ., or
more commonly expressed as s, p, d, f, . . . (with l ≤ n−1); and its magnetic number which
gives the orientation of the distribution shape - this is given as −l,−l + 1, . . . , l − 1, l.
For example, the 2p orbital is in the second shell and has “shape” p, or l = 1 (p is
usually described as dumbbell shaped). This “dumbbell” can be oriented in three different
directions, -1, 0, and 1.[30] Electrons fill in the orbitals in an orderly manner following
Madelung’s rule, where an electron occupies an orbital in order of increasing n+ l. When
two orbitals have the same value of n+ l, the electron occupies the orbital with the smaller
n.[33] The order for the first few orbitals is thus:

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, . . .

The binding energy for any electron is largely a function of the number of protons of the
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atom as well as the location of the electron, i.e., which orbital the electron occupies.1[20]
Because of the attractive properties of protons and electrons, the more protons the atom
has, the more energy necessary to remove the electron. Similarly, the closer the electron
is to the nucleus and thus to the protons, the more binding energy the electron has. For
example, an electron in the 3s orbital will have less binding energy than an electron in the
2p orbital, since the 2p electron is closer to the atom’s nucleus. Similarly, a 2p electron
in palladium will have a higher binding energy than a 2p electron in copper because of
palladium’s additional 17 protons.

Because each element has a specific number of protons and due to the location differ-
ence between orbitals, the binding energy for an electron is unique given its element and
orbital.[30] For example, the binding energies for palladium electrons residing in the 2p1

2 ,
2p3

2 , 3d3
2 , and 3d5

2 orbitals are 3330, 3173, 340.5, and 335.2 eV, respectively. For copper
electrons in the 2p1

2 and 2p3
2 orbitals, the binding energies are 952.3 and 932.7 eV.[32][31]

The two binding energies seen in a single orbital are from the two electrons that reside in
that orbital, with the difference in energies given by the interaction between the electron
spin and the orbital, denoted by the fraction given after the azimuthal number.[30]

2.2 X-ray Photospectroscopy

If a photon hits an electron, that electron, known as a photoelectron, can be removed from
its orbital, provided that the photon’s energy is greater than the binding energy of the
electron. Thus, a large number of photons with sufficient energy in an x-ray can be used to
remove a group of electrons from a substance. If it is assumed that the x-ray has constant
energy given by hν (e.g., for an Al Kα x-ray, hν = 1486.6eV), then the kinetic energy of
the removed electron will be given by:

KE = hν − φ− BE (1)

where KE is the kinetic energy of the electron, φ is a constant given by a work function of
the x-ray and analyzer, and BE is the binding energy of the electron. It follows that the
kinetic energy of the removed electrons also acts like a signature, identifying the element
and the shell the electron once occupied.[30]

An electron energy analyzer such as a concentric hemispheric analyzer can be used to
determine the kinetic energies of the removed electrons and count the number of electrons
at those kinetic energies. The result is a spectrum, with either kinetic energy or binding
energy on the horizontal axis and electron counts on the vertical axis. By examining
the spectrum of a substance, we can identify the elements present in the substance by
determining the binding/kinetic energies associated with large electron counts (smaller

1Other factors can substantially effect binding energy as well, including the interaction between the electron
spin and the shape of the orbital it occupies, as well as other elements present, especially for electrons in the
outer valence shells.

4



counts are usually noise). The counts are also known as the intensity, I, at a given kinetic
or binding energy. See Figure 3(a). Further, by calculating the ratios of the intensities for
each element, we can quantify the atomic fractions of each element in the sample.

The process of removing electrons through the use of an x-ray, then identifying the
present elements is sometimes referred to as electron spectroscopy chemical analysis (ESCA)
or x-ray photospectroscopy (XPS).[30] It should be noted that the binding energy of valence
electrons, those electrons on the outermost shells of an atom which are capable of bonding
with the valence electrons of other atoms, are not constant and depend not only the
element, but on the local chemical environment, e.g., the properties of the atom in which
the electron is bound. Therefore, many of the XPS techniques used to identify elements are
only concerned with core electrons, those electrons located in the inner shells of the atom.
Typically, the specific electrons selected for XPS analysis can vary for different elements
but will have the same binding energy order of magnitude.

Although the photons from an x-ray can penetrate numerous atomic layers, the prob-
ability that a photoelectron will travel through atomic layers to the surface of a substance
without losing energy decays exponentially with how deep within the substance the elec-
tron lies. This is because the electron loses energy each time it collides with another
electron shell. This concept is characterized by the attenuation length, λ, of an electron,
which is determined by a variety factors including the size of the atoms in the substance
and the kinetic energy of the electron. The parameter λ is defined as the mean distance
an electron travels before its kinetic energy decays to e−1 of its initial value. Attenuation
length is typically calculated using the Seah and Dench’s formula[22]:

λ = 538aKE2 + 0.41
√
a3KE

where KE is the electron kinetic energy and a3 is the volume in nm of one atom in a solid
state.

Using the attenuation length and the Beer-Lambert Law , we can estimate the percent-
age of the spectral intensity that is given by the electrons at each depth. The Beer-Lambert
Law is given by:

I = I0 exp

{
−d
λ

}
(2)

where I is the intensity of electrons, d is depth within the sample orthogonal to the surface
and I0 is the intensity of electrons of an infinitely thick sample. Figure 5a, shows a standard
setup where the electron energy analyzer is parallel to the surface of the sample. Under
this setup, the Beer-Lambert Law shows that 63% of the electron intensity found in the
sample’s spectrum comes from within one attenuation length, λ of the surface, 86.5% comes
from within two attenuation lengths, and 95% comes from within three attenuation lengths
(Figure 5b).

Without experimental noise, there should be a single spike in the spectrum only at the
binding energy that coincides with an element’s electron and no counts elsewhere. However,
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the XPS results from a copper-palladium alloy as seen in Figure 3(b) and (c) shows wide
peaks around the two binding energies as well as low-level background noise of smaller
electron counts away from the binding energies. The wide peaks are a consequence of a
number of factors, including the time in which the gap created by the emitted photoelectron
is filled by another electron, variance in x-ray energy which is taken as a constant in Eq.
(1), and analyzer/experiment effects. The result is a line shape that can be approximated
by a convolution of a Cauchy (Lorentzian) and Gaussian curve. See Ratner and Castner
for details.[20]

The background noise comes from a variety of sources. The first is from those photoelec-
trons that escaped from the sample’s interior but lost energy due to collisions, or inelastic
scattering, with other atoms on their way to the surface. Further spectral counts are from
photoelectrons from outer shells, either excited by a photon or by a photoelectron from an
inner shell. This latter type is known as a “shake-off satellite.” Alternatively, “shake-up
satellites” result from the loss of energy of the core photoelectron when it does lose energy
to a valence electron, whether that valence electron gained enough energy to be emitted it-
self (shake-off satellite) or just enough to be moved to a higher energy level. Further, when
an outer-shell electron fills in the hole left by of an emitted inner-photoelectron, energy is
released and can be transferred to another outer electron which can then escape from its
orbital. This is known as an Auger electron. Photoelectrons can also interact with banded
valence electrons giving a discrete energy loss, known as a plasmon loss. Finally, back-
ground counts can arise from x-rays, either with impurities in the x-ray’s anode (known
as x-ray ghosts), or lower energy photons resulting from unlikely electron transitions in
the anode (x-ray satellites). For details, again see Ratner and Castner[20], Briggs[2], and
Watts.[30]

The intensity or counts used for quantification from XPS data is usually the area under
the fitted peak after the background is subtracted. Although there are many algorithms
to both fit an XPS peak and/or subtract a background, the preferred methods are to use
a convolution of a Lorentzian and Gaussian curve to fit the peak, and to use the “Smart”
method to subtract the background.[3] The Smart method is a modified Shirley method,
an iterative method which adjusts the intensity of the background until it is proportional
to the peak area.[23][26] The results can be seen in Figure 4.

2.3 Angle-Resolved X-ray Photospectroscopy

Using the Beer-Lambert Law, scientists have developed angle-resolved x-ray photospec-
troscopy. By increasing the angle, θ of the analyzer normal to the surface (Figure 5c),
electrons at a depth d within the surface of the sample must travel d

cos θ to reach the sur-
face with their original kinetic energy and be detected by the analyzer. The Beer-Lambert
Law can then be given by:

I (θ) = I0 exp

{
−d

λ cos θ

}
. (3)
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Clearly, the effect of varying the angle of the analyzer affects the percentage of the
spectrum intensity given by electron depth, with larger angles corresponding to intensities
that are given mostly by the surface of the sample.

3 Depth-Profile Estimation

3.1 Brief Literature Review

With collected data and the Beer-Lambert Law, researchers can develop a depth-profile
of the sample. A depth-profile gives the concentration(s) of each element in a sample at
selected depths. See Figure 6.

There are various methods of estimating the depth-profile from angle-resolved data.
The first group of methods are based on the model:

I` (θ) = k

∫ ∞
0

ρ (d) c` (d) exp

{
−d

λ` cos θ

}
dd (4)

where k is a constant based on instrumentation, ρ (d) is the total mass density of the
sample at depth d, and c` (d) is the concentration depth-profile of element ` (subject to the
constraint

∑
` c` (d) = 1 for all d). Monte Carlo or numerical inversion methods, usually

the Laplace transform, are then applied to solve for ρ (d) c` (d). Cumpson notes that these
methods, like many inversion methods, are highly unstable, with estimates varying widely
for small errors in measurements.[5]

Other methods based on this model have avoided this problem by simplifying ρ (d) c` (d)
using additional and possibly spurious assumptions. For example, Fischer et al. suppose
specific geometries, setting the depth-profile to be trapezoidal and solving for various
parameters of the trapezoid (see Figure 7) using a least squares method, minimizing:∑

j

∑
`

(
Icalc
` (θj)− Iobs

` (θj)
)2

(5)

over each angle θj and each element `.[7] Icalc
` and Iobs

` are the calculated and observed
intensities, respectively. Grabherr et al. as well as Siuda had a similar approach, but
assume the concentration profile follows a polynomial.[10][24]

Another widely used group of methods is based on what is sometimes referred to as
a multilayer model. This model assumes that the sample is composed of discrete atomic
layers of equal thickness. See Figure 8. The intensity, I` (θ) of element ` from angle θ is
calculated by a weighted sum as:

I` (θ) = k`

[
n`,1 + n`,2T` (θ) + n`,3T` (θ)2 + n`,4T` (θ)3 + . . .

]
(6)

7



where n`,i is the atomic fraction of element ` at layer i, the entirety of which makes up the

concentration depth profile; T` (θ) = exp
{

−t
λ` cos θ

}
is the layer transmission function given

by the Beer-Lambert Law with t the thickness of each layer; k` is a constant such that for a
pure substance, I` (θ) = 1. Therefore k` is based on few factors including element-specific
information such as the cross-section of the atom, the number of layers in the multi-layer
model, and instrument/experiment factors such as time the x-ray is used on the sample,
the size of the area used in the analysis, and the pass energy in the analyzer. The pass
energy is the window of energy accepted into each energy bin of the spectrum. For example,
any electron with a binding energy between 860 and 900 eV will be counted in the 880
eV spectrum if the pass energy of the analyzer is set to 40 eV. It follows that larger pass
energies correspond to more data, but wider peaks (more noise).

To solve for n`,i, i = 1, 2, 3, . . ., researchers have largely relied on methods based on least
squares or regularization.[19][11][29][4] However, Smith and Livesy and later Scorciapino
et al. used a method known as maximum entropy.[13][21] Maximum entropy defines two
quantities:

S =
∑
`

∑
i

n`,i −m`,i − n`,i log

(
n`,i
m`,i

)
(7)

and

C =
∑
j

∑
`

(
Icalc
` (θj)− Iobs

` (θj)
)2

σ2
`,j

. (8)

S in Eq. (7) is the entropy, a measure of the lack of information we have in the system.
n`,i is again, the proportion of element ` in layer i. m`,i, however, is our initial guess
of that proportion (prior to any data collection), allowing the researcher to impart some
prior knowledge she may have of the system. Because the data is noisy, the goal is to
maximize the entropy, S, i.e., allow for the greatest amount of missing information. This
is equivalent to ensuring that there is no overfitting of the data and fitting a structure that
may be a consequence of a noisy measurement.

However, S is only maximized under the constraint that the estimated depth profile
n`,i is consistent with the data. This is satisfied by minimizing C in Eq. (8). Here, σ2

`,j is

the variance of the jth measurement of element `. We note that C follows a χ2 distribution
and C ≤ N , the number of independent observations.

Livesey and Smith in a later paper discussed some solutions to maximizing S while
minimizing C. This is typically done either by using an iterative approach put forth by
Skilling and Bryan or alternatively by maximizing the weighted sum of Eqs. (7) and (8)

Q = αS − 1

2
C, (9)

where α is reduced until C = N .[25][14]
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In the same paper, Livesey and Smith also showed the solution as an application of
Bayesian inference, where

P (n`,i|D) =
P (n`,i)P (D|n`,i)

P (D)

where P (n`,i|D) is the probability of the depth-profile n`,i given the data, D; P (n`,i) is the
prior distribution of the profile; P (D|n`,i) is the probability of measuring the data D as
observed given the depth-profile n`,i; and P (D) is the prior probability of measuring D.

If the likelihood function P (D|n`,i) can be derived from D by:

P (D|n`,i) = exp

{
−χ2

2

}

= exp

−∑
j

∑
`

(
Icalc
` (θj)− Iobs

` (θj)
)2

σ2
`,j

 (from Eq. (8))

and the prior distribution of the profile n`,i can be given by:

P (n`,i) ∝ exp {αS [n`,i]}

= exp

{
α
∑
`

∑
i

n`,i −m`,i − n`,i log

(
n`,i
m`,i

)}
(from Eq. (7)).

then letting Q = logP (n`,i|D) gives us back our original maximum entropy equation, Eq.
(9): Q = αS − 1

2C.
Although the most probable α can be found by maximizing the joint probability

P (αn`,ı|D), Gull and Skilling determined an analytical solution for the optimal value of α.
Again, see Livesey and Smith for details.

Livesey and Smith pointed out that the Bayesian analysis of the maximum entropy
data provide numerous benefits. The most important are a) it allows the calculation of
credible intervals for the constructed depth profile; b) the amount of noise in the data can
be determined; and c) the value of α that is found “gives a closer fit to the data than the
historic fitting criterion [where] the weighted sum of squares error...equals the number of
independent measurements.”

3.2 Numerous-Angle Approaches

Common instruments that perform angle-resolved x-ray photospectroscopy require the
researcher to manually change the angle of the sample with respect to the analyzer to
gather angle-resolved data. Because of these manual procedures as well as the secondary
processes instrumental in collecting data including maintaining an ultra-high vacuum in
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the chamber where the sample is located, the number of angles and the amount of data
that can be collected is limited.

Gellman, Miller and their group in the Department of Chemical Engineering at Carnegie
Mellon University have acquired a Theta-ProbeR©. This ARXPS device manufactured by
ThermoFisher Scientific uses a magnetic field to draw the electrons into as many as 96
different angle regions simultaneously, allowing for greater data acquisition in less time.[28]
See Figure 9.

3.2.1 Constrained Least Squares

Because of the large amount of data that can be collected at the numerous angles, we
believe a constrained least-squares approach based on the multilayer model as described
above will give us reasonable estimates of depth profiles.

Restating Eq. (6) in matrix notation for a two element, M layer model with a t layer
thickness:

I =

[
I1
I2

]
=

[
k1T1N1

k2T2N2

]
(10)

k` is still the element/instrumentation constant; I` is a vector of length p of the measured
intensities for element ` at various angles (we assume p is the same for all elements):

I` =


I` (θ1)
I` (θ2)

...
I` (θp)

 (11)

T` is a p×M matrix with columns corresponding to the transmission layer functions for
each layer given by the Beer-Lambert Law and rows corresponding to the p measurements:

T` =


1 exp

{
−t

λ` cos θ1

}
exp

{
−2t

λ` cos θ1

}
exp

{
−3t

λ` cos θ1

}
· · · exp

{
−(M−1)t
λ` cos θ1

}
1 exp

{
−t

λ` cos θ2

}
exp

{
−2t

λ` cos θ2

}
exp

{
−3t

λ` cos θ2

}
· · · exp

{
−(M−1)t
λ` cos θ2

}
...

. . .
...

1 exp
{

−t
λ` cos θp

}
exp

{
−2t

λ` cos θp

}
exp

{
−3t

λ` cos θp

}
· · · exp

{
−(M−1)t
λ` cos θp

}

 (12)

and N` is a vector of the concentrations for the M layers:

N` =


n`,1
n`,2

...
n`,M

 . (13)
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T` is clearly fixed since the measurement angle is known and t, the layer thickness, is
given. Because I` is measured, we can thus estimate the depth profile by solving for N1

and N2 by minimizing the constrained sum of squares:

argmin
N1,N2

[
I−

[
k1T1N1

k2T2N2

]]′ [
I−

[
k1T1N1

k2T2N2

]]
,

under the equality constraint N1 + N2 = 1 and the inequality constraint 0 ≤ N1 ≤ 1 (it
follows that 0 ≤ N2 ≤ 1).

We can reparameterize the linear constraints as

HN−C = 0

where H is the partitioned matrix, [ImIm], Im being the identity matrix with m columns
and rows, N = [N1N2], and C is a column vector of 2m 1s. For example, for a three layer
model with two elements,

H =

 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1



N =



n1,1

n1,2

n1,3

n2,1

n2,2

n2,3


and

C =



1
1
1
1
1
1

 .

The general solution to N with only linear constraints is:

N̂ = A−1
[
kT′I−

[
H′
(
HA−1H′

)−1 [
HA−1kT′I + HA−1H′C−C

]]
+ H′C

]
(14)

where A = H′H + kT′Tk. The variance-covariance of N̂ is

VAR
(
N̂
)

= G′σ2G (15)

where G =
(
A−1kT′ −A−1H′

(
HA−1H′

)−1
HA−1kT′

)
and σ2 = VAR (I). Further, un-

der the Karush-Kuhn-Tucker conditions, the necessary conditions for an optimal solution
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under constraints, if the optimal solution to a parameter lies outside the inequality con-
straints, the constraint is binding and can therefore be set equal to the bound using an
equality constraint.[12]

3.2.2 Bayesian Analysis

We believe a Bayesian model may also be appropriate here for reasons to be explained in
the following section. We again follow the multilayer model for an alloy and assume the
observed intensities, I, given the layer concentrations, n, the element, l, and the angle of
measurement, θ follow independent normal distributions from the following model:

I|n, `, θ ∼ N
(
µn,`,θ, σ

2
)

(16)

1

σ2
∼ Gamma (γ1, γ2) (17)

µn,`,θ = k`

m∑
i

n`,mT` (θ)i−1 (18)

n`,m ∼ Beta (αm, βm) (19)

αm ∼ Gamma (α0.1, α0.2) (20)

βm ∼ Gamma (β0.1, β0.2) (21)

where γ1, γ2, α0.1, α0.2β0.1, and β0.2 are fixed, and again we constrain n1,m = 1−n2,m. Our
model for µn,`,θ from (28) follows directly from Eqn. (6) above. And since n`,m is the
atomic concentration or percent of element ` in layer m, we assume that each layer is an
independent sample from a Beta distribution. Because we don’t assume any dependence
of concentrations between each layer, we assume that the αm and βm hyperparameters are
independent samples from a Gamma distribution.

3.3 Model Comparison

Using simulated noisy intensities with underlying known depth-profiles, the estimates and
confidence/credible intervals of computed concentrations from the two numerous-angle
approaches will be compared to that given by the maximum entropy method.2 Although
the maximum entropy method can be computed using the Avantage software which comes
standard with the Theta-Probe, we believe it uses the Skilling and Bryan approach rather
than the Bayesian method and therefore does not provide any estimates of error.[27] We
are in the process of creating software that computes the maximum entropy using the
Bayesian method so a credible interval can be calculated. Further, due to the number of

2At this time, we are not clear how to characterize the noise from the intensities. However, we believe this
can be resolved with repeated experiments.
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depth-profiles to be estimated, we will investigate the time of computation for the different
methods.

It should also be noted that we have not seen any literature regarding the choice of
M and t, the number of layers and the thickness of each layer. We note that the Beer-
Lambert Law implies that 99.9% of the intensity is given by electrons that are within seven
attenuation lengths of the surface when the analyzing angle is orthogonal to the sample
surface. So although M and t are somewhat arbitrary, we believe a reasonable choice of
M and t to approximate the multilayer model are such that t×M ≈ 7λ`, with specific M
and t to be chosen using a Bayes factor for the Bayesian and maximum entropy approach
and/or AIC for the numerous angle approach.

4 Composition Spread Alloy Film Depth-Profile

Prediction

4.1 Fixed-Effects Model

Recall that a depth-profile gives the concentration(s) of each element in a sample at any
(shallow) depth. To estimate depth-profiles using either the maximum entropy or the two
numerous-angle approaches, we used a multilayer model which assumes that the composi-
tion of the sample is comprised of discrete atomic layers of equal thickness. Although we
believe this model to be adequate, depending on the number of layers estimated, it may
only approximate the actual structure of the sample.

To find what we believe to be a more realistic depth-profile that provides concentrations
of the elements for any depth at or just below the surface of the sample, we assume
the discrete estimates are samples from an underlying smooth continuous depth-profile.
That is, we wish to find some smooth, continuous function f that fits the discrete points
estimated from our numerous-angle methods, such that

conc = f (depth) ,

where conc is the atomic concentration. We also note that the information about the
atomic concentrations decreases for estimates deeper within the sample. This is reflected
by the increasing standard errors for those estimates, as seen in Figure 10.

To find f (depth) and to account for the decreasing information as a function of depth,
we will use a weighted least squares regression on a high-order polynomial with weights
determined by the standard errors of the estimates. Although just a starting point, we
fit individual regression functions to each simulated profile that may be sampled from a
composition spread alloy film, as seen in Figure 11. Under these simulated conditions,
sixth order polynomial regression functions fit the data rather well.

In order to model profiles for different alloy compositions, comp0, in a CSAF, we add
as a predictor a high order polynomial of composition and its interaction with depth to
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our model. That is, we will attempt to model:

conc = α+

m∑
i=1

βi,0depthi +

n∑
j=1

β0,jcompj0 +

m∑
i=1

n∑
j=1

βi,jdepthi × compj0. (22)

The order of the two polynomials and interactions will be determined with some goodness-
of-fit criteria, such as AIC. However, due to the collinearity within the polynomials as
well as numerical stability issues in estimating βi,j , we will transform the predictors into
orthonormal polynomials first, using the stabilized Gram-Schmidt process.[34] The results
from our simulated data can be seen in Figure 12(a) which we found using a 6th order
polynomial of depth, a 5th order polynomial of bulk, and all of their interactions. The
important thing to note is that using Eq. (22) above, we can predict the depth
profile for any alloy composition. The fitted simulated alloys as well as predicted
alloys can be seen in Figure 12(b). Also, if we find the order of the polynomials it too
large, we will investigate the use of a spline basis.

4.2 Measurement-Error Model

The above model in Eqn. (22) assumes the compositions, comp0 from the composition
spread alloy film are known and fixed. As stated earlier, we are wary of this assumption.
The process of making the CSAF is new and it is unclear if the properties are understood.
Further, with only a few CSAFs made, the differences between “identically” made CSAFs
are unknown.

Therefore, we wish to model the concentration function using a “errors-in-variables”
or “measurement-error” model. These types of models allow for additional variance in the
explanatory variable, in this case, the composition. See Fuller and Gilks et al. for further
details.[8][9]

Following Gilks et al., we can redefine our model of the concentration in Eq. (22) in
hierarchical terms:

conc = α+

m∑
i=1

βi,0depthi +

n∑
j=1

β0,jµ
j
comp +

m∑
i=1

n∑
j=1

βi,jdepthi × µjcomp. (23)

with the assumed composition imparting information about µcomp with an additional vari-
ance term. For now, we will assume the “measured” composition follows a normal dis-
tribution given by the mean of the assumed composition, and an unknown variance, that
is,

µcomp ∼ N
(
comp0, σ

2
comp

)
(24)

We can model this variance by:

1

σ2
comp

∼ Gamma (.001, .001) (25)
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where the choice of parameters for the Gamma distribution were selected to be diffuse.
Using Markov Chain Monte Carlo methods on a large number of depths from our

concentration functions, we believe we can find reasonable estimates not only for βs, but
also σ2

comp which will give us some notion regarding how precise our assumptions about
the true composition are.

4.3 Bayesian Analysis

Modeling the concentration depth profile of the CSAF from the Bayesian perspective should
be a natural extension to the model laid out in Eqs. (16) - (21) in Section 3.2.2. There,
our goal was to find P (nm|I`) for an m layer model where we assumed nm came from a
Beta distribution. We extend this by instead modeling the joint distribution P (nm,κ, ψ|I`),
where nm,κ is the atomic concentration in layer m for the κ composition measure. nm,κ
is modeled using a logit link with mean given by ψ, a coefficient of the composition. Our
model thus becomes:

I|n, `, θ, κ ∼ N
(
µn,`,θ,κ, σ

2
0

)
(26)

1

σ2
0

∼ Gamma (γ0,1, γ0,2) (27)

µn,`,θ,κ = k`

m∑
i

n`,m,κT` (θ)i−1 (28)

logit (n`,m,κ) = ψ`,mcomp` (29)

comp` ∼ N
(
comp0, σ

2
comp

)
(30)

1

σ2
comp

∼ Gamma (.001, .001) (31)

Allowing for a distribution on comp` allows us again to estimate the degree of measurement
error of the “true” composition of the alloy, σ2

comp. Further, using the joint distribution of
the θm, we can predict the concentrations for compositions not originally sampled.

5 Summary of Proposed Work

The use of the composition spread copper-palladium alloy films may be invaluable in deter-
mining the correct ratio of copper to palladium in order to create a hydrogen purification
membrane. We believe that with enough ARXPS data from various locations on the CSAF
along with the models laid out in this proposal, we can not only estimate the depth-profile
for any alloy composition, but gain some insight into the properties of the CSAF. To this
end, we propose to:
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1. Determine an appropriate atomic concentration model for a discrete number of layers
for a single set of observations from a given alloy (Sections 3.2.1 and 3.2.2).

2. Extend these models to predict continuous depth profiles for any given alloy given
the data sampled from a composition spread alloy film (Sections 4.1 and 4.3).

3. Incorporate measurement-error in these models and investigate the variance that may
be associated with the “true” compositions (Sections 4.2 and 4.3).
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Figure 1: (a) A 50-50 alloy before surface-segregation. The different components shown as red
and blue atoms are evenly distributed throughout the material. (b) The same alloy after surface-
segregation. The blue component has migrated to the surface while pushing the red component
just underneath the surface. The bulk of the alloy, that part of the material that is deep below
the surface, remains a 50-50 evenly-distributed alloy.
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Surface

Pure Pd Pure CuPd50Cu50

Figure 2: A copper-palladium composition spread alloy film. The CSAF consists of all possible
combinations of alloys, with pure palladium on the left with a linear increase in the copper
percentage as it moves to the right. The far right side is pure palladium.

20



(a)

Binding Energy (eV)

C
ou

nt
s

0
20

00
0

40
00

0
60

00
0

80
00

0

900 800 700 600 500 400 300

(b) (c)

Binding Energy (eV)

C
ou

nt
s

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0

970 960 950 940 930

Binding Energy (eV)

C
ou

nt
s

20
00

0
40

00
0

60
00

0
80

00
0

350 345 340 335 330

Figure 3: (a) A typical full spectrum resulting from an XPS experiment on a copper palladium
alloy. With large counts at known binding energies, the exact elements in a sample can be
identified. A close-up of the same spectrum for copper (b) and palladium (c).
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Figure 4: A spectrum resulting from an XPS experiment on a pure copper sample. The black
line is the measured counts, the blue line is the peak fit using a Lorenzian-Gaussian convolution,
the green line is the background calculating using the “Smart” method. The fiitted peak and
background were calculated using the Avantage software.
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Figure 5: (a) Typical x-ray photospectroscopy where the concentric hemispherical analyzer is
normal to the sample surface. (b) The percentage of the intensity of the XPS signal in this
setup that comes from electrons that are within a given depth as predicted by the Beer-Lambert
law. (c) Heuristically, in angle-resolved x-ray photospectroscopy, the angle of the analyzer with
respect to the sample is changed as shown above. In practice, the sample’s angle is changed
with respect to the analyzer. (d) Steeper angles result is an XPS signal which is more surface
sensitive.
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Figure 6: A sample depth profile. The atomic percent of each element in the sample is given at
various depths.
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Figure 7: The depth-profile is assumed to be trapezoidal as seen above. A least squares method
is used to solve for the free parameters a, b, and c0 with mass densities ρ0, ρint, and ρb.
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Figure 8: The multilatyer model assumes discrete layers of equal thickness. The XPS signal is
given by the weighted sum of the electron energies from each layer, with weights equal to the
Beer-Lambert law, the probability of the electron reaching the surface with its original energy.
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Figure 9: Using a magnetic field to draw the electrons into the analyzer, the Theta-ProbeR© is
capable of collecting angle-resolved data from multiple regions of angles simultaneously.

25



●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Depth (nm)

C
on

ce
nt

ra
tio

n 
(A

to
m

ic
 %

)

●

●

●

●

● ●True Value Estimate

Figure 10: Concentrations estimated from the posterior mean of a Bayesian model. Error bars
are given by the 2.5 and 97.5 sample quantiles. The error bars increase with deeper depths
reflecting the decreasing information we have within the sample.
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Figure 11: A sample of the possible copper observations from a composition spread alloy film
made from , where each line corresponds to a different alloy (e.g., Cu25 is from a Pd75Cu25). We
can estimate the depth profile using the multilayer model estimates with weighted least squares
regression functions of a high order polynomial, in this case, a 6th order polynomial of depth.
The larger confidence bands in the deeper depths is a result of the weighted least squares.
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Figure 12: (a) The simulated depth profile estimated using a polynomial regression function
with a sixth order polynomial of depth, a 5th order polynomial of original composition and
their interactions. (b) The same regression function used to predict new compositions not
sampled in the CSAF.
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