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Abstract

In this thesis, I propose to derive entirely data dependent generalization error bounds for
state space models. These results can characterize the out-of-sample accuracy of many types
of forecasting methods. The bounds currently available for time series data rely both on a
quantity describing the dependence properties of the data generating process known as the
mixing rate and on a quantification of the complexity of the model space. I will derive methods
for estimating the mixing behavior from data and characterize the complexity of state space
models. The resulting risk bounds will be useful for empirical researchers at the forefront of
economic forecasting as well as for economic policy makers. The bounds can also be applied in
other situations where state space models are employed.



1 Introduction

Researchers in statistics and machine learning have spent countless hours over the past century
on a quest to find estimators for huge varieties of applied problems. Sometimes the goal is to be
able to describe the unknown distribution from which the data arose so as to inform scientists,
government officials, or the general public about phenomena of interest—the age of the universe,
the costs and benefits of universal health care, or the effect of coffee or soda on colon cancer [55].
Other times, the goal is more ambitious: to predict the future. Huge numbers of smart people
devote time and energy to anticipating stock market fluctuations, marketing experts recommend
products consumers are unable to live without, and geneticists wish to learn if different strands of
DNA can predict an individual’s susceptibility to a particular disease. When making predictions
from data, forecasters are concerned with two important questions: (1) given a new data point,
what is the mapping from predictors to responses; and (2) are the predictions any good.

To address the first question, suppose that predictors live in some space X and responses
live in another space Y. Finding a mapping f : X → Y amounts to choosing a class of candidate
functions F and then picking the best one by minimizing a loss function `(Y, f(X)) which measures
the performance of f . If F contains linear functions and `(Y, f(X)) = (Y − f(X))2, then this
procedure amounts to ordinary least squares. Using the negative log likelihood as the loss function
yields maximum likelihood estimation.

An answer to the second question requires the choice of functions f ∈ F which minimize the
loss in expectation. This quantity,

R(f) = E[`(Y, f(X))], (1)

is the generalization error, or risk, of the prediction algorithm. Unfortunately, while this is the
natural target to minimize when searching for predictors, it is intractable in most applications.
The expectation is taken with respect to the joint distribution of the predictors and the response
which also affects the learning algorithm’s choice of the optimal f . While assumptions can be made
about the true data generating process in order to calculate the risk, this tactic negates the most
useful quality of prediction through risk minimization: the risk measures the cost of mistakes with
respect to the unknown data generating process. Researchers’ inability to calculate the risk exactly
has engendered work deriving upper bounds for the generalization error.

Besides providing guarantees regarding how bad the expected cost of misprediction can be, gen-
eralization error bounds are useful for other reasons. Good bounds give straightforward techniques
for model comparison without making assumptions on the data generating process in contrast
to likelihood based methods. They can also be used to demonstrate the optimality of particu-
lar prediction algorithms, bounding the best-case performance with respect to the least favorable
data generating process, i.e. minimaxity. Sometimes they can be used to naturally construct well
behaved learning algorithms through regularization. These possibilities motivate the calculation
of generalization error bounds not only for theoretical and philosophical indulgence but also for
improved applied research.

Prediction problems in statistics and machine learning often assume that training data are
independent and identically distributed, however in many areas of interest, this is not the case.
Consequently, many of the risk bounds in existence are useless for some types of problems, especially
those involving time series data such as economic forecasting.

Some generalization error bounds are known for time series data, but they are not useful for the
learning algorithms which often arise in the economic forecasting literature for two reasons. First,
most generalization error bounds require that the loss function be bounded, which is inconvenient
in a regression setting. Second, existing generalization error bounds for time series data rely on
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an ability to quantify the dependence behavior for the data generating process, in particular the
rate at which the dependence disappears. While knowledge of these rates leads to clean theoretical
results, this knowledge is sadly unavailable for applied work. Thus it is necessary to be able to
estimate these rates from the data. In this thesis, I will (a) derive generalization error bounds for
state space models, (b) develop methods for estimating the dependence behavior from the data
so that the bound is useful, and (c) use the bounds to evaluate and compare existing economic
forecasting methods.

In section 2, I review the state-of-the-art methods for economic forecasting. Section 3 surveys
the literature on prediction risk and generalization error bounds for independent and identically
distributed data. Section 4 discusses the notions of mixing for time series and generalization error
bounds for dependent data. Finally, in section 5, I outline the goals and research directions for this
thesis.

2 Economic forecasting

Between 1975 and 1982, the art of macroeconomic forecasting underwent fairly dramatic changes.
Until 1976, macroeconomic forecasting concentrated mainly on the use of “reduced-form” statistical
characterizations of the economy. Forecasters ran regressions of data on other data and lags of the
data and postulated that certain time-series should be related to others in different ways. The first
large scale macroeconomic model of this type arose in 1966 with the implementation of the MPS
model.1 The MPS model consisted of around 60 estimating equations and identities used to forecast
economic time series on a quarterly basis (think GDP, unemployment, productivity, inflation, etc.).
The MPS model and its counterpart the Multi-Country Model (MCM) which contained some 200
equations developed into the FRB/US and its counterpart FRB/WORLD used since 1996 as the
main economic forecasting tools at the Federal Reserve Board of Governors (see Brayton et al. [8]
for an overview of this history and Brayton and Tinsley [7] for a discussion of the current version).
The two models implemented today each use over 300 equations to forecast both the US economy
and that of our trade partners.

These large scale macro models stand in stark contrast to the methods of forecasting used by
most academic economists. In 1976, Lucas [38] issued a critique of reduced-form models which
became very famous. His basic argument was that the sorts of statistical relationships exploited
by the large scale macroeconomic models are useless for evaluating the impact of policy decisions,
because without any behavioral theory underlying the construction of the models, only observed
associations, the policies are bound to change the estimated parameters. In other words, the policy
actions that modelers were attempting to evaluate were endogenous to the model, not exogenous.

Kydland and Prescott [36] marked the beginning of the use of dynamic stochastic general equi-
librium (DSGE) models to combat this critique. Rather than focusing on statistical relationships,
economists aimed to build models for the entire economy that are driven by individuals making
decisions based on their preferences. In these models, consumers make decisions based on behav-
ioral, “deep” parameters like risk tolerance, the labor-leisure tradeoff, and the depreciation rate
that are viewed as independent of things like government spending or monetary policy. The result
is a heavily theoretical class of models for forecasting macroeconomic time series and the effects
of policy interventions that tries to rely on some notion of behavior—it incorporates individuals
making optimal choices under uncertainty based on their preferences. Unlike MPS, the FRB/US

1MPS comes from the three collaborative centers where the model was developed by Franco Modigliani, Al-
bert Ando, and Frank de Leeuw of MIT, the University of Pennsylvania, and the Social Science Research Council
respectively.
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model tries to incorporate some of these ideas, but its behavioral equations do not arise from opti-
mization the way a DSGE model’s do. The remainder of this section discusses dynamic stochastic
general equilibrium models and a simpler, more widely used, structural model as well as the state
space representations used to estimate them.

2.1 Dynamic stochastic general equilibrium models

Kydland and Prescott [36] model the aggregate economy by considering a single household, intended
to be an infinitely long-lived agent representative of all households and firms. The model takes the
form of the following optimization problem.

1. The household seeks to maximize U , the expected discounted flow of utility derived from
consumption and leisure

max
ct,lt

U = E0

∞∑
t=0

βtu(ct, lt). (2)

Here the E0 is the expectation conditional on information available at time t = 0, β is
the discount factor on future utility, and u(·) is an instantaneous utility function. Future
consumption and leisure are both functions of a random variable.

2. The household can produce stuff yt using the production function g(·)

yt = ztg(kt, nt), (3)

where kt and nt are capital and labor and zt is a random process referred to as a technology
shock or Solow residual in honor of Solow [50].

3. The remaining equations are as follows:

1 = nt + lt (4)

yt = ct + it (5)

kt+1 = it + (1− δ)kt (6)

ln zt = (1− ρ) ln z + ρ ln zt−1 + εt (7)

εt
iid∼ N(0, σ2). (8)

Together, these say that the time spent between labor and leisure in each period must sum
to 1, all output (income) is spent on consumption ct or saved (invested) it, capital tomorrow
is equal to investment today plus the depreciated capital stock, and the log of the technology
shock zt follows an AR(1) process.

The only uncertainty in the model stems from random innovations to technology. Thus, it is
clear that this model has various implications: fiscal policy does nothing, monetary policy does
nothing, asset prices do nothing, etc. More elaborate models generally account for most of these
things. A published model at the Board of Governors uses differentiated goods, differentiated
firms, sticky prices (they do not adjust immediately), and monetary policy (see Edge et al. [20]).
The current version also adds in trade with 20 countries and uses nearly 100 different time-series.
Whether any of this additional flexibility is useful for forecasting is unknown.

Estimation of these models is non-trivial and currently an area of active research. All methods
involve solving the constrained optimization problem and then turning the result into a state space
model through either linear or non-linear approximation. The parameters are estimated through
method of moments techniques called calibration after Kydland and Prescott [36] or likelihood
analysis as in Sargent [47]. In either case, the resulting estimated model can be used for forecasting.
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2.2 Other methods

The DSGE framework relies on specifying and solving a dynamic stochastic optimization problem,
using approximation techniques so that it may be mapped into state space form, and then estimating
the parameters. This is typically a long and complicated process involving differential equations,
linear algebra, and nonlinear maximization. A much simpler, reduced form, tool for forecasting is
the vector autoregression or VAR. In its most straightforward version, a VAR(p) is specified as

xt = B1xt−1 + B2xt−2 + · · ·+ Bpxt−p + et (9)

where xt is a k× 1 observation vector, Bi is a k× k matrix, and et is a k× 1 mean zero noise term.
The model is simple to fit using multiple least squares and gives straightforward forecasts for the
time series of interest. However, the number of parameters grows rapidly: ignoring the covariance
structure, the VAR(p) has pk2 parameters. Since n is necessarily small in economic forecasting
problems (usually consisting only of quarterly data since 1950), researchers frequently put a de-
fault prior called the Minnesota prior on the Bi to avoid overfitting. While this regularization
results in better out of sample forecasting performance when compared to unrestricted models [17],
generalization error bounds may lead to improved learning algorithms.

Many less common economic forecasting methods can be reexpressed in state space form. Dy-
namic factor models like that in Kim and Nelson [28] are trivially state space models. The turning
point forecasting models such as DeJong et al. [14] or Wildi [53] also have state space representa-
tions.

Economic forecasting is just one application for time series analysis by state space models.
Missile tracking applications as well as other linear dynamical systems motivated the path breaking
work of Kalman [26]. More recently, state space models have been used for robot soccer by Ruiz-del
Solar and Vallejos [46], to study the effects of a seat belt law on traffic accidents in Great Britain
by Harvey and Durbin [23], and for neural decoding applications as in Koyama et al. [34].

2.3 State space models

The most general form of a state space model is characterized by the observation equation, the
state transition equation, and an initial distribution for the state:

yt = f(xt, εt) (10)

xt+1 = g(xt, ηt) (11)

x1 ∼ F, (12)

where εt are ηt are i.i.d. and mutually independent. The vector {yt}Tt=1 is observed, and the goal
is to make inferences for the unobserved states {xt}Tt=1 as well as any parameters characterizing f ,
g, and the distributions of εt and ηt.

In the case where f and g are linear with εt and ηt normally distributed, the Kalman filter
can be used along with maximum likelihood or Bayesian methods to derive closed form solutions
for the conditional distributions of the states as well as the parameters of interest given data.
However, in many applications, researchers are not so lucky. For nonlinear or non-Gaussian models,
approximate solutions exist using the particle filter and its derivatives (see for example Kitagawa [29,
30] and Doucet et al. [18] for an exposition of the particle filter and Koyama et al. [34] and Dejong
et al. [15] for improvements).
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3 Prediction risk

The goal in constructing any predictive model is to learn some function f which maps available
data into predictions. To evaluate these forecasts, one writes down a loss function `(Y, f(X)) which
represents the cost of making forecast errors. Here Y denotes the future data for which predictions
are desired. The ideal target to control when making predictions is the risk:

R(f) = Eµ[`(Y, f(X))], (13)

where (X,Y ) ∼ µ.
Since µ is unknown, R(f) is unknown, but researchers often estimate it by the training error

Rn(f) =
1

n

n∑
i=1

`(Yi, f(Xi)). (14)

While it is true that Rn(f) converges to R(f) for many algorithms, one can show that when f
is chosen by minimizing 14, Eµ[Rn(f)] ≤ R(f). This means that choosing models based on the
training error will give suboptimal results: these models will tend to overfit the data and result
in poor out-of-sample predictions.2 In the statistics and machine learning literature, there are
two strategies to obviate this issue. The first is to restrict the class of functions allowed by the
algorithm. The second, which encompasses the direction taken in this thesis, is to modify the
minimization criterion so as to penalize increased complexity. This section provides some intuition
as to why complexity penalization is useful for controlling prediction risk, it then describes some
generalization error bounds for i.i.d. data.

3.1 Complexity control

Numerous results exist for penalized model selection in the form of structural risk minimization
or regularization. In structural risk minimization, analysts choose a sequence of models of in-
creasing complexity {Fd : d = 1, 2, . . .} and choose candidate predictors f̂d as the solution to the
minimization problem

f̂d = arg min
f∈Fd

Rn(f). (15)

One then chooses the final predictor, f̃ , by solving a minimization problem of the form

min
f̂d

Rn(f̂d) + pen(d, n) (16)

or

min
f̂d

Rn(f̂d)× pen(d, n) (17)

where the structures of the loss function and the model class Fd are used to choose the form of the
penalty, pen(d, n). The usefulness of complexity control is best illustrated through simple examples.
Here I present explicit risk results for the normal means model and provide generalization error
bounds for regression problems.

2Many articles in the economic literature compare the forecast performance of models in exactly this way. See for
example Athanasopoulos and Vahid [2], Faust and Wright [22], Christoffel et al. [11], Del Negro et al. [16] and Smets
and Wouters [49]. Some of these use a cross validation type analysis, fitting the model on the training set and
calculating the error on a test set, but this procedure can also be heavily biased: the held out data is used to choose
the model class under consideration, the distributions of the test set and the training set may be different, and large
deviations from the normal course of events (the recessions in 1980-82) may be ignored.
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3.1.1 The normal means model

Suppose that Xi ∼ N(θi, σ
2) for i = 1, . . . , n. The goal is to estimate θ = (θ1, . . . , θn)′. Take

`(θ, f(X)) =
∑n

i=1(θi − f(Xi))
2. Consider the following estimator

θ̂Si =

{
Xi i ∈ S
0 i 6∈ S. (18)

where S ⊆ {1, . . . , n}. Then the risk decomposes into two components

R(θ̂Si ) =
n∑
i=1

E[(θ̂Si − θi)2] =
∑
i 6∈S

θ2i + |S|σ2. (19)

The first term is the square of the bias while the second term is the variance of the estimator.
Choosing larger S decreases the bias but increases the variance. The maximum likelihood

estimator θ̂MLE
i is unbiased but has variance nσ2, and hence its risk is nσ2. It may be possible

to give up some bias to decrease the variance and hence make the risk smaller. Ideally one would
choose S so as to make R(θ̂Si ) as small as possible, but using Rn(θ̂Si ) is a poor approximation

because it is biased. In particular, for the MLE, Rn(θ̂MLE
i ) = 0.

One would like to have an unbiased estimate of the risk to be used for the choice of S. In this
case, a little algebra shows that

R(θ̂Si ) = E[Rn(θ̂Si )] + 2|S|σ2 − nσ2, (20)

so it is possible to choose S by minimizing Rn(θ̂Si ) + 2|S|σ2. Of course this only works because the
distribution of X is known up to a finite dimensional θ.

3.1.2 Regression problems

If the distribution that generated the data is unknown, equality results for risk estimation are
no longer possible for finite amounts of data. Penalties like AIC [1], Schwarz criterion [48], and
generalized cross-validation [12] come from asymptotic results for linear models where a strict
accounting of the number of parameters provides an adequate notion of the complexity of the
model space. But in the finite sample case, it is more useful to provide bounds on the size of the
generalization error.

Consider the one dimensional regression model

y = f(x) + ε (21)

where f(·) is some unknown, possibly nonlinear function and ε is mean zero random noise. Esti-
mation is based on n i.i.d. training samples from the unknown joint distribution µ. The goal is
to choose some estimate f̂ of f from a large class of possible models Fd which is indexed by some
parameters β and a measure of complexity d. For example, take Fd to be the family of algebraic
polynomials

f̂d(x) =
d∑
i=0

βix
i. (22)

Choosing d large will result in interpolating the training points, i.e. a training error of zero, but
potentially large predictive risk. Results from Vapnik-Chervonenkis (VC)-theory give an explicit
bound on the predictive risk. Calculation of this bound for each model gives a straightforward
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method for model selection. Here, the VC dimension is d + 1. Cherkassky et al. [10] provide a
bound for the predictive risk under arbitrary loss: with probability at least 1− η

R(f̂d) ≤ Rn(f̂d)×

(
1−

√
c− c ln c− ln η

n

)−1
+

(23)

where Rn(f) is the training error and c = (d+ 1)/n.

3.2 Bounds for I.I.D. data

The statistics and machine learning literature contains many generalization error bounds for learn-
ing algorithms based on i.i.d. data for both classification and regression problems. They all depend
on some notion of the complexity of the model class: VC-dimension, covering numbers, Rademacher
complexity, or algorithmic stability. The discussion here focuses on Rademacher complexities and
algorithmic stability since many of the existing bounds for dependent data rely on these complexity
notions.

Rademacher complexity is a method of characterizing the capacity of a function class F by
measuring its ability to find functions which correlate well with noise.

Definition 3.1 For a set of real-valued functions F with domain X , a distribution PX on X and
samples of size n from PX , the Rademacher complexity is

R(F) = EXEσ

[
sup
f∈F

∣∣∣∣∣ 2n
n∑
i=1

σif(xi)

∣∣∣∣∣
]
, (24)

where σ1, · · · , σn are i.i.d. and take values ±1 with equal probability. Its empirical counterpart is

Rn(F) = Eσ

[
sup
f∈F

∣∣∣∣∣ 2n
n∑
i=1

σif(xi)

∣∣∣∣∣
]
. (25)

Using this notion of complexity leads to generalization error bounds for linear predictors [25],
decision trees and support vector machines [3], and combined classifiers such as neural networks
and those derived through boosting or bagging [31] among others. For an interesting treatment
measuring the Rademacher complexity of human learning capacity see Zhu et al. [56]. Here, the
authors ask humans to perform classification exercises while measuring the ability of the average
human to learn noise. In one experiment, the true classification of words was according to its
length: the word was labeled 1 if it had fewer than 6 letters and 0 otherwise. The size of the
function space for human learning turns out to be quite large. Prediction functions used by the
participants included for example whether the word “tastes good” or whether the word “relates to
motel service”. It turns out that human learning satisfies the generalization error bounds, i.e. the
risk of the human learning “machine” can be upper bounded in the same way as the sorts of learning
algorithms typically deployed by machine learners.

An alternative measure of capacity is algorithmic stability. Algorithmic stability measures the
capacity of a learning algorithm by measuring the change in the selected function if the data are
perturbed by a small amount. The following definition comes from Mohri and Rostamizadeh [41].

Definition 3.2 Let Dn = {(X1, Y1), . . . , (Xn, Yn)} = {Z1, . . . , Zn} be a training sample of size
n from the joint distribution of (X,Y ). An algorithm is (uniformly) λ-stable if the predictor it
returns, f̂Dn, for any two training samples Dn and D′n that differ by a single point satisfy∣∣`(f̂Dn , Z)− `(f̂D′

n
, Z)

∣∣ ≤ λ ∀Z ∈ X × Y, (26)

where `(·, ·) is the loss function.

7



Bousquet and Elisseeff [5] use algorithmic stability to derive generalization bounds for a wide class
of learning algorithms. Their general result is stated in the theorem below.

Theorem 3.3 Consider a learning algorithm with uniform stability λ and a non-negative loss
function ` bounded above by M , for all Z ∈ X × Y and all training sets Dn. Then for any n ≥ 1,
with probability at least 1− η,

R(f) ≤ Rn(f) + 2λ+ (4nλ+M)

√
ln 1/η

2n
. (27)

In particular, Bousquet and Elisseeff [5] give explicit generalization error bounds for k-nearest
neighbor classifiers, support vector machines, Lp regularized least squares regression, and minimum
relative entropy classification.

4 Time series

Generalization error bounds for i.i.d. data usually arise from an application of Hoeffding’s inequality
which requires the independence of data points. In order to derive similar results for time series
data, a characterization of the dependence structure is necessary. If the dependence is not too
strong, then i.i.d. results can be applied to dependent data. This section discusses the notions
of mixing for time series data which characterize the dependence of the data and allow for the
application of i.i.d. type results. Some resulting generalization bounds for time series data follow.

4.1 Mixing

Mixing for time series data makes the dependence between the future and the past explicit. In
particular, mixing rates quantify the decay in the dependence as the future moves farther from
the past. There are many definitions of mixing of varying strength (see for example Doukhan [19],
Dedecker et al. [13], or Bradley [6]), but for this thesis, the most important notion of mixing is
β-mixing. The following definition comes from Doukhan [19].

Definition 4.1 Let {Xi}∞i=1 be random variables defined on the probability space (Ω,F ,P) and
denote Xt

1 = {Xi}ti=1 and X∞t+m = {Xi}∞i=t+m. Let σt1 = σ(Xt
1) and σ∞t+m = σ(X∞t+m), be the

sigma fields of events generated by the appropriate collections of random variables. Let Pt be the
restriction of P to σt1, Pt+m be the restriction of P to σ∞t+m and Pt⊗t+m be the restriction of P to
σt,t+m = σ({X}ti=1, {X}∞i=t+m). Then the coefficient of absolute regularity, or β-mixing coefficient,
β(m), is given by

β(m) = sup
t
||Pt ⊗ Pt+m − Pt⊗t+m||TV , (28)

where || · ||TV is the total variation norm. A stochastic process is said to be absolutely regular, or
β-mixing, if β(m)→ 0 as m→∞.

Definition 4.1 shows that the β-mixing coefficient measures the total variation distance between
the joint distribution and the distribution if the time series were independent.

While β-mixing coefficients, or at least the rates of decay, are known for a number of stochastic
processes such as ARMA models (Mokkadem [42]), GARCH models (Carrasco and Chen [9]), and
Markov processes (see Doukhan [19] for an overview of the literature), there do not appear to be
satisfactory methods for estimating these coefficients from time series data (see Meir [39, p. 7]).

Another useful definition of mixing is ϕ-mixing, which is stronger than β-mixing. The following
definition comes from [41].
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Definition 4.2 Using the same notation as in 4.1, the ϕ-mixing coefficient, ϕ(m), is given by

ϕ(m) = sup
t

sup
A∈σt1

sup
B∈σ∞

t+m

E|P (B | A)− P (B)|. (29)

A stochastic process is said to be ϕ-mixing, if ϕ(m)→ 0 as m→∞.

Both of these mixing notions are used in the literature to derive generalization error bounds for
dependent data.

4.2 Generalization error bounds for time series

Extending the results from section 3.2 to time series prediction is a fairly recent development. The
work of Yu [54] contains many of the uniform law of large numbers results for time series that are
typically needed to derive generalization error bounds. Vidyasagar [52] mentions the extension of
these results to time series data as an open problem in the literature.

Meir [39] is one of the first papers to construct generalization error bounds for time series
data. The general approach is to consider an infinite memory, stationary stochastic process, and
decompose the training error of a predictor with finite memory, chosen through empirical risk
minimization into three parts:

R(f̂p,n,d) = (R(f̂p,n,d)−R(f∗p,n)) + (R(f∗p,n)−R(f∗p )) +R(f∗p ) (30)

where f̂p,n,d is an empirical estimate based on finite data of length n, finite memory of length p, and
complexity indexed by d; f∗p,d is the oracle with finite memory and given complexity, and f∗p is the
oracle with finite memory over all possible complexities. The three terms amount to an estimation
error incurred from the use of noisy data, an approximation error due to the selection of a predictor
from a class of limited complexity, and a loss from approximating an infinite memory process with
a finite memory process.

There are two main theorems in [39]. The first bounds the estimation error. It requires the
stochastic process to be bounded and β-mixing. The second theorem provides a bound for the
expected loss of a predictor chosen through structural risk minimization. This bound depends both
on the ability to bound the covering numbers of the classes of predictors and on the assumption
that for each n, d = o(an), where an comes from the process of removing the dependence of the
stochastic process which is a rather extensive argument analogous to the method of symmetrization
and randomization for i.i.d. random variables.

Mohri and Rostamizadeh [40] present Rademacher complexity-based error bounds for non-
i.i.d. settings, a generalization of similar existing bounds derived for the i.i.d. case. Their bounds
hold in the scenario of dependent samples generated by a stationary β-mixing process. The results
are data-dependent and measure the complexity of a class of hypotheses based on the training
sample. The empirical Rademacher complexity can be estimated from finite samples and leads to
tighter generalization bounds. Their main theorem uses these empirical Rademacher complexities
RDµ(f) where Dµ is a subsample of size a from the original sample Dn.

Theorem 4.3 Let F be a space of candidate predictors and H by the space of induced losses
`(Y, f(X)) for f ∈ F such that H is bounded above by M . Then for any sample Dn drawn from a
stationary β-mixing distribution, and for any µ,m > 0 with 2µm = n and η > 4(µ− 1)β(m) where
β(m) is the mixing coefficient, with probability at least 1− η,

R(f) ≤ Rn(f) + RDµ(H) + 3M

√
ln 4/η′

2µ
, (31)
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where η′ = η − 4(µ− 1)β(m).

Steinwart and Christmann [51] prove an oracle inequality for generic regularized empirical risk
minimization algorithms learning from α-mixing processes, a slightly weaker notion of mixing. To
illustrate the inequality, they derive learning rates for least squares SVMs. Since the proof of
the oracle inequality uses localization ideas developed for i.i.d. processes, it turns out that these
learning rates are close to the optimal rates known in the i.i.d. case.

Mohri and Rostamizadeh [41] study the scenario where the observations are drawn from a
stationary ϕ-mixing or β-mixing sequence. They prove stability-based generalization bounds for
both situations. These bounds strictly generalize the bounds given in the i.i.d. case and apply to all
stable learning algorithms extending the use of stability-bounds to non-i.i.d. scenarios. The main
theorem for ϕ-mixing sequences follows.

Theorem 4.4 Let f be the predictor returned by a λ-stable learning algorithm trained on a sample
Dn from a ϕ-mixing stationary distribution with ϕ(k) = ϕ0k

−r for r > 1. Let ` be a loss function
bounded by M > 0. Then for any ε > 0,

P
[
|R(f)−Rn(f)| > ε+ λ+ (r + 1)6Mϕ(b)

]
≤ 2 exp

{
−2ε2(1 + 2ϕ0r/(r − 1))−2

n(2λ+ (r + 1)2Mϕ(b) +M/n)2

}
, (32)

where ϕ(b) = ϕ0

(
λ

rϕ0M

)r/(r+1)
.

They give some examples of applications including support vector regression, kernel ridge regression,
and support vector machines. The authors note that their method can be applied when the training
and test sets are not independent in contrast to the result in Meir [39], which require the test
data to be independent of the training data. This bound generalizes the bound in Kontorovich
and Ramanan [33] and Kontorovich [32]. It also matches the i.i.d. stability bound in Bousquet
and Elisseeff [4]. Extending these results for the more general β-mixing sequences gives a similar
exponential type inequality plus an additive term that depends on the β-mixing rate.

Karandikar and Vidyasagar [27] show that if an algorithm is ‘sub-additive’ and yields a predictor
whose risk can be upper bounded when the data are i.i.d., then the same algorithm will result
in predictors whose risk can be bounded if the data is β-mixing. They use this result to derive
generalization error bounds in terms of the learning rates for i.i.d. data and the β-mixing coefficients
of the data generating process.

All of the results presented in this section suffer from three main drawbacks: they require a
priori knowledge of the mixing rate, they require some knowledge of the complexity of the model
space F or loss space H, and they assume bounded loss.

5 Proposed work

The goal of this thesis is to develop theoretical methods to control the risk of state space models,
especially those used for time series economic forecasting which rely on little data. Generaliza-
tion error bounds for state space models would allow forecasters to control the expected cost of
predictions and to choose among competing models.

Existing results in the literature are inapplicable to this task for three reasons. First, all
the results rely on a characterization of the mixing rates for the data generating process. These
rates are assumed known for all of the generalization error bounds in section 4.2. Second, all of
the existing bounds require an ability to characterize the complexity of the model space F using
either Rademacher complexities or covering numbers. Third, all of the existing generalization error
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bounds for time series data require bounded loss functions which are rarely sensical in the regression
setting. In this section, I lay out potential paths for overcoming each of these hurdles and give
some preliminary results.

5.1 Estimation of mixing rates

Estimating the mixing rates of time series data is a problem that has not been well studied in the
literature. According to Ron Meir, “as far as we are aware, there is no efficient practical approach
known at this stage for estimation of mixing parameters [39, p. 7].” The form of the β-mixing rate

β(m) = sup
t
||Pt ⊗ Pt+m − Pt⊗t+m||TV , (33)

suggests at least one straightforward, though perhaps näıve approach to estimation which could
prove fruitful. One could use nonparametric density estimation for the two marginal distributions
as well as the joint distribution, and then calculate the total variation distance using numerical
integration. While somewhat simplistic, this method could give good results. However, one would
need to show not only that the estimator is unbiased and consistent, but also learn enough about
it that the generalization error bound could be properly adjusted to account for the additional
uncertainty introduced by using an estimate rather than the true quantity.

Another approach is to bound the β-mixing coefficient with a potentially easier to estimate
quantity. Information mixing bounds β-mixing as

β(m) ≤
√
I(m), (34)

where I(m) is the information mixing coefficient defined in Bradley [6]. This is just the supremum
of the mutual information taken over all t for the densities associated with Pt and Pt+m. The
estimation of mutual information has been studied extensively as in Pál et al. [43], Kraskov et al.
[35], and Paninski [44].

Most methods for estimating information mixing proceed as in the näıve scenario above by using
density estimates to calculate the information mixing rate. Of course, the densities themselves are
nuisance parameters and once the densities are estimated, one may as well go for the β-mixing rate
instead. An alternate approach in Kraskov et al. [35] uses the distance to the kth nearest neighbor
of each point in the joint space to derive an estimator for the mutual information. The resulting
formula is very straightforward to apply.

Let {Xi}Ni=1 be a sample from one marginal distribution, {Yi}Ni=1 be a sample from the other
marginal distribution, and Zi = (Xi, Yi). Denote by ε(i) the distance from Zi to its kth nearest
neighbor using the metric

||z − z′|| = max
(
||x− x′||, ||y − y′||

)
, (35)

where the norms in the X and Y space need not be the same. Let nx(i) be the number of points
xj whose distance from xi is less than ε(i) and the same for ny(i). The estimator for mutual
information I(1)(X,Y ) is given by

I(1)(X,Y ) = ψ(k)−
N∑
i=1

[
ψ(nx(i) + 1) + ψ(ny(i) + 1)

]
+ ψ(N) (36)

where ψ(·) is the digamma function. The results from applying this estimator to GDP data from
1947 to 2010 to estimate I(m) for 1 ≤ m ≤ 30 are shown in Figure 1 for various choices of k.
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Figure 1: Estimated information mixing rate for GDP data.

The estimator suffers from a number of drawbacks. It is not guaranteed to be nonnegative even
though information mixing is positive with I(m) = 0 implying independence. Also, as m → ∞,
I(m) should decay smoothly to zero, which is clearly not the case in the figure. Deriving an
estimator for some measure of mixing which can be used for constructing generalization error
bounds is one of the goals of this thesis.

5.2 Model space complexities

Each of the generalization error bounds in section 4.2 has a term which measures the complexity of
the model space. This means performing explicit calculations of the covering numbers, Rademacher
complexities, or λ-stability for state space models. Alternatively, we could try to use the empirical
Rademacher complexity. However, fitting large economic forecasting models once requires signifi-
cant computing resources. Fitting those same models hundreds or thousands of times in order to
calculate the expected risk numerically is almost certainly untenable. Asking forecasters to do this
with new theoretical models under consideration is certainly out of the question.

I have been able to derive bounds for the Rademacher complexities for AR(p) models. Extending
these results to VARMA and ARMA models, should give some intuition into the necessary path
for linear, and eventually nonlinear, state space models.

In order to apply the generalization error bound in Mohri and Rostamizadeh [40] to stationary
AR(p) processes, one must calculate or bound the Rademacher complexity of the class of models

Fp =

{
ϕ1, . . . , ϕp : xt =

p∑
i=1

ϕixt−i and xt is stationary

}
. (37)

The stationarity condition is usually written as the roots of the polynomial

p(z) = zp + ϕ1z
p−1 + · · ·+ ϕp (38)

must lie within the unit circle. Call the space of such coefficients that satisfy this condition the
stability domain. For p = 1, this domain is easy to characterize: |ϕ1| < 1. For general p, this space
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is more complex. A recursive characterization is given in Fam and Meditch [21]. In particular,
they show that the space can be bounded by a convex polygon with vertices at the extremes of
the stability domain. The vertex with the largest L2 distance from the origin has coordinates((

p
1

)
, . . . ,

(
p
p

))
. This means that

||ϕ||22 ≤
p∑
i=1

(
p

i

)2

=

(
2p

p

)
− 1, (39)

is a necessary condition for ϕ1, . . . , ϕp to be in the stability domain.
Ordinary linear regressions can be written as kernel regressions. Let

αi =
(
X(X′X)

−2
X′Y

)
i

(40)

k(Xi,Xj) = XiX
′
j , (41)

where X is the n×p design matrix, Y are the responses, and Xi is the ith row of the design matrix.
Now, requiring ∑

i,j

αiαjk(Xi,Xj) ≤ γ2, (42)

corresponds to the regularization ||β̂OLS ||22 ≤ γ2, or ridge regression assuming that the bound is
tight.

Returning to the AR(p) model, this means that

Fp ⊆ Fp =

{
ϕ1, . . . , ϕp : xt =

p∑
i=1

ϕixt−i and ||ϕ||22 ≤
(

2p

p

)
− 1

}
. (43)

This characterization of the AR(p) model as a regularized kernel regression allows for the application
of Lemma 22 in Bartlett and Mendelson [3] to bound the Rademacher complexity of an AR(p) model
using either

Rn(Fp) ≤ Rn(Fp) ≤
2√
n

√((
2p

p

)
− 1

)
EX1X1

′ (44)

R̂n(Fp) ≤ R̂n(Fp) ≤
2√
n

√√√√((2p

p

)
− 1

)
1

n

n∑
t=i

XiXi
′ (45)

where R̂n(Fp) is the empirical Rademacher complexity and Rn(Fp) = EXR̂n(Fp).

5.3 Unbounded loss

A very useful paper by Wenxin Jiang [24] derives an extension to Hoeffding’s inequality which
applies in the case of unbounded loss and dependent data. This inequality can then be used to
bound the generalization error in cases with known dependence structure which is weaker than
absolute regularity.
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Theorem 5.1 Let {Ft}∞−∞ be an increasing sequence of σ-fields and Xt be a random variable that
is Ft measurable for each t. Then for any ε, C > 0 and positive integers n,m,

P

(
1

n

∣∣∣∣∣
n∑
t=1

(Xt − E[Xt])

∣∣∣∣∣ > ε

)
≤ 2m exp

{
−nε2

288m2C2

}

+
6

εn

n∑
t=1

E |E [Xt | Ft−m]− E[Xt]|

+
15

εn

n∑
t=1

E
[
|Xt|I{C,∞}(|Xt|)

]
.

(46)

Here the first term has the exponential type bound similar to the Hoeffding or McDiarmid
inequalities used in the derivation of most generalization error bounds. The second term handles
the dependence requiring a very weak notion of mixing. The third term puts a condition on the
probability of large “tail” values so as to account for unbounded loss functions.

The requirement of bounded loss is not only displeasing from an aesthetic point of view, but also
from a practical one. Since these types of risk inequalities are worst-case results, they assume that
the loss bound M is attained with probability 1 by the learning algorithm. This has undesirable
consequences which are illustrated in the next section.

5.4 Complete bounds for AR models

Combining the results from sections 5.1 and 5.2 with Theorem 4.3 can give a (somewhat) complete
bound for the prediction risk of an AR model. Here I use the estimated information mixing rate
as a proxy for the true β-mixing rate. This calculation illustrates the delicacy of the result in
Theorem 4.3. Predicting the same GDP data with an AR(2) model, let m = 9 and n = 252. Then
for all η > 4 × 13 × 0.002 = 0.11, the third term in the theorem becomes 3M

√
ln(4/η′)/28 where

η′ = η − 0.11 and M is chosen as a cutoff to bound the loss function. The other two terms in the
bound are both empirical. The empirical risk Rn(f) is 9.62× 10−5, and the empirical Rademacher
complexity is upperbounded by

8
√
M

µ

√√√√((2p

p

)
− 1

) n∑
i=1

XiX ′i = 0.07
√
M. (47)

Thus, assuming that the estimated information mixing rate bounds the true β-mixing rate of the
data generating process, with probability at least 1− η = 0.85,

R(f) ≤ 9.62× 10−5 + 0.07
√
M + 1.03M ≡ B(M) (48)

for some choice of M . This has the rather unfortunate property that

R(f) ≤M < B(M) (49)

for all M . This illustrates the main difficulty of the bounded loss requirement in the regression
setting: the bound applies to the worst case scenario where mistakes always occur at the bound.

A more useful bound can be computed through a bootstrapping procedure. A fully nonpara-
metric version is possible using the circular bootstrap reviewed in Lahiri [37]. The idea is to wrap
the data of length T around a circle and randomly sample blocks of length q. There are T possible
blocks, each starting with one of the data points 1 to T . To choose q, I used the method of Politis
and White [45]. For this data set, the result was a block length of q = 7. I ran the bootstrap for
B = 1000 samples. The strategy was as follows:

14



1. Take the time series, call it X. Fit an AR(2) model g(X), and calculate the in-sample risk,
Rn(g(X)).

2. Repeat B times:

• Bootstrap a new series Y from X, which is several times longer than X; call the initial
segment, which is as long as X, Y1.

• Fit a model to this, gb(Y1), and calculate its in-sample risk, Rn(gb(Y1)).

• Calculate the risk of gb(Y1) on the rest of Y . Because the process is stationary and Y is
much longer than X, this should be a reasonable estimate of the generalization error of
gb(Y1).

• Store the difference between the in-sample and generalization risks.

3. Find the 1− η percentile of the distribution of over-fits. Add this to Rn(g(X)).

I chose the new time series to be the length of the data (252) plus 400, giving an extra hundred
years. I got the following results for η = 0.05:

R̂(m(x)) = 9.62× 10−5 (50)

Pen1−η = 5.81× 10−5 (51)

R(m(x)) ≤ R̂(m(x)) + Pen1−η (52)

= 1.54× 10−4 (53)

This bound is intuitively sensible and does not suffer from any of the deficiencies of the other
bounds, however, there is no theory that supports the coverage claim, and AR models can be fit
quickly, whereas general state-space models cannot. Part of this thesis will be to flesh out the
theory of this method.

5.5 Conclusions

For this thesis, I plan to concentrate on four complementary yet distinct avenues for progress. The
first is to derive estimators for the mixing behavior of time series data. These estimators will allow
for useful data dependent generalization error bounds for time series data, whether the learning
algorithm is a state space model or not. The second avenue is to continue developing characteriza-
tions of the complexity of the model space of increasingly rich state space models. Autoregressive
models are a good starting point and suggest the possibility of proceeding by considering autore-
gressive moving average models before tackling univariate state space models. At the same time,
it may be possible to quickly generalize the univariate results to the multivariate least squares
algorithm used for vector auto regressions. The third avenue is to use the concentration inequal-
ity of Jiang [24] to develop better generalization error bounds with unbounded loss under weaker
mixing conditions. Finally, I plan to investigate the conditions under which the bootstrap method
results in generalization error bounds with the correct coverage.

The resulting generalization error bounds derived in this thesis can be used by economic fore-
casters for model selection and for appropriately characterizing out of sample forecast performance.
They can also be used to communicate the forecast quality to policy makers. These results are
not limited to economic problems, but can be applied to any area using dependent data and state
space models.
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