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Abstract

Upcoming astronomical surveys will require real-time classification of sources with varying bright-
ness. Correctly cataloguing distinct variable sources is useful for fitting models that accurately describe
the underlying physics of the universe. Real-time classification is also important for resource alloca-
tion of telescope follow-up. Manual classification using spectroscopy has been the preferred method in
astronomy, but the large amounts of non-spectroscopic dataof future surveys makes classification of vari-
able sources difficult. For each candidate source, we consider brightness measurements at irregularly-
spaced time points (i.e., a light curve). Classification of sources based on these light curves alone is
challenging because the variability in the time series is related in complex ways to the underlying physi-
cal processes that generate the data. Some attempts have been made to aid the classification of variable
sources using machine learning methods, but it seems that realistic classification of these sources will
require one to incorporate current understanding of the physics behind the processes that generated the
observable data.

In this thesis we propose a classification scheme that will combine (1) the physical knowledge of
the relationship between the type of object and spectroscopic information - in a training set - with (2)
the reality of the low quality time series that we will observe. The underlying idea is that the spectra
can accurately predict the type of source, thus we can hope tolearn a complex structure between the
light curve and features derived from the spectra. The lightcurves are then used to predict the value for
the spectral feature, which is then used for classification.In this way, we have, in essence, performed a
transformationof the class label. The hope is that it will be easier to ascertain a relationship between the
real-valued spectral feature and the observed light curvesusing standard regression techniques. Also,
errors in the estimate of the spectral feature could be quantified more naturally, and transforming these
into uncertainties in the class label will be straightforward.
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1 Introduction

Time series classification is built upon supervised learning methods to label temporally varying sequences.
Consider the situation where we observe a sample of time series from each ofK different classes, where
the class of each observed time series is known. The goal of classification is to use the sample information
to construct a rule to classify any future time series for which the class is unknown. Such a partition of
the data space would have to maximize both the within-group similarity and between-group differences.
However, in cases of interest, the complex nature of the datageneration process, as well as excess variability
and sampling effects, make the time-domain information insufficient for a clear separation when analyzed
alone. Therefore, classification accuracy when using only time series data is limited.

In this thesis we propose a classification scheme for time series that will exploit data by combining (1)
the knowledge of the relationship between the class type andancillary data - in a training set - with (2) the
reality of the low quality and noisy time series that we observe. The underlying idea is that the ancillary
data can accurately predict the class, and thus we can hope tolearn a complex structure between the time
series and features derived from the ancillary data. The observed data are then used to predict the value
for the ancillary data, which is then used for classification. In this way, we have, in essence, performed
a transformationof the class label. In applications of interest, the class label is a categorical variable,
while the ancillary data will be a continuous quantity. The hope is that it will be easier to ascertain a
relationship between the continuous quantity and the observable data using standard regression techniques.
Also, errors in the estimate of the ancillary feature could be quantified more naturally, and transforming
these into uncertainties in the class label will be straightforward.

Very large quantities of data generated by modern astronomical instruments are collected and stored
in databases. There is an increased need for efficient and effective automated analysis methods to process
the data. There is interest in the classification of sources that have varying brightness as a function of
time. The issue here is to label new candidate variable sources that are found based on the observations of
brightness measurements at irregularly-spaced time points. In most cases a spectrum is the sure way to do
this, but obtaining spectra is expensive, especially giventhe large number of transient candidates and that
the time series data is readily available. Classification ofvariable sources based on the light curves alone is
challenging because the variability in the time series is related in complex ways to the underlying physical
processes that generate the data. Some attempts have been made to aid the classification of variable sources
using machine learning methods, but it seems that realisticclassification of these sources will require one to
incorporate current understanding of the physics behind the processes that generated the observable data.

2 Background and Related Work

It is frequently of interest to study a set of objects in orderto identify the underlying structure of classes. This
task is known as classification, and it consists in finding some properties that characterize the differences
among classes. As the observable elements of each class are typically similar, some kind of distance,
based on the characterizing properties, is necessary to evaluate proximity. Proximity is evaluated between
two distinct elements as well as an element and a group. Finally, a criterion is applied to determine the
underlying structure.

When there is no previous knowledge about the structure, theproblem is named unsupervised classifi-
cation. If the structure of classes is indicated by providedlabels, the problem is named supervised classifi-
cation. The classification problem consists of applying a criterion to decide to which class a new element
belongs to.

Classification of time series is a statistical subject with many applications. Time series can be studied
from both time and frequency domains.
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2.1 Time Series Analysis

Data obtained from observations collected sequentially over time are extremely common. A discrete-time
stochastic process is a sequence of random variables (defined in the same probability space and taking values
in the same state space,S),

{X(t), t ∈ Z}
where the indext represents time. A stochastic process serves as a model for an observed time series,
i.e., a time series can be interpreted as a realization of a stochastic process. Note that the variables are not
simultaneous, as those in a multivariate vector. Stochastic processes are objects defined to study dynamic
univariate changes in time.

Stochastic processes can be studied from the time domain or,alternatively or additionally, from the fre-
quency domain. Time domain uses time as an index, and the autocovariance function is the natural tool
for studying the evolution in the time domain. Fourier analysis allows the use of frequency as variable.
Frequency domain analysis is the adaptation of Fourier analysis to deal with stochastic functions in time. In
order to handle stochastic processes, sometimes additional structure is assumed under the name of stationar-
ity. Stationarity implies homogeneity in the time domain, such that the autocovariance function is invariant
under time shifts.

We will use the following notation:{x(t)} is a stochastic process that is measured only at a set of
discrete timesti, i = 1, . . . , n, yielding the time series data

xi ≡ x(ti), i = 1, . . . , n.

In general we will denote the time series data as{(ti, xi), i = 1, . . . , n}.

2.1.1 Frequency Domain Analysis

Frequency domain or spectral analysis focuses on how signals of different frequencies are represented in a
time series. The frequency spectrum of a time domain signal is a representation of that signal in the fre-
quency domain. Frequency spectra, generated via Fourier transforms, are an important tool for the analysis
of periodic variations. The main resulting value is the power spectral density (PSD), which describes how
the power of a time series is distributed with frequency. Details on frequency domain analysis of time series
can be found in the book byBloomfield(2000).

Some of the problems encountered while doing spectral analysis are spectral leakage and aliasing. Spec-
tral leakage is that for a sinusoidal signal at a given frequency f0, the power in the PSD not only appears
at f0, but also leaks to other frequencies. Aliasing is leakage ofpower from high frequencies to much
lower ones and it occurs if the sampling rate is not high enough to sample a signal correctly. But often we
encounter time series observations that have uneven temporal sampling and/or non-uniform coverage (i.e.,
large gaps) (see e.g., Figure1). This complicates the search for periodic signals, as a fast Fourier transform
(FFT) algorithm cannot be employed. There are some ways to obtain evenly spaced data from irregularly
spaced data (e.g. by interpolation), but these techniques introduce uncertainties and often perform poorly.

A method of spectral analysis for irregularly sampled data was developed byLomb (1976) based on
earlier work byBarning(1963) and further refined byScargle(1982). The Lomb-Scargle (LS) periodogram
is a widely used tool in period searches and frequency analysis of time series in astronomy that can handle
irregularly spaced data. Like other classical methods of spectral analysis, the Lomb-Scargle methodology is
based on the assumption that the analyzed time series is stationary. It is equivalent to fitting sine waves to
the observed time series of the form

x(t) = a cos(2πft) + b sin(2πft),

2



wherea andb are amplitudes,f is frequency, andt is time. The LS periodogram has the same statistical
properties of classical power spectra.Zechmeister and Kurster(2009) generalize the LS periodogram to
allow for an offset term to account for statistical fluctuations in the mean of the time series, and also weights
to take in to account measurement errors, for example.

2.1.2 Structure Function Analysis

The goal of time domain analysis is to investigate the natureof the variability of a time series. Structure
function (SF) analysis provides a method for quantifying time variability without the problems of leakage,
aliasing, etc. that are encountered by Fourier analysis. Itcan provide information on the nature of the
process that causes variation. Historically, the SF has been used to study turbulent plasmas (Kolmogorov,
1941), and it is a standard tool in geostatistics to investigate spatial correlations (Chilès and Delfiner, 1999).

The first order SF is the variance of differences between values of a random process{x(t)} that are
separated by a given time intervalτ ≥ 0,

Sx(τ) = V ar (x(t+ τ)− x(t)) .

The SF is commonly characterized in terms of its (log) slopeβ, whereSx(τ) ∝ τβ. If the mean function of
{x(t)}, µx(t) = E(x(t)) is independent oft then

Sx(τ) = E (x(t+ τ)− x(t))2 , τ ≥ 0.

For a stationary random process, the SF is related to the variance,V ar(x(t)) = σ2
x, ∀t, and the autocorrela-

tion function,ρx(τ),

ρx(τ) =
Cov (x(t+ τ), x(t))

σ2
x

, τ ≥ 0,

by
Sx(τ) = 2σ2

x(1− ρx(τ)).

The sample SF in the case of evenly sampled discrete time series{(ti = i×∆t, xi), i = 1, . . . , n} is

Ŝx(k) =
1

n− k

n−k∑

i=1

(xi+k − xi)
2 , k = 1, . . . , n− 1.

To approximate this relationship in the case where the time series is given by{(ti, xi), i = 1, . . . , n} with
arbitraryti, we estimate the SF in a bin of widthδ for a lagτ by

Ŝx(τ, δ) =
1

N(τ, δ)

∑

{(i,j):|tj−ti|≤τ+δ/2}

(xj − xi)
2 ,

whereN(τ, δ) = #{(i, j) : |tj − ti| ≤ τ + δ/2}. It is important to note that the SF does not describe the
range of variability behavior in a time series, because it averages over variability amplitudes. If two time
series have similar SF it is not clear if the distributions ofvariability amplitudes are truly similar, or if they
only have similar average values.

If one considers a signal plus noise model for the data,x(t) = η(t) + ǫ(t), where the noise process
{ǫ(t)} has mean0 and is uncorrelated with both the signal process{η(t)} and itself, one obtains

Sx(τ) = Sη(τ) + Sǫ(τ) = Sη(τ) + V ar(ǫ(t)− ǫ(t+ τ)),

⇒ Sη(τ) = Sx(τ)− V ar(ǫ(t)− ǫ(t+ τ)).
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In order for the structure function to measure only intrinsic variation in the magnitude we correct by sub-
tracting the variability of the differenced noise process.

Model-based fitting of the SF has been used to explore variability of both ensembles and individual light
curves of quasars (see, e.g.,Butler and Bloom(2011)). Quasars are AGNs that exhibit correlated variability
on long time scales.Kelly et al. (2009) propose a parametrization of the SF of an ensemble of quasars
using the damped random walk model. In particular, a damped random walk process can be described by an
exponential covariance

Cij = σ2 exp

{
−|ti − tj|

τ

}
,

between measurements at timesti andtj . However, this is a purely statistical model, not a physicalone,
and in particular it is a good fit for flux variability of quasars. For other types of variable sources with light
curves that are stochastic in nature, this model may not be a good fit.

2.2 Functional Data Analysis

Functional data analysis (FDA) refers to the statistical analysis of data in the format of curves or functions.
More specifically, realizations of underlying random functions with noise. The aims of functional data
analysis are the same as those of other statistical analysis: to develop ways of presenting the data that
highlight interesting and important features; to investigate variability as well as mean characteristics; to
build models for the data observed, including those that allow for dependence of one observation or variable
on another; etc.Ramsay and Silverman(2005) is an introductory book andFerraty and Vieu(2006) is a
summary on contributions to nonparametric estimation withfunctional data. Because FDA treats an entire
function as the unit of observation, as opposed to traditional multivariate analysis, it provides a solution for
analyzing high dimension and low sample size data without dimension reduction as data pre-processing.

One application of FDA consists of regression models through which we can describe the relation be-
tween a real-valued outcome and explanatory functional variables. Functional regression models have been
used extensively: for example, to predict the total annual precipitation in a sample of Canadian weather
stations from the temperature curves measured during the year (seeRamsay and Silverman(2005)) and to
estimate the fat content in meat samples from spectrometricmeasurements (seeFerraty and Vieu(2006)).

The classical linear regression model is often of the form

yi = β0 +

p∑

j=1

zijβj + εi, i = 1, . . . , N,

where(y1, . . . , yN ) is the vector of responses and(zi1, . . . , zip) is the vector of covariates for thei−th
response. The error termsεi’s are usually considered to be independent and identicallydistributed. A
functional regression model would replace at least one of the p observed scalar covariates by a functional
covariate. Next, we will describe a model consisting of a single functional independent variable plus an
intercept term.

We want to replace the vector of covariate observationszi = (zi1, . . . , zip), i = 1, . . . , N , by a function
zi(t). A first approach may be to discretize the functional covariate by choosing a set of timest1, . . . , tq and
consider fitting the model

yi = β0 +

q∑

j=1

zi(tj)βj + εi, i = 1, . . . , N.

But, how do we chose thetj ’s with the additional restriction thatq < N? Choosing a finer and finer grid of
times{tj , j = 1, . . . , q}, the summation approaches an integral equation

yi = β0 +

∫
zi(t)β(t)dt + εi, i = 1, . . . , N.
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This is the standard functional linear regression (FLR) model, which relates functional predictors to a scalar
response, whereβ(t) is the coefficient function. With a finite numberN of observations it is impossible to
determine the infinite dimensionalβ(t). Many approaches have been proposed to deal with this underdeter-
mination issue.

2.3 Decision Tree Learning

In the supervised classification problem, it is known that each case in a sample belongs to one of a finite
number of possible classes. Given a set of features forN observations, we want to accurately predict to
which class each observation belongs to. A classifier is a rule that assigns a predicted class based on a set of
features. Consider the data(X1, Y1), . . . , (XN , YN ) whereX i = (Xi1, . . . ,Xip) ∈ X are the features,X
is the feature space andYi ∈ Y are the class labels. AssumeK classes so thatY = {1, . . . ,K}. Formally, a
classifier is a functionh : X → Y, and it corresponds to a partition ofX into disjoint setsA1, . . . , AK such
that the predicted class of an observation with featuresX is k if X ∈ Ak. The goal of classification is to
find a rule that makes accurate predictions. Accuracy is in general defined in terms of the true error rate,

L(h) = P (h(X) 6= Y ) ,

and the empirical error rate

L̂(h) =
1

N

N∑

i=1

I(h(X i) 6= Yi).

Classification trees are simple nonparametric classifiers.Classification and regression trees (Breiman
et al., 1984) work by recursively partitioning the feature space,X , into disjoint rectangular regions,R1, . . . , RM .
The nodem of a tree corresponds to the regionRm of the feature space withNm observations. The propor-
tion of classk observations in nodem is

p̂mk =
1

Nm

∑

Xi∈Rm

I(Yi = k).

At each stage of the recursive partitioning, say at nodem, all the possible ways of splittingX into subsets are
considered. The subset that results in the least node impurity is chosen. Typical measures of node impurity
are the Gini index

∑
k 6=k′ p̂mkp̂mk′ and entropy function−∑K

k=1 p̂mk log p̂mk.
A delicate issue in creating a tree classifier is how to determine the number of nodes the tree should

have (i.e., the complexity). If nodes continue to be createduntil each node has 1 observation, the tree will
be overfitting the training sample and will not be a good classifier for future (test) cases. On the other
hand, if a tree has only a few number of end or terminal nodes, then it is not using enough information
from the training sample and the classification accuracy forfuture cases will also be poor. Initially, in the
tree growing process, the predictive accuracy will improveas more nodes are created, but at some point the
misclassification rate will get worse as the tree becomes more complex. A standard approach is to choose
the complexity so that the true error rate is low. To estimatethe error rate a standard approach is to use
B−fold cross-validation. The first step is to split the data into B subsets. For each subsetb = 1, . . . , B, the
classifierh(−b) is computed on all the data not in subsetb. The classifier is then used to predict the class for

observations in subsetb with an empirical error ratêL(h(−b)). Finally the error rates are averaged to obtain
an approximately unbiased estimator ofL(h),

L̂(h) =
1

B

B∑

b=1

L̂(h(−b)).
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2.3.1 Random Forests

Decision tree learning is a popular method for nonparametric classification and regression in statistics be-
cause it is an efficient method that is also robust to noisy data. A classification tree is especially attractive
for easy understanding and intuitive representation. However, classification trees yield estimates with high
variance: a small change in the data set can often result in a very different tree.

Ensemble learning methods use multiple classifiers and aggregate their results. Bootstrap aggregation or
bagging (Breiman, 1996) is a well know ensemble learning method that reduces the variance associated with
prediction. In bagging, the idea is to obtain many bootstrapsamples from the data, apply a classification
tree, and then combine the results by taking a simple majority vote for prediction. Hence, successive trees do
not depend on earlier trees because each is independently constructed using a bootstrap sample of the data.
Random forest (Breiman, 2001) is a modification of bagging that has the effect of reducing the correlation
between different trees and hence improving averaging. In addition to constructing each tree using a different
bootstrap sample of the data, random forests change how the tree is constructed. Each node is split using the
best among a subset of predictors randomly chosen at that node. Random forests have only three parameters
that are usually not very sensitive to their values:B, the number of bootstrap samples, the number of
variables in the random subset at each node, and the number oftrees in the forest.

2.3.2 Classifier Performance Evaluation

In practice one may encounter problems that have imbalanceddata, i.e., at least one of the classes makes
up only a small minority of the data. In these cases, the focusis to correctly classify the “rare” or minority
class or classes. Commonly used classification procedures aim to minimize the overall error rate, rather than
focusing on the minority class.

Two common approaches to the imbalanced data problem are: unbalanced loss functions (see e.g.,??)
and sampling techniques (see e.g.,??). With an unbalanced loss function, one assigns a high loss or cost
to the misclassification of the minority class and aims to minimize the weighted overall classification error.
Sampling techniques aim at down-sampling the majority class or over-sampling the minority class, or both.
The random forest grows each tree from a bootstrap sample of the training data. In the case of imbalanced
data, there is a high probability that a bootstrap sample contains few or even none of the minority class,
resulting in a tree with poor performance for predicting theminority class. One way to fix this is to use a
stratified bootstrap, i.e., sample with replacement from within each class.

In the classification of imbalanced data, the overall classification accuracy is usually not an appropriate
measure of performance. The trivial classifier that predicts every case as the majority class can still achieve
very high. Other measures such as the the true negative rate (TNR), the true positive rate (TPR), etc (see
e.g. XXX). Based on Table1, these measures are defined as:

TNR =
TN

TN + FP
,

TPR =
TP

TP + FN
.

For any classifier, there is a trade-off between the TPR and the TNR. When the accurate classification of the
minority class is of interest, it is desirable to have a classifier that gives high prediction accuracy over the
minority class (TPR), while maintaining reasonable accuracy for the majority class (TNR).

One way to compare the performance of classifiers is to use theROC curve (see e.g.,??). The ROC
curve is a graphical representation of the trade-off between the false negative and false positive rates for
every possible cut off. In the random forests, we can change the votes cutoff for final prediction: as we raise
the cutoff for the minority class, we can achieve a lower TPR and a higher TNR, thus yielding a set of points
on the ROC diagram.
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3 Previous Work

Upcoming astronomical surveys will require real-time classification of variable sources. A variable sources
is an astronomical object whose brightness varies as a function of time. Correctly cataloguing distinct
variable sources is useful for fitting models that accurately describe the underlying physics of the uni-
verse. Real-time classification is also important for resource allocation of telescope follow-up. Manual
classification using spectroscopy has been the preferred method in astronomy, but the large amounts of
non-spectroscopic data of future surveys makes classification of variable sources difficult. Furthermore,
additional information, such as the spectra, is not always available. For each candidate source, we consider
brightness measurements at irregularly-spaced time points (i.e., a light curve). Our goal is to classify new
variable stars in a fast and accurate way using only the lightcurve.

3.1 Classification of Variable Sources

Figure1 are examples of light curves of two types of variable sources: blazars and cataclysmic variables
(hereafter referred to as the BL and CV data set). These data were collected by the Catalina Sky Survey1(A.
Mahabal, private communication). Blazars (BLs) or BL Lac objects are energetic objects in the extragalactic
universe. They are radio sources with highly variable optical and radio emission. There are two types of
blazars: blazars with flat optical spectra (i.e., no distinguishable features), and blazars with emission-line-
dominated optical spectra and flat radio spectra. They belong to a class of galaxies with active galactic
nuclei (AGN), which is driven by infall of matter to a supermassive black hole. Variability of blazars occurs
from shocks or relativistic jets (Valtaoja, 1992).

A cataclysmic variable (CV) is a binary star system where stellar mass is transferred from a highly
evolved giant star (the secondary) to a white dwarf (the primary). However, the stellar material does not fall
directly into the primary, instead an accretion disc is formed around the primary, becoming the brightest part
of the system. Erratic flickering in photometric measurements of CV systems can be attributed to regular
eclipses of the stars during their orbit or a unstable mass transfer rate, resulting in a varying brightness of
the accretion disc (Hellier, 2001).

Light curves describe how the brightness of a variable star varies as a function of time. The variability
depends on the physical processes inside the source. The BL and CV data set contains light curve infor-
mation for 121 BLs and 437 CVs. Without any other additional information we want to see how well the
classes can be described (and separated) using only this minimal amount of information.

Several time series analysis methods have been developed tostudy the variability properties of astro-
nomical sources (seeSubba Rao et al.(1997) for a review). Linear and non-linear analysis methods in the
time and frequency domains, adjusted to the needs of astronomical data sets, i.e. taking into account mea-
surement errors and data gaps, can well describe the time behavior of some astronomical sources. Other
tools based on running variances as for example, the SF, havebeen used to study the underlying variability
properties of the observed sources.

3.1.1 Frequency Domain Analysis

The Lomb-Scargle is a popular technique for analyzing the behavior of light curves of periodic and non-
periodic variable sources. To analyze the photometric timeseries in the BL and CV data set we consider
only the non-censored observations. After removing outlier measurements, a possible linear trend of the
form a + bt is also removed, wherea is the intercept,b the slope, andt the time. We fit each light curve a

1http://www.lpl.arizona.edu/css/index.html
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time series model that is a harmonic sum of sinusoids:

x(t) = c+

Nf∑

i=1

Nh∑

j=1

(aij sin (2πfijt) + bij cos (2πfijt)) ,

whereNh is the number of harmonics forNf test frequencies. The number of harmonics and test frequencies
used to best fit a light curve are unknown. These values could be determined through modeling of the process
(e.g., by forward selection andF−tests). A model with more parameters will always fit the data at least as
well as a model with fewer parameters. The question is whether the model with additional harmonics and
test frequencies will significantly fit the data better.

Following Debosscher et al.(2007) we chooseNf = 3 andNh = 4. Each of 3 test frequenciesfi,
are allowed to have 4 harmonics at frequenciesjfi, j = 1, 2, 3, 4.. The 3 test frequenciesfi are found
iteratively, by successively finding the peaks of the generalized Lomb-Scargle periodogram in the following
manner:

1. Define a search range for frequencies (f0, fN , and∆f ): the starting frequency is taken asf0 = 1/Ttot,
whereTtot is the total time span of the observations in light curve; thefrequency step is taken as
∆f = 1/Ttot; and the highest frequency is taken as the average of the inverse time intervals between
measurements,fN = 0.5× 1/∆t.

2. LS periodogram is calculated and the highest peak is selected. The corresponding frequency valuef1
is then used to calculate a harmonic fit to the light curve, vialeast-squares:

x(t) = c+
4∑

j=1

(aj sin (2πf1jt) + bj cos (2πf1jt)) .

3. This curve is subtracted from the time series,xi − x̂(ti), i = 1, . . . , n. A new LS periodogram is
computed on the residuals. This procedure is repeated untilthree frequencies are found.

4. The three frequencies are used to make a harmonic best-fit to the original (detrended) time series,

x(t) = c+

3∑

i=1

4∑

j=1

(aij sin (2πfijt) + bij cos (2πfijt)) .

For purposes of classification, the Fourier coefficients obtained here are not unique, because they are not
invariant under time translations. We translate the coefficients into amplitudes and a phases as follows:

Aij =
√

a2ij + b2ij , φij = arctan

(
bij
aij

)
.

Following Debosscher et al.(2007) we correct the phasesφij to relative phases with respect to the phase
of the first component (φ11 = 0). These parameters are a time-translation invariant description of the light
curves and are suitable for classification purposes. A list of the periodic features is found in Table2.

Plots of one-dimensional density estimates by class of selected period features are shown in Figure2. By
inspection of these distributions we can quickly see that there is almost no separability of the two variable
classes. The more the densities are separated from each other, the better the classes are defined, and the
fewer the misclassifications which will occur in the case of asupervised classification. Complementary
to these one-dimensional plots, we have conducted a more detailed analysis of the statistical properties
of the training set by calculating correlations between different features, and computing 2d (see Figure3)
nonparametric density estimates of features.
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3.1.2 Time Domain Analysis

The first systematic description of the SF adjusted to the needs of astronomical data sets was made by
Simonetti et al.(1985) to study radio source scintillation using as a reference the work of Rutman(1978)
from the field of electrical and electronic engineering. It has since been used extensively used to study, for
example, blazar variability (Hughes et al., 1992) and quasar selection (Butler and Bloom, 2011).

To show the range of the magnitude differences in the BL and CVdata set, we first calculate for each
pair of measurements(i, j), i, j = 1, . . . , n (n(n − 1)/2 in total) a lagτij and a one-point estimate of the
SF,sij,

τij = |ti − tj|, sij = (xi − xj)
2.

From Figure4 we can see that the distribution of the magnitude differences,
√
sij, are centered around 0

and have larger spread for CVs than for BLs. A one-point estimate of the corrected SF ishij ,

τij = |ti − tj|, hij = (xi − xj)
2 − e2i − e2j ,

whereei andej are the measurement errors for the magnitudesxi andxj, respectively. However, for 19.66%
of the measurement pairs (22.5% for BLs and 18.76% for CVs), no variability is seen, i.e.,hij < 0. In our
following SF analysis we will not use the corrected version of the SF.

To estimate the SF we binsij and average. The SF for the BL and CV ensembles are shown in Figure5.
Because of the particular sampling in the data, for some values ofτ the SF will be completely unknown. On
the the other hand, for some values ofτ the number of pairs of observations per bin will be very large, and
should lead to a good estimate of the SF. A clear feature can beobserved in the SFs, there are no horizontal
trends. When the variability of a time series is dominated bya white noise (WN) process, then the SF is
constant, with a value equal to twice the variance of the WN. This is because the amplitude of a WN process
is independent of the time lag between two observation.

Microvariability (variability on very short time scales) has been confirmed to be the intrinsic nature of
AGNs, especially for blazars (see, e.g.,Miller et al. (1989)). For longer time scales, there is a roughly linear
increase (on a logarithmic scale) of the SFs withτ , with a slope of aboutβ = 0.40 (0.37, 0.43) for BLs
andβ = 0.062 (0.041, 0.084) for CVs. However, these trends are valid for the ensemble of BLs and CVs,
not for the individual SFs of sources (see Figure6). For purposes of classification, the individual SFs or
features of the individual SFs (e.g., slope of linear trends, see Figure7) of light curves do not provide a clear
separation between classes.

We suspect that the uneven sampling affects severely the SF estimates of individual light curves. To
check this hypothesis we run simulations. There exists a functional relation between the SF and the power
spectral density (PSD); when a time series whose PSD followsa power-law, the SF will also follows a
power-law (under certain assumptions, see?? for details). Via simulations, we obtained a mean SF for each
light curve characterized by a power-law PSD with the estimated indices. By visual inspection, the mean
SFs were clearly different to the estimated SFs.

3.1.3 Feature Extraction

The classification of light curves relies upon the ability torecognize and quantify the differences between
the variability. In the previous two sections we have seen that working in the time and frequency domain
does not yield additional information to separate the different classes. FollowingRichards et al.(2011) we
take another approach by transforming each light curve intoa set of features that ignore the time structure
in the data. Table3 contains the features computed. Many of these are simple statistics on the distribution
of apparent magnitudes (e.g., standard deviation, skewness). Density estimates for the features by type of
source are shown in Figure8. Again, we can see that in this feature space there is no separation of the type
of variable source.
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If no useful time-domain information can be obtained from light curves, one can estimate the density
of the time series to examine, for example, the shape of the distribution, the spread; etc. These density
estimates may contain useful information for classification. Nonparametric density estimation is done using
a Gaussian kernel estimator of which the asymptotic properties are well established for i.i.d. data and for
time series data (see e.g.,??). With a simple example, we will illustrate how to classify noisy time series
with no useful time-domain information by incorporating ancillary information.

3.2 A Simple Example

To illustrate the main ideas of our proposed methods consider the following simple example. Consider a set
of training examples of the form{(xi, yi), i = 1, . . . , N}, where thex’s are input variables (evenly spaced
time series data),xi = (xi1, . . . , xin) and they’s are the categorical (class type) outputs. Assume that there
are only two classes, and soy ∈ {0, 1}. The details of the simulation follow. To simulate a data set:

• generate the outputY such thatY =

{
0 with probability0.3

1 with probability0.7
;

• generateσ such thatσ =

{
1 if Y = 0

Uniform(0.5, 1) if Y = 1
;

• generate the inputx = (x1, . . . , xn)
i.i.d.∼ N(0, σ).

Because the simulated time series are i.i.d., the time series data have no useful time-domain information.
The class labeledY = 1 constitutes a small minority of the data. We will focus on thecorrect classification
of this “rare” class.

3.2.1 One Data Set

We simulate one data set with 300 time series, each with 30 equally spaced values given the details above.
214 time series have labelY = 0 and 86 have labelY = 1. Figure9 are some examples of the simulated
time series. Using a random forest classifier on the time series data we obtain the classification in Table4
with an overall error rate of 20.33% (500 trees are grown and 5variables are randomly sampled as candidates
at each split). All but 31 time series were classified in the larger class,Y = 0. Because 67% of the time
series in classY = 1 are misclassified and only 10% for classY = 0, we have an imbalanced classification
and we conclude that there are limitations in terms of classification accuracy when using only this data.

The random forest classifier is constructed to minimize the overall error rate and will tend to focus more
on the prediction accuracy of the majority class. This results in poor accuracy of the minority class. If we
down-sample the majority class, then we grow each tree on more balanced data. A majority vote is taken
as usual for prediction. Figure10 compares the performance of the random forest classifier using different
sample sizes for the majority class. The size of the majorityclass is 214, but the class error rates are roughly
equal when we use 55 bootstrap samples in the random forest. Using stratified bootstrap samples sizes of
55 and 86 for classY = 0 andY = 1, respectively, we obtain an overall error rate of 17.67%. The class
errors are more balanced: 18.22% for class 0 and 16.28% for class 1, as shown in Table5. At the expense
of misclassifying more observations in the majority class we are able to reduce the error rate in the minority
class, without with a small change in the overall error rate.By inspection of the ROC curves in Figure11
we can see that classifier using stratified sample sizes to balance out the class error rates performs better.

In this particular example we derive the ancillary feature from the time series data. In a real situation,
the ancillary feature is obtained independently from the data. In this example, the ancillary feature is the

10



sample standard deviation,s =
√∑n

j=1(xj − x)2/(n − 1). From Figure12 it is clear that the ancillary

feature is correlated with the class type, and therefore contains valuable information to separate the classes.
If no useful time-domain information can be obtained from the time series, one estimates the densities

of the time series to examine, for example, the shape of the distribution. Nonparametric density estimation
is done using a Gaussian kernel estimator of which the asymptotic properties are well established for i.i.d.
data and for time series data (see e.g.,??). The individual density estimates of the simulated time series are
shown in Figure13. These densities give us a visual impression that there are two groups of time series with
different variability. We propose to regress the ancillarydata on the density estimates. This approach relies
on the fact that the time series and its density estimates canbe well separated by the ancillary feature. We
consider a setting where a regression model is used to learn the complex structure between the ancillary data
and the density of the noisy time series.

To clarify the notation, we have simulated one data set consisting ofN = 300 evenly-spaced time series
x1, . . . ,xN of lengthn = 30, xi = (xi1, . . . , xin). Furthermore, we have nonparametric density estimates
for each of the time series,f1, . . . ,fN on a gridx∗1, . . . , x

∗
m with m = 120, such thatf i = (fi1, . . . , fim),

wherefik is the density estimate forx∗k. Furthermore, for each time series we have an ancillary (scalar)
feature,a1, . . . , aN .

The goal now is to predict the ancillary feature from the density estimates of the time series data. We fit
a functional linear model where the response is a scalar quantity. We want to predict this scalar response on
the basis of one functional covariate, the density of the observations in a time series. For each time series, we
consider a density estimate on a gridf i = (fi1, . . . , fim), i = 1, . . . , N , as a vector of discretized functional
valuesfi(x∗k) = fik, k = 1, . . . ,m. The one-dimensional argument,x∗ are the values in the domain of the
time series. The density estimate is a function ofx∗ and it is observed only at discrete sampling values
x∗1, . . . , x

∗
m with m = 120 that are equally spaced. We are consideringN time series, and therefore, there

areN replications of the function, indexed byi = 1, . . . , N . Each replicate is referred to as an observation,
since we want to treat the discrete values as a unitary whole.

We fit the following FLR model,

ai = β0 +

∫
fi(x

∗)β(x∗)dx∗ + εi, i = 1, . . . , N.

To deal with the underdetermination issue ofβ we use a basis coefficient expansion ofβ:

β(x∗) =

Kβ∑

k=1

bkφk(x
∗) = b′φ(x∗),

where{φk, k = 1, . . . ,Kβ} are the basis functions. At the same time, the covariate function, fi(x∗), can
also be expanded in terms of a basis expansion in{θk, k = 1, . . . ,Kf} as:

fi(x
∗) =

Kf∑

k=1

cikθk(x
∗) = c′iθ(x

∗), i = 1, . . . , N.

Therefore, the FLR model can be expressed as

ai = β0 +

∫
c′iθ(x

∗)φ(x∗)′bdx∗ + εi

= β0 + c′i

(∫
θ(x∗)φ(x∗)′dx∗

)
b+ εi

= β0 + c′iJφθb+ εi.
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The parameters we want to estimate areβ0 andb. To convert the density estimates to function form we
choose a cubic B-spline basis with58 (roughlym/2) equally spaced knots.

One approach to estimate the parameters is to truncate the basis such thatKβ < Kf and then use the least
squares approach. We choose a cubic B-spline with 5 basis functions for the regression coefficientb, and
a constant function forβ0. Figure14 is the estimated regression coefficient function. The squared multiple
correlation is 0.9736 and the correspondingF−statistic with 5 and 29 degrees of freedom is 141.1767,
suggesting a fit to the data that is better than what we would expect by chance. Figure15 compares the
fitted values for the ancillary data from a FLR model with the true values. With a random forest classifier
on the predicted ancillary feature we obtain the classification in Table6 with an overall error rate of 12.67%
(500 trees are grown and 1 variable is sampled at each split).Again we have a case of unbalanced error
rates: 9.35% of the observations in class 0 are misclassifiedwhile 10.93% of the observations in class1 are
misclassified. Again we balance the class error rates by choosing bootstrap samples of sizes of 84 and 86
for classY = 0 andY = 1, respectively (see Table7 ). The overall error rate for this classifier is 13%.

Another approach to estimate the parameter is to use penalized regression. We fit the FLR by minimizing
the penalized sums of squares (PSSE):

PSSEλ(β0, β) =

n∑

i=1

[
ai − β0 −

∫
fi(x

∗)β(x∗)dx∗
]2

− λ

∫
Lβ(x∗)dx∗,

where the second term on the right side penalizes some form ofroughness in the coefficient function. We
use the criterion ∫

Lβ(x∗)dx∗ =

∫ (
β′′(x∗)

)2
dx∗,

which measures the roughness of the functionβ by integrating the square of its second derivative, i.e., the
curvature ofβ. The more wigglyβ is, the larger this term will be. The smoothing parameter,λ, plays a key
role. The largerλ, the more roughness inβ is penalized. Asλ → ∞, β tends to a line, for which the second
derivative is 0. On the other hand, for smallλ the roughness ofβ matters less.

We replace our previous choice of basis for defining theβ estimate by a cubic B-spline basis with58
equally spaced knots. By cross-validation we find a smoothing parameter oflog10(λ) = −1.5 (see Figure
17). The squared multiple correlation is again 0.9737. TheF−statistic is 136.9076 with 4.8483 and 29
degrees of freedom. However, theF−distribution in this case is only an approximation. The predicted
ancillary feature is almost identical to the least squares estimate. Therefore, the random forest classifiers are
nearly identical.

3.2.2 Many Data Sets

Next, we repeat the above analysis by simulating 100 data sets, each with 300 time series, each of these
time series with 30 equally spaced values given the details above. To classify the time series data and the
predicted (via FLR) ancillary data in each data set we use a random forest classifier just as in the previous
section. In order to balance the individual class errors we use the down-sampling method. We arbitrarily
set the class 0 sample sizes to 55 and 84 when building classifiers for the time series and predicted ancillary
data, respectively. From Figure18 we can see that the overall classification accuracy of the classifiers that
use the predicted ancillary feature is higher than the classifiers that use the raw time series data.

The times series in each data set is our observed data and usedto predict the ancillary feature, which in
turn, are used for classification. Via functional regression models we have learned the relationship between
the ancillary feature and the observable data. The errors inthe density estimates have propagated onto the
predicted ancillary features and hence in the predicted class. The question about how to quantify these errors
remains as future work.
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4 Proposed Work

4.1 Regression With Distribution as Predictor

Regression is a widely studied problem in statistics. One ofthe key methodological contributions to be
made by this dissertation will be an exploration of methods for regression in cases where the response is
real-valued, but the predictor is a distribution, or an estimate of a distribution. Estimating and testing the
parameters of a regression function has been well studied, however, when the predictors are measured with
error, the problem becomes more complex from a statistical point of view. In particular, we will focus
on how the effects of the errors in the density estimate propagate to errors in the regression. Because the
predictor is estimated, this problem becomes a errors in variables problem.

In particular, we will explore existing parametric and nonparametric methods for relating a continuous
response to functional predictors, i.e., the estimated density or log density. Often functions must satisfy
some constraints. If, for example, the data are values that cannot be negative, then we do not want negative
function values, even over regions where values are at or close to zero. Furthermore, if one considers a
histogram as a density estimate, then the total area under the density is 1. The density in this particular
case are non-negative proportions with unit sum, i.e., compositional data. We will investigate models with
compositional covariates where the goal is to predict a real-valued response as a function of a composition.
The comparisons of existing methods on simulated data sets will result in concrete recommendations for
this type of regression problem.

Finally we will investigate how to assess the fit of regression models with distributions as predictors.
Because the response is real-valued, standard methods of evaluation of looking a residuals should extend.
However, an interesting question is approximating the number of degrees of freedom in the mode, i.e., how
to assess when we may be overfitting.

Specifically, I will do the following:
To be included...

4.2 Further Exploration of Time-Domain Approaches

The SF is one of the most extensively used tools in the field of AGN variability. Conclusions are based on
observed SF characteristics such as breaks and slopes and they are attributed physical meaning. Through
extensive simulation, we want to study the properties of theSF. In particular we want to study the effects
of the data length on the position of the SF breaks and analyzethe sensitivity of SF to the presence of data
gaps.

A major problem in the use of the SF is that the estimatesŜ(τi) are not independent of each other.
This affects common fitting routines, for example, least squares and maximum likelihood, methods that
are commonly used in SF astronomy literature to derive the SFbreaks and slopes. The estimation of the
structure function via maximum likelihood usually assume anormal distribution for the observations in
a light curve. The covariance structure is specified empirically or via a statistical model (e.g., a damped
random walk model). These assumptions can be generalized byassuming other distributions for the light
curves or other specifications of the covariance structure.

Specifically, I will do the following:
To be included...

4.3 Astronomy Application

We will develop a classification scheme to combine (1) the physical knowledge of the relationship between
the type of object and spectroscopic information - in a training set - with (2) the reality of the low quality
time series that we will observe. Because the spectra can accurately predict the type of source, we can learn
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a complex structure between the light curve and features derived from the spectra. The learned structure
is used as an input to perform classification of variable sources based on light curves in the test set. Main
emphasis will be placed on finding relevant ancillary features in spectroscopic data that can separate types
of variable sources.

In the classification problem we may have class labels that are derived from an underlying continuous
variable (in this particular case, the ancillary feature).Hence we will explore methods where real-valued
data is taken as input to perform classification. For example, it would be interesting to explore if transition
classes exist between two classes. These transition classes can be objects that show properties in between
two standard classifications. Furthermore, defining more and more transition classes could ultimately reveals
that variable sources do not form a discrete class but rathera continuum of variability.

Specifically, I will do the following:
To be included...
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5 Tables

Table 1:Confusion matrix.

Prediction
Negative Positive

Truth
Negative True Negative (TN) False Positive (FP)
Positive False Negative (FN) True Positive (TP)

Table 2:Periodic features extracted from light curves using the generalized Lomb-Scargle periodogram.

Feature Description
fi i−th frequency,i = 1, 2, 3

Aij Amplitudei−th frequency,j−th harmonic,i = 1, 2, 3, j = 1, 2, 3, 4
PHij Phasei−th frequency,j−th harmonic,i = 1, 2, 3, j = 1, 2, 3, 4

varratio Ratio of the variance after, to the variance beforesubtraction
of the fit withf1 and its 4 harmonics
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Table 3:Other features calculated using the magnitude measurements of the light curves.

Feature Description
w.mean weighted (by photometric errors) mean of the mags
std.dev standard deviation of the mags
skew skewness of the mags
kurt kurtosis of the mags

pct.beyond.1.std.dev fraction of mags that lie above or below one std. dev. from the weighted mean
amplitude difference between the max and the min mags

min.abs.slope min absolute slope between two consecutive observations
med.abs.slope median absolute slope between two consecutive observations
max.abs.slope max absolute slope between two consecutive observations
min.abs.dev min discrepancy of the mags from the median mag
med.abs.dev median discrepancy of the mags from the median mag
max.abs.dev max discrepancy of the mags from the median mag

within.20pct.ampl.from.med Fraction of mags within 20% ofthe amplitude from the median mag
slope.trend.first.30 Considering the first 30 mags, the % of increasing first diffs minus the fraction of decreasing first diffs
slope.trend.last.30 Considering the last 30 mags, the % of increasing first diffs minus the fraction of decreasing first diffs
pct.ratio.mid.20 Ratio of mag percentiles (60th - 40th) over (95th - 5th)
pct.ratio.mid.50 Ratio of mag percentiles (75th - 25th) over (95th - 5th)
pct.ratio.mid.80 Ratio of mag percentiles (90th - 10th) over (95th - 5th)

Table 4: Confusion matrix of random forest classifier on the simulated time series data.500 trees were grown and 5 variables
were tried at each split.

Prediction
Classification Error

0 1

Truth
0 211 3 0.01401869
1 58 28 0.67441860

Table 5:Confusion matrix of random forest classifier on the simulated time series data, with bootstrap sample sizes of 55 and 86,
for class 0 and 1, respectively.500 trees were grown and 5 variables were tried at each split.

Prediction
Classification Error

0 1

Truth
0 175 39 0.2149533
1 14 72 0.1976744

Table 6:Confusion matrix of random forest classifier on the least squares estimate of the ancillary feature using FDA.500 trees
were grown and 1 variable was tried at each split.

Prediction
Classification Error

0 1

Truth
0 194 20 0.09345794
1 18 68 0.20930233
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Table 7: Confusion matrix of random forest classifier on the least squares estimate of the ancillary feature using FDA, with
bootstrap sample sizes of 84 and 86, for class 0 and 1, respectively. 500 trees were grown and 1 variable was tried at each split.

Prediction
Classification Error

0 1

Truth
0 186 28 0.1308411
1 11 75 0.1279070
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Figure 2:Nonparametric density estimates of selected periodic features of the BL and CV data set.
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Figure 3:Bivariate nonparametric density estimates of selected pairs of periodic features of the BL and CV data set.
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Figure 4:Magnitude differences for the BL and CV ensembles, for very short (left) and long (right) time differences. Only 10,000
points are shown in each plot.
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Figure 5:Ensemble SFs for the BL and CV data set. SFs for very shortτ , with δ = 0.01 min (left). SFs for longτ , with δ = 1
day (right). The solid lines are the fitted linear regression. The size of the points is proportional to the number of observations used
to calculate the particular value of the SF.
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Figure 6: Individual SFs for longτ , with δ = 1, for 6 BLs and 6 CVs. The colored solid lines are the fitted linear regression to
the ensemble SF. The size of the points is proportional to thenumber of observations used to calculate the particular value of the
SF. We fit a non-parametric regression to the individual SFs using regression splines and the number of spline knots is chosen by
minimizing the generalized cross-validation score (blackcurves).
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Figure 7:Density estimates of the distribution of the slope for the linear regressionlog
10
(SF ) ∼ log

10
(τ ), longτ , with δ = 1.
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Figure 8:Density estimates of the other features calculated using the magnitude measurements of the light curves.
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Figure 9:Four simulated time series. The red time series have labelsY = 0 and the blue have labelsY = 1.
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Figure 10:Smoothed class and overall error rates for different stratified bootstrap sample sizes of the majority class (Y = 0).
The class 0 and class 1 error rates are roughly equal when the stratified bootstrap sample sizes are 55 forY = 0 and 86 forY = 1.
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Figure 11:ROC curves for the imbalanced and balanced random forest classifiers on the time series data of Table4 (curve A)
and Table5 (curve B).
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Figure 12:Distribution of the ancillary feature on one simulated dataset. The ancillary feature is the sample standard deviation
of the time series.
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Figure 13:Nonparametric density estimates on one simulated data set.The red time series have labelsY = 0 and the blue have
labelsY = 1.
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Figure 14:Estimate ofβ(t) for predicting the ancillary feature from the density estimates via least squares. The dashed lines
indicate pointwise 95% confidence limits for values ofβ(t).
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Figure 15:Observed ancillary feature values plotted against values predicted by FLR on the density estimates using least squares.
The red points have labelsY = 0 and the blue have labelsY = 1. The black line isy = x.
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Figure 16: ROC curves for the imbalanced and balanced random forest classifiers on the predicted ancillary data of Table6
(curve C) and Table7 (curve D) in addition to the ROC curves in Figure11.
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Figure 17:Cross-validation scoresCV (λ) for fitting the ancillary feature by the density estimates, with a penalty on the curvature
of the coefficient function,β(x∗).
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Figure 18:Classification error rates for 100 simulated data sets usingrandom forest classifiers on: (A) the time series data; (B)
the time series data, down-sampling class 0 to 55; (C) the estimated ancillary data; (D) the estimated ancillary data, down-sampling
class 0 to 84.

A
Class 0

A
Class 1

A
Overall

B
Class 0

B
Class 1

B
Overall

C
Class 0

C
Class 1

C
Overall

D
Class 0

D
Class 1

D
Overall

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
tio

n 
E

rr
or

31



7 References

References
Barning, F. (1963), “The numerical analysis of the light-curve of 12 Lacertae,”Bulletin of the Astronomical Institutes of the Nether-

lands, 17, 22–28.

Bloomfield, P. (2000),Fourier analysis of time series: An introduction, Wiley-Interscience, 2 edn.

Breiman, L. (1996), “Bagging predictors,”Machine Learning, 24, 123–140.

Breiman, L. (2001), “Random forests,”Machine Learning, 45, 5–32.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984),Classification and regression trees, Wadsworth and Brooks.

Butler, N. and Bloom, J. (2011), “Optimal time-series selection of quasars,”The Astronomical Journal, 141, 93–103.

Chilès, J. and Delfiner, P. (1999),Geostatistics: Modeling spatial uncertainty, Wiley-Interscience, 1 edn.

Debosscher, J., Sarro, L., Aerts, C., Cuypers, J., Vandenbussche, B., Garrido, R., and Solano, E. (2007), “Automated supervised
classification of variable stars. I. Methodology,”Astronomy and Astrophysics, 475, 1159–1183.

Ferraty, F. and Vieu, P. (2006),Nonparametric functional data analysis: Theory and practice, Springer Science and Business
Media.

Hellier, C. (2001),Cataclysmic variable stars: how and why they vary, Springer-Praxis books in astronomy and space sciences,
Praxis.

Hughes, P., Aller, H., and Aller, M. (1992), “The Universityof Michigan radio astronomy data base. I - Structure function analysis
and the relation between BL Lacertae objects and quasi-stellar objects,”The Astrophysical Journal, 396, 469–486.

Kelly, B., Bechtold, J., and Siemiginowska, A. (2009), “Arethe variations in quasar optical flux driven by thermal fluctuations?”
The Astrophysical Journal, 698, 895–910.

Kolmogorov, A. (1941), “The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers,”
Akademiia Nauk SSSR Doklady, 30, 301–305.

Lomb, N. (1976), “Least-squares frequency analysis of unequally spaced data,”The Astrophysical Journal, 39, 447–462.

Miller, H., Carini, M., and Goodrich, B. (1989), “Detectionof microvariability for BL Lacertae objects,”Nature, 337, 627–629.

Ramsay, J. and Silverman, B. (2005),Functional Data Analysis, Springer.

Richards, J., Starr, D., Butler, N., Bloom, J., Brewer, J., Crellin-Quick, A., Higgins, J., Kennedy, R., and Rischard, M. (2011), “On
machine-learned classification of variable stars with sparse and noisy time-series data,”The Astrophysical Journal, 733, 10–30.

Rutman, J. (1978), “Characterization of phase and frequency instabilities in precision frequency sources: Fifteen years of progress,”
Proceedings of the IEEE, 66, 1048 – 1075.

Scargle, J. D. (1982), “Studies in astronomical time seriesanalysis. II - Statistical aspects of spectral analysis of unevenly spaced
data,”The Astrophysical Journal, 263, 835–853.

Simonetti, J., Cordes, J., and Heeschen, D. (1985), “Flicker of extragalactic radio sources at two frequencies,”The Astrophysical
Journal, 296, 46–59.

Subba Rao, T., Priestley, M. B., and Lessi, O. (1997),Applications of time series analysis in astronomy and meteorology, Chapman
and Hall.

Valtaoja, E. (1992),Variability of blazars, Cambridge University Press.

Zechmeister, M. and Kurster, M. (2009), “The generalised Lomb-Scargle periodogram,”Astronomy and Astrophysics, 496, 577–
584.

32


	Introduction
	Background and Related Work
	Time Series Analysis
	Frequency Domain Analysis
	Structure Function Analysis

	Functional Data Analysis
	Decision Tree Learning
	Random Forests
	Classifier Performance Evaluation


	Previous Work
	Classification of Variable Sources
	Frequency Domain Analysis
	Time Domain Analysis
	Feature Extraction

	A Simple Example
	One Data Set
	Many Data Sets


	Proposed Work
	Regression With Distribution as Predictor
	Further Exploration of Time-Domain Approaches
	Astronomy Application

	Tables
	Figures
	References

