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Abstract

Case-control studies for association are widely used for finding genetic variants
causally associated with phenotypes. Unfortunately, population structure can
induce false positives. For instance, if cases and controls have different genetic
backgrounds, differences in frequencies of distinct forms of variants might be
due to differences in ancestral population of origin. Traditional approaches to
control for the effects of population stratification include eigen-analysis, cluster
analysis and matching based on genetic markers, are employed to improve
the modeling of structure. Our approach goes further in that we show how
to systematically obtain optimal matching and how to determine outlying
subjects that cannot be successfully matched to others in the available registry.
Simulations and an application to real data show improved results applying
the new method.

1 Introduction

Among the resources being amassed for whole genome association (WGA) are “control

databases”, more precisely databases of samples from the population that are not necessarily

screened to be disease free. Often these samples will have been characterized genetically by

a large-scale genotyping array, possibly as a result of a WGA study. An open question is

how to use these samples in a cost- and power-effective manner in various settings, especially

when a subsample of the control database is desired for a new genetic study. Here we address

one critical component of study design, how to select samples matched for ancestry. Suppose,

for example, a smaller set of cases and a larger set of controls have been characterized for
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a set of genetic markers, but now new genotyping is to be performed as part of a follow-up

study.

As platforms for genetic association analysis become standardized, numerous sources

of pre-genotyped control subjects have become available. Typically many more controls

are available than cases. For example, the data set analyzed in this paper has genetic

information for 462 cases, which are Americans of European descent with type 1 diabetes,

and 2159 controls of which 1429 are from north and north-east Germany and 730 are from

southern Germany.

Matching based on non-genetic variables (Lee 2006 [11]) as well as SNP panels (Hinds

et al. 2004 [8]) has been used successfully in genetic association studies previously. Our

approach goes further in that we show how to systematically obtain optimal matching using

a panel of genetic markers and how to determine outlying subjects that cannot be successfully

matched to others in the available registry. The matching is based on genetic similarities

derived from principal component analysis (PCA) and multidimensional scaling with an

approach similar to that taken by Price et al (2006) [14].

The best known form of matching is matched pairs; however, assuming the criterion for

matching are sufficient to remove the effects of unmeasured confounding, an alternative to

matched pairs known as full matching is optimal (Rosenbaum 1995 [16]). Figure 1 illustrates

3 cases (a,b,c) and 3 controls (x,y,z) which appear to fall into two distinct clusters. Matched

pairs would create 3 strata, (a,x), (c,z), and (b,y). Clearly the pair (b,y) does not define

a homogeneous strata. Alternatively, full matching minimizes the total distance between

subjects within strata with the constraint being that each strata includes a single case and

one or more controls, or a single control and one or more cases. For this example the full

matching solution forms two strata by clustering (a,x,y) and (b,c,z).

PCA is highly sensitive to outlying observations. A few points lying far from the majority

of the data can determine several principal axes of the representation. Indeed, outliers can

obscure the discovery of axes that potentially separate the data into distinct types. For this

reason, Price et al. remove subjects that have highly unusual measures on any of the major

eigenvectors. Likewise, with matching criterion it is necessary to determine which pairs or

strata span an unusual distance. For example, in Figure 1, the matched-pair (b,y) should be

removed from the analysis, because this pair is inconsistent with the model of homogeneity

within strata. In general, if the controls are more numerous than the cases and they span a
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Figure 1: Full matching versus pair matching

a
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a,b,c = cases
x,y,z = controls

larger range of ethnicities than the cases, it should be possible to find one or more controls

similar to each case. If the situation is reversed, then some cases will have to be removed

from the analysis to account for the effects of structure. In this work we formalize the notion

of outlying subjects and propose a method for removing them from the analysis so as to

discover the key axes that describe the population structure.

2 Literature review

Case-control studies rely on the unrealistic assumption of population homogeneity. In the

face of population heterogeneity, spurious associations can arise. As a response to this prob-

lem two approaches to controlling structure have arisen: genomic control, which corrects

for minor stratification using an estimate of the inflation factor[5] ; and structured associ-

ation, which clusters subjects into more homogeneous subsets prior to analysis [15] . Both

of these approaches have shortcomings when applied to large samples with huge panels of

SNPs. The former exhibits diminishing power because the effect of stratification increases

with sample size. The latter does not scale well and becomes computationally intractable.

Hence, a third traditional approach for population classification, based on eigenanalysis, has

recently been updated for association testing [13]. This method combines principal compo-
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nents with modern statistics (Tracy-Widom theory) to test for population structure. The

application of PCA to genetic data has become a standard tool. Cavalli-Sforza [4] show

that principal components displayed in two dimensions reflect the geographical distribution

of populations. For populations that are geographically close, they found that genetic and

geographic distances are often highly correlated. Zhang et al. (2003) [19] propose a semi-

parametric test for association (SPTA) to control for population stratification through a

set of genomic markers by first deriving a genetic background variable and then modeling

the relationship between trait values, genotypic scores at the candidate marker, and genetic

background variables through a semiparametric model. The genetic background variable is

defined for each sampled individual using PCA on a set of independent markers.

The most challenging problem with population stratification occurs when some candidate

SNPs are highly differentiated, but the majority of SNPs have similar allele frequencies across

populations. This situation arises when a SNP is under strong population specific selection.

The Campbell et al. height/lactase data [3] provides an exceptional challenge in that the

data include only a modest number of loci for calculating the PC. These include 111 missense

and noncoding SNPs and 67 ancestry informative marker SNPs. The lactase variant, LCT, is

known to exhibit extreme differentiation across the European continent. Moreover, the allele

frequency gradient matches the heighth gradient in Europe, maximizing the opportunity

for confounding. Ignoring the inherent structure in these data, one obtains a significant

association between LCT and height (p-value = 0.0037). The subtle structure in these data

proved too challenging for GC, Structure or eigenstrat to correct [14]. Not surprisingly, the

subjects are also difficult to match using PCA. It appears that the 178 available markers

cannot successfully differentiate the subjects along the European cline which is necessary for

reliable correction of stratification. Presumably with a larger, more informative sample of

SNPs, matching would remove the spurious association between height and LCT.

Lee [11], studies matching based on stratum-delineating variables such as race, ethnicity,

nationality, ancestry and birthplace, followed by the genomic controlling stage. The author

shows that using crude matching, some power is lost but the type I error is correct.

Hinds et al.[8], propose genetic ancestry matching prior to DNA pooling. Data is analyzed

using structure [15], a model-based method for identifying subpopulations. Results indicate

that relatively simple matching can control for population stratification, even for a phenotype

with a very large ancestry effect.
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Another way to control for population substructure is based on propensity scores [16]. For

genetic association studies this quantity is obtained by modeling the odds of disease given a

panel of genetic markers. Cases and controls can be clustered into a handful of strata based

on having similar scores. The data can then be tested for association, conditional on these

strata [6]. This uses both case/control status and the panel of genetic markers to stratify

the subjects. In contrast, PCA uses only the structure apparent in the genetic SNP panel

to stratify subjects. A propensity score approach achieved partial success with Campbell et

al. data. The scores were used to define five strata. Next the data were analyzed using the

Mantel-Haenzel test and the stratified logistic test with resulting p-values of 0.039 and 0.44,

respectively. Although these tests usually perform similarly, the former failed to correct for

the spurious association even with the benefit of the propensity strata. The difference is

likely due to the notable lack of balance in the strata. The first strata includes 4 tall and

78 short individuals, while the last strata includes 71 tall and 3 short individuals. It is not

difficult to imagine a scenario in which the extreme strata contain no cases (or no controls).

In practice this method fails to scale to large panels of SNPs. Thus we focus on investigating

the limits of the matched-strata and eigenanalysis approaches.

3 Methods

3.1 Background

People have pairs of alleles at each genetic marker, one inherited from each parent. In this

project the genetic markers consist of Single Nucleotide Polymorphisms (SNPs), which have

two forms. An individual’s alleles can differ or be identical. They produce variations in

inherited traits such as blood type and eye color. For example, the O blood type is very

common around the world (Figure 2). About 63% of humans share it. Type O is particularly

high in frequency among the indigenous populations of Central and South America, where

it approaches 100%. It also is relatively high among Australian Aborigines and in Western

Europe (especially in populations with Celtic ancestors). The lowest frequency of O is found

in Eastern Europe and Central Asia, where B is common.

The minor allele is the form that is less frequently observed in a population. Human

populations vary, so an allele that is common in one geographical or ethnic group may

be much rarer in another. For instance the lactase variant is present in about 80% of
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Figure 2: Distribution of the O blood type in native populations around the world. Both
clinal and discontinuous distributions exist, suggesting a complicated evolutionary history
for humanity (from Wikipedia).

northwestern european, but only in 20% of southeastern europeans. This variation is called

a gradient or a cline.

Variables coding for SNP genotypes are defined in Table 1. The additive model, used in

this study, counts the number of minor alleles within a pair.

Genotype Dominant Additive Recessive
AA 0 0 0
Aa 1 1 0
aa 1 2 1

Table 1: Coding Genotypes

6



3.2 Model for Population Stratification

The mean of allele frequencies from a set of populations is assumed to be the allele frequency

of an ancestral population. Individual populations have each diverged from the ancestral

population over time. Suppose within a subpopulation C people are genetically i.i.d., and

allele a is drawn with probability pc in this subpopulation. If X is counting allele a, then

X ∼ Binomial(2, pc).

Let P be the random variable which varies across subpopulations, with p the realized

value in subpopulation C. The distribution of X can be described using the following simple

hierarchical model:

X|p ∼ Binomial(2, p)

p ∼ Beta(α1, α2)

α = α1 + α2 =
1

Fst

− 1.

Fst defined above is called Fixation index and is a measure of population differentiation.

Building on model 1, we can generalize the distribution of X for K populations. Assume that

we have the minor allele frequencies of an ancestral population p.loci (in our simulations p.loci

is uniform between .05 and .5) at L loci. From this ancestral population K subpopulations

have been formed. Let N be the vector containing the population size (N1, N2, . . . , NK).

Knowing Fst, for each marker l we can define

α1,l = p.locil × (
1

Fst

− 1)

α2,l = (1 − p.locil) × (
1

Fst
− 1).

For each population k, k = 1, . . . , K, define

pkl = Beta(1, α1,l, α2,l)

Then

Xnk,l = Binom(2, pk,l), nk = 1, . . . , Nk. (1)

When used in simulation studies this is often called the Balding-Nichols model (1995).

Figure 3 ilustrates how the first two principal components show the population struc-

ture. In the first plot (Figure 3 top) there are 3 populations, each with 100 subjects,

N = (100, 100, 100), L = 1000 and Fst = 0.03.
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To simulate a cline (or a gradient), it is enough to order pkl, so that p1l ≤ . . . ≤ pKl for

each l. The first principal component in Figure 3 (botom) shows the gradient structure of a

population, formed by 9 subpopulations, each with 30 subjects, L and Fst as above.

3.3 Multidimensional Scaling

Multidimensional scaling (MDS) constructs a configuration of n points in Euclidean space

using information about the distances between the n objects. We apply this technique to

reduce the dimensionality of the data so that the Euclidean distances between subjects in

the reduced space is as close as possible to Euclidean distances in the original space.

Let X be a n×p matrix, derived from n subjects and p markers, with each column having

mean 0 and standard deviation 1. A singular value decomposition gives

X = UΓV T ,

where Γ is a diagonal matrix with singular values γ1, γ2, . . . , γp as diagonal entries. Note

that

S =
1

n
XT X =

1

n
V Γ2V T =

1

n
V ΛV T ,

is the sample correlation matrix of the markers. Λ is also a diagonal matrix with singular

values λ1, λ2, . . . , λp as diagonal entries, where λi = γ2

i , i = 1, . . . , p.

The columns of V represent the principal components of markers. The eigenvalues of XT X

are proportional to the variances of the principal components. The matrix UΓ then containes

the principal components scores, which are the coordinates of the subjects in the space of

principal components.

Usually in genetic data the number of subjects is less than the number of tested markers

(n < p), so we can assume that the rank of S is n-1 (we lose a dimension by centering

the columns). Suppose that the first n − 1 eigenvalues are non-zero and distinct. Then

λ1, λ2 . . . , λn−1 are also the non-zero eigenvalues of K = XX t = UΛUT . Note that K

represents the centered inner product matrix, Kij = xt
ixj.

Consider a l-dimensional representation Φl(i) = φ1(i) . . . φl(i) of subject i, where l <<

min(n, p). Let D be the matrix of Euclidean distances between subjects d2

ij = ||xi − xj||2.
Define d̂2

ij = ||Φl(i) − Φl(j)||2 as the entries of the matrix of Euclidean distances between

subjects in the l-dimensional space. Measure the discrepancy between D and D̂ according
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to δ =
∑

i,j(d
2

ij − d̂2

ij). Then δ is minimized over all configurations in Rl when X is projected

onto its principal coordinates in l dimensions, i.e. when

φl(i) = [γ1u1(i), . . . , γlul(i)]
T .

(Mardia et al, Theorem 14.4.1).

3.4 Hypothesis Test for Population Structure

Patterson et al.(2006) propose a formal significance test for population structure. The

method is based on a theoretical result by Johnstone (2006) on the eigenvalue distribution

of a null sample covariance matrix. We can test the null hypothesis of identity covariance

matrix, which is equivalent to population homogeneity, against an alternative hypothesis,

that the covariance matrix has some general value, equivalent to population heterogeneity.

The sample covariance matrix S follows a Wishart distribution. Assume that min{n, p} →
∞, and that l̂1 is the largest eigenvalue of S. After appropriate centering and scaling, the

largest eigenvalue follows a distribution discovered by Tracy and Widom, called the TW law:

P{nl̂1 ≤ µnp + σnp|H0} → TW (s).

The centering and scaling parameters depend on both n and p,

µnp = (
√

p − 1 +
√

n)2,

σnp = (
√

p − 1 +
√

n)(
1√

p − 1
+

1√
n

)1/3.

The test for population structure will be applied iteratively. If we find the first l

eigenvalues λ1, . . . , λl of S to be significant, we test λk, . . . , λn−1 as though S were an

(n − l − 1) × (n − l − 1) Wishart matrix. If an eigenvalue is not significant, the smaller

eigenvalues will not be significant either.

3.5 Distribution of distances for null data

Let n and l be fixed. Project X onto its principal coordinates in the first l dimensions. To

measure the distance between individuals in the l-dimensional space, we use the Euclidean

distance

g(i, i′) =

{

∑

k

λk(uik − ui′k)
2

}1/2
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To create a distance that is stable for any large value of p we re-norm the λ’s to have the

T-W distribution. So

g∗(i, i′) =

{

∑

k

((

λk − µnp

σnp

)

− a

)

(uik − ui′k)
2

}

1/2

,

where a is chosen so that none of the normed eigenvalues is negative. Now we have the

distribution of distances of null data. These values should be independent of p, but will

depend on n the number of subjects and l, the number of chosen dimensions.

3.6 Full matching and pair matching

These two matching methods construct matched sets or strata when there are many observed

covariates (in our case markers) x. We would like to compare case and control groups with

similar distribution of x, even if matched individuals have different values of x. The form

of an optimal stratification is always the same and it is called full matching (Rosenbaum

1995). It is a matched sample in which each matched set contains either one case and one

or more controls or one control subject and one or more cases. This method minimizes the

sum of distances between cases and the matched controls. Pair matching is not optimal.

When the treated and control groups have different distributions of x, there are regions of

x values with many cases and few controls and other regions with many controls and few

cases. Forcing every case to have the same number of controls leads to suboptimal matches.

3.7 Clustering and rescaling

Cases are paired to controls to minimize the distance between individuals within strata

using either the full matching or pair matching criterion. Individuals, inevitably, will not

match perfectly. We determine a rule for stopping the pairing process when the distance

between case and control is greater than expected, assuming the case and control are from

a homogeneous population.

We need to adjust the data so that they are scaled for the null hypothesis and yet the

axes reflect variation in the full data set. Applying the test for population structure, we first

determine l the number of dimensions to be used. Next we use Wards algorithm to form

hierarchical groups of mutually exclusive subsets based on the first l principal components.

Cluster membership is assessed by calculating the total sum of squared deviations from the

mean of a cluster. The criterion for fusion is that it should produce the smallest possible
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increase in the error sum of squares. We need a stopping rule for choosing the number of

clusters (k). Start with k = 2 and apply the test for population structure on each of the

clusters. Homogeneous clusters are kept unchanged and Wards algorithm is applied only

on the heterogeneous clusters. Repeat this process, increasing k until all the clusters are

homogeneous. Next, we calculate the scaled distances as follows:

Let Sk ⊂ {1, 2, . . . , n} be the indices of subjects in the k’th subset. Let rk be the number

of subjects in the k’th cluster. For scaling the k’th subset we work with subject i ∈ Sk

using eigenvector values (ui1, . . . , uil). For j = 1, . . . , l, rescale the uij’s. By construction,
∑

i u
2

ij = 1 and ūj = 0. Let

ūjk =
∑

i∈Sk

uij/rk.

A traditional sums of squares decomposition leads to

1 =
∑

i

u2

ij =
∑

k

∑

i∈Sk

(uij − ūjk)
2 +

∑

k

rkū
2

jk,

i.e., SSTot = SSE+SSModel. For homogeneous data, the sums of squares attributable to

the model (SSModel) would be near zero. Hence, to remove the effect of clusters of various

means, we subtract this effect and rescale the data to unity. Define

c2

j =
∑

k

∑

i∈Sk

(uij − ūjk)
2,

and rescale the data such that

u∗

ij =
u∗

ij

cj
.

Notice that we scale differentially in each of the j dimensions to stretch and shrink accord-

ingly to get the right scaling for homogeneous data.

The reason for the rescaling exercise is to stretch the data out so that the distances

between elements in a cluster are as they would be if the mean of each cluster were 0. Note

that
∑

k

∑

i∈Sk

(uij − ūjk)
2/c2

j = 1,

while in the unscaled data
∑

k

∑

i∈Sk

u2

ij = 1.

Now we can find the distances between subjects as we have done for the homogeneous

population, using the u∗
ij instead of uij. Match rescaled data using full matching and measure
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the distances between cases and controls. A case (control) will be declared an outlier if the

minimum distance to a control (case) exceeds the 99th quartile of the null distribution of

distances.

After eliminating the outliers, we match the kept individuals using either full matching

or pair matching and then perform conditional logistic analysis.

4 Simulations and Results

For each panel of reference SNPs generated we considered three approaches to correct for

the effects of structure: (i) use PCA to infer the primary axes of variation and regress

out these effects (ref); (ii) use PCA to determine full matching strata and analyze using

conditional logistic regression; and (iii) use PCA to determine matched-pairs and analyze

using conditional logistic regression. Although we compare the size and power of the PCA,

full matching and pair matching methods of analysis, the methods are not competitors. The

matching methods are designed to limit analysis to strata that are chosen to control for the

effects of structure. The PCA method is not designed to select among available controls in

the design of a study.

Our first battery of simulations is based on SNPs sampled from two subpopulations, with

200 individuals per subpopulation. Allele frequencies for the subpopulations were generated

using the Balding-Nichols model (1), with allele frequencies varying uniformly between 0.05

and 0.5. To correct for structure L reference SNPs were available. Of these SNPs, 99% had

Fst = 0.01 and 1% had Fst = 0.1. The result is a panel of SNPs that has a minor amount

of information about the substructure such as one might anticipate among a sample from a

single continental sample. Null candidate SNPs of three types were considered: (i) strongly

differentiation SNPS, like the SNP in the lactase gene (LCT) with Fst = 0.15; (ii) moderately

differentiated SNPs with Fst = 0.03; and undifferentiated, with Fst = 0.01.

Case status was assigned to 80 and 20 of the individuals from subpopulations 1 and

2, respectively. The remaining individuals were assigned control status. For the matched-

pairs analysis we paired each case to the closest control until we obtained 100 matched

pairs. For the other two methods of analyses we analyzed all 200 cases and controls. For

power calculations, causal SNPs with relative risk R = 2 were generated using the approach

described in [14].

Our second battery of simulations is based on nine subpopulations distributed along a
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gradient designed to simulate a cline such as would be observed across Europe. The 100 cases

are distributed with 2, 4, 6, 7, 9, 12, 15, 20 and 25 subjects in populations 1-9, respectively.

The 300 controls are distributed randomly across the 9 subpopulations.

Our third battery of simulations is also based on nine subpopulations distributed along

a gradient. This time 50 cases are distributed randomly in populations 6-9 (Figure 5). The

300 controls are distributed randomly across the 9 subpopulations.

Ten panels of reference SNPs were generated for each scenario to be investigated. For

each of these panels, we simulated 1000 independent causal SNPs and 1000 independent null

candidate for each type of null SNP investigated. Notice that for both scenarios of struc-

ture (pair of subpopulation and gradient) there are a sufficient number of controls to form

homogeneous pair matches, provided the PC provide sufficient information to successfully

differentiate the subpopulations.

In the first two scenarios, case-control ratio can be detected by PC. Table 3 illustrates

that with a sufficient panel of SNPs the effects of substructure can be removed using any of

the three methods, even the effects of highly differentiated SNPs such as LCT. We note that

the gradient model is much easier to correct than the pair of subpopulations.

It is interesting to note that matched-pairs can correct for the effects of substructure with

considerably less information than PCA or full matching (Table 3). At the same time, the

matched-pairs analysis has somewhat less power to detect true positives (Table 4). Both of

these results can be explained by the fact that matched-pairs design includes only 100 pairs

(100 cases and 100 controls), while the other methods include 100 cases and 300 controls.

Thus the other methods have greater power to detect association in the data, hence the

greater power.

In the third scenario, the PC are not sufficiently informative to remove the effects of

substructure (Table 5). Removing the outliers results in greater power for pair matching

and full matching to detect this spurious structure.

4.1 Application

An Affy 500K platform genome scan applied to 462 cases with type 1 diabetes was compared

with the POPGEN, SHIP and KORA panel of 2159 controls of which 1429 are from north and

north-east Germany and 730 are from southern Germany. In this application, although most

of the subjects are of European descent, both cases and controls exhibit complex population
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heterogeneity.

In the initial phase of analysis, 27 dimensions were required to explain the significant

axes of variation. Many of these axes are required to explain outliers. After removing 56

controls, only 7 important axes of variation remained (these subjects were more than 6

standard deviations from expectation in at least one of the 27 dimensions of the eigenvector

space). Next we computed the distance between each case and the nearest control and vice

versa based on 7 principal axes using equation (2). The resulting distribution of distances

indicated that 24 cases and 19 controls could not be matched to a case/control with similar

ancestry (individuals with minimum distances greater than 0.08 were removed). Repeating

this process of finding the significant eigenvalues and the corresponding mimimum distances

between cases and controls in the corresponding axes, we subsequently removed an additional

19 cases and 64 controls. Excluding these outliers, only 2 significant eigenvalues remain.

At this point we believe we have removed enough outliers to obtain reliable estimates of

the principal eigenvectors. We performed a cluster analysis to isolate homogeneous strata.

The data are clustered into 23 strata each with 20 or more elements. Using these strata, we

rescale the data as described in the Methods. Based on our simualtions, observations with

rescaled distances exceeding 0.065 are outliers. Using this criterion, an additional 7 cases and

46 controls are removed from the dataset. The resulting distances in the full matching set

are consistent with expectations for cases and controls matched with homogeneous strata

(Figure 4). Judging from the fact that the two principal axes separate the two German

control samples (Figure 5), it appears that these dimensions explain important gradations

in the European continent.

Finally, using the full matching algorithm, cases and controls were stratified based on

their genetic ancestry into 36 levels. Due to the differing ancestry of the cases and controls,

full matching strata have unequal representation. Most strata contain a single case and 1

or 2 controls; however, for some strata, many cases are matched to a single control (e.g., a

single control matched to 34 cases) and vice versa (e.g., 169 controls matched to a single

case).

Conditional logistic regression was performed on the stratified data. With matching,

known variants still exhibit significant results. Table 2 counts the number of p-values smaller

than 0.01 and 0.001. By using matching rather than a regression approach to remove con-

founding we reduced the Type I error rate by 33% or more.
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p Expected PC10 cLOGIT
.01 3354 8583 5836

.001 335 1762 1027

Table 2: Expected and Observed number of small p-values

5 Discussion

We will begin this section with a result from Rosenberg et al. [17]: if enough markers are

used with a sufficiently large worlwide sample, individuals can be partitioned into genetic

clusters that match major geographic subdivisions of the globe, with some individuals from

intermediate geographic location having mixed membership in the cluster that correspond

to neighboring regions.

As we have already seen, the real data often compare cases and controls either coming

from different populations or having different ancestry populations. When multiple con-

tinental groups, with clines, are analyzed simultaneously, the PC method faces problems

with outliers and regressing beyond the range of data. Unlike eigenstrat, which regresses

out the effects attributable to the principal components, the new approach follows the long

epidemiological traditional of matched pairing.

Future work

The method proposed by Patterson is appropriate for detecting deviations from the null

hypothesis of a homogeneous population. The current distance metric and eigenmap do not

scale well as a function of the level of separation between populations. The distance between

two nodes i and j changes when we add new data (the distribution of distances for the null

case depends only on n, the number of subjects).

Consequently, there are two main issues with standard PC map that can be improved:

1. The sensitivity to outliers and the problem with having spurious ”significant” eigen-

values.

2. The map/coordinates change if we add data.

Lets go back to the problem of Multidimensional Scaling and refer to the centered data

matrix as a feature matrix

F = [f1, . . . , fn]
T ,
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where

fi = [(xi1 − x̄1)/s1, . . . , (xip − x̄p)/sp]
T

is the feature vector of node i. Then the matrix K defined by ki,j =< fi, fj >= f t
i fj is an

inner product or kernel matrix. The matrix K induces a natural distance between nodes:

d2

ij = ki,i + kj,j − 2ki,j,

which is exactly the Euclidean distance. The key observation here is that the definition of

a kernel and metric is not unique. Any positive semi-definite (p.s.d.) matrix can induce an

eigenmap and distance metric.

A possible solution is to define a p.s.d. kernel matrix K, suitable for these problems:

1. Define a p.s.d weight matrix with global weights (in the standard PC map, the weight

matrix is W = 1

p
FF T ) and then normalize it. This would result in very little contri-

bution of outliers to principal components structure.

2. Define K so that ki,j is a localized function of the Euclidean distances (fi − fj)
t(fi −

fj). (a Gaussian weight function is commonly used in applications, such as manifold

learning, when preservation of local distances is needed).

Spreading of Sample Eigenvalues

Consider n = 100 subjects with p = 400 markers, from a homogeneous population. The

sample covariance matrix S follows a Wishart density, and the population eigenvalues lj(I)

are all equal to 1. There is a large spread of the sample eigenvalues l̂j = l̂j(S).

The empirical distribution function of eigenvalues is defined by:

Gp(t) =
1

p
#{l̂j ≤ t}.

The limiting density function , if n
p
→ γ, is

g(t) =

√

(b± − t)(t − b±)

2πγt
, b± = (1 ±√

γ)2.

The larger p is relative to n, the more dispersed is the limiting density. Returning to the

algorithm for finding outliers, we notice that the spread of the first l rescaled eigenvalues

will vary with γ. Presently, the estimates for the first l rescaled eigenvalues are determined

empirically. Finding the distribution of the lth largest eigenvalue for an identity covariance

matrix will solve this problem.
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PC Pair matching Full matching
Fst= 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1

2 populations
Markers

96 69.350 106.125 211.188 62.050 99.925 202.275 65.000 101.275 205.812
386 54.737 61.175 85.200 44.325 45.225 51.300 46.700 49.212 54.175

1536 52.025 54.300 55.237 45.700 44.612 44.587 46.862 47.062 46.462
6144 52.850 52.000 51.450 44.263 45.050 44.737 46.725 46.763 45.812

12000 52.862 51.587 52.112 43.913 43.812 44.700 47.050 45.450 46.700
24000 52.700 50.062 51.050 43.350 42.312 41.337 45.688 45.788 45.288

Gradient
Markers

96 68.812 108.550 221.262 48.675 66.612 109.000 61.288 97.350 201.137
386 53.862 58.250 71.150 43.438 46.362 48.087 47.788 51.538 63.362

1536 52.237 50.987 50.438 44.525 44.188 44.438 46.550 46.663 46.462
6144 52.362 51.263 49.875 45.050 44.600 44.150 46.487 44.925 46.625

12000 52.362 51.837 51.700 44.325 43.925 44.737 47.375 47.075 47.388
24000 52.237 52.275 51.525 44.400 44.663 44.450 47.300 45.812 46.375

Table 3: Size of the 3 tests at level 0.05. The expected number of p-values smaller than 0.05 is 50.
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PC Pair matching Full matching
Fst= 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1

2 populations
Markers

96 782.638 709.975 682.688 693.175 635.175 619.550 754.175 684.750 659.450
386 768.775 701.237 681.587 682.288 631.712 621.038 734.913 673.100 653.250

1536 765.875 701.888 677.413 682.837 634.638 622.038 736.450 673.650 652.312
6144 764.737 694.175 676.263 683.575 630.350 623.087 735.188 670.938 652.600

12000 764.700 696.513 676.100 684.013 632.737 623.638 734.600 672.225 652.438
24000 763.000 696.500 677.413 683.550 632.288 623.638 733.550 670.837 652.612

Gradient
Markers

96 939.288 916.763 832.688 885.987 871.625 804.288 922.300 899.775 813.513
386 923.625 891.100 796.487 877.462 856.587 781.800 902.163 869.237 774.938

1536 917.112 875.538 774.475 875.913 849.688 774.800 894.100 855.900 754.038
6144 913.462 873.900 768.087 872.638 848.850 773.362 891.688 853.050 747.487

12000 914.538 873.225 771.188 873.875 848.763 774.025 890.975 850.188 748.888
24000 912.450 873.750 767.962 872.975 849.312 770.138 892.087 852.025 746.913

Table 4: Power of the 3 tests
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PC Pair matching Full matching Pair matching, no outliers Full matching, no outliers
Fst= 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1

Size
Markers

96 64.17 96.56 205.66 43.59 56.50 107.16 56.02 82.50 176.00 37.36 34.57 35.14 43.57 43.07 42.14
386 56.75 68.13 120.91 37.56 40.08 49.75 45.16 50.66 69.80 36.07 36.36 35.36 42.57 41.21 43.50

1536 55.96 62.27 102.65 36.58 36.75 37.08 43.14 42.08 44.87 34.57 38.14 33.36 40.29 43.79 40.86
6144 56.31 60.88 84.88 36.72 36.69 35.48 41.27 42.36 40.98 39.79 37.07 37.21 44.07 44.14 42.79

12000 58.04 58.02 73.17 36.99 36.05 35.90 41.96 40.27 41.36 38.21 35.29 33.14 41.07 42.36 41.36
24000 56.73 58.26 66.58 37.36 36.99 35.27 42.35 41.79 39.62 36.14 39.43 34.64 40.71 45.00 41.21
Power

Markers
96 804.3 753.2 650.2 589.9 578.7 510.7 769.7 725.8 622.9 706.1 713.2 655.9 771.9 776.1 719.5

386 784.4 731.0 630.0 583.2 566.1 489.5 720.6 686.5 583.1 698.3 713.4 655.6 770.9 769.4 726.5
1536 770.6 716.4 614.6 581.3 566.6 482.2 670.8 642.4 548.1 700.5 716.1 660.1 771.4 773.7 727.1
6144 761.8 711.0 603.8 583.1 566.2 485.0 639.5 620.3 531.3 702.9 716.4 666.0 770.3 774.0 728.6

12000 751.1 704.4 595.1 581.6 564.5 485.3 637.1 615.0 527.6 703.2 713.1 663.2 769.0 767.1 726.1
24000 746.1 698.8 593.1 583.9 564.6 484.4 636.9 613.4 529.4 701.1 715.4 667.3 771.0 775.1 726.0

Table 5: Size and Power the 3 tests before and after removing outliers. The simulated data is a gradient with 9 subpopulations
from which 5 populations are outliers (controls with distances to the closest case greater than the maximum distance for the
corresponding homogeneous population).
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Figure 3:
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Figure 4: First 2 PC for third simulated data
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Figure 6:

Case−control distances for homogeneous population
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