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Abstract

Network analysis has a crucial need for tools to compare networks and assess the significance of dif-
ferences between networks. Currently, network comparison usually amounts to the ad hoc comparison
of common descriptive statistics on graphs (e.g., average shortest path lengths). Such comparisons fail
to detect substantial differences in what, at least intuitively, are the large-scale geometric features of
networks (e.g. grid-like or tree-like, clusterability). Some of the recent literature, on the other hand,
has demonstrated how many real-world networks tend to resemble graphs formed by randomly sam-
pling points on (negatively curved) hyperboloids and connecting them with probabilities decreasing with
geodesic distance. For example, the parametric inference of a quasi-uniform density on a hyperboloid
from samples of networks effectively detects large-scale geometric features important in assessing routing
algorithms for computer networks. We propose a more general, principled statistical approach to network
comparison, based on the non-parametric inference and comparison of densities on hyperbolic manifolds
from sample networks.

The first phase of our project is to infer the generating densities of nodes from observed graphs. An
existing adaptation of multidimensional scaling optimally embeds the nodes of such graphs into hyperbolic
manifolds. Non-parametric density estimation on such hyperbolic manifolds then infers the generating
densities. This has motivated our development of a generalization of kernel density estimation for a
large class of symmetric spaces — Riemannian manifolds with sufficiently many isometries, including
the n-dimensional hyperboloid. Using the Helgason-Fourier transform, a generalization of the Fourier
transform for such symmetric spaces, we establish the minimax rate for our estimator, matching the
classical rate for a given smoothing parameter and local dimension.

The second step of this project is to develop and validate significance tests for differences in network
structure by comparing the L2-differences between estimated densities with L2-differences of pooled
estimated densities. Power will be assessed empirically and estimated theoretically. Proof-of-concept
applications will demonstrate the utility of such tests.
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1 Introduction

The qualitative, large-scale, structure of real-world networks — like collaboration networks, financial net-
works, and online social networks— undoubtedly contain information of interest – for example in innovation
policy, economic behavior, and public health. Such networks are often massive, dynamic in size and con-
nectivity, and noisy. Evidence-based policy requires statistical tools for measuring and interpreting such
statistical networks. For example, simple and interpretable statistics on collaboration networks could prove
useful in the development and evaluation of innovation policies. However, current summary statistics on
networks leave big gaps in our toolkit.

Many real-world networks of interest in policy and engineering continuously change over time and con-
ditions. Thus, evidence-based policy requires tools for comparing networks. Current methods of summary
statistics are insufficient in accessing significance of changes or differences in networks. Moreover, the net-
works that we observe in the real-world are noisy. The overall theme of this thesis is that hyperbolic
geometric models of growing networks give a natural means for network inference (including resampling),
network comparison (including significance testing) and subsequent applications in such areas as public
health.

2 Motivation

Hyperbolic geometry offers a natural setting for analyzing the global structure of real-world networks. A
rigorous and global treatment of networks necessitates a careful choice of generative model §2.1. More
specifically, real-world networks suggest for us a continuous latent space model §2.2 when the only relevant
differences between nodes are their interconnections to all other nodes. Even more specifically, the precise
properties (e.g. tree-like structure) of real-world networks of interest suggest a specific hyperbolic continuous
latent space of nodes §2.3.

2.1 Real-world networks

The structure of naturally occurring networks, collections of nodes and relations between them, can illuminate
phenomena otherwise hidden in the real-world. One example of interest in research innovation policy is a
collaboration network, such as a group of scientists and co-authorship relationships between them. Another
example of interest in financial regulation is a financial network, a collection of financial institutions and
the various inter-bank lending that relate different pairs of such agents. Yet another example of interest in
health policy is an online messaging network, a collection of people and messages between them that can
potentially indicate a disease outbreak in the offline world. Thus, we want to capture the salient information
from the structure of such networks.

2.1.1 Background

Statistics measuring differences between networks are abundant in network analysis literature. One class of
such statistics are differences between numerical statistics, such as average path length or density of triangles.
However, such network summarization statistics fail to distinguish between networks exhibiting, say, grid-like
versus tree-like structure [11]. Moreover, such tests of significance do not seem to detect heterogeneity in
some examples [22]. Choices of such numerical statistics to explain networks tend to be also ad-hoc.

2.1.2 Goal

Instead, we would like methods of network comparison that intuitively distinguish between salient network
structure of interest in applications. In particular, we often want to assess when one network significantly
differs from another network in a meaningful manner, without regard to node set or node size. A significant
difference between collaboration networks for different research domains might suggest some difference in
the effectiveness of different grant policies. A critical change in the interdependency of financial institutions
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Figure 1: Contagion: Biological versus Social Previous work in [3] of the author and C. Shalizi suggests
that numbers of communities in social networks of U.S. Twitter users tweeting the word flu in different
geographical regions closely track corresponding CDC reported flu counts. The left figure illustrates a
hypothetical difference between a sample of Twitter users reporting on having flu symptoms (biological
contagion) and a sample of Twitter users merely discussing the flu (social contagion). The red circles
indicate Twitter users tweeting the word flu and blue circles indicate other Twitter users. The right figure
represents an actual snapshot of the social graph of flu-tweeters for Aug 24, 2011, zooming in a particular
geographical region. The different colors represent different communities to which tweeters belong. The
number of such colors is shown in [3] to predict flu levels for that region.

might predict a catastrophic collapse in the financial sector. A significant difference between networks of
online social messages mentioning the word flu from one day to the next may mean all the difference in
detecting social versus biological contagion. Methods of network resampling developed along the way should
give us a means of assessing the general uncertainty of our network inference.

We want tests of significance that are not overly sensitive to differences in sizes and labelling in node
set and noise but can detect differences in qualitative structure. Random graphs having a fixed set of
nodes are representable as expected adjacency matrices, square matrices whose (i, j)th entry represents the
probability that an edge connects nodes i, j. Normed differences ‖MG −MH‖ between expected adjacency
matrices MG,MH generating graphs G,H, measure structural differences when the graphs share the same
set of nodes. We often need to assess when two networks share a similar geometric structure despite having
different numbers of nodes and different labels for those nodes. For example, we might want to compare daily
graphs of users tweeting the word flu to detect any alarming change in structure; such graphs would have
different node sets from day to day. For another example, we want to detect when a growing and dynamic
online social network exhibits a critical change in structure; the working assumption is that most network
growth is not a critical change. We cannot, for example, take differences of adjacency matrices having
different dimension. Moreover, we would have to compare our adjacency matrices up to exchangeability
[10], even if our node sets have comparable size. We need a generative model of networks, unlike expected
adjacency matrices, amenable to pairwise comparisons regardless of differences in respective node sets. A
challenge is satisfying such criteria in a principled, robust, and computable manner.

2.2 Generative models

Generative models of networks are classes of probability distributions on graphs — prescriptions for gener-
ating graphs with certain probabilities. A generative model should explain something about the underlying
process generating the actual networks observed. For example, there might exist two different generative
models for networks of social online messages — the expression of social contagion and the expression of
biological contagion. For another example, different generative models for collaboration networks might ex-
plain different research and development policies generating them. Therefore we want to choose generative
models that are simple to compare and generate precisely the types of real-world networks of interest to us.
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2.2.1 Background

Two common generative models useful for creating and comparing networks of arbitrary sizes are graphons
and continuous latent spaces. Graphons are more general than continuous latent space models. However,
continuous latent spaces are still general enough to generate interesting real-world networks but restrictive
enough so that simple and elegant tools from geometry can be used for network comparison.

A graphon is a measurable function W : V ×V → [0, 1] for V a probability measure space [20]. A network
of size n is generated by a graphon W : V ×V → [0, 1] by independently sampling n points from V according
to the probability measure on V and attaching edges with probability according to W . In other words,
V represents a space of vertices and the graphon W represents edge probabilities. This type of generative
model can be inconvenient for purposes of network comparison. The cut distance δ(W1,W2), the standard
notion of distance between two graphons W1,W2 : V × V → [0, 1], is

δ(W1,W2) = inf
ϕ:V∼=V

sup
A,B

∫
A

∫
B

|W1(ϕ(a), ϕ(b))−W2(a, b)| db da, (1)

where the infimum is taken over all measure-preserving bijections ϕ : V ∼= V [20]. An efficient approximation
of the cut metric above presents special challenges, even if the infimum can be taken over a countable set
for V = [0, 1] [15, Theorem 6.9 (iv)].

Switching the role of vertices and edges, continuous latent space models are another simple generative
model for networks of arbitrary size. Consider a metric space V . For each distribution on V , we independently
pick nodes from V according to that distribution and then attach edges between nodes x, y ∈ V with
probabilities W (x, y) inversely related to distances in V . A pair of node densities — unlike a pair of adjacency
matrices — are comparable regardless of differences in graph size and independent of vertex labelling. A
notion of distance analogous to (1) between two densities f1, f2 : V → R on a metric space V is

δ(f1, f2) = inf
ϕ:V∼=V

∫
V

|f1(ϕ(x))− f2(x)| dx, (2)

where the infimum is taken over all isometries ϕ : V ∼= V . For suitable choices of metric space V , the
isometries on V may be well-understood enough so that the above infimum is easy to approximate from
knowledge of the geometry of V .

While latent spaces in continuous latent space models are typically taken to be Euclidean [12], recent
research suggests that other metrics are more suitable for generating the particular sort of networks observed
in the real-world [19]. The choice of metric space should be dictated by the abstract geometry of the abstract
networks. Social networks and other real-world networks tend to satisfy power laws, small world properties,
and are highly clusterable. For example, a network satisfies a power law if the probability P (k) that a
randomly uniformly selected node has degree k is of the form P (k) = k−γ for some real number γ > 0;
real-world networks tend to exhibit approximate power laws. A network satisfies a small world property if
the average minimum path-length is small relative to the total number of nodes in the network. Recent
work has shown that certain natural quasi-uniform densities on the hyperboloid, a 2-dimensional surface
visualizable in R3 as a bowl [Figure 3], generate networks with the above properties [19].

2.2.2 Goal

Often, the qualitative structures of networks we wish to compare has something to do with their geometry
as metric spaces of nodes under minimum path lengths and nothing to do with their node labellings and
size. Networks satisfying power laws, small world properties, and clusterability are hyperbolic as abstract
metric spaces under the minimum path-length metric [19]. Thus continuous latent space models generating
such networks ought to be hyperbolic as metric spaces themselves.

2.3 Hyperbolic spaces

Hyperbolic spaces are metric spaces which are negatively curved — the angles in a triangle of geodesics has
sum less than 180 degrees. Examples of hyperbolic spaces are trees, the hyperboloid, and higher dimensional
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Figure 2: Growing networks Illustrated above is Apple’s network of inventors (nodes) and joint patents
(edges) linking inventors growing over time [1]. Often, the goal of network inference is to determine that
growth process, irrespective of a particular snapshot at some point in time.

versions of hyperboloids. We want to extend statistical methods, such as kernel density estimation, from
Euclidean space to hyperbolic spaces like the hyperboloid. Just as quasi-uniform densities on the hyperboloid
generate certain networks with real-world structure, more general densities on the hyperboloid generate a
large class of random networks. Thus the L2-distance between densities on the hyperboloid, equipped with
its standard hyperbolic volume measure, quantifies the degree to which the networks generated differ in their
power laws, small world properties, and clusterabilities. The goal will be to analyze and compare networks
by inferring and comparing latent node densities on the hyperboloid.

2.3.1 Background

Hyperbolic spaces provide a logical, generative model for real-world networks [19]. An example is the set of
nodes of a tree-like network under the minimum path length metric [16]. The space H2 is the hyperboloid
x21 + x22 − x23 = 1 equipped with the metric inherited from R3. This space H2 is equivalent to the Poincaré
half-plane

H2 = {x+ iy | x ∈ R, y ∈ (0,∞)}

equipped with the metric ds = (dx2 + dy2)/y2. The space H2 is also equivalent to the Poincaré disk

H2 = {x, y ∈ R | |x+ iy| < 1}

equipped with the metric ds2 = 4(dx2 + dy2)/(1− x2 − y2).
Real-world networks tend to have isometric embeddings into H2 [7] [16]. Moreover, densities

fδ(r, θ) =
δ sinh δr

2π cosh(δc− 1)
, δ > 0 (3)

on the Poincaré disk generate real-world networks, such as the Internet [19]. The inference of a δ parameter
from network samples serves as an effective, if limited, method of network inference and comparison. The
graphs generated exhibit typical properties of complex networks, such as small world connections, power law
distributions, significant clustering coefficients [19], and exchangeability (by independence of sampling).

2.3.2 Goal

Our goal is to generalize the network inference of densities on H2 from the limited parametrized setting (3)
of [19] to a non-parametric setting and even the higher dimensional setting of uniform hyperbolic spaces Hnc
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Figure 3: Different models of H2 A connected component of the hyperboloid x23 = 1 + x21 + x22 on the
left can be represented as the Poincaré disk in the middle or the Poincaré half-plane on the right. Under
suitable choices of metrics, the middle and right spaces are isometric to a connected component of the left
space equipped with the minimum path length.

Figure 4: Simulations of quasi-uniform densities While quasi-uniform densities (3) are naturally defined
in terms of geopolar coordinates, the above plots illustrate sample points in the Poincaré disk for a fixed R
value (a compact region of H2 over which the densities are supported) and varying δ = 1, 5, 30 from left to
right.

of dimension n and curvature −c. Such generalized inference of densities on hyperbolic space from network
samples will require extensions of classical statistics, such as non-parametric density estimation, from the
Euclidean setting to the hyperbolic setting.

3 Methodology

Inferring the generative model from observed networks leads to many applications, like a principled method
of network comparison. Network inference naturally breaks up into two parts: we first embed observed
networks into H2, and second we estimate densities on H2 from embedded node coordinates. The former
part is either a spectral decomposition problem or an optimization problem of maximizing a likelihood
function. The latter part requires a density estimator optimized for the integral of L2-loss with respect to
the natural volume measure H2. Having obtained an estimator for densities from network samples, we can
compare inferred node densities and test if they are statistically significantly different.
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Figure 5: Networks generated by quasi-uniform densities The above graphs were generated by sam-
pling 100 points from quasi-uniform densities with fixed R value and varying δ = 1, 5, 30 from left to right.
The connection probability function is the Heaviside stepside function, W (z1, z2) = Θ(R− dh(z1, z2)) where
dh represents the hyperbolic distance function. Note how the generated networks increase in clusterability
as δ, determining the hyperbolic distance away from the center of the Poincaré disk at which the density
peaks, increases.

Figure 6: Network inference

4 Theoretical Agenda

Ultimately, we wish to directly describe an estimator for the composite problem [Figure 6] and study its
convergence properties. In order to do so, we need to define graph embeddings as certain optimization prob-
lems and describe algorithms for their approximate solutions, theoretically understand the non-uniqueness
of the solutions, and construct minimax density estimators on H2.

4.1 Graph embedding

Graph embeddings are embeddings of graphs into metric spaces that preserve the metric, or at least the
closest possible approximations to such metric-preserving functions. An embedding of a social network would
assign coordinates to nodes in such a way so that the metric differences between coordinates reflects the
social distances between nodes. We would like to understand the theoretical properties of various algorithms
and formulas for embedding a graph into the hyperboloid.
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4.1.1 Background

A first step in estimating a density function f generating a given graph G is to embed the graph G into the
metric space X. The ML estimator θG of the embedding VG → X of graph vertices,

θ̂G = arg maxθ:VG→X
∏

(v,w)∈EG

W (θ̂(v), θ̂(w))
∏

(v,w)/∈EG

(1−W (θ̂(v), θ̂(w))), (4)

where W is the connection probability function, is used in the literature [6] to embed real-world networks,
such as the Internet for the case X = H2. Several techniques exist for approximating (4) for X = H2.

4.1.1.1 Metropolis-Hastings One such technique, thinking of H2 as the Poincaré disk, applies the
Metropolis-Hastings algorithm [6]. We approximate the geopolar modulus rv of a vertex v in G by

rv = 2 log(
8n

kπ
)− 2 log(

kv
kmin

)

on moduli as specified in [6], where n denotes the number of vertices in G, k denotes the total sum of
all degrees in G, kmin denotes the minimum degree in G, and kv denotes the degree of vertex v. We then
approximate the angle θv of a vertex v in G via the Metropolis-Hastings algorithm [6]: over several iterations,
we uniformly randomly assign geopolar angles to the points, compare the likelihood p that G arose from such
new coordinates with the corresponding likelihood q that G arose from the previous choice of coordinates,
and replace the old choice of coordinates with the new choice of coordinates if p > q or with probability
greater than the likelihood ratio q/p.

4.1.1.2 Multidimensional Scaling Another technique is a hyperbolic adaptation of multidimensional
scaling [4]. First, we treat the nodes of a given graph G as an abstract metric space whose metric is defined
by minimum path lengths, Dij for a pair of nodes i and j. Next, we find

x1, ..., xn ∈ R ⊂ H2 such that dH(xi, xj) = Dij

where dH denotes the distance on a hyperboloid, arccos(xiJxj
T ), and J represents the matrix associated

with the Minkowski space metric. Finally, spectral decomposition is used to decompose cos(D) into AJAT

where the rows of A are the points, x1, ..., xn. In [4], the embeddings are proven to be an exact embedding
for a network such that cos(D) has two negative eigenvalues and one positive eigenvalue.

4.1.2 Proposed work

One goal is to improve the accuracy and speed of one or more of the above embedding techniques. Another
goal is to find a Mobius transformation ϕ : H2 → H2 that minimizes the Hausdorff distance dHaus(ϕ(A), B)
between a given pair A,B ⊂ H2, perhaps by way of adapting the Procrustes algorithm. Such a technique
should prove useful in estimating (2) for the case V = H2 directly from network samples. Yet another goal
is to generalize the setting from H2 with different choices of negative curvature and use model selection to
select the ideal larger space before solving (4). The curvature selected could correspond to combinatorial
notions of hyperbolicity (e.g. δ-hyperbolicity [16]).

4.2 Density estimation

Given a set of sample points on a space, density estimation is the problem of estimating the true density
under which the sample points were drawn. Given an optimal choice (4) of hyperboloid coordinates for
nodes in a social network, a density estimator on the hyperboloid will then summarize all relationships
between nodes in a manner that is independent of the size of the network. Thus we seek a density estimator
on the hyperboloid with a fast convergence rate. While the hyperboloid admits a reparametrization as a 2-
dimensional surface, ordinary kernel density estimators in R2 are not optimal with respect to L2-loss, defined
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with respect to the natural volume measure on the hyperboloid. We want a non-parametric density estimator
optimal with respect to such loss, because such loss intuitively corresponds to the difference between the
networks generated by the estimated density and networks generated by the true density.

4.2.1 Background

The construction and performance of ordinary density estimators in the literature are dependent on specific
properties of Euclidean space and its volume measure, the Lebesgue measure, with respect to which ordinary
risk is defined. Existing generalizations of density estimators from the Euclidean setting require that the
given manifold — unlike H2 — be compact [23], or require that the kernel be chosen for each point of the
space and the true densities satisfy a Hölder class condition [17].

4.2.1.1 From Rn to Riemannian manifolds Data often does not come from Euclidean space, but
more general (Riemannian) manifolds, which are smooth subspaces of Euclidean space. Besides hierarchical
network structure described as 2-dimensional hyperboloids, other examples include directional headings and
orientations in air traffic described as the space SO3, and stress in materials and distortions in spacetime
described as the spaces of positive symmetric definite matrices. We can consider the general problem of
estimating a density function on a manifold M from some observed sample points X1, X2, · · · , XN . The
literature [23] suggests a straightforward generalization for compact manifolds and kernels whose supports
are small enough to fit inside normal neighborhoods, patches of the manifold that are Euclidean enough. The
normed vector difference |x−Xi| is replaced by the Riemannian distance [23, Equation 9]. The risk of such an
estimator, defined in terms of the volume measure of the manifold, shares an upper bound with the risk of a
classical kernel density estimator under certain assumptions [23, Theorem 5]. However, the hyperboloid and
higher dimensional analogues are not compact manifolds and therefore require different density estimators.
Another example is a density estimator for general manifolds, where the domains of kernels are tangent
bundles (which means choosing a kernel for each point of the space) and the true densities satisfy a Hölder
class condition [17]. A minimax convergence rate in terms of the Hölder class exponent and differentiability of
the densities is proven. However, in practice defining a kernel at each point of the manifold poses challenges
in the implementation.

4.2.1.2 Convolution The convolution of densities on Rn, necessary both to deconvolve noise and to
smooth out empirical observations to obtain density estimators, is defined as follows. For a pair f, g of
densities on Rn, define the density f ∗ g on Rn by the rule

(f ∗ g)(t) =

∫
Rn
f(t− x)g(x) dµX,

where dµX denotes the Lebesgue measure. Convolution, which involves the operation of subtraction, gener-
alizes to spaces X equipped with actions G×X→ X of Lie groups G. A Lie group is a manifold consisting
of invertible matrices closed under smooth matrix multiplication and smooth matrix inversion operations.
The symmetries of a manifold X can be described by an action

G×X→ X

of a Lie group, a function whose restriction to a function X → X for each g ∈ G is an isometry (distance-
preserving map).

For a density f on X and a density g on G, we define the density f ∗ g on X by the rule

(f ∗ g)(t) =

∫
G

f(tx−1)g(x) dµG,

where dµG denotes the Haar measure, a measure uniquely defined up to a multiplicative constant, on the
Lie group G.
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Convolutions allow us to define ordinary kernel density estimators on Rn and more general G-kernel
density estimators on certain spaces X with symmetries described by a group G. Just as Fourier analysis
is useful for indirectly constructing and analyzing convolutions of densities on Rn, a more general Helgason-
Fourier Analysis will allow us to indirectly construct and analyze convolution of densities on more general
manifolds. We define all relevant spaces, define the transform, and give an explicit formula for the inverse
transform.

4.2.1.3 Standard notation We will use the following notation in differential geometry, Fourier Analysis,
and kernel density estimation. Fix a semisimple Lie group G and maximal compact connected Lie subgroup
K. Let X be the symmetric space

X = G/K.

Let A,N be the respectively abelian and nilpotent subgroups of G such that G = KAN, the Iwasawa
decomposition of G. We define ax ∈ A and nx ∈ N so that x gets sent to the product axnx for each
x ∈ X under the natural isomorphism G/K ∼= AN. Let g, k, a, n represent the Lie algebras of G,K,A,N,
respectively. Let 〈−,−〉 denote the standard inner product on g defined by

〈v, w〉 = trace([v,−] ◦ [w,−])

and |− | be the norm on g defined by 〈v, v〉 = |v|2. Let 〈−,−〉 and |− | also denote the induced inner product
and norm on g∗. Let a∗ denote the dual vector space of a. Let M be the centralizer of A in K. We write µH

to denote a certain measure on H: in the case H is a Lie group, µH represents the Haar measure; in the case
H is a Riemannian manifold, µH represents the volume measure. We also write c for the Harish-Chandra
function on a∗; we refer the reader to [28] for suitable definitions.

4.2.1.4 The transform For f ∈ C∞c (X), the Helgason-Fourier transform, written H, is a linear map

L2(X, dµX)→ L2(a∗ ×K/M,
dµλ
|c(λ)2|

dµK/M)

sending a function f to the function Hf defined by the rule

(Hf)(s, kM) =

∫
G/K

f(x)es(log ak(x)) dµX, (s, kM) ∈ (a∗ ⊗ C)×K/M,

where we take s = iλ+ ρ for λ ∈ a∗ and ρ is half of the sum of restricted roots of G.
Like in the classical Fourier case, we have the Plancherel identity∫

G/K

|f(x)|2dµX =

∫
λ∈a∗

∫
kM∈K/M

|Hf (iλ+ ρ, kM)|2 dµλ
|c(λ)2|

dµK/M, (5)

We define the convolution of a density f1 on X with a density f2 on G by the rule

(f1 ∗ f2)(x) =

∫
G

f1(g)f2(g−1x) dµG.

The Helgason-Fourier transform H sends convolutions to products in the following sense. Call a density
f on G K-invariant if f(k1xk2) = f(x) for all k1, k2 ∈ K and x ∈ X. A K-invariant density f on G induces
a well-defined density on G/K sending each element gK to f(g). Hence we can define H[f ] of such f as the
Helgason-Fourier transforms of the induced densities on X. For each f1 ∈ L2(X, dµX) and f2 ∈ L2(G, dµG)
such that f2 is K-invariant,

H[f1 ∗ f2] = H[f1]H[f2].
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4.2.1.5 The inverse transform The inverse Helgason-Fourier transform, written H−1, is given by

f(x) =

∫
λ∈a∗

∫
kM∈K/M

Hf(iλ+ ρ, kM)e(iλ+ρ)(log ak(x))
dµλ
|c(λ)2|

dµK/M

4.2.2 Completed work

We have already introduced a new density estimator on a large class of symmetric spaces, and have proven
a minimax rate of convergence identical to the minimax rate of convergence for a n-dimensional Euclidean
kernel density estimator [2]. We then specialize our generalized kernel density estimator to H2 for our
hyperbolic network inference methodology.

4.2.2.1 The G-kernel density estimator In Euclidean space, kernel density estimation smooths out
the empirical distribution by adding a little bit of noise (distributed according to the kernel) around each
observation. Formally, the ordinary kernel density estimator fn,h satisfies

fn,h = F−1
[
φ̂F [Kh]

]
,

where F denotes the ordinary Fourier transform, φ̂ denotes the empirical characteristic function of the
samples, K denotes a kernel, h denotes a bandwidth parameter, and F [Kh](s) = F [K](hs). In order to
generalize kernel density estimators from Rn to X, we treat certain densities on G as kernels and generalize
bandwidth in terms of the transform H[K]. For the observed samples X1, . . . , Xn ∈ X and density K on G
invariant under left and right multiplication by K, we define the G-Kernel Density Estimator f (n,T,h) by

f (n,T,h) = H−1
[
φ̂HKhI(−T,+T )

]
where we abuse notation and treat HKh as the function sending (iλ+ρ, kM) to HK(h(iλ+ρ),M), I(−T,+T )

as the function sending (iλ+ ρ, kM) to 1 if |λ| 6 T and 0 otherwise, and

φ̂(s, kM) =
1

n

n∑
i=1

es(log ak(Xi)) (6)

4.2.2.2 Assumptions Let X denote a symmetric space such that for fixed semisimple Lie group G
X = G/K for a maximal complete subgroup K. Let fX denote a density on X with respect to the standard
volume measure dµX. Let K denote a density on G with respect to the Haar measure dµG.

First of all, we assume our densities are L2.

(D.1) Assume fX ∈ L2(X, dµX) and K ∈ L2(G, dµG).

Second of all, we need to restrict K to guarantee that its Helgason-Fourier transform is well-defined.

(D.2) the kernel K is K-bi-invariant:

K(acb) = K(c), c ∈ G a, b ∈ K.

Third of all, we make assumptions on the smoothness of the true density fX . The operator ∆k defined
below in terms of the Helgason-Fourier transform, generalizes the kth derivative operator from integers k to
non-negative real numbers k.

(D.3) there exist α > 1 and Q > 0 such that

fX ∈ Fα(Q) = {fX ∈ L2(X, dµX) : ‖∆α/2fX‖2 6 Q},

where ∆α/2fX denotes the unique function h ∈ L2(X, dµX) such that

Hh(s, kM) = (s(s− 2ρ))
α/2
HfX(s, kM)
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Last of all, we make assumptions on the smoothness of the kernel K.

(D.4) there exist constants β, γ, C1, C2 > 0 such that

C1e
− |s|

β

γ 6 |HK(s,M)| 6 C2e
− |s|

β

γ

for all s ∈ a∗ ⊗ C.

(D.5) For some α > 1, there exist a constant A such that

ess sup
s∈a∗⊗C

|HK(s,M)− 1|
|s|α

6 A

4.2.2.3 Main theorems Proofs of the following main results can be found in the appendix, with more
details in the paper [2].

Theorem 4.1. Assume (D.1)-(D.5). Then for a density fX on a symmetric space X,

E‖f (n,T,h)X − fX‖2 6 QA2h2α +QT−2α + C
T dimX

n
e[−(2/γ)(h|ρ|)

β ].

for some constant C > 0 not dependent on T, α,Q, n.

By choosing a smooth enough kernel density K, an optimal cutoff of T and optimal bandwidth h, we
obtain the following rate of convergence.

Corollary 4.2. Assume (D.1)-(D.5). Then

E‖f (n,T,h)X − fX‖2 6 Cn−2α/(2α+dimX)

for some constant C > 0 not dependent on T, α,Q, n and

T =

[
2αQn

dim XC
e[−(2/γ)(h|ρ|)

β ]

]1/(2α+dimX)

h ∈ O(n−1/(2α+dimX)).

The convergence rate for the upper bound is matched by the lower bound, as shown below.

Theorem 4.3. Assume (D.3). There exists a constant C > 0 such that

inf
g(n)

sup
fX∈Fα(Q)

E‖g(n) − fX‖2 > Cn−2α/(2α+dimX)

where the infimum is taken over all estimators g(n).

By the previous results, we obtain our minimax rate below for our adapted kernel density estimator.

Corollary 4.4. If fX and K satisfy (D.1)-(D.5), the minimax rate for f
(n,T,h)
X is n−2α/(2α+dimX).

4.2.2.4 Specialized case Let H2 denote the hyperboloid, regarded as the Poincaré half-plane

H2 = {z ∈ C | Im(z) > 0},

where Im(z) denotes the imaginary part of a complex number z, equipped with metric

ds2 = y−2(dx2 + dy2).
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The space H2 is isometric as a Riemannian manifold to the quotient space

H2 = SL2/SO2.

Under this identification, the matrices in SL2 act on H2 by Möbius transformations:(
a b
c d

)
(z) =

az + b

cz + d
.

Therefore our density estimator is defined on H2 because SL2 is a semisimple Lie group admitting an Iwasawa
decomposition as SL2 = SO2AN, where A is the group of diagonal (2×2)-matrices in SL2 with non-negative
entries and N is the group of upper triangular (2×2)-matrices with 1’s along the diagonal. For each z ∈ H2,
nz and az are characterized by

(nz)1,2 = Re(z), (az)1,1 = Im(z)
1/2.

The Harish-Chandra c-function satisfies the formula

c(λ)−2 =
1

8π2
λ tanh(πλ).

There exists a unique restricted root of H2 = SL2/SO2. Under the natural identification of A with the
Lie group of multiplicative non-negative real numbers and hence an identification of a∗ with R, we identify
the unique restricted root (taking a (2 × 2)-matrix to the difference in its diagonal elements) with 1 and
hence ρ with 1/2.

4.2.2.5 Choice of kernel We can also choose our kernel K to be the hypergaussian, an analogue of a
gaussian density on Euclidean space defined as follows in [13]. Just as ordinary gaussians are characterized
as solutions to the heat equation, we define K to be the unique (SO2-invariant solution) to the heat equation
on H2, lifted to a function on SL2. Concretely,

H[K](s, kM) ∝ es(s−1)

and hence K satisfies the assumptions (D.1), (D.2), and (D.4) for β = 2 and γ = 1.

4.2.2.6 Simplified formula Under these identifications and simplifications, our SL2-kernel density es-
timator takes the form:

f (n,T,h)(z) ∝ 1

n

n∑
i=1

∫ +T

−T

∫ 2π

0

Im(kθ(Zi))
1
2−iλe−(

h2

4 +h2λ2)(Im(kθ(z)))
1
2+iλ

λ tanh(πλ)

8π2
dθ dλ, (7)

where kθ denotes the rotation matrix associated to the angle θ.

4.2.3 Proposed work

Future work would be to explore other applications of the generalized kernel density estimator. Data often
resides in non-Euclidean symmetric spaces. For example, directional headings and orientations of flying
objects (e.g. missiles, asteroids) naturally reside on the sphere S2 ⊂ R3 and SO3 ⊂ R9 [25]. For another
example, the data of material stress in material sciences and spacetime distortions in cosmology amount to
points in the space of symmetric positive definite matrices [25]. In addition, future work would also include
developing an analogue of the Fast Fourier Transform for Helgason-Fourier Analysis in order to speed up
the actual computation of the kernel density estimator.

15



4.3 Network comparison

A suitable comparison of two sets N1,N2 of networks should involve comparing the underlying generative
models g1, g2 creating the two sets — computing some numerical distance ρ(g1, g2) between g1 and g2 in a
space of possible generative models and assessing the significance of such difference statistics. In our case of
interest, N1,N2 might be a pair of snapshots of different public health, financial, or collaboration networks
of varying size and g1, g2 would describe the overall network geometries as densities on H2.

4.3.1 Background

A general framework for comparing networks from a generative model has been outlined in [26]. Consider
two sets N1,N2 of networks. There exist three inferred generative models g1, g2, g12 for the three sets
N1,N2,N1 ∪N2. In order to account for the difference ρ(g1, g2) due to statistical noise, we use g12 to again
generate a pair N ′1,N ′2 of network samples and again infer three generative models g′1, g

′
2, g
′
12, repeating the

process several times to estimate a distribution for differences ρ(g′1, g
′
2) due to sampling variation alone.

Thus we can assess the significance of ρ(g1, g2). Moreover, the metric ρ on generative models often takes the
form of a difference of distributions (e.g. total variation) and hence assesses the global differences between
networks.

4.3.2 Proposed work

As noted in [26], the more constraints we impose on our particular generative models, the greater the power
we expect from our hypothesis testing. Our goal is to specialize the above network comparison program for
the generative model of densities on H2 satisfying D.1 and D.3 and difference statistic ρ the L2-distance,
and prove specific properties of hypothesis testing in that setting. We aim to establish the validity of
bootstrapping — the determination of a distribution of difference statistics under the null hypothesis by the
iterative procedure outlined previously. Under certain growth assumptions for sequences of graphs

G = (G1, G2, G3, . . .), H = (H1, H2, H3, . . .),

we will show that our tests of significance for G and H are consistent. We will obtain formulas and bounds
for the power of test statistics as a function of curvature, network size, and network sample size. We also will
characterize bounds on the error in our inferred densities from errors in our graph embeddings and errors
in density estimation. We will also explore the possibility of using model selection or adaptivity to tune the
curvature of the ambient latent hyperboloid to the network data given. All of these goals are best tackled
if we can directly and theoretically describe the distribution of ‖g1 − g2‖2 under the null hypothesis — a
plausible goal, given the simplicity of our generative model and the compatibility of our difference statistic
‖g1 − g2‖2 with such tools as the Helgason-Fourier transform H.

5 Computational Agenda

In addition to the above theoretical investigation, we also plan to implement and possibly refine graph
embedding and density estimation to infer the generating densities of abstract sample networks and thus
evaluate the feasibility of our proposed methods of network comparison.

5.1 Completed work

5.1.1 Graph embeddings

5.1.1.1 Metropolis-Hastings We have implemented the Metropolis-Hastings approach to embedding
graphs in H2 [6] and illustrate in [Figure 7] the behavior of the algorithm on sample points which came from
quasi-uniform densities like in [Figure 4].
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Figure 7: Metropolis-Hastings The nodes of abstract graphs [Figure 5] from quasi-uniform densities
[Figure 4] are embedded, via the Metropolis-Hastings algorithm, into H2 to yield the sample points illustrated
above. Those sample points in turn can be used to infer a node density describing the global network structure
irregardless of node size or node labels.

5.1.1.2 Hyperbolic Multidimensional Scaling We have also implemented the hyperbolic variant of
Multidimensional Scaling to embedding graphs in H2 [4] and illustrate in [Figure 8] the behavior of the
technique on sample points which came from quasi-uniform densities like in [Figure 4].

Figure 8: Multidimensional Scaling The nodes of abstract graphs [Figure 5] from quasi-uniform densities
[Figure 4] are embedded, via a version of Multidimensional Scaling into H2 to yield the sample points
illustrated above. Those sample points in turn can be used to infer a node density describing the global
network structure irregardless of node size or node labels.

5.1.2 Density estimation

We have implemented the SL2-kernel density estimator and compare in [Figure 9] the estimator with the true
density, or at least the associated densities of the geopolar magnitude, for different choices of quasi-uniform
densities.
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Figure 9: Density estimators The true density of the geopolar magnitude (blue) is plotted alongside the
estimated density derived from our SL2-kernel density estimator (green), for quasi-uniform densities with
δ = 1, 10, 30 in order from left to right.

5.2 Proposed work

5.2.1 Speed-ups in implementation

Improvements in the algorithms or actual implementations of the above simulations, which rely on repeated
iterations, should improve accuracy of the empirical results. Some ideas of such improvements for density
estimation involve direct implementations of the estimator, without use of Helgason-Fourier transforms and
the associated multiple integrals.

5.2.2 Network comparisons

We will then simulate network comparison tests and empirically estimate power and consistency.

6 Empirical Agenda

In this section, we sketch some methods for validating our models, using our tools to compare real-world
examples of networks. In addition, we can use our generative model to do resampling for a couple real-world
examples of networks. However, these are just application sketches and subject to change.

6.1 Model validation

One goal is to show that our model is well-suited for studying and comparing the particular sorts of networks
we encounter in actual datasets. Specifically, we would like to understand better how hyperbolic distances
constrain the types of networks that are generated. Based on combinatorial notions of hyperbolicity, we
expect that conditional probabilities of triangles and quadrilaterals given the existence of one or more edges
will start to characterize the class of generated networks. We can then start to justify our choice of model,
when such assumptions on the networks are warranted by observations on actual datasets.

6.2 Social online networks: health policy

Online social networks can be used as distributed sensors, monitoring offline phenomena [3]. Variation in
the network structure of human communications is an under-utilized resource for extracting phenomena of
interest in public health. In our case, the networks of interest to us have as nodes a random sampling of U.S.
Twitter users tweeting the word flu and have as edges reported social links (friend/follower relationships).
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We will show that network hypothesis testing can improve the detection of influenza trends from Twitter,
supplementing textual analysis of tweets with change detection in social graph structures that are perhaps
more robust to irrelevant variation in language use and choice of language [Figure 1]. We will analyze 1% of
all tweets over weeks 34-52 of 2011 and weeks 1-4 of 2012, all restricted to users from identifiable U.S. cities.

6.3 Collaboration networks: innovation policy

Understanding collaboration networks can be useful in crafting innovation policy, including the government
regulation of patents and the dispensation of grants. Collaboration networks represent researchers as nodes
and co-authorship/co-patents as edges between nodes. The goal would be to explore whether structural
differences in innovation networks distinguish between productive and unproductive ecosystems of researchers
— where productivity is measured in terms of number of patents, number of research articles, and other
(imperfect) measures of creative output.
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7 Appendix: Proofs

In the proofs that follow, we only use the following property of the Harish-Chandra c-function as observed
in [21].

Lemma 7.1. For each λ ∈ a∗, |c(λ)|−2 6 (1 + |λ|)dim n.

7.1 Upper bound: Proof of Theorem 4.1

We use the mean integrated squared error to measure the performance of our generalized estimator. We
break the mean integrated squared error into two parts, variance and squared bias, and bound each part
separately. Proofs here adapt some techniques in [13] for deconvolution on the hyperboloid to convolution
on a large class of symmetric spaces.

7.1.1 Variance

We bound the variance from above as follows.

E
∥∥∥f (n,T,h)X − E[f

(n,T,h)
X ]

∥∥∥2 = E
∫
G/K

∣∣∣f (n,T,h)X − E[f
(n,T,h)
X ]

∣∣∣2 dµX

The below equality follows by the Plancherel identity (5),

E
∫
G/K

∣∣∣Hf (n,T,h)X − E[Hf (n,T,h)X ]
∣∣∣2 dµX = E

∫
G/K

∣∣∣HKhφ̂I(−T,+T ) −HKhHfX
∣∣∣2 dµX.

The above expression, by the Fubini-Tonelli theorem, equals

E
∫
|λ|<T

∫
kM∈K/M

|HKh|2
∣∣∣φ̂−HfX ∣∣∣2 dµλ

|c(λ)2|
dµK/M

=

∫
|λ|<T

∫
kM∈K/M

|HKh|2 E
[
|φ̂|2 + |HfX |2 − 2〈φ̂,HfX〉

] dµλ
|c(λ)2|

dµK/M.

Deducing from (6) that

E
∣∣∣φ̂(λ+ iρ, kM)

∣∣∣2 = |HfX(λ+ iρ, kM)|2 +
E[|ak(X)|2ρ]− |HfX(λ+ iρ, kM)|2

n
,

the previous expression is bounded by

∫
|λ|<T

∫
kM∈K/M

|HKh|2
[
|HfX |2 +

E[|ak(X)|2ρ]− |HfX |2

n
+ |HfX |2 − E[2〈φ̂,HfX〉]

]
dµλ
|c(λ)2|

dµK/M

=

∫
|λ|<T

∫
kM∈K/M

|HKh|2
[
2|HfX |2 +

E[|ak(X)|2ρ]− |HfX |2

n
− 2|HfX |2

]
dµλ
|c(λ)2|

dµK/M

=

∫
|λ|<T

∫
kM∈K/M

|HKh|2
[
E[|ak(X)|2ρ]− |HfX |2

n

]
dµλ
|c(λ)2|

dµK/M

6
∫
|λ|<T

∫
kM∈K/M

|HKh|2
[
E[|ak(X)|2ρ]

n

]
dµλ
|c(λ)2|

dµK/M.

In addition, E[|ak(X)|2ρ] = HfX(2s, kM) implies that for some constant D1 > 0,∫
kM∈K/M

E[|ak(X)|2ρ]dµK/M =

∫
kM∈K/M

|HfX(2s, kM)|dµK/M 6 D1
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Thus the previous expression is in turn bounded by

D1

n
sup
|λ|<T

|HKh(iλ+ ρ)|2
∫
|λ|<T

∫
kM∈K/M

dµλ
|c(λ)2|

dµK/M

By Lemma 2.1, |c(λ)|−2 6 (1 + |λ|)dim n. Therefore for some constant D2 > 0,∫
|λ|<T

dµλ
|c(λ)2|

6 (2T )dim a sup
|λ|<T

(1 + |λ|)dim n = (2T )dim a(1 + T )dim n 6 D2T
dimX

Thus the previous expression is in turn bounded as follows for a constant C by (D.4).

D1D2T
dimX

n
sup
|λ|<T

|HK(h(iλ+ ρ))|2 6
CT dimX

n
e[−(2/γ)(h|ρ|)

β ]

7.1.2 Squared bias

We now bound the squared bias from above. Note that

∥∥∥Ef (n,T,h)X − fX
∥∥∥2 =

∫
G/K

∣∣∣Ef (n,T,h)X − fX
∣∣∣2 dµX

The below equality follows by the Plancherel identity (5) and the Fubini-Tonelli theorem,∫ ∞
−∞

∫
kM∈K/M

∣∣∣EHf (n,T,h)X −HfX
∣∣∣2 dµλ
|c(λ)2|

dµK/M

=

∫
|λ|<T

∫
kM∈K/M

∣∣∣EHf (n,T,h)X −HfX
∣∣∣2 dµλ
|c(λ)2|

dµK/M

+

∫
|λ|>T

∫
kM∈K/M

∣∣∣EHf (n,T,h)X −HfX
∣∣∣2 dµλ
|c(λ)2|

dµK/M

the last equality following from Hf (n,T,h)X compact on |λ| < T . Then the above expression equals∫
|λ|<T

∫
kM∈K/M

|HfXHKh −HfX |2 d
dµλ
|c(λ)2|

dµK/M +

∫
|λ|>T

∫
kM∈K/M

|HfX |2
dµλ
|c(λ)2|

dµK/M

=

∫
|λ|<T

∫
kM∈K/M

|HK(h(iλ+ ρ))− 1|2 |HfX(ıλ+ ρ)|2 dµλ
|c(λ)2|

dµK/M

+

∫
|λ|>T

∫
kM∈K/M

|(iλ+ ρ)(iλ− ρ)|−α |(iλ+ ρ)(iλ− ρ)|α |HfX(iλ+ ρ)|2 dµλ
|c(λ)2|

dµK/M

By assumption (D.5), the previous expression equals

6
∫
|λ|<T

∫
kM∈K/M

A2h2α |(iλ+ ρ)(iλ− ρ)|α |HfX(iλ+ ρ)|2 dµλ
|c(λ)2|

dµK/M

+ sup
|λ|>T

|(iλ+ ρ)(iλ− ρ)|−α
∫
|λ|>T

∫
kM∈K/M

|(iλ+ ρ)(iλ− ρ)|α |HfX(iλ+ ρ)|2 dµλ
|c(λ)2|

dµK/M

By assumption (D.3), the previous expression is bounded by

QA2h2α +Q(T 2 + |ρ|2)−α 6 QA2h2α +QT−2α.
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7.2 Optimal upper bound: Proof of Corollary 4.2

By the previous part, we have obtain an upper bound of

E‖f (n,T,h)X − fX‖2 6 QA2h2α +QT−2α + C
T dimX

n
e[−(2/γ)(h|ρ|)

β ].

The optimal cutoff of T that minimizes the upper bound is of the form

T (n) =

[
2αQn

dim XC
e[−(2/γ)(h|ρ|)

β ]

]1/(2α+dimX)

yielding the following upper bound for positive constants D1, D2.

E‖f (n,T,h)X − fX‖2 6 D1h
2α +D2n

−2α/(2α+dimX).

The upper bound converges at the fastest possible rate when we choose the bandwidth h such that

h2α = n−2α/(2α+dimX),

giving us a convergence rate of n−α/(α+1). Thus, the bandwidth h optimizing the upper bound is

h(n) = n−1/(2α+dimX).

Consequently, the above cutoff T and bandwidth h give the inequality

E‖f (n,T,h)X − fX‖2 6 Cn−2α/(2α+dimX),

where C is a positive constant neither dependent on n nor T . The right side is the optimal rate of convergence
for the upper bound term.

7.3 Lower bound: Proof of Theorem 4.3

Let U be a normal and convex neighborhood in X, isometric to Euclidean space. Then the Sobolev ball of
L2-functions on U with smoothing parameter α lies in the Sobolev ball of L2-functions on X with smoothing
parameter α, by extending functions f : U → R to X by setting f(x) = 0 for all x ∈ X−U by the discussion
on Sobolev spaces in [24] on page 7. The minimax rate, n−2α/(2α+dimX) [29, Theorem 24.4], for Euclidean
kernel density estimators on RdimX thus lower bounds the convergence rate for G-kernel density estimators.
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