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Abstract

Upcoming astronomical surveys will require real-time slfisation of sources with varying bright-
ness. Correctly cataloguing distinct variable sourceséful for fitting models that accurately describe
the underlying physics of the universe. Real-time classifio is also important for resource alloca-
tion of telescope follow-up. Manual classification usingsposcopy has been the preferred method in
astronomy, but the large amounts of non-spectroscopiod&iéure surveys makes classification of vari-
able sources difficult. For each candidate source, we cenbidghtness measurements at irregularly-
spaced time points (i.e., a light curve). Classification airses based on these light curves alone is
challenging because the variability in the time seriesletee in complex ways to the underlying physi-
cal processes that generate the data. Some attempts havenade to aid the classification of variable
sources using machine learning methods, but it seems thiddtie classification of these sources will
require one to incorporate current understanding of thesigkybehind the processes that generated the
observable data.

In this thesis we propose a classification scheme that witilioe (1) the physical knowledge of
the relationship between the type of object and spectras@ofprmation - in a training set - with (2)
the reality of the low quality time series that we will observlhe underlying idea is that the spectra
can accurately predict the type of source, thus we can hofeato a complex structure between the
light curve and features derived from the spectra. The ligintes are then used to predict the value for
the spectral feature, which is then used for classificatioihis way, we have, in essence, performed a
transformatiorof the class label. The hope is that it will be easier to asage# relationship between the
real-valued spectral feature and the observed light cursesy standard regression techniques. Also,
errors in the estimate of the spectral feature could be giezhimore naturally, and transforming these
into uncertainties in the class label will be straightfordia
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1 Introduction

Time series classification is built upon supervised leaymirethods to label temporally varying sequences.
Consider the situation where we observe a sample of timesséom each of{ different classes, where
the class of each observed time series is known. The goaasgification is to use the sample information
to construct a rule to classify any future time series forclhihe class is unknown. Such a partition of
the data space would have to maximize both the within-gronnilagity and between-group differences.
However, in cases of interest, the complex nature of thegktaration process, as well as excess variability
and sampling effects, make the time-domain informationffigent for a clear separation when analyzed
alone. Therefore, classification accuracy when using amlg series data is limited.

In this thesis we propose a classification scheme for timess#érat will exploit data by combining (1)
the knowledge of the relationship between the class typeaanillary data - in a training set - with (2) the
reality of the low quality and noisy time series that we olserThe underlying idea is that the ancillary
data can accurately predict the class, and thus we can hdpartoa complex structure between the time
series and features derived from the ancillary data. Thergbd data are then used to predict the value
for the ancillary data, which is then used for classificatidon this way, we have, in essence, performed
a transformationof the class label. In applications of interest, the claggllas a categorical variable,
while the ancillary data will be a continuous quantity. Thapé is that it will be easier to ascertain a
relationship between the continuous quantity and the ebb&r data using standard regression techniques.
Also, errors in the estimate of the ancillary feature coutdgoiantified more naturally, and transforming
these into uncertainties in the class label will be strdayttard.

Very large quantities of data generated by modern astraranmstruments are collected and stored
in databases. There is an increased need for efficient agctie#f automated analysis methods to process
the data. There is interest in the classification of sourbes lave varying brightness as a function of
time. The issue here is to label new candidate variable ssufat are found based on the observations of
brightness measurements at irregularly-spaced timegdintmost cases a spectrum is the sure way to do
this, but obtaining spectra is expensive, especially gthenlarge number of transient candidates and that
the time series data is readily available. Classificationaniable sources based on the light curves alone is
challenging because the variability in the time serieslested in complex ways to the underlying physical
processes that generate the data. Some attempts have b#etoraal the classification of variable sources
using machine learning methods, but it seems that reafilstisification of these sources will require one to
incorporate current understanding of the physics behiaghthcesses that generated the observable data.

2 Background and Related Work

Itis frequently of interest to study a set of objects in otdedentify the underlying structure of classes. This
task is known as classification, and it consists in finding esgmoperties that characterize the differences
among classes. As the observable elements of each clasgparally similar, some kind of distance,
based on the characterizing properties, is necessary hoagwgroximity. Proximity is evaluated between
two distinct elements as well as an element and a group. I§iratriterion is applied to determine the
underlying structure.

When there is no previous knowledge about the structurepribielem is named unsupervised classifi-
cation. If the structure of classes is indicated by providdxztls, the problem is named supervised classifi-
cation. The classification problem consists of applyingigegon to decide to which class a new element
belongs to.

Classification of time series is a statistical subject widingnapplications. Time series can be studied
from both time and frequency domains.



2.1 Time Series Analysis

Data obtained from observations collected sequentialgr time are extremely common. A discrete-time
stochastic process is a sequence of random variables (defitiee same probability space and taking values
in the same state space),

{X(t),t € Z}

where the index represents time. A stochastic process serves as a modeh fobserved time series,
i.e., a time series can be interpreted as a realization afchastic process. Note that the variables are not
simultaneous, as those in a multivariate vector. Stoahasticesses are objects defined to study dynamic
univariate changes in time.

Stochastic processes can be studied from the time domaattematively or additionally, from the fre-
guency domain. Time domain uses time as an index, and theaatgance function is the natural tool
for studying the evolution in the time domain. Fourier as@ayallows the use of frequency as variable.
Frequency domain analysis is the adaptation of Fourieaisatio deal with stochastic functions in time. In
order to handle stochastic processes, sometimes addiiobneture is assumed under the name of stationar-
ity. Stationarity implies homogeneity in the time domaiuagls that the autocovariance function is invariant
under time shifts.

We will use the following notation:{x(¢)} is a stochastic process that is measured only at a set of

discrete times;, i = 1,...,n, yielding the time series data
,Z'ZEl'(ti), Z:L y TV
In general we will denote the time series datd @s, z;),i = 1,...,n}.

2.1.1 Frequency Domain Analysis

Frequency domain or spectral analysis focuses on how sigiialifferent frequencies are represented in a
time series. The frequency spectrum of a time domain signalrepresentation of that signal in the fre-
guency domain. Frequency spectra, generated via Foumigsfarms, are an important tool for the analysis
of periodic variations. The main resulting value is the poggectral density (PSD), which describes how
the power of a time series is distributed with frequency.didebn frequency domain analysis of time series
can be found in the book bgloomfield (2000.

Some of the problems encountered while doing spectral sisadye spectral leakage and aliasing. Spec-
tral leakage is that for a sinusoidal signal at a given frequefy, the power in the PSD not only appears
at fp, but also leaks to other frequencies. Aliasing is leakagpawer from high frequencies to much
lower ones and it occurs if the sampling rate is not high ehdogsample a signal correctly. But often we
encounter time series observations that have uneven tahgsnpling and/or non-uniform coverage (i.e.,
large gaps) (see e.g., Figute This complicates the search for periodic signals, asteFHasgrier transform
(FFT) algorithm cannot be employed. There are some waystairobvenly spaced data from irregularly
spaced data (e.g. by interpolation), but these techniguiesduce uncertainties and often perform poorly.

A method of spectral analysis for irregularly sampled date \weveloped byzomb (1976 based on
earlier work byBarning(1963 and further refined b$cargle(1982. The Lomb-Scargle (LS) periodogram
is a widely used tool in period searches and frequency asalysime series in astronomy that can handle
irregularly spaced data. Like other classical methods e€spl analysis, the Lomb-Scargle methodology is
based on the assumption that the analyzed time seriesitnsigt It is equivalent to fitting sine waves to
the observed time series of the form

x(t) = acos(2m ft) 4+ bsin(27 ft),



wherea andb are amplitudesyf is frequency, and is time. The LS periodogram has the same statistical
properties of classical power spectrdechmeister and KurstdR009 generalize the LS periodogram to
allow for an offset term to account for statistical fluctoas in the mean of the time series, and also weights
to take in to account measurement errors, for example.

2.1.2 Structure Function Analysis

The goal of time domain analysis is to investigate the natfirdne variability of a time series. Structure
function (SF) analysis provides a method for quantifyimgeivariability without the problems of leakage,
aliasing, etc. that are encountered by Fourier analysicaritprovide information on the nature of the
process that causes variation. Historically, the SF has bsed to study turbulent plasma&(mogoroy,
1947), and it is a standard tool in geostatistics to investigptial correlationsChiles and Delfinerl999.

The first order SF is the variance of differences betweenegadf a random proceds:(¢)} that are
separated by a given time interval> 0,

Se(1)=Var (z(t+71)—x(t)).

The SF is commonly characterized in terms of its (log) sl6peheresS,. () o 75, If the mean function of
{z(t)}, po(t) = E(z(t)) is independent of then

Su(r) = E(a(t+7) - 2(t)*, 7>0.

For a stationary random process, the SF is related to thenajl ar(z(t)) = o2, Vt, and the autocorrela-
tion function, p,.(7),

_ Cov (z(t+7),z(t))

px(T) 0_2 ) T 2 07
by
So(T) = 20%(1 — pu(7)).
The sample SF in the case of evenly sampled discrete timesgétj = i x At,z;),i=1,...,n}Iis

R 1 n—Fk

Sx(k):n_k;(xi+k—wi)2, k=1,...,n—1.
To approximate this relationship in the case where the tienes is given by{(¢;, z;),i = 1,...,n} with
arbitraryt;, we estimate the SF in a bin of widéhfor a lagr by

SRS o I VR

{@d):1t—ts|<r+6/2}

whereN (1, 6) = #{(4,7) : |t; — t;| < 7+ 6/2}. Itis important to note that the SF does not describe the
range of variability behavior in a time series, because érayges over variability amplitudes. If two time
series have similar SF it is not clear if the distributionsvaffiability amplitudes are truly similar, or if they
only have similar average values.

If one considers a signal plus noise model for the data) = 7(t) + €(t), where the noise process
{e(t)} has mear) and is uncorrelated with both the signal procés&)} and itself, one obtains

Sa(1) = Sp(7) + Se(7) = Sy(7) + Var(e(t) — et + 7)),
= Sy(1) = Su(1) —Var(e(t) — et +71)).



In order for the structure function to measure only intgngariation in the magnitude we correct by sub-
tracting the variability of the differenced noise process.

Model-based fitting of the SF has been used to explore vétjabi both ensembles and individual light
curves of quasars (see, e Butler and Bloom(2011). Quasars are AGNs that exhibit correlated variability
on long time scalesKelly et al. (2009 propose a parametrization of the SF of an ensemble of quasar
using the damped random walk model. In particular, a damg@edam walk process can be described by an

eXponentiaI covariance
2 ’tl tj’
Cij = 0 exXp { 5

between measurements at tintesaind¢;. However, this is a purely statistical model, not a physmae,
and in particular it is a good fit for flux variability of quasar~or other types of variable sources with light
curves that are stochastic in nature, this model may not loed fit.

2.2 Functional Data Analysis

Functional data analysis (FDA) refers to the statisticallgsis of data in the format of curves or functions.
More specifically, realizations of underlying random fuans with noise. The aims of functional data
analysis are the same as those of other statistical analigsidevelop ways of presenting the data that
highlight interesting and important features; to investigvariability as well as mean characteristics; to
build models for the data observed, including those thatalbr dependence of one observation or variable
on another; etcRamsay and Silvermaf2009 is an introductory book an&erraty and Viey (2009 is a
summary on contributions to nonparametric estimation futictional data. Because FDA treats an entire
function as the unit of observation, as opposed to traditiamultivariate analysis, it provides a solution for
analyzing high dimension and low sample size data withauedision reduction as data pre-processing.

One application of FDA consists of regression models thinowbich we can describe the relation be-
tween a real-valued outcome and explanatory functionahbkes. Functional regression models have been
used extensively: for example, to predict the total annuetipitation in a sample of Canadian weather
stations from the temperature curves measured during #re(yeeRamsay and Silvermaf2005) and to
estimate the fat content in meat samples from spectronmagasurements (séerraty and Viey2006).

The classical linear regression model is often of the form

p
yizﬁo—FZzijﬁj—l—Ei, iZl,...,N,
7=1
where (yi,...,yn) is the vector of responses afd;, ..., z;)) is the vector of covariates for the-th
response. The error termsg's are usually considered to be independent and identichdliributed. A
functional regression model would replace at least one@ptbbserved scalar covariates by a functional
covariate. Next, we will describe a model consisting of ajrfunctional independent variable plus an
intercept term.
We want to replace the vector of covariate observatigns (z;i, ..., zip), i = 1,..., N, by a function
z;(t). Afirst approach may be to discretize the functional covery choosing a set of times, . . . , ¢, and
consider fitting the model

q
Yi 250+Zzi(tj)ﬁj +e, t=1,...,N.
j=1

But, how do we chose thg’s with the additional restriction that < N? Choosing a finer and finer grid of
times{t;,j = 1,..., ¢}, the summation approaches an integral equation

inﬁo-i-/zi(t)B(t)dt—kai, t1=1,...,N.
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This is the standard functional linear regression (FLR) ehoathich relates functional predictors to a scalar
response, wherg(t) is the coefficient function. With a finite numbéf of observations it is impossible to
determine the infinite dimensionalt). Many approaches have been proposed to deal with this usteerd
mination issue.

2.3 Decision Tree Learning

In the supervised classification problem, it is known thatheease in a sample belongs to one of a finite
number of possible classes. Given a set of featuregVfabservations, we want to accurately predict to
which class each observation belongs to. A classifier iseathalt assigns a predicted class based on a set of
features. Consider the datX ;,Y7),..., (X N, Yy) whereX; = (X;1,..., X;,) € & are the featuresy

is the feature space and € ) are the class labels. Assurieclasses sothat = {1,..., K}. Formally, a
classifier is a functiok : X — ), and it corresponds to a partition &finto disjoint setsA4, ..., Ax such

that the predicted class of an observation with feateis k if X € Ax. The goal of classification is to
find a rule that makes accurate predictions. Accuracy is mege defined in terms of the true error rate,

L(h) = P(M(X)£Y),
and the empirical error rate
N
E(h) = 5 D2 T(h(X) £ i),
=1

Classification trees are simple nonparametric classifi€tassification and regression tre&rd¢iman
et al, 1984 work by recursively partitioning the feature spadg into disjoint rectangular region&y, . .., Ry.
The noden of a tree corresponds to the regify, of the feature space withv,,, observations. The propor-
tion of classk observations in noder is

. 1
Pk =3~ 2, I(Yi=h).
XiERm

At each stage of the recursive partitioning, say at nadall the possible ways of splitting’ into subsets are
considered. The subset that results in the least node itppsichosen. Typical measures of node impurity
are the Gini indexXy”", . Pk Bk @nd entropy function- 3=, B 10g Pk

A delicate issue in creating a tree classifier is how to dategrthe number of nodes the tree should
have (i.e., the complexity). If nodes continue to be creatsdl each node has 1 observation, the tree will
be overfitting the training sample and will not be a good dfassfor future (test) cases. On the other
hand, if a tree has only a few number of end or terminal nodes) it is not using enough information
from the training sample and the classification accuracyuture cases will also be poor. Initially, in the
tree growing process, the predictive accuracy will impragsenore nodes are created, but at some point the
misclassification rate will get worse as the tree become® moamplex. A standard approach is to choose
the complexity so that the true error rate is low. To estinthéeerror rate a standard approach is to use
B—fold cross-validation. The first step is to split the dat@ iBtsubsets. For each subget 1, ..., B, the
classifierh_y) is computed on all the data not in subeThe classifier is then used to predict the class for

observations in subsétwith an empirical error raté(h(_b)). Finally the error rates are averaged to obtain
an approximately unbiased estimatoridf),

(3]



2.3.1 Random Forests

Decision tree learning is a popular method for nonparametessification and regression in statistics be-
cause it is an efficient method that is also robust to noisg.datclassification tree is especially attractive
for easy understanding and intuitive representation. Kewelassification trees yield estimates with high
variance: a small change in the data set can often resultényedifferent tree.

Ensemble learning methods use multiple classifiers andeggte their results. Bootstrap aggregation or
bagging Breiman 1996 is a well know ensemble learning method that reduces thaneer associated with
prediction. In bagging, the idea is to obtain many bootssamples from the data, apply a classification
tree, and then combine the results by taking a simple mgjeoie for prediction. Hence, successive trees do
not depend on earlier trees because each is independentifructed using a bootstrap sample of the data.
Random forestHBreiman 2001 is a modification of bagging that has the effect of reduchng dorrelation
between different trees and hence improving averagingdditian to constructing each tree using a different
bootstrap sample of the data, random forests change howethestconstructed. Each node is split using the
best among a subset of predictors randomly chosen at that Rahdom forests have only three parameters
that are usually not very sensitive to their valuds; the number of bootstrap samples, the number of
variables in the random subset at each node, and the numtseesfin the forest.

2.3.2 Classifier Performance Evaluation

In practice one may encounter problems that have imbaladats] i.e., at least one of the classes makes
up only a small minority of the data. In these cases, the fats correctly classify the “rare” or minority
class or classes. Commonly used classification procedumg® aninimize the overall error rate, rather than
focusing on the minority class.

Two common approaches to the imbalanced data problem abalanted loss functions (see e®f?)
and sampling techniques (see eZf). With an unbalanced loss function, one assigns a high lbsesi
to the misclassification of the minority class and aims toimire the weighted overall classification error.
Sampling techniques aim at down-sampling the majoritysctasover-sampling the minority class, or both.
The random forest grows each tree from a bootstrap sampledfdining data. In the case of imbalanced
data, there is a high probability that a bootstrap sampléaaus few or even none of the minority class,
resulting in a tree with poor performance for predicting thimority class. One way to fix this is to use a
stratified bootstrap, i.e., sample with replacement frothwvieach class.

In the classification of imbalanced data, the overall cfacsgion accuracy is usually not an appropriate
measure of performance. The trivial classifier that predisery case as the majority class can still achieve
very high. Other measures such as the the true negativeTridte)( the true positive rate (TPR), etc (see
e.g. XXX). Based on Tabl&, these measures are defined as:

TN

TNR=——

R=TrNvrp
TP

TPR= — .

R=Tp N

For any classifier, there is a trade-off between the TPR am@MR. When the accurate classification of the
minority class is of interest, it is desirable to have a dfeggsthat gives high prediction accuracy over the
minority class (TPR), while maintaining reasonable accyifar the majority class (TNR).

One way to compare the performance of classifiers is to us®@ curve (see e.g?2?). The ROC
curve is a graphical representation of the trade-off betwitbe false negative and false positive rates for
every possible cut off. In the random forests, we can chamgedtes cutoff for final prediction: as we raise
the cutoff for the minority class, we can achieve a lower TRR@higher TNR, thus yielding a set of points
on the ROC diagram.



3 Previous Work

Upcoming astronomical surveys will require real-time slfisation of variable sources. A variable sources
is an astronomical object whose brightness varies as aidumnot time. Correctly cataloguing distinct
variable sources is useful for fitting models that accuyatidscribe the underlying physics of the uni-
verse. Real-time classification is also important for resetallocation of telescope follow-up. Manual
classification using spectroscopy has been the preferredochén astronomy, but the large amounts of
non-spectroscopic data of future surveys makes classgiiicaf variable sources difficult. Furthermore,
additional information, such as the spectra, is not alwagdable. For each candidate source, we consider
brightness measurements at irregularly-spaced timeggist, a light curve). Our goal is to classify new
variable stars in a fast and accurate way using only the tighte.

3.1 Classification of Variable Sources

Figurel are examples of light curves of two types of variable sourtdszars and cataclysmic variables
(hereafter referred to as the BL and CV data set). These dataawllected by the Catalina Sky Survgy.
Mahabal, private communication). Blazars (BLs) or BL Lageaks are energetic objects in the extragalactic
universe. They are radio sources with highly variable gbtand radio emission. There are two types of
blazars: blazars with flat optical spectra (i.e., no distisgable features), and blazars with emission-line-
dominated optical spectra and flat radio spectra. They belora class of galaxies with active galactic
nuclei (AGN), which is driven by infall of matter to a superssave black hole. Variability of blazars occurs
from shocks or relativistic jets/altaojg 1992).

A cataclysmic variable (CV) is a binary star system wherdlastenass is transferred from a highly
evolved giant star (the secondary) to a white dwarf (the anin However, the stellar material does not fall
directly into the primary, instead an accretion disc is fednaround the primary, becoming the brightest part
of the system. Erratic flickering in photometric measuretmieh CV systems can be attributed to regular
eclipses of the stars during their orbit or a unstable massster rate, resulting in a varying brightness of
the accretion discHellier, 2001).

Light curves describe how the brightness of a variable stdes as a function of time. The variability
depends on the physical processes inside the source. TheadBC¥ data set contains light curve infor-
mation for 121 BLs and 437 CVs. Without any other additiomdibimation we want to see how well the
classes can be described (and separated) using only thimahgmount of information.

Several time series analysis methods have been develomtddy the variability properties of astro-
nomical sources (se8ubba Rao et a(1997 for a review). Linear and non-linear analysis methods & th
time and frequency domains, adjusted to the needs of astioabdata sets, i.e. taking into account mea-
surement errors and data gaps, can well describe the timravibelof some astronomical sources. Other
tools based on running variances as for example, the SFdereused to study the underlying variability
properties of the observed sources.

3.1.1 Frequency Domain Analysis

The Lomb-Scargle is a popular technique for analyzing thebier of light curves of periodic and non-
periodic variable sources. To analyze the photometric s8erees in the BL and CV data set we consider
only the non-censored observations. After removing auttieasurements, a possible linear trend of the
form a + bt is also removed, whereis the intercept) the slope, and the time. We fit each light curve a

http://www.Ipl.arizona.edu/css/index.html



time series model that is a harmonic sum of sinusoids:

Ny Ny

z(t) =c+ Z Z (@ij sin (27 f;jt) + bj cos (27 f;jt)) ,

i=1 j=1

whereN, is the number of harmonics fd¥, test frequencies. The number of harmonics and test freqggenc
used to best fit a light curve are unknown. These values cautttermined through modeling of the process
(e.g., by forward selection anfl—tests). A model with more parameters will always fit the dateast as
well as a model with fewer parameters. The question is whetleemodel with additional harmonics and
test frequencies will significantly fit the data better.

Following Debosscher et a(2007) we chooseN; = 3 and N, = 4. Each of 3 test frequencieg,
are allowed to have 4 harmonics at frequencigs j = 1,2,3,4.. The 3 test frequencieg; are found
iteratively, by successively finding the peaks of the gdimsd Lomb-Scargle periodogram in the following
manner:

1. Define a search range for frequencigs (, andA f): the starting frequency is taken gs= 1/T}.,
whereT;,; is the total time span of the observations in light curve; fieguency step is taken as
Af = 1/Tis; and the highest frequency is taken as the average of thesatiene intervals between
measurements,y = 0.5 x 1/At.

2. LS periodogram is calculated and the highest peak isteele€he corresponding frequency valfie
is then used to calculate a harmonic fit to the light curve)edst-squares:

4

z(t) =c+ Y (ajsin (27 fi1jt) + b; cos (2w f1t)) .

j=1

3. This curve is subtracted from the time series;- ac/(a i =1,...,n. Anew LS periodogram is
computed on the residuals. This procedure is repeatedthrdg# frequencies are found.

4. The three frequencies are used to make a harmonic bestHit briginal (detrended) time series,

4
z(t) =c+ Z Z (@ sin (27 fijit) + bij cos (27 fijt)) .

i=1 j=1

For purposes of classification, the Fourier coefficientsioled here are not unique, because they are not
invariant under time translations. We translate the caeffts into amplitudes and a phases as follows:

b
Ay = \/a?j + b?j, ¢;j = arctan (%) .

v

Following Debosscher et a(2007 we correct the phases; to relative phases with respect to the phase
of the first component#;; = 0). These parameters are a time-translation invariant ghtiser of the light
curves and are suitable for classification purposes. Afigt@periodic features is found in Tal?e

Plots of one-dimensional density estimates by class ofwalgeriod features are shown in Fig@reBy
inspection of these distributions we can quickly see thaiteths almost no separability of the two variable
classes. The more the densities are separated from eachtbthbetter the classes are defined, and the
fewer the misclassifications which will occur in the case afupervised classification. Complementary
to these one-dimensional plots, we have conducted a moadedefinalysis of the statistical properties
of the training set by calculating correlations betweelfedént features, and computing 2d (see Figijre
nonparametric density estimates of features.



3.1.2 Time Domain Analysis

The first systematic description of the SF adjusted to thel:\@# astronomical data sets was made by
Simonetti et al(1985 to study radio source scintillation using as a refereneevibrk of Rutman(1978
from the field of electrical and electronic engineering. dslsince been used extensively used to study, for
example, blazar variabilityHughes et a.1992 and quasar selectioB(tler and Bloom2011).

To show the range of the magnitude differences in the BL andd@i set, we first calculate for each
pair of measurements, j), i,j = 1,...,n (n(n — 1)/2 in total) a lagr;; and a one-point estimate of the
SF,SU,

iy = [t =yl sig = (w - 2))”.
From Figure4 we can see that the distribution of the magnitude differenga;;, are centered around 0
and have larger spread for CVs than for BLs. A one-point extenof the corrected SF is;,

Tij = [t = til, i = (20— 15)° — € — €5,

wheree; ande; are the measurement errors for the magnitugesdz;, respectively. However, for 19.66%
of the measurement pairs (22.5% for BLs and 18.76% for C\syamiability is seen, i.eh;; < 0. In our
following SF analysis we will not use the corrected versibthe SF.

To estimate the SF we bi); and average. The SF for the BL and CV ensembles are shownunefsg
Because of the particular sampling in the data, for someegaddir the SF will be completely unknown. On
the the other hand, for some valuesrahe number of pairs of observations per bin will be very laayed
should lead to a good estimate of the SF. A clear feature cabserved in the SFs, there are no horizontal
trends. When the variability of a time series is dominatedabwhite noise (WN) process, then the SF is
constant, with a value equal to twice the variance of the WiNs s because the amplitude of a WN process
is independent of the time lag between two observation.

Microvariability (variability on very short time scalesas been confirmed to be the intrinsic nature of
AGNs, especially for blazars (see, eMiller et al. (1989). For longer time scales, there is a roughly linear
increase (on a logarithmic scale) of the SFs wittwith a slope of about = 0.40 (0.37,0.43) for BLs
ands = 0.062 (0.041,0.084) for CVs. However, these trends are valid for the ensemblelLsfdhd CVs,
not for the individual SFs of sources (see Figaje For purposes of classification, the individual SFs or
features of the individual SFs (e.g., slope of linear tresds Figure) of light curves do not provide a clear
separation between classes.

We suspect that the uneven sampling affects severely thest8Rages of individual light curves. To
check this hypothesis we run simulations. There exists etiumal relation between the SF and the power
spectral density (PSD); when a time series whose PSD follywswer-law, the SF will also follows a
power-law (under certain assumptions, 8@dor details). Via simulations, we obtained a mean SF for each
light curve characterized by a power-law PSD with the edihandices. By visual inspection, the mean
SFs were clearly different to the estimated SFs.

3.1.3 Feature Extraction

The classification of light curves relies upon the abilityécognize and quantify the differences between
the variability. In the previous two sections we have seen Working in the time and frequency domain
does not yield additional information to separate the dkifé classes. FollowinRichards et al(2011) we
take another approach by transforming each light curveardet of features that ignore the time structure
in the data. Tabl& contains the features computed. Many of these are simplstigts on the distribution

of apparent magnitudes (e.g., standard deviation, skesunBensity estimates for the features by type of
source are shown in FiguB Again, we can see that in this feature space there is noaépanf the type

of variable source.



If no useful time-domain information can be obtained froghti curves, one can estimate the density
of the time series to examine, for example, the shape of thgilalition, the spread; etc. These density
estimates may contain useful information for classificatidonparametric density estimation is done using
a Gaussian kernel estimator of which the asymptotic prigsedre well established for i.i.d. data and for
time series data (see e.g?). With a simple example, we will illustrate how to classifgisy time series
with no useful time-domain information by incorporatingcdlary information.

3.2 A Simple Example

To illustrate the main ideas of our proposed methods congidefollowing simple example. Consider a set
of training examples of the forf\(x;,vy;),7 = 1, ..., N}, where ther’s are input variables (evenly spaced
time series datay; = (z;1, ..., x;,) and they's are the categorical (class type) outputs. Assume thet the
are only two classes, and go= {0, 1}. The details of the simulation follow. To simulate a data set

0 with probability 0.3

e generate the outptf such thaty = _ . ;
1 with probability 0.7

1 ifY =0
e generater such thatr = _ _ ;
Uniform(0.5,1) ifY =1

e generate the input = (x1,...,2,) i N(0,0).
Because the simulated time series are i.i.d., the timessda@ have no useful time-domain information.
The class labeletl” = 1 constitutes a small minority of the data. We will focus on tlerect classification
of this “rare” class.

3.2.1 One Data Set

We simulate one data set with 300 time series, each with 38llggpaced values given the details above.
214 time series have lab®l = 0 and 86 have label’ = 1. Figure9 are some examples of the simulated
time series. Using a random forest classifier on the timesetata we obtain the classification in Table
with an overall error rate of 20.33% (500 trees are grown avettifables are randomly sampled as candidates
at each split). All but 31 time series were classified in thigdaclassY = 0. Because 67% of the time
series in clasy” = 1 are misclassified and only 10% for clags= 0, we have an imbalanced classification
and we conclude that there are limitations in terms of diassion accuracy when using only this data.

The random forest classifier is constructed to minimize tregal error rate and will tend to focus more
on the prediction accuracy of the majority class. This itssul poor accuracy of the minority class. If we
down-sample the majority class, then we grow each tree om fn@ianced data. A majority vote is taken
as usual for prediction. FigurEd compares the performance of the random forest classifieg whfferent
sample sizes for the majority class. The size of the majoféys is 214, but the class error rates are roughly
equal when we use 55 bootstrap samples in the random foresig Stratified bootstrap samples sizes of
55 and 86 for clas¥ = 0 andY = 1, respectively, we obtain an overall error rate of 17.67%e Tlass
errors are more balanced: 18.22% for class 0 and 16.28%dss dl, as shown in Tabte At the expense
of misclassifying more observations in the majority clagsase able to reduce the error rate in the minority
class, without with a small change in the overall error r&g.inspection of the ROC curves in Figutd
we can see that classifier using stratified sample sizes andmlout the class error rates performs better.

In this particular example we derive the ancillary featuaf the time series data. In a real situation,
the ancillary feature is obtained independently from thad#n this example, the ancillary feature is the
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sample standard deviatior, = \/Z;‘:l(xj —7)%?/(n —1). From Figurel2 it is clear that the ancillary

feature is correlated with the class type, and therefor¢éadmsn valuable information to separate the classes.

If no useful time-domain information can be obtained frora time series, one estimates the densities
of the time series to examine, for example, the shape of gighiition. Nonparametric density estimation
is done using a Gaussian kernel estimator of which the astogiroperties are well established for i.i.d.
data and for time series data (see €28), The individual density estimates of the simulated tinrgeseare
shown in Figurel3. These densities give us a visual impression that theravargroups of time series with
different variability. We propose to regress the ancilldaga on the density estimates. This approach relies
on the fact that the time series and its density estimatebearell separated by the ancillary feature. We
consider a setting where a regression model is used to leacoimplex structure between the ancillary data
and the density of the noisy time series.

To clarify the notation, we have simulated one data set singiof N = 300 evenly-spaced time series
x1,...,xy oflengthn = 30, ; = (x;1,...,x:,). Furthermore, we have nonparametric density estimates
for each of the time serieg;;, ..., fy onagridz],. .., =}, with m = 120, such thatf;, = (fi1,..., fim),
where f;;, is the density estimate far;. Furthermore, for each time series we have an ancillaryggca
feature,as,...,an.

The goal now is to predict the ancillary feature from the dgrestimates of the time series data. We fit
a functional linear model where the response is a scalartiggpaiVe want to predict this scalar response on
the basis of one functional covariate, the density of theoiadions in a time series. For each time series, we
consider a density estimate on a gfid= (fi1,..., fim), ¢ = 1,..., N, as a vector of discretized functional
valuesf;(z}) = fir, K = 1,...,m. The one-dimensional argument;, are the values in the domain of the
time series. The density estimate is a functionzdfand it is observed only at discrete sampling values
x7,...,xy, With m = 120 that are equally spaced. We are considetM@ime series, and therefore, there
are N replications of the function, indexed bby= 1, ..., N. Each replicate is referred to as an observation,
since we want to treat the discrete values as a unitary whole.

We fit the following FLR model,

a; = Bo -I-/fz'(w*)ﬂ(:c*)dx* +&, i=1,...,N.
To deal with the underdetermination issuedoive use a basis coefficient expansiornsof
Kp
Bla®) = bpor(z") = b'd(a”),
k=1

where{¢y,k = 1,..., Kg} are the basis functions. At the same time, the covariatetimcf;(z*), can
also be expanded in terms of a basis expansid#ink = 1,..., K} as:

Ky
fiz®) = cinbr(z*) = ¢j0(2"), i=1,...,N.
k=1
Therefore, the FLR model can be expressed as
a; = fo + /Cge(x*)cb(x*)’bdaz* + ¢

= o+ ¢ (/ 0(33*)(15(95*)/6133*) b+e

= ﬁo + C;J(z,gb +&;.
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The parameters we want to estimate ggeandb. To convert the density estimates to function form we
choose a cubic B-spline basis wiil (roughly m /2) equally spaced knots.

One approach to estimate the parameters is to truncatedisesoah thaf{s < K and then use the least
squares approach. We choose a cubic B-spline with 5 basitidus for the regression coefficiebt and
a constant function fofy. Figurel4is the estimated regression coefficient function. The sglarultiple
correlation is 0.9736 and the correspondifg-statistic with 5 and 29 degrees of freedom is 141.1767,
suggesting a fit to the data that is better than what we woupgexoy chance. Figurg5 compares the
fitted values for the ancillary data from a FLR model with theetvalues. With a random forest classifier
on the predicted ancillary feature we obtain the classifioah Table6 with an overall error rate of 12.67%
(500 trees are grown and 1 variable is sampled at each splijin we have a case of unbalanced error
rates: 9.35% of the observations in class 0 are misclassifiglé 10.93% of the observations in classl are
misclassified. Again we balance the class error rates bysihgdootstrap samples of sizes of 84 and 86
for classY = 0 andY = 1, respectively (see Tablé). The overall error rate for this classifier is 13%.

Another approach to estimate the parameter is to use pedabgression. We fit the FLR by minimizing
the penalized sums of squares (PSSE):

n

PSSEx(B0,8) =) [az‘ — o — /fi(x*)ﬁ(w*)dx*r - )\/Lﬁ(x*)dw*,

i=1

where the second term on the right side penalizes some fonsughness in the coefficient function. We
use the criterion

[ psian = [ (3" a0

which measures the roughness of the functiony integrating the square of its second derivative, i.e, th
curvature ofs. The more wigglys is, the larger this term will be. The smoothing parameteplays a key
role. The larger\, the more roughness jhis penalized. As\ — oo, 8 tends to a line, for which the second
derivative is 0. On the other hand, for smalthe roughness of matters less.

We replace our previous choice of basis for defining ghestimate by a cubic B-spline basis wiiR
equally spaced knots. By cross-validation we find a smogtperameter ofog,,(\) = —1.5 (see Figure
17). The squared multiple correlation is again 0.9737. TFhestatistic is 136.9076 with 4.8483 and 29
degrees of freedom. However, ttie—distribution in this case is only an approximation. The ot
ancillary feature is almost identical to the least squastisnate. Therefore, the random forest classifiers are
nearly identical.

3.2.2 Many Data Sets

Next, we repeat the above analysis by simulating 100 data sath with 300 time series, each of these
time series with 30 equally spaced values given the detadse To classify the time series data and the
predicted (via FLR) ancillary data in each data set we us@@ora forest classifier just as in the previous
section. In order to balance the individual class errors seethe down-sampling method. We arbitrarily
set the class 0 sample sizes to 55 and 84 when building ctasdifir the time series and predicted ancillary
data, respectively. From Figufie8 we can see that the overall classification accuracy of thesifiers that
use the predicted ancillary feature is higher than the iflasssthat use the raw time series data.

The times series in each data set is our observed data andoysestlict the ancillary feature, which in
turn, are used for classification. Via functional regressitodels we have learned the relationship between
the ancillary feature and the observable data. The errdiseiensity estimates have propagated onto the
predicted ancillary features and hence in the predictezbclBhe question about how to quantify these errors
remains as future work.
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4 Proposed Work

4.1 Regression With Distribution as Predictor

Regression is a widely studied problem in statistics. On#hefkey methodological contributions to be
made by this dissertation will be an exploration of methaafsrégression in cases where the response is
real-valued, but the predictor is a distribution, or anreate of a distribution. Estimating and testing the
parameters of a regression function has been well studa¥eg\rer, when the predictors are measured with
error, the problem becomes more complex from a statistioadtpf view. In particular, we will focus
on how the effects of the errors in the density estimate ajgato errors in the regression. Because the
predictor is estimated, this problem becomes a errors ialias problem.

In particular, we will explore existing parametric and nargametric methods for relating a continuous
response to functional predictors, i.e., the estimateditenr log density. Often functions must satisfy
some constraints. If, for example, the data are values #ratat be negative, then we do not want negative
function values, even over regions where values are at gedi zero. Furthermore, if one considers a
histogram as a density estimate, then the total area undegtethsity is 1. The density in this particular
case are non-negative proportions with unit sum, i.e., @mitipnal data. We will investigate models with
compositional covariates where the goal is to predict avakled response as a function of a composition.
The comparisons of existing methods on simulated data sétsegult in concrete recommendations for
this type of regression problem.

Finally we will investigate how to assess the fit of regrassioodels with distributions as predictors.
Because the response is real-valued, standard methodalo&gon of looking a residuals should extend.
However, an interesting question is approximating the remalb degrees of freedom in the mode, i.e., how
to assess when we may be overfitting.

Specifically, | will do the following:

To be included...

4.2 Further Exploration of Time-Domain Approaches

The SF is one of the most extensively used tools in the field@RNAsariability. Conclusions are based on
observed SF characteristics such as breaks and slopesegndréhattributed physical meaning. Through
extensive simulation, we want to study the properties ofSkeln particular we want to study the effects
of the data length on the position of the SF breaks and an#iyzeensitivity of SF to the presence of data
gaps.

A major problem in the use of the SF is that the estimﬁes) are not independent of each other.
This affects common fitting routines, for example, leastasgs and maximum likelihood, methods that
are commonly used in SF astronomy literature to derive thér8kks and slopes. The estimation of the
structure function via maximum likelihood usually assumeoamal distribution for the observations in
a light curve. The covariance structure is specified emgllyicor via a statistical model (e.g., a damped
random walk model). These assumptions can be generalizeddwning other distributions for the light
curves or other specifications of the covariance structure.

Specifically, | will do the following:

To be included...

4.3 Astronomy Application

We will develop a classification scheme to combine (1) thesja) knowledge of the relationship between
the type of object and spectroscopic information - in a trgrset - with (2) the reality of the low quality
time series that we will observe. Because the spectra camadety predict the type of source, we can learn
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a complex structure between the light curve and featurasedefrom the spectra. The learned structure
is used as an input to perform classification of variable sggibased on light curves in the test set. Main
emphasis will be placed on finding relevant ancillary feasun spectroscopic data that can separate types
of variable sources.

In the classification problem we may have class labels tleatlarived from an underlying continuous
variable (in this particular case, the ancillary featurelence we will explore methods where real-valued
data is taken as input to perform classification. For examipleould be interesting to explore if transition
classes exist between two classes. These transition €laaaebe objects that show properties in between
two standard classifications. Furthermore, defining modenaore transition classes could ultimately reveals
that variable sources do not form a discrete class but rathentinuum of variability.

Specifically, | will do the following:

To be included...
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5 Tables

Table 1:Confusion matrix.

Prediction
Negative Positive
Negative| True Negative (TN) False Positive (FP)
Positive | False Negative (FN) True Positive (TP)

Truth

Table 2:Periodic features extracted from light curves using thesgaized Lomb-Scargle periodogram.

Feature Description
f; i—th frequency; = 1,2,3
Ayl Amplitudei—th frequencyj—th harmonic; = 1,2,3,7 =1,2,3,4
PH;; Phase —th frequency; —th harmonic; = 1,2,3,j =1,2,3,4
varratio Ratio of the variance after, to the variance besuoitatraction
of the fit with f; and its 4 harmonics
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Table 3:0ther features calculated using the magnitude measursrogtite light curves.

Feature Description
w.mean weighted (by photometric errors) mean of the mags
std.dev standard deviation of the mags
skew skewness of the mags
kurt kurtosis of the mags
pct.beyond.1.std.dev fraction of mags that lie above anbelne std. dev. from the weighted mean
amplitude difference between the max and the min mags
min.abs.slope min absolute slope between two consecuisereations
med.abs.slope median absolute slope between two congeobBervations
max.abs.slope max absolute slope between two consecueswations
min.abs.dev min discrepancy of the mags from the median mag
med.abs.dev median discrepancy of the mags from the medign m
max.abs.dev max discrepancy of the mags from the median mag
within.20pct.ampl.from.med  Fraction of mags within 20%oé amplitude from the median mag
slope.trend.first.30 Considering the first 30 mags, the %akiasing first diffs minus the fraction of decreasing firfsd
slope.trend.last.30 Considering the last 30 mags, the ¥coéasing first diffs minus the fraction of decreasing fiifisd
pct.ratio.mid.20 Ratio of mag percentiles (60th - 40th)rq@&th - 5th)
pct.ratio.mid.50 Ratio of mag percentiles (75th - 25th)rd@sth - 5th)
pct.ratio.mid.80 Ratio of mag percentiles (90th - 10th)rd@&th - 5th)

Table 4: Confusion matrix of random forest classifier on the simulatme series data500 trees were grown and 5 variables
were tried at each split.

Pcr)ed|ct|f n Classification Error
Truth 0211 3 0.01401869
1| 58 28 0.67441860

Table 5:Confusion matrix of random forest classifier on the simualdbme series data, with bootstrap sample sizes of 55 and 86,
for class 0 and 1, respectively00 trees were grown and 5 variables were tried at each split.

P(;edlcnf n Classification Error
Truth 0| 175 39 0.2149533
1| 14 72 0.1976744

Table 6:Confusion matrix of random forest classifier on the leastisegi estimate of the ancillary feature using FDA0 trees
were grown and 1 variable was tried at each split.

Pcr)ed|ct|f n Classification Error
Truth 0194 20 0.09345794
1| 18 68 0.20930233
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Table 7: Confusion matrix of random forest classifier on the leasiasesl estimate of the ancillary feature using FDA, with
bootstrap sample sizes of 84 and 86, for class 0 and 1, résgdgc500 trees were grown and 1 variable was tried at each split.

Pcr)ed|ct|f n Classification Error
Truth 0| 186 28 0.1308411
1| 11 75 0.1279070
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Figure 2:Nonparametric density estimates of selected periodicifeatof the BL and CV data set.
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Figure 3:Bivariate nonparametric density estimates of selecte jphiperiodic features of the BL and CV data set.
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Figure 4:Magnitude differences for the BL and CV ensembles, for vaoris(left) and long (right) time differences. Only 10,000
points are shown in each plot.
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Figure 5:Ensemble SFs for the BL and CV data set. SFs for very shosith § = 0.01 min (left). SFs for longr, with § = 1
day (right). The solid lines are the fitted linear regressitime size of the points is proportional to the number of ole@ns used
to calculate the particular value of the SF.
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Figure 6:Individual SFs for longr, with § = 1, for 6 BLs and 6 CVs. The colored solid lines are the fitteddinegression to
the ensemble SF. The size of the points is proportional tatimeber of observations used to calculate the particularevef the
SF. We fit a non-parametric regression to the individual Sfisguregression splines and the number of spline knots isezhby
minimizing the generalized cross-validation score (blagkes).
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Figure 7:Density estimates of the distribution of the slope for timedir regressiotog,,(SF) ~ log,,(7), long 7, with § = 1.
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Figure 8:Density estimates of the other features calculated usignéignitude measurements of the light curves.
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Figure 9:Four simulated time series. The red time series have labels0 and the blue have labels = 1.
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Figure 10:Smoothed class and overall error rates for different $iedtbootstrap sample sizes of the majority clags= 0).
The class 0 and class 1 error rates are roughly equal whetratidied bootstrap sample sizes are 55¥or= 0 and 86 fory” = 1.
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Figure 11:ROC curves for the imbalanced and balanced random foresgifitas on the time series data of Tadlécurve A)
and Tables (curve B).
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Figure 12:Distribution of the ancillary feature on one simulated dsga The ancillary feature is the sample standard deviation

of the time series.
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Figure 13:Nonparametric density estimates on one simulated datdBetred time series have lab&ls= 0 and the blue have
labelsY = 1.
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Figure 14:Estimate ofg(t) for predicting the ancillary feature from the density esties via least squares. The dashed lines
indicate pointwise 95% confidence limits for valuesgt).
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The red points have labels = 0 and the blue have labe}s = 1. The black line iy = .
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Figure 16: ROC curves for the imbalanced and balanced random foressifitas on the predicted ancillary data of Table
(curve C) and Tabl@ (curve D) in addition to the ROC curves in Figur&
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Figure 17:Cross-validation scorgg8V () for fitting the ancillary feature by the density estimatehwa penalty on the curvature
of the coefficient functiong(z*).

10 H
o
O/
8 -
g
o
8 6 o
c
B
<
h=
©
T
2 41
o
O
o
2
o
o/
9———0——0———0——0——o——o0—
0~ T T T T T T
-4 -3 -2 -1 0 1 2
log_10(A)

30



Figure 18:Classification error rates for 100 simulated data sets usindom forest classifiers on: (A) the time series data; (B)
the time series data, down-sampling class 0 to 55; (C) thmatsd ancillary data; (D) the estimated ancillary dataymieampling
class 0 to 84.
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