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Abstract

Any problem where the observed data are only recorded indirectly is called
an inverse problem (IP). A classic example is errors in variables where one
wants to estimate regression coefficients but only observes the covariates
after corruption with noise.

I propose to address three main questions in inverse problems (IPs). The
first is, given a sequence of observations, how well can these observations
be combined to form an estimate of an underlying function. If the function
is observed directly there are many well-used techniques available. In the
context of IPs the situation is less clear. I explore a new regime in IPs where
the data are repeated observations of a function, but the function is blurred
by different operators and observed under different noise conditions. This
situation involves rethinking IPs in new ways.

The second question builds off the previous goal. Suppose an estimate
of a function based off of a sequence of observations exists and a new obser-
vation is made. One commonly asked question is if there is any difference
in the underlying function in the new observation that didn’t exist before.
This is known as the “transient detection” problem as these differences are
referred to as transients in the astrophysical community where this could
be, for instance, a supernova, asteroid, or gamma burst. Existing methods
that perform this task rely on estimating a smoothing operator. I present
a possible way of doing this estimation. Moreover, this smoothing opera-
tor is actually a nuisance parameter. I additionally introduce a hierarchical
model that may allow for estimating the probability of a transient without
estimating the smoothing operator.

Lastly, as in the nonparametric estimation case, there are tuning param-
eters in IP estimation as well. However, choosing tuning parameters in IPs
is much less developed and more difficult than in nonparametric estimation.
For instance, the default choice of minimizing generalized cross validation
does not work in IPs as it estimates the wrong risk. In effect, unbiased risk
estimation is not possible. I present a new method that introduces bias into
the risk estimate in a controlled manner that allows for tuning parameter
selection for a large number of estimators and distributions.



1 Introduction

The overarching theme of this document is to examine instances or implica-
tions of ill-posed problems, which we refer to generally as inverse problems
(IPs). A non-informative definition of ill-posedness is that the problem is
not well-posed. In work on mathematical physics, Hadamard gave three
conditions for well-posedness. For an operator K : A → B between two
metric spaces, suppose we wish to find the f ∈ A such that Kf = g, where
g ∈ B.

Definition 1. A problem is well-posed if

(a) K is surjective.

(b) ∀f1, f2 ∈ A, K(f1) = K(f2) i.f.f. f1 = f2. This corresponds to K
being injective.

(c) The operator K−1 is continuous on B.

In practice, the violation of condition (c) is what makes most problems
ill-posed. For instance, suppose A and B are both subsets of L2(R) and K is
a convolution operator with kernel k (ie: Kf(t) =

∫
R
k(t−u)f(u)du =: k∗f).

Define the Fourier transform operator as F . Then under mild conditions on
k, Fk(ω) = 0 on at most a set of measure zero in F(L2(R)). It follows by
the isometry property of F that for f1, f2 ∈ A

||Kf1 −Kf2||2 = ||FkFf1 −FkFf2||2 = 0

only if Ff1(ω) −Ff2(ω) = 0 almost everywhere. Therefore

0 = ||Ff1 −Ff2||2 = ||f1 − f2||2

which implies f1 = f2 in L2(R) and hence K is injective. However, K−1 is
not bounded as a linear operator. This can be shown by direct construction
of a sequence of functions (fi)

∞
i=1 such that ||fi||2 → ∞ while ||Kfi||2 → 0.

Note that this implies that B isn’t closed in L2(R) by the Open Mapping
Theorem.

Inverse problems themselves have been the focus of intense research over
the last century, with many successes. It wasn’t until the work in [30] that
noisy versions of IPs were considered. Since then, a large amount of work
has been done analyzing specific problems and, to a lesser extent, developing
general methodology and theory. Some examples of inverse problems are
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estimating a derivative, errors in variables, boundary value problems for
heat equations, and tomography (which includes MRI and fMRI).

In this thesis, I propose to look at three related problems in IPs. First,
in section 2, I examine a realistic instance of IPs where many related ob-
servations are made of an underlying function. The motivating application
is contemporary and proposed large astronomical sky surveys, such as the
LSST. These surveys are operational for many years and end up re-imaging
the same piece of sky many, many times. A major objective of these surveys
is to use this sequential data aquisition to produce a good summary image
for visible celestial structures and use this image to detect when new objects,
such as asteroids or supernovae, appear. Note that sequential IPs appear in
other signal processing applications such as medical imaging.

This detection problem motivates the next part, found in section 3.1. In
subsection 3.2.1 I propose a method for matching new images to archived
summary image for the purposes of detecting transients. Also, in subsec-
tion 3.2.2 I investigate a Bayesian method for doing the detection without
estimating several nuisance parameters directly.

Lastly, in section 4, I consider a method for choosing smoothing pa-
rameters in the context of IPs and present shortcomings of contemporary
methods.

2 Sequential Inverse Problem

To help understand the sequential problem I first introduce IPs as they are
commonly formalized, at least implicitly, in the literature.

Let L be a separable Banach space of functions1 and Θ ⊆ L be the
model space. This corresponds to θ ∈ Θ being the true, unobserved scene
in imaging problems. Define γ : Θ → B to be the function of the scene
θ we wish to estimate. Call either the mapping γ or the image γ(θ) the
parameter. Usually B = R

n for some n. In applied mathematics B = Θ
and g is the identity mapping. Following the seminal work of [3, 4], γ could
be some sequence of functionals of θ. This idea, known as the Backus-
Gilbert method, has been revisited periodically in various fields; theory:
[22], astophysics: [23], and fMRI: [14].

1Note that separability is necessary as many solution methods require a nested sequence
of subsets of L that approximate that space asymptotically. Separability is needed for
this to be true. Classic examples are the Galerkin methods such as boundary elements or
Krylov subspace methods. See [11] for a recent take on using wavelets as a foundation for
the approximation spaces.
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What makes it an inverse problem is the introduction of an operator K.
Assume there is a known2 linear3 operator K such that observations of θ can
only be made through the function g(t) = Kθ(t). Define a random variable
(process) W on ran(K) that doesn’t depend on θ. Then the random process
under consideration is

Y = Kθ + σW (1)

for some σ > 0. Let Pθ,K,σ be its distribution. Then the entire mapping
(θ,K, σ) 7→ Pθ,K,σ is the forward problem.

Some of the IP literature (eg [15]) consider (1) the data. Alternately, as
recorded observations are necessarily discretized, the model is phrased as

Yi = Kθ(ui) + σW (ui) (2)

for some sequence (ui)
n
i=1. See [10, 11, 20, 9] for examples. More generally,

fix a sequence (φi)
n
i=1 ⊆ L∗ where L∗ is the continuous dual of L. This is the

same as defining K : L → R
n, where Kθ is vector-valued with components

φiθ. Then suppose our observations are

Yi = φiθ + σZi (3)

See e.g. [25, 31, 19, 17, 27] for examples.
Essentially all linear inverse problems can be expressed in this manner.

For instance, we can suppose L2([0, 1]) = L = Θ = B, g(θ) = θ, and we
observe θ ∈ Θ under the action of an inhomogeneous Fredholm integral
equation of the first kind at a finite number of points 0 ≤ u1 ≤ . . . ≤ un ≤
1. Then our observations are Yi =

∫
[0,1] k(ui, v)θ(v)dv for some function

k ∈ C([0, 1]) where C is some space of suitably nice functions such that
elements of C are defined under pointwise evaluation in the first argument
and elements of L in the second argument.

Here we can see the divergence of these approaches. In (1), observations
are of g(u) =

∫
k(u, v)θ(v)dv. In (2), the functions ki(·) := k(ui, ·) are

presumed to be known. In (3), however, I may only know the outcome of
the functionals (φi) generated by integration against ki. Notice that this
is closely related to Galerkin methods; the difference being that here the
approximation spaces are given by the problem (span of the k′is), instead of
being chosen by the analyst.

2While the unknown operator case is very interesting, we don’t address it here.
3Nonlinear inverse problems are different altogether and are given by a nonlinear opera-

tor. For certain special cases, the linearized version behaves nice enough that the following
can still be used as a solution format.
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2.1 How is this different?

Note that when K is the identity [7, 24] show the asymptotic equivalence of
(1) and (2) in nonparametric regression and density estimation, respectively.
However, results of this sort for inverse problems are still open questions.
This leaves open the choice of statistical model as inferences based on (1)
need not align, even asymptotically, with inferences based on (2). Recently,
[26] established some conditions for the sequence (ui)

n
i=1 where asymptotic

equivalence can and cannot be established in the functional deconvolutional
setting.

Sequential IPs diverge from the formalization in the previous section in
at least two ways. First, we observe many instances of different but related
IPs. This can be represented in the white noise model as

Yt = Ktθ + σtWt for t = 1, . . . , T. (4)

The relationship between (1) and (2) is already murky. When there is an-
other asymptotic regime to consider, the relationship becomes all the more
unclear.

Second, and less obviously, the goals are possibly different. For instance,
in Astronomical applications, a major goal of template creation is to create
a high quality image that can be used to detect transients. The first part,
create a good template, matches the classic inverse problem goal: create an
estimator θ̂ that is ‘close’ to θ in some sense. However, finding a θ̂ that
can do transient detection is a possibly different objective altogether. In
fact, detection seems to suggest a classification-type loss function, while θ
estimation suggests an Lp-type loss function.

Proposed Work: Develop and exploit a theoretical platform to answer
the questions: Is an estimator that makes a good template also good at
transient detection? What estimators are good under these criteria? How
good are commonly used approaches at either goal? Note that if the answer
to the first question is affirmative then the subsequent questions become
more concise.

2.2 Possible Approach

I want to add an extra layer to this formalization to allow for slightly more
flexibility. This added flexibility allows for the machinery sufficient for anal-
ysis. Suppose there exists unobserved random variables Y as in (1). I refer
to this transformation of θ as the Distortion Step. Let D(N) := (Di)

N
i=1 be
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a sequence in L∗ that we call detector functionals. The data is then

Yi = Di(Kθ) + σDiW. (5)

We call this the Detector Step. These functionals mimic the data aquisition
that occurs during analog to digital conversion and can be thought of as
integration over disjoint intervals representing pixels. However, more elab-
orate detector signitures can be expressed such as unequal sensitivity in a
detector. This could be important, particularly in modeling anti-aliasing or
diffraction in telescoping imaging.

Let P = {Pθ,K,σ : θ ∈ Θ,K ∈ B(L,L), σ > 0} be defined on the same σ-
algebra. Then (θ,K,D(N), σ) 7→ Pθ,K,D(N),σ is the forward problem. Note
that D(N) can usually be expressed as N without confusion.

As T increases, N remains fixed as the properties of the detector won’t
change over time. This is an instance of having a fixed resolution detector
where in-fill asymptotics no longer make sense. Overall, for each t, we have
a new distortion step operator Kt : L → L. Now, the forward operator
becomes

(θ,K(T ), N, σ) 7→ Pθ,K(T ),N,σ (6)

where K(T ) := (Kt)
T
t=1. Also, I augment the notation to make the time

t observation at the ith detector Yti with mean θti := DiKtθ and look at
asymptotics as T → ∞.

As long as the Di are orthogonal as functions in L, then (DiW ) =: (Zi)
becomes a mutually independent sequence. If W is a zero mean brownian
sheet, then Zi is normal. Combining the distortion and detections steps, the
data is

Yti = θti + σZti

which can be recognized as a normal means problem. The difference be-
tween this and the classic one-way ANOVA normal means problem is that
there is no asymptotics in n. Hence, we don’t necessarily want to form an
estimator on the vector of sums (

∑T
t=1 Yti)

n
i=1. Rather, some model selection

should possibly be used to pick among the included terms in the sum. This
corresponds to lucky image, which we discuss in the next section.

Over time, some Kt1 will offer better resolution of the model θ than some
other Kt2 . In other words, Kt1 will be less bandlimiting than Kt2 . The ques-
tion, in time space, becomes: does it make sense to not add the additional
bias of including Yt2i in an estimator. Note that in the formalization, a some-
what strange inversion has happened from the usual bias-variance trade-off.
Adding Yt2i to the sum increases the bias and decreases the variance.

5



Suppose, as usual, the risk is ρ : B × L → R
+ with image ρ(θ̂, θ). Then,

unless Θ ⊆ span((Di)
N
i=1), the risk can’t go to zero pointwise over Θ as

T → ∞. Even if we redefine the risk to be ρ : B × R
N → R

+ with image
ρ(θ̂, θN ), where θN is the projection of θ onto span((Di)

N
i=1) along Θ, the

risk will generally not go to zero.
To address these problems, I propose to use a relative efficiency notion

to analyze estimators. Specifically, let ǫ > 0 be given. Then, find

Tǫ(θ̂) := arg min{T∗ : E[ρT (θ̂, θN )|(Kt)
T
t=1] < ǫ, ∀T ≥ T∗},

where ρT indicates the expectation is with respect to the forward operator
defined in (6).

For the purposes of this analysis,

ρ(θ̂)T := E||θ̂ − θN ||2. (7)

Lucky Imaging

In lucky imaging (LI), a large number of images are observed and only
the ’best,’ according to some criterion, are retained. [18, 29] describe such
implementations in detail. An advantage of this approach is that the re-
construction of the true scene is based entirely on high quality data. A
disadvantage is that the method requires storing many images to determine
which are best. Moreover, the images that are discarded can contain useful
information about the scene that is, in effect, wasted.

One approach would be to suppose for t = 1, . . . , T we have without
loss of generality ordered our observations from best to worst4. What we
mean by best needs to be formalized, but will be encapsulated by || · || on
B(L), although it may not be a norm. Suppose we have the permutation of
{1, . . . , T} such that (||Kt||) is ordered from smallest to largest. Let Also,
let T (α) be the cardinality of T (α). Then

θ̂(α)i =
1

T (α)

∑

t∈T (α)

Yti

defines a hyperplane of LI estimators, indexed by α. For example, α = 1
indicates taking all images into a pixel-wise mean. Observe that the risk is

4We have been exploring related but improved approaches that avoid some of the
optimization pitfalls.
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ρ(α) := ||θ̂(α) − θN ||2 =
n∑

i=1


 1

T (α)

∑

t∈T (α)

θti − θi




2

+
σ2

T (α)n

=: β(α) +
σ2

T (α)n
(8)

Thus, we have an integer programming problem:

min R(α)

subject to

T (α) ∈ N

α ∈ [0, 1]

3 Kernel Matching

3.1 Overview

The kernel matching problem is an interesting instance of an inverse prob-
lem. One major goal in many imaging problems is to detect changes, some-
times known as transients, in a particular location, called a scene, over time.
To this end, a good quality, low-noise reference image, R, is usually gener-
ated by combining many images together. Now the problem is: given a
noisy, lower quality science image S, can we detect any changes between S
and R? To formalize this approach, suppose there is a (linear) operator K
such that

E[S|RT ] = KR+KT

where T corresponds to an image of transients.
The image S is very large, on the order of ten million pixels when

recorded. Also, the operator K can be very complicated, varying sub-
stantially across the image. Hence, modern Astronomical surveys take the
following approach. Break up the image S into disjoint, very small parts
L1, . . . , Lp such that Li contains only one source. Also, they assume that K
is locally a convolution on L1, which we call Ki for location Li and that the
noise is a spatially stationary normal with variance nugget σ2

i . Also, assume
that at each location, T is zero . This is usually accomplished by searching
a known catelogue of sources for each image S that are isolated and making
a small ‘postage stamp’ for each source. This results in a panel of images

Si = KiR+ σiZ.
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Now, with the use of a chosen basis and regularization method, K̂i is
formed for each i. See [2] for an approach using finite sums of Gaussians as
a basis with with tuning parameter set at a non-data dependent level and
[5] for a step function basis and tuning parameter set by risk estimation. In
section 4 we provide details of this risk estimation proceedure. A functional
interpolation is performed across the image to get K̂, which is brute force
applied to R via quadrature. The functional interpolation is always done via
fitting a low order polynomial trend to the first few right singular vectors
of (K̂i)

p
i=1. Lastly, ∆

K̂
:= S − K̂R is formed, and detection of transients is

performed in various ways, usually involving manual human inspection in
some fashion. Notice that the conclusion that all relevant inference can be
done by examining ∆ is an implicit assumption made in all approaches of
which we are aware.

See figure 1 for an example of such a ‘postage stamp’ and the outcome
of naively forming ∆i := Si − R without estimating Ki. Notice that ∆i

contains both remnants of the main source in the center and and scattered
noise from SI . Both of these artifacts would likely be labeled as transients.
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(a) Reference Image R

0 10 20 30 40 50

0

10

20

30

40

50

(b) Science Image S
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(c) Difference Image ∆

Figure 1: Example of a naive attempt at transient detection on a subset of
an Astronomical image of a star.

3.2 Proposed Work:

We propose two new approaches to this problem. First, we introduce a new
method for estimating the local convolution Ki, which more closely aligns
with the goal of forming an estimate K̂i such that Si − K̂iR has no left-over
structure on a variety of scales. We call this the Multiresoluton Operator
Estimator (MOE) and discuss it in section 3.2.1.

Second, we re-examine the problem of transient detection from first prin-
cipals. In reality, neither ∆

K̂
nor K̂ are of interest in their own right. Hence,
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we should treat the difference and K as nuisance parameters and attempt to
estimate the probability that there is a transient in S. We call this method
BEST Detect, for BayESian Transient Detection. See section 3.2.2 for some
preliminary details.

3.2.1 Multiresolution Operator Estimator (MOE)

Suppose we have a method for estimating Kj which results in a suite of
estimators (K̂j(λ))λ∈Λ. Both [5, 2], mentioned above, are examples of this.
It is tempting to apply one of the methods mentioned in section 4 to choose
λ̂ ∈ Λ. However, the extra structure in this problem of having two samples
allows for possibly better approaches.

Specifically, we propose a multiresolution, noise-like statistic that at-
tempts to quantify the goal of forming a ‘good’ subtraction image ∆i. If we
choose the correct operator K̂i(λ̂), then ∆i(λ̂) will look like noise only and
no additional structure.

For each ‘postage stamp’ j, identify a mutiresolution system of subsets
I. This could be a wavelet system such as the Haar basis, for instance.
Then, compute the following

NL(K̂j ,I) := sup
I∈I

1√
|I|

∣∣∣∣∣∣
∑

j∈I

(Sj − K̂jR)i

∣∣∣∣∣∣
. (9)

See [13] for application of this idea to nonparametric regression over atypical
function spaces. We will equivalently index NL by the tuning parameter λ
when K̂j is otherwise fixed. In other words, (9) takes the form

NL(λ,I) := NL(λ) = sup
I∈I

1√
|I|

∣∣∣∣∣∣
∑

j∈I

(Sj − K̂j(λ)R)i

∣∣∣∣∣∣
. (10)

We define λ̂ := NL(λ).
The main idea behind MOE is that if Kj is properly estimated then the

difference image ∆j should be just noise. MOE looks at the difference at
many different scales and locations, and minimizes NL over λ in (10). In
most problems this would result in overfitting as we would just be interpo-
lating the noisy observations. Having two samples prevents this by having
a test set. This test set is not identically distributed as the training set,
however.

We propose to undertake the following steps to analyze the NL statistic
for estimating Ki. In what follows, we will drop the subscript i with the
understanding that we are taking about one of the aforementioned Li.
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Non-random, Known σ Posit a sequence of non-random operators (Kλ)λ∈Λ and σ > 0 known
such that there exists a Kλ0

where E[S|R] = E[Kλ0
R+ σZ|R] = Kλ0

.
In this case, show that we have a consistent test with some rate for
finding λ0 ∈ Λ in general and in some specific cases of families. This
has largely been accomplished below.

Non-random, unknown σ Either relax the assumption of known variance or look at estimating
the kernels from another iid copy of the science images.

Estimated Kernel Finally look at the case were the kernels are estimated from the science
image.

Data Analysis Show the method on simulations and data from Andy Connolly.

So far, we have accomplished Non-random, Known σ from the list
above. This is an outline.

Observe that we can write this as

NL(λ,I) := sup
I∈I

∣∣∣∣∣
∑

i∈I

(Kλ −Kλ0
)R + σZi

∣∣∣∣∣ (11)

by adding an subtracting Kλ0
R. Note that the summation of i is supressed

in the first term for notational clarity.
Now, one quality this statistic could have would be to asymptotically

distinguish between competing hypotheses in Λ. In this case, low-noise
asymptotics makes more sense than large sample, so we choose this regime.

Our goal is to look at the power of this statistic to determine amongst
hypothesis asymptotically. It is known [12] that asymptotics for fixed al-
ternative hypothesis leads to trivial results, such as power always tending
toward 1.

Hence, we wish to look at an analogy to the Pittman slope. This can be
phrased as follows. Let τ > 0 be given. Then we want to look at

lim
σ→0

P

(
NL(λ0 + ∆Cσ)

NL(λ0)
> τ

)
(12)

where C(σ) is a function going to zero with σ and ∆ is a constant. We look
at the ratio of the test under the alternate and null hypothesis as a way of
rescaling. Alternatively, we can make τ a function of σ. We see in what
follows the ratio in effect chooses that function.

Note first that we can rewrite (12) as

lim
σ→0

P

(
supI∈I

∣∣∑
i∈I(Kλ0+∆C(σ) −Kλ0

)R+ σZi

∣∣
supI∈I

∣∣∑
i∈I Zi

∣∣ > στ

)
(13)
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by using (11) and multiplying by σ.
We use (13) to show that σ is the correct reference rate for the RHS to

decay. Hence, we consider

lim
σ→0

P

(
sup
I∈I

∣∣∣∣∣
∑

i∈I

(Kλ0+∆C(σ) −Kλ0
)R+ σZi

∣∣∣∣∣ > στ

)

Before continuing, we need a result for exchanging sup and P:

Lemma 1. Let (Xt)T be a sequence of random variables over some index T
such that suptXt = Xt∗ for some t∗ ∈ T . Then for any τ > 0

P(sup
t
Xt > τ) ≥ sup

t
P(Xt > τ)

Proof. Write P(suptXt > τ) = E1(suptXt > τ). Now, since 1(suptXt >
τ) = supt 1(Xt > τ), we see that

P(sup
t
Xt > τ) = E sup

t
1(Xt > τ) ≥ sup

t
E1(Xt > τ)

where for the last inequality we use that supt

∫
ft ≤

∫
supt ft for the neces-

sary kinds of sequences of functions and measures.

Using Lemma 1, we can write

P

(
sup
I∈I

∣∣∣∣∣
∑

i∈I

(Kλ0+∆C(σ) −Kλ0
)R+ σZi

∣∣∣∣∣ > στ

)
≥

≥ sup
I∈I

P

(∣∣∣∣∣µI,σ +
∑

i∈I

σZi

∣∣∣∣∣ > στ

)
=

=1 + Φ
(
−
√

|I|
(
τ +

µI,σ

σ

))
− Φ

(√
|I|
(
τ −

µI,σ

σ

))
(14)

where we define µI,σ :=
∑

i∈I(Kλ0+∆C(σ) −Kλ0
)R and notice that

µI,σ +
∑

i∈I

σZi ∼ N

(
µI,σ,

σ2

|I|

)
.

We would like to examine the C(σ) such that the RHS of (14)
σ→0
→ 1.

Using lim infm supn xm,n ≥ supn lim infm xm,n for any doubly indexed
sequence xm,n we see that under (14)
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lim
σ→0

P

(
sup
I∈I

∣∣∣∣∣
∑

i∈I

(Kλ0+∆C(σ) −Kλ0
)R+ σZi

∣∣∣∣∣ > στ

)
≥

≥ sup
I∈I

lim
σ→0

[
1 + Φ

(
−
√

|I|
(
τ +

µI,σ

σ

))
− Φ

(√
|I|
(
τ −

µI,σ

σ

))]
. (15)

This probability goes to 1 when µI,σ/σ → ∞.
We did this calculation for the case whereKλ a non-normalized Gaussian

kernel with variance λ for all λ ∈ Λ. We find

µI,σ

σ
→ ∞ if C ′(σ) → ∞

and
µI,σ

σ
→ 0 if C ′(σ) → 0

The second of the two results is not informative. If we additionally assume
that C(σ) = σα for α > 0 we get

µI,σ

σ
→ ∞ if α ∈ (0, 1)

and
µI,σ

σ
→ 0 if α > 1.

The α = 1 case is R dependent.

3.2.2 BEST Detect

The idea behind BEST Detect is to formulate a hierchical framework that
explicitly models the actual parameter of interest; namely if there is a tran-
sient or not. Using the notation from section 3.1, we specify the following
hierarchy:

S|K,T,R ∼ GP (K(R + T ), C)

T |M = Mδ

K|α ∼ p(K;α)

M |π ∼ Bernoulli(π)
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where δ is a random field characterizing possible transients and p(K;α) is
a distribution parameterized by α. We have a lot of prior information as to
what transients of interest look like and how K looks and varies over the
image. The transients will either be long streaks corresponding to asteroids
and comets, or very bright objects corresponding to supernovae or gamma
ray bursts. Hence, we can frame them as a Markov random field over an
appropriate basis of shapes. Then, for any pair of images, we can report
either p(M = 1|S,R) or a Bayes factor p(S|M = 1)/p(S|M = 0). We have
results from computing the Bayes factor, but not the marginal posterior of
M .

4 Tuning Parameter Selection In Inverse Prob-

lems

Risk estimation is of course a very broad subject. However, not nearly as
much work has been done in the context of inverse problems. The issue at
hand is that in well-posed problems, regularization is introduced to get bet-
ter risk performance. Usually, both a tuning parameter and a corresponding
risk estimate is introduced with the hope that this will reduce the risk.

On the other hand, in ill-posed problems some form of regularization is
required for estimation. However, the same mechanism that makes regular-
ization a requirement also makes risk estimation difficult. This situation is
explored below.

There are two main approaches to risk estimation in inverse problems.
They correspond loosely to two separate solution methods. Loosely speak-
ing, one centers on expanding f into an appropriate basis, which generally
leads to choosing GCV. The other method relies on diagonalizing K, which
leads to penalized empirical risk. Some methods, such as [15, 1, 21], at-
tempt to do both simultaneously. While this is attractive and theoretically
well justified, there are substantial restrictions to the classes of operators
and functions one can consider. For instance, for the wavelet-vaguelette
method, K being convolutional with a Gaussian kernel does not qualify.

To fix ideas, suppose that we make observations

Yi = Kf(xi) + σǫi, xi = i/n, i = 1, . . . , n. (16)

Here, f ∈ L2 is an unknown function, K is a known operator, and σǫi
iid
∼

N(0, σ2). We can rewrite Kf(xi) = 〈kxi
, f〉, where kxi

= k(xi, ·) is the
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kernel of K evaluated at xi. Also, define the risk as

R(f, f̂) = E

∫
(f − f̂)2. (17)

First, we outline commonly used approaches to risk estimation in inverse
problems. The most used method is generalized cross validation (GCV).
GCV does not need an estimate of σ and can be calculated with information
that is usually obtained during the estimation proceedure.

For example, under some assumptions about the kernel of K and f we
can rewrite (16) using a basis (φν) as

Y = Φθ + σǫ

where f =
∑

ν θνφν and Φij = 〈kxi
, φj〉. Now, we can get a regularized

estimate of θ by specifying a matrix V and forming

θ(λ) := (Φ⊤
NΦN + λV )−1Φ⊤

NY

where ΦN is the first N columns of Φ. Note that for different choices of
V we can recover different methods such as splines or ridge. Define Lλ :=
ΦN (Φ⊤

NΦN +λV )−1Φ⊤
N . Then we find the GCV estimate of λ by computing

λ̂ := arg min
λ

∑n
i=1(Yi − ΦNθ(λ)i)

2

tr(I − Lλ)2
.

The main, and some may say fatal, flaw of GCV in IPs is λ̂ is a good
approximation to the minimizer of the prediction risk

1

n

n∑

i=1

(Kf(xi) − [LλY ]i)
2 ≈

∫
(K(f − fλ))2

where fλ(x) =
∑N

i=1 φi(x)θ(λ)i. Therefore, we aren’t approximately mini-
mizing R in (17); rather a smoothed squared difference between f and fλ.
This has very real implications for the quality of the estimate as extreme
‘wiggiliness’ in fλ can be masked after being smoothed by K. See [25, 31]
for comments. In particular, [25] suggests a modified GCV. However, if ΦN

is ill-conditioned, as it is likely to be, the modified GCV is ill-conditioned
as well.

Other approaches center around penalized empirical risk [10, 20, 9]. The
approach is to specify biorthogonal bases (φν) and (ψν) with a coefficient
vector (bν) such that

Kφν = bνψν . (18)
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These bases exist if K admits a singular value decomposition5, SVD. How-
ever, there are other examples of operators satisfying (18) for bases other
than the singular system.

This biorthogonal system allows us to rewrite (16) as

Zν = θν + σξνǫν .

Here, Zν := 〈Y, ψν〉, θν := 〈f, φ〉, ξν := b−1
ν , and ǫν ∼ N(0, 1). Suppose,

for example, we wish to choose the tuning parameter N in the estimator
θ̂ν = Zν1(ν ≤ N). Then the penalized empirical risk would be

Rpen = −

N∑

ν=1

Z2
ν +

N∑

ν=1

ξ2ν + pen(N) (19)

for some penalty functional pen. For unbiased risk estimation, pen(N) =
σ2
∑N

ν=1 ξ
2
ν . This corresponds to a plug-in estimator of R after being trans-

formed into sequence space and decomposed into bias and variance. Un-
surprisingly, [9] finds that this penality functional has poor properties in
practice. We revisit this phenomena later when we propose a new method.

A second proposed penalty is referred to as the Risk Hull Method. As it
is somewhat involved, we will only mention that exists. The main downfall
of penalized risk estimation, as mentioned in [8], is that it severely limits the
possible choices of basis. In this way, no matter the underlying function f
you are trying to recover, the chosen basis is determined by your operator K.
As noted in [6], optimal risk performance in linear smoothers is intimately
connected to choosing a basis that sparsely represents f .

4.1 Proposed Work:

4.1.1 Introduction

Returning to the GCV example, define θN to be first N entries in θ. Then,
we would like to find a λ such that

ρ(λ) := E||θN (λ) − θN ||2 = ||θN ||2 + E||θN (λ)||2 − 2E〈θN (λ), θN 〉 (20)

where the expectation is taken with respect to the distribution of (σǫi)
n
i=1.

When doing risk estimation we can disregard ||θN ||2 as it is unknown but
doesn’t depend on λ. Also, we already have an unbiased estimate of E||θN (λ)||2,
namely ||θN (λ)||2. Hence, we wish to get an estimate of E〈θN (λ), θN 〉. [16]
introduces an unbiased risk estimate that generalizes the work in [28]

5A sufficient condition is for K to be compact, which is generally the case.
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Theorem 1. If Y is from an exponential family with parameter vector
θN ∈ R

N and S is a sufficient statistic, then under some mild assumptions
(integrability and almost sure differentiability) about an estimator h(S), it
follows that

E〈h(S), θN 〉 = −E

[
tr

(
∂h(S)

∂S

)
+ h(S)⊤

∂ log q(S)

∂S

]

where tr is the trace function and q is the normalizing constant in the pdf
of S. Specifically, fS(s) = q(s) exp{θ⊤s− g(θ)}.

Taking this, for each estimator θ̂ we define

ρ̂UB(θ̂) := ||θ̂||2 + 2

[
tr

(
∂h(s)

∂s

)
+ θ̂⊤

∂ log q(s)

∂s

]
(21)

Corollary 1. Under the hypothesis of Theorem 1, ρ̂UB is an unbiased esti-
mate of ρ up to a constant that depends only on θN .

4.1.2 Proposed Goals

Well-conditioned Examine the quality of tuning parameter selection based on this cri-
teria in a linear model when the design matrix is well-conditioned.

Ill-conditioned Introduce an adaptation of the unbiased risk estimation when the de-
sign matrix is ill-conditioned and examine its ability to asymptotically
find correct tuning parameters

Finite n Comparison Also, show some results on finite sample usage of this method vs.
GCV.

4.1.3 Well Conditioned

Suppose we begin with the following linear model

Y = ΦNθN + σǫ

Then

ρ̂(θN (λ)) := ρ̂(λ) = ||θN (λ)||2 + 2
[
tr (Wλ) − θN (λ)⊤(W0s)

]

where Wλ := (Φ⊤
NΦN + λV )−1 and W0 is Wλ

∣∣∣∣
λ=0

. I want to show that

picking λ based on minimizing ρ̂ makes sense asymptotically. In general, an
approach would look something like the following. Fix θ ∈ Θ and define

λ0 := argmin ρ(λ, θ) and λn := arg min ρ̂(λ).
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Then we are interested in the asymptotic behavior of

∆(λ0, λn) := ρ(λ0, θ) − ρ(λn, θ).

Note that by definition ∆(λ0, λn) ≥ 0.
Now, ∆ admits the following decomposition

∆(λ0, λn) =

=(ρ(λ0, θ) − ρ̂(λ0, θ)) + (ρ̂(λ0, θ) − ρ̂(λn, θ)) + (ρ̂(λn, θ) − ρ(λn, θ))

=: (a) + (b) + (c).

By the Strong Law of Large Numbers, (a)
a.s.
→ 0. Also, (b) ≤ 0 as λn

minimizes ρ̂. So,
lim

n→∞
∆(λ0, λn)

a.s.
= 0

if (c) converges almost surely to 0.

4.2 Ill Conditioned

In many cases, the matrix X is very ill-conditioned. In statistics, this is
sometimes referred to as multicollinarity. It can be defined rigorously by
appealing to a SVD of X. Specifically, any matrix can be written as X =
UDV ⊤. Here, U is an orthogonal matrix that forms a basis for ran(X),
V is an orthogonal matrix such that V ⊤ forms a basis for null(X)⊥, and
D = diag([s1, s2, . . . , sq]), q = min(n,N). We can assume that (si)

q
i=1, called

the singular values, are ordered from greatest to least and nonnegative.
We say that a matrix is ill-conditioned (in the l2 norm) if s1/sq :=

C >> 1. In particular, C = 1 means perfect conditioning (like, for example,
a unitary matrix), and C = ∞ means X is singular. The condition number
C of X is roughly the derivative of X, thought of as a linear function, at a
point. In fact, it says how different X(a + δ) is from Xa when δ is a small
perturbation. C large means ||X(a+δ)−Xa||2 can be large even when ||δ||2

is small.
There are interesting connections between ill-conditioning and regular-

ization. Generally, regularization solves a nearby least squares solution that
is better conditioned. The specifics are wrapped up in the norms involved.
But, we can apply this idea to our current situation and regularize our risk
estimate, as the unbiased version developed in Theorem 1 becomes unstable
as C → ∞.

There are several ways to do this regularization. We choose to approach
it by truncating the spectrum of X. Specifically, choose some number r ≤ q.
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Define a new diagonal matrix Dr := diag([s1, . . . , sr, 0, . . . , 0]). Now, we can
form a new matrix Xr := UDrV

⊤ that has condition number Cr that is as
small as we want. Xr has many properties such as

||Xr −X||2 = min
A:rank(A)=r

||A−X||2

Implicit in what follows, we assume that X is full rank, but that it might
be very ill-conditioned. This is a very reasonable assumption, and in fact
is treated as almost equivalent in some literature to inverse problems in
general.

Define a new function

ρ̂r(θN (λ)) = ||θN (λ)||22 + 2
(
tr
(
Wλ

)
− θ̂⊤λ θ̂MLE,r

)

where θ̂MLS,r := (X⊤
r Xr)

−1S.
We are still thinking about a more rigorous method for picking r. How-

ever, for now, pick a large condition number tolerance for X. This is going
to correspond to some some maximal r. Then, get θ̂MLE,r and compute
ρ̂r(θN (λ)).
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