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Abstract

Beyond a few degrees of relationship pedigrees are rarely known with absolute certainty. This

uncertainty is often elevated in population isolates, in which all extant individuals trace their

ancestry to a limited number of founders. Cryptic relatedness can have a detrimental impact

on nominal false positive rates for genetic association tests. An algorithm overcoming this

problem is as follows: first estimate the relatedness of all pairs of individuals assessed for

association; then adjust the test for association on the basis of relatedness. Methods exist

by which relatedness can be estimated using genotypes obtained as part of a genome wide

association study (GWA). It is important to recognize that using genotype information to

estimate relationships between pairs of individuals can be very noisy.

Treelets are an adaptive approach to dealing with noisy, high-dimensional and unordered

data. Treelets simultaneously construct a hierarchical tree and an orthonormal basis that

represent the internal structure of the data. We propose to use treelets on estimated rela-

tionship data by examining each individuals relationship to everyone else. Noise is removed

by identifying the most important features of the basis and then reconstructing the data.

We apply these techniques to data from Palau, an Oceanic nation of relatively recent origin

in human history. These data are part of an ongoing project to understand the genetic basis

of schizophrenia.

Introduction

Genome wide association studies (GWAS) are an extremely useful tool for finding genetic

variants associated with complex diseases. It has been well documented that spurious as-

sociations between these diseases and gene locations may exist in the presence of cryptic

relatedness [1]. Cryptic relatedness can arise in a number of ways. One such way oc-

curs when ancestry is not properly accounted for in a case-control sampling design. Due

to demographic, biological and random forces, genetic variants differ in allele frequency in

populations around the world, creating population structure or stratification reflected by

ancestry [2]. These inherent ancestral differences may lead to spurious associations. One

way to alleviate this problem is to use family-based designs [3; 4; 5; 6]. These designs model

the transmission of alleles, conditional on the family structure, and so they eliminate the

problem of population stratification. Unfortunately, family-based designs can be difficult to
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collect. It is quite common that a researcher would have both types of data (case-control

and family-based) when performing a GWAS.

We propose a method to analyze family-based samples together with unrelated cases and

controls. The method builds on the idea of matched case-control analysis using conditional

logistic regression. For each trio within the family, a case (the proband) and matched pseudo-

controls are constructed, based upon the transmitted and untransmitted alleles. Unrelated

controls, matched by genetic ancestry, supplement the sample of pseudo-controls; likewise

unrelated cases are also paired with genetically matched controls. Within each matched stra-

tum, the case genotype is contrasted with control/pseudo-control genotypes via conditional

logistic regression, using a method we call matched-conditional logistic regression (mCLR).

Spectral graph analysis of numerous genotypes provides a tool for mapping genetic an-

cestry [7]. The result of such an analysis can be thought of as a multidimensional map, or

eigenmap, in which the relative genetic similarities and differences amongst individuals is

encoded in the map. Once constructed, new individuals can be projected onto the ancestry

map based on their genotypes. Successful differentiation of individuals of distinct ancestry

depends upon having a diverse, yet representative sample from which to construct the an-

cestry map. Once samples are well-matched, mCLR yields comparable power to competing

methods but ensures excellent control over Type I error. This work has previously been

completed [8].

Another source of cryptic relatedness may be due to a researchers desire to sample from

individuals of some isolated population. There is no reason to estimate each individual’s

ancestry as it is known that they are all related. For instance, Palau, an Oceanic island

nation of relatively recent origin in human history has been shown to have an unusually

high rate of schizophrenia [9]. Unfortunately, standard GWAS can not be directly applied

due to the cryptic relatedness of this isolated island’s residents. Many algorithms have

been developed to account for this relatedness [10; 11]. Each of these methods estimates

how related individuals are and then uses this relatedness to adjust their respective test

statistics. These estimates of relatedness can be very noisy.

The most common way of dealing with relatedness is to examine the kinship coefficient (Φ)

between pairs of individuals [12]. Loosely defined, the kinship coefficient is the probability

that any pair of randomly chosen genes between two individuals are identical. This property

is known as Identity by Descent (IBD). Kinship coefficients can be calculated in one of two

ways: (i) using pedigree or family tree information and (ii) using genotype information.
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The first of which involves counting the number of paths between pairs of individuals until

a common ancestor. Some common pedigree-based kinship coefficients can be found in

Table 1[13]. The second method uses a likelihood based approach. Given only genotype

information, it is very difficult to determine if two genes are IBD. Typically, we do not know

if the alleles are inherited from a common ancestor, but we do know if the alleles are of the

same form. This is known as Identity by State (IBS). Therefore, we can construct a locus

specific likelihood based on the (known) possible IBS modes, conditional on the probabilities

of the (unknown) number of IBD alleles. Maximum-likelihood techniques can then be applied

[14; 15; 16; 17]. For the rest of the paper, we will predominately be dealing with (ii), as

errors in this method are more statistical in nature.

Ultimately, we want to use all pairwise relationships in the sample to improve our esti-

mates of each pairwise relationship. In other words, if two individuals are related to each

other then they are likely to have similar kinship coefficients with others. Therefore, we can

essentially extract information we need about either from some single transformation of the

two individuals, or variables in general.

Two of the most common approaches to the transformation problem above is to use

principal component analysis (PCA) and wavelets. PCA is a simple technique but fails

to capture localized structure among the variables due to its global preserving properties.

Wavelets are more sensitive to localized structure but are ill equipped to handle unordered

data. One way around this problem is to order the data in some meaningful way and

then use wavelets. Therefore, we propose to use Treelets [18], an adaptive technique that

simultaneously orders the data by building an agglomerative hierarchical dendrogram and

builds an orthogonal basis that reflects the internal structure of the data. This is done

through a series of Jacobi rotations between pairs of variables [19]. This method is similar to

work done by Murtagh [20] and Singh, et. al [21]. Murtagh uses a balanced Haar transform

at every level of an already established hierarchical tree. It does not simultaneously build the

tree as well. Also, balanced Haar wavelets on a dendrogram do not produce an orthonormal

basis. The second method supplements building a hierarchical tree with using an unbalanced

Haar basis representation. The main difference between it and Treelets is in the goal of each

method. Singh’s method actively attempts to find the most sparse transform in general,

where as Treelets do not. Also, Singh’s method is not interested in determining relationships

among individuals, or in their case, nodes of a network. They are only interested in the

coordinates that correspond to non-zero means of signal strength.
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Once we have determined a basis that captures the internal structure of the data, we

can use the corresponding expansion coefficients to reconstruct our original matrix. Noise is

removed by thresholding the expansion coefficients and then reconstructing the matrix. We

show that Treelets do indeed capture closely related individuals and that thresholding the

expansion coefficients does remove noise from our matrix. This process is examined through

simulations.

Data

We have both pedigree-based and genotype-based kinship coefficient values (2 ∗ Φ) for 556

individuals from Palau. Here, we will take 2 ∗Φij to be twice the kinship coefficient between

individual i and individual j. Because Palau is a young, isolated population, most individuals

are at least somewhat related. Nevertheless, many of these relationships are quite distant.

Consequently, most kinship coefficients are close to zero. Therefore, we transform the data

to the Coefficient of Relationship (R) [13]:

ρ = 2−R = 2Φ

⇒ R =
−log(2Φ)

log(2)
.

This transformation is not arbitrary, as it corresponds nicely to a natural scale of relationship.

For instance, Rij = 0 when i and j are MZ twins or when i = j, Rij = 1 if i and j are

parent-offspring or full siblings and Rij = 2 when i and j are aunt/uncle-niece/nephew

or grandparent-grandchild. Because this is a log-transformation, I added 5e-07 whenever

Φij = 0. Therefore, we are dealing with a maximum value of about 21. A plot of both 2Φ

and R for the genotype-based Palau dataset can be found in Figure 1

Simulations

To thoroughly evaluate our approach we simulate some (realistic) data to verify that using

treelets is reasonable. One can also evaluate our methods using pedigree-based degree of

relationship values; however, entries beyond 5 are not reliable. A simple simulation algorithm

for constructing pedigree-based R values is as follows:

1. Start with 80 founders or completely unrelated individuals (40-40 males/females) and

marry them

5



2. Choose X ∼ Bin(4, .5) children for each couple from (1)

3. Marry children from (2) using the following rules:

• Can’t marry siblings

• Randomly choose a female for every male (if enough). If chosen female is a sister,

then neither get married.

• If there are more males than females, randomly choose group of males the same

size as group of females

4. Choose X ∼ Bin(4, .5) children for every couple from (3)

5. Repeat previous steps for 7 generations (not including founding generation)

6. Calculate pedigree-based 2Φ for all individuals [22]

• Number the people in the pedigree in such a way that every parent precedes his

or her children

• Φ is built recursively by considering i = 1, . . . , n:

• If the current individual i is a founder then:

– Set Φii = 1/2.

– For each previously considered person j (i.e. j < i), set Φij = Φji = 0.

• If i is not a founder then:

– Let i have parents k and l.

– Set Φii = 1/2 + 1/2Φkl. This is due to the fact that we are equally likely to

choose either the same gene twice or both maternally and paternally derived

genes once.

– Set Φij = Φji = 1/2Φjk + 1/2Φjl. This is due to the fact that in this case,

we are equally likely to compare either the maternal gene of i or the paternal

gene of i to a randomly drawn gene from j.

7. Transform to R

8. Remove founding and first generation from analysis
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9. Add εij ∼ N(0, σ2
ij) to every point. Variance is dependent on the variance of similar

values from Palau dataset. See Figure 2

• Binned genotype-based R values from Palau dataset

• Calculated median absolute deviation (MAD) of pedigree-based R values for first

six bins from above

• Ran OLS simple linear regression through the origin on MAD values versus bin

number (β̂ = .1892).

• Extrapolated to get σij. Did not add any noise to R values at artificial bound

Ended up with 621 individuals in simulated dataset. Simulated data and noisy data can be

found in Figure 3.

It is important to note that our simulated degree of relationship values are pedigree-

based. I have previously mentioned that we would only consider using genotype-based values

because the error structure is more statistical in nature and because these are what are more

commonly used in practice. We are currently working on developing simulations using a

technique known as gene dropping [23]. This method constructs marker information by

simulating gene flow: genes are “dropped” down a pedigree according to Mendel’s laws

and realistic levels of recombination. As was mentioned previously, genotype-based degree

of relationship values can then be estimated from this simulated marker information using

likelihood based approaches.

Methods

Treelets

Suppose we have n individuals whose degree of relationship (R) has been calculated for all

pairs. Then, we have a symmetric n x n matrix that we will build our treelets on. In short,

the treelet algorithm builds a hierarchical tree by starting at l = 0 (bottom of the tree) and

combining the two most similar columns (or rows, since it is symmetric) of R into a coarse

“sum variable” and a residual “difference variable” by local PCA. Put another way, local

PCA finds an angle, θ, such that the covariance between the two chosen variables is 0. The

angle chosen, along with the pair of indices form the basis. Here, the sum variable is the

projection of the two variables in the main principal direction and the difference variable is
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the projection of the two in the orthogonal direction. It should be noted that using a fixed

θ = π
4

is the same as the balanced Haar transform. Only sum variables are considered further

as we increase l = 1, . . . , n− 1. At every level of the hierarchical tree, nodes are associated

with the sum variables. More specifically:

• At level l = 0 (the bottom of the tree), let x(0) = [r0,1, . . . , r0,n], where x
(0)
k = r0,k is

the k-th column of the degree of relationship matrix, R. Define the basis at this level,

B0, to be the n x n Identity matrix. Compute the covariance and similarity matrices

Σ̂(0) and M̂ (0). Initialize the set of “sum variables,” S = {1, 2, . . . , n}.

• Repeat for l = 1, . . . , L:

– Find α and β that satisfy:

(α, β) = argmaxi,j∈SM̂
(l−1)
ij

– Perform local PCA on α and β. Find the orthonormal rotation of the two dimen-

sional plane spanned by x
(l−1)
α and x

(l−1)
β . This is done using a Givens rotation

matrix [24],

Gl = I + Θ(αl, βl, θl)

where I is the identity matrix and Θ(αl, βl, θl) is defined as:

Θij =


cos(θl)− 1 if i = j = αl or i = j = βl

sin(θl) if i = αl and j = βl

−sin(θl) if i = βl and j = αl

0 otherwise.

This transformation corresponds to a change of basis Bl = Bl−1Gl and new coor-

dinates x(l) = Gt
lx

(l−1). Calculate M̂ (l) and Σ̂(l) accordingly.

– For ease of notation, assume that Σ̂
(l)
αα ≥ Σ̂

(l)
ββ. Then, α and β correspond to the

first and second principal components, respectively. Set the sum and difference

variables as sl = x
(l)
α and dl = x

(l)
β . Define the scaling and detail functions φl

and ψl as columns α and β of Bl, respectively. As is the case with standard

wavelet analysis, only sum variables are considered further. In other words, set

S = S\{β}.
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Once we have constructed an orthonormal basis BL = (b1, . . . , bn), every row of R, r, can

be completely reconstructed as:

r =
n∑

i=1

cibi

where ci = 〈r, bi〉. In order to actually smooth the vector, we employ hard thresholding using

a universal threshold on the c’s (components). In other words,

δH
λ (ci) =

{
ci, if |ci| > λ,
0, otherwise,

where i = 1, . . . , n and λ is some threshold value chosen a priori.

Finally, because relationships are symmetric (Rij = Rji) it stands to reason that our

smoothed matrix R̃ should be symmetric. Given that we are treating each row individually,

there is no guarantee that this will be the case. Therefore, we simply symmetrize it to get

R̂ = (R̃ + R̃t)/2.

Similarity Score

In the above treelet algorithm, at each level of the tree building process, we are required

to find the two “most similar” variables to combine. A natural choice could simply be the

correlation coefficient, ρij, between variables xi and xj. Unfortunately, this metric is not

completely suitable for our purposes due to natural “outliers” in our data. Essentially, by

the way we have constructed the data, there will be numerous outliers and influential points

between any two given variables. These can be seen by examining Figure 4.

This figure is of two randomly chosen individuals from the simulated dataset. It turns out

that Rij ≈ 3. This means that individual i and individual j are probably first cousins. Each

point on the plot represents the degree of relationship of a third individual, k, to both i and j.

A few items of note about this plot are the “boundaries” along the right side and top. These

points correspond to individuals who are essentially unrelated to individual i (or j) but are

related to individual j (or i). This may seem counter intuitive at first, but it makes sense

if you imagine family members being related on one side of the family (i.e. in-laws). For

example, Figure 5 is a simple pedigree. Without any other knowledge of possible relatives,

we can see that individual 1 is related to everyone else, except 6. Similarly, individual 2 is

related to everyone else, except 3. These are both because individuals 3 and 6 “married”

into this family. Another important subset of points lie on the top right diagonal. These are
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individuals who are basically unrelated to both i and j. It is clear that most informative

points of this plot lie in the mass of individuals who are related to both chosen individuals.

The correlation coefficient of the points will not capture this information. For instance, the

correlation using all the points is about .469, the correlation among points only among the

“good” points is .414 and the correlation after removing the influential points in the top

right is only .143. Therefore, it is clear that the correlation coefficient is not a sufficient way

of choosing the most similar variables. We will have the same problem when choosing the

optimal angle, θ, between any two variables. This is because θ is based on Σ̂ij, the sample

covariance of xi and xj.

There have been numerous attempts to try to ameliorate the problem of PCA’s sensitivity

to outliers. Previous work has centered around using robust estimators of the covariance

matrix [25; 26]. Instead of decomposing the original covariance matrix, Σ, they perform an

eigenanalysis on a more robust M -estimator, Σ̃. Define

Σ̃ =

∑n
i=1w

2
i (xi − x̄)(xi − x̄)t

(
∑n

i=1w
2
i − 1)

,

and

x̄ =
n∑

i=1

wixi/
n∑

i=1

wi

where

wi = ω(di)/di

and

di = {(xi − x̄)tΣ̃−1(xi − x̄)}
1
2

Here, ω is known as a bounded influence function [27] and is defined by the authors to be:

ω(d) = d if d ≤ d0

= d0exp{−1/2(d− d0)
2/b22} if d > d0

where d0 =
√
p+ b1/

√
2

The authors provide an iterative procedure for calculating x̄ and Σ̃. They also provide

practical values for b1 and b2. Unfortunately, this method cannot resist many outliers.
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Croux and Haesbroeck [28] examined minimum covariance determinant (MCD) methods

[29] and other S-estimators [30; 31] to solve this problem. MCD methods calculate the de-

terminant of the sample covariance matrix of every possible subset of size h from the original

observations. A robust measure of the MCD covariance is simply the sample covariance of

the h-subset that minimizes those determinants. This method can be very computationally

intensive in high dimensions. There is also the limitation that the MCD estimator can only

be computed when h > p. Otherwise, the covariance matrix of any h-subset will be singular.

This maximum percentage of points that can be considered outliers and still yield a bounded

estimate is known as the breakdown value.

Another approach is to use projection pursuit (PP) ideas when looking for robust PCA

[32; 33; 34]. This technique searches for the direction in which the projected observations

have the largest robust scale (i.e. eigenvalues). Then, every subsequent step produces

directions constrained to be orthogonal to all previous directions. One such algorithm is as

follows:

1. Center each data point by its L1-median, µ̂R. Here,

µ̂R = argminθ

n∑
i=1

‖xi − θ‖.

Call these new data points x
(1)
i and this new matrix X̃.

2. Calculate the first eigenvector by:

v1 = argmaxa∈A1
Qn(atx

(1)
1 , . . . , atx(1)

n )

where A1 = {x(1)
i /‖x(1)

i ‖; i = 1, . . . , n} and

Qn(x1, . . . , xn) = 2.2219cn{|xi − xj|; i < j}(k). Here,

cn is some constant and k =

(
n
2

)
.

3. Calculate x
(2)
2 = (Ip,p − v1v

t
1)x

(1)
i . This step ensures orthogonality.

4. Repeat steps 1 and 2 until k ≤ r = rank(X̃) eigenvectors are found.

5. Suppose that v1, . . . ,vl−1 eigenvectors have been constructed then:
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vl = argmaxa∈Al
Qn(atx1

(l), . . . , atx(l)
n )

where Al = {x(l)
i /‖x

(l)
i ‖; i = 1, . . . , n}. Also, xl+1

i = x
(l)
i − vlv

t
lx

(1)
i .

6. For all l = 1, . . . , r, the robust scale sR
l is defined as sR

l = Qn(vt
lx

(l)
1 , . . . ,v

t
lx

(l)
n ).

Although this method has been shown to have a higher breakdown value than previous

methods and allows for p > n, there are still some deficiencies with this approach. Most

recently, Hubert et al. [35] developed a technique that utilizes both of the previous ideas.

PP is used as an initial dimension reduction technique. MCD is then applied to this lower-

dimensional space.

Each of the previous algorithms first attempt to locate outliers that could prove detri-

mental in PCA. They do this by assigning an “outlyingness” value to every point and then

correcting for it. In our case, we are not interested in locating outliers, only how to deal with

them. Because we are only dealing with two dimensions at a time it is very easy to see what

points are considered outliers. Our main goal is to determine how influential the already

chosen outliers are and then figure out how to deal with them in the Treelet framework.

Results of Simulated Data

Results focus on two types of analysis: keeping all the points (scenario A) and not includ-

ing points where two individuals in question are both unrelated to a third individual (i.e.

influential points) in the calculation of pairwise correlations (scenario B). In each case, I

examined the overall mean square error (MSE) between the smoothed matrix, R̂, and the

true R values at varying threshold values, λ. Here, MSE = 1/(n2)
∑

ij(R̂ij − Rij)
2. I also

looked at the MSE in just the “good” points, along with the MSE of points at the artificial

boundary. Good points refer to any entries in the matrix where R < 21. Boundary points

are any entries such that R = 21. For comparison, overall MSE of the noisy matrix (before

smoothing) is .3729. The MSE of the good points is .5997. Obviously, the MSE at the

boundary is 0, since I did not add any error to those terms.

One can see from Table 2 that Treelets do, in fact, remove noise from our relationship

matrix. It is also important to point out that scenario B did almost uniformly better than

scenario A across both λ and types of matrix entries examined. This is especially true in
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the boundary points. In other words, by simply removing these extremely influential points

from the calculation of pairwise correlations, we were able maintain low overall and good

point MSE values while simultaneously lowering the MSE at the boundary points. This

is probably due to the algorithm merging variables that are more closely related at every

level of the tree. Using all points in the calculation may artificially inflate the correlation

coefficient if the two individuals in question are unrelated to nearly everyone else. This is

counter intuitive to the natural process of related individuals between related to the same

third parties and shows precisely why robust PCA techniques must be incorporated in this

instance. Finally, one can see that the MSE is very dependent on the choice of λ. Currently,

I have chosen λ in a very ad hoc manner. I would like to have λ chosen automatically and

make it row (or column) of R dependent. This is because I am treating every row of R as

its own signal.

Another important feature of Treelets is building the hierarchical tree from the variables.

In order for the algorithm to work properly it should build the tree in a similar fashion to

a pedigree. In other words, closely related individuals should be clustered together and visa

versa. We start by examining the highest energy Treelet basis vectors across the (ordered)

individuals. Suppose we have n individuals, and thus, have r1, . . . , rn rows of our degree

of relationship matrix. Here, ri ∈ Rn. The Treelet algorithm will produce an orthonormal

basis B = (b1, . . . , bn). We can then assign a normalized energy score, ε to each vector bi by:

ε(bi) =

∑n
j=1 |bi · rj|2∑n

j=1 ‖rj‖2

Sort the vectors according to decreasing energy. Figure 6 shows the 5 highest energy Treelets.

We can see that the second, third and fourth capture the localized nature of closely related

family members. The highest energy Treelet corresponds to the scaling function and thus,

should not be considered further as we are primarily interested in the detail functions. In

fact, we can see exactly how the individuals within the Treelet “peaks” merge both in the

algorithm and in the actual pedigree. Figures 8-11 display how the individuals from the

maximal energy Treelet “peaks” relate within the overall (known) pedigree. Filled in cells

are the individuals clustered by Treelets. To add to the overall picture, Figure 7 displays

the dendrograms of the chosen individuals within the hierarchical tree. We can see that for

the most part, we are doing an excellent job grouping siblings and parents together and a

pretty good job clustering the more extended family structure.
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Proposed Work

Thresholding

I need to determine a more appropriate way to threshold expansion coefficients.

• λ should be row-dependent on R

• FDR approach[36]: Authors propose to exploit sparsity by controlling the false discov-

ery rate of possible non-zero expansion coefficients.

• Bootstrap approach[37]: Authors propose bootstrapping original matrix R and exam-

ining distribution of expansion coefficients when there is no structure

• Best basis selection[38; 39; 18]: Instead of running Treelet algorithm on all L = n− 1

levels and dealing with basis BL, want to choose a basis, Bk where k < n− 1 is chosen

to maximize (or minimize) some energy or entropy criterion. May want to consider

only scale functions left at that level.

Using Robust PCA Techniques in Treelet Algorithm

We would like our algorithm to be more robust to outlying points (as in Figure 4). This is

especially true when calculating the similarity matrix, Σ̂, to be used for merging individuals.

One possibility is to use weighted correlation and/or covariance. In other words, measure the

angular distance between points on the boundary and the line that best rotates the “good

points”. Let θi be the angle created by point i and let θ̂ be the angle of the line that best

rotates these good points. Set wi = |θi−θ̂|
c

. Here, θ < π
4

and c is some normalizing constant.

Then, one similarity measure could be:

MXY =

∑n
i=1wi(xi − x̄∗)(yi − ȳ∗)

s∗Xs
∗
Y

∑n
i=1wi

.

Here, x̄∗ and ȳ∗ are the weighted means. Similarly, s∗X and s∗Y are the weighted standard

deviations. Points not on the boundary are assigned a weight of 1 and points that are

unrelated to both individuals would have weights close to 0.
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Relationship Φ
Ind.-Themself 1/2
MZ. Twins 1/2
Parent-Off. 1/4
Full Sibs. 1/4
Half Sibs. 1/8

First Cousins 1/16
Uncle-Nephew 1/8

Unrelated 0

Table 1: Pedigree-based kinship coefficients
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MSE
Overall Good pts. Boundary

λ A B A B A B
0 .3729 .3729 .5997 .5997 0 0
.5 .3600 .3593 .5746 .5743 .0073 .0058
1 .3084 .3026 .4807 .4802 .0249 .0106

1.5 .2645 .2492 .3900 .3884 .0581 .0205
2 .2649 .2450 .3656 .3687 .0995 .0416

2.5 .3215 .2957 .4082 .4228 .1788 .0868

Table 2: MSE value of all points of R (Overall), only points where R < 21 (Good pts.) and
points where R = 21 (Boundary). A corresponds to running Treelet algorithm on all data
points and B corresponds to running Treelet algorithm after throwing away points where
two individuals in question are both unrelated to third individual
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Figure 1: Top: Upper triangle of genotype-based 2Φ. Bottom: Upper triangle of R. The
truncated cell, capped at 25000 observations, actually includes...
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Figure 2: Pedigree-based R values versus binned genotype-based R values from Palau dataset
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Figure 3: Top: R values of 621 simulated individuals. Bottom: Top, but with added noise.
Noise based on (9) of Simulations.

23



●●

●

●

●

●●

●

●●● ●

●●

●

●

●●

●

●

●

●

●●●●

●

●

●●●●●

●● ●

●●●● ●●●●

●

●

●

●● ● ●

●●

●●●

●●

●●

●●

●●

●

●●● ●●

●

●

●

●●

●●

●

● ●●

●

●

● ●●●

●●

●●●●●

●

●●●

●●●●

●

●

●●●●●●

●

●

● ●●

●

●●

●●●

●●●

●

●●

●●

●●●●●

●●●
●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●
●

●

●

●

●●

● ●

● ●●

●●

●●●

●●

●●

●

●

●●●●

●●●●

●●

●

●

●●●●

● ● ●●●●●

●

●●

●

●●

●

●

●●

●●●

●

●● ●●

●

●

●

●●

●●

●●●●

●●

●●●

●●

●

●●●●● ●●

●●●●

●●
●

●

●●

●

●●

●●

●

●●●

●●●

●

●

●●

●● ●
●●●

●●

●●●

●●●

●

●

●●●

●●

●

●●● ●●

●

●

●

●●●
●●●

●●

●●

●

●●

●●●
●●●

●●●
●●

●●●

●

● ●●
●●

●

●

●●

●●●

●●●
●●

●●●

●

●

●●●

●●●●

●●●

●

●●

●

●●

●●●●
●●

●●●

● ●

●

●

●●●
●●

●●

●●

●

●●●

●●●●

●●● ●
●●

●

●●●

●●●●

●●●●

●●●●●●●●●●

●●

●●

●●

●●
●

●●●

●●●

●●

●●●
●

●●●

●●●
●

●●

●●
●●●

●●●●●

●●
●●●●

●

●●●●●●

●●

●●
●●●

●● ●

●

●

● ●●

●●●●●●

●●●

●●

●●●●●

●●●

●●●●
●●●●

●●

●

●

●

●●●
●●●

●

●
●●
●●

●

●●

●●●

●●●

●●●

●●●

●●●●●

●

●

●●●

●●●
●●●●

●●

●

●

●●●●●●●

●●●●
●● ●●

●●●●●●
●●●

●●

●●●●●

●●●●●●●●

●

●●
●●●

●
●●

0 5 10 15 20

0
5

10
15

20

Ind. i

In
d.

 j

Figure 4: Plot of two randomly chosen columns from simulated R.
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X-axis are the ordered individuals (based on how hierarchical tree was built)
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Figure 7: Snapshots of dendrogram produced by treelet algorithm. A is of individuals chosen
by second highest energy treelet. B is of third highest. C is of fourth highest. D is of fifth
highest. Y-axis is the relative level that individuals were merged.
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Figure 8: Snapshot of actual pedigree relating to individuals chosen from second highest
energy treelet. Filled in cells are the individuals within that specific cluster.
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Figure 9: Snapshot of actual pedigree relating to individuals chosen from third highest energy
treelet. Filled in cells are the individuals within that specific cluster.
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Figure 10: Snapshot of actual pedigree relating to individuals chosen from fourth highest
energy treelet. Filled in cells are the individuals within that specific cluster.
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Figure 11: Snapshot of actual pedigree relating to individuals chosen from fifth highest
energy treelet. Filled in cells are the individuals within that specific cluster.
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