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Abstract

Markov distributions are used to describe multivariate data with conditional independence structure.

Applications of Markov distributions arise in many fields including demography, flood prediction, and

telecommunications. A hyper Markov law is a distribution over the space of all Markov distributions; such

laws have been used as prior distributions for various types of graphical models. Dirichlet processes have

also been used to specify priors in a non-parametric form. I have developed a family of non-parametric

hyper Markov laws that I call hyper Dirichlet processes, which combine the separate ideas of hyper

Markov laws and non-parametric prior processes. In my thesis, I propose to describe these distributions

and their properties, and to apply them to specific problems. For example, I define a hyper Markov

mixture of Gaussians and use it in the form of a hyper Markov prior to provide a non-parametric way

to mix graphical Gaussian distributions.

1 Introduction

Markov distributions are multivariate measures that satisfy a specified set of conditional independence
relations, often represented by an undirected graph. A measure is Markov with respect to a graph if two
variables are conditionally independent whenever there is no edge between them in the graph. Markov
distributions, or Markov random fields, have been used for a wide variety of problems, including demography
(Sebastiani, 2003), flood prediction (Allcroft and Glasbey, 2003), and telecommunications (Zachary and
Ziedins, 1999).

Dawid and Lauritzen (1993) extended the notion of Markov distributions for variables to hyper Markov
distributions for parameters. In Bayesian statistics, one considers a random distribution, which therefore
has its own distribution called the prior. A prior law over Markov measures is hyper Markov if the random
marginal measures also satisfy the conditional independence structure. This is equivalent to requiring that
the distribution of each variable is conditionally independent of the joint distribution of the other variables
given the joint distribution of its neighbors. Importantly, hyper Markov priors reduce the size of the model
space, so they are more efficient if the conditional independence structure is correct. When the hyper Markov
prior is constrained to the space of Gaussian Markov distributions, the result is a graphical Gaussian model,
an object of much study (Giudici and Green, 1999; Roverato, 2000; Carvalho et al., 2007; Letac and Massam,
2007; Banerjee et al., 2007), but inherently limited by the strong assumption of normality.

Non-parametric priors are used to avoid assumptions about the shapes of unknown distributions, whether
univariate or multivariate. A popular example is the Dirichlet process (Ferguson, 1973), which Escobar and
West 1995 use with mixtures of Gaussians.

Unfortunately, there has been little research in cases for which the variables exhibit an independence
structure. This void is the focus of my research. In Heinz (submitted), I introduce the hyper Dirichlet
process, which is a non-parametric hyper Markov prior. This is summarized in Section 7. This process
combines the benefits of the non-parametric approach with the hyper Markov literature. Furthermore, I
define the process in such a way that previous research about Dirichlet processes applies to the hyper case.
As a result, many applications of the Dirichlet process can easily be generalized to graphical models. As
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an example, I describe a new model, a hyper Dirichlet mixture of Gaussians. This model is a mixture of
Gaussian components, each of which satisfies the given independence constraints.

The major goals of my research are to pursue my mixture model, which I can fit the model using a Gibbs
sampler. I will determine good diagnostics to see when the sampler has converged. I will also expand this
algorithm to incorporate learning about hyperparameters and the graph structure itself. If possible, I will
also prove or disprove the conjecture that I present in Section 7 about the hyper Dirichlet process.

2 Background

Dawid and Lauritzen (1993) provide a general method for creating hyper Markov laws. They restrict their
attention to decomposable graphs, which are particularly tractable (Frydenberg and Lauritzen, 1989). De-
composable graph can easily be built up from smaller components called cliques which intersect to form
the entire graph. Dawid and Lauritzen begin by considering a base distribution for each clique. The only
requirement is that these distributions agree where the cliques intersect. They weave these distributions
together by taking the base measure of one clique as a marginal, and conditioning the second clique on the
intersection. They repeat this process for each clique, until all the cliques have been combined. The end
result is a Markov distribution for the entire graph whose marginals are the provided base distributions over
the cliques.

In a Bayesian setting, the distribution itself is random and therefore has a its own distribution called the
prior law. Rather than specify base measures for each clique, one would specify marginal prior laws for the
unknown distributions. Once again, it is required that these prior laws agree where the cliques intersect.
These laws can be sewn together as in with the preceding paragraph to obtain a prior law for the entire
graph.

As an example of the Dawid and Lauritzen (1993) construction, consider the problem of estimating the
covariance matrix of a graphical Gaussian distribution. Speed and Kiiveri (1986) showed that the sufficient
statistics are the component covariance matrices belonging to each clique. The inverse Wishart is the usual
prior for the saturated model which has no constraints on the covariance matrix. In a non-saturated model,
the sub-matrix of each clique is unconstrained, except that the sub-matrices must agree where their indices
intersect. For this reason, the inverse Wishart is the natural choice as the base measure for each clique.
The sub-matrix for the first clique has an inverse Wishart prior. The sub-matrix for the second clique is
the inverse Wishart, conditional on knowing some of the elements. By repeating the conditioning for each
clique, one arrives at the hyper inverse Wishart.

The hyper inverse Wishart distribution is one example of a hyper Markov distribution. It is a measure
over QG , the cone of real symmetric positive definite matrices, Σ, such that N (0, Σ) is Markov with respect
to G. The hyper Wishart distribution is a conjugate prior for a graphical Gaussian distribution with known
mean. The usual inverse Wishart is a specific case, which is hyper Markov for the saturated model.

Like all parametric models, the hyper inverse Wishart prior makes strong assumptions about the shape
of the distribution. In many applications, such assumptions are undesirable. In contrast, non-parametric
models make weak assumptions. Typical assumptions include continuity and the existence of some number
of derivatives. Due to their weak assumptions, non-parametric priors have become popular in fields such
as machine learning. My research aims to apply Markov and hyper Markov constraints to non-parametric
models. This makes it possible to study graph selection problems without restricting attention to some
relatively small parametric family. I begin with the Dirichlet Process, a commonly used non-parametric
prior law. I then describe how to build this family into a non-parametric hyper Markov prior.

In my current work, I apply the framework of Dawid and Lauritzen (1993) to non-parametric priors.
Instead of the inverse Wishart, the Dirichlet process prior is the base measure for each clique. Following
the analogy, I build the marginals into a hyper Markov prior and call it the hyper Dirichlet process. Heinz
(submitted) details the construction of this process and finds sufficient conditions to guarantee that it is hyper
Markov. The Dirichlet process is a special case of tail-free processes (Ferguson, 1973). Dirichlet processes
have been used for non-parametric priors in many areas, including block modeling (Bush and MacEachern,
1996), survival analysis (Susarla and Ryzin, 1976; Ghosh and Ramamoorthi, 1995; Kim and Lee, 2001), and
non-stationary point processes (Pievatolo and Rotondi, 2000). These are all areas that could potentially use
a hyper Dirichlet process in multidimensional problems with independence constraints.
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Escobar and West (1995) use Dirichlet processes to estimate mixture models. The major benefit of this
technique is that the number of mixing components does not need to be specified a priori. As an application
of my theory, I extend this idea to Markov mixtures. I use a hyper Dirichlet process to create a mixture of
hyper Markov distributions.

In the next section, I explain notation and review a few key concepts from graph theory. Following that,
I discuss previous areas of research that form the motivation and foundation of my own work. In Section 4,
I concentrate on the notions of Markov distributions and hyper Markov priors. In Section 5, I discuss the
Dirichlet process, which has been studied extensively. In Section 6, I review one application of Dirichlet
processes, the Dirichlet mixture of Gaussians. Following these sections I present my own research and future
goals. In Section 7, I present the theory which I have already developed to generalize the Dirichlet process
to the hyper Dirichlet process. As an application of this theory, I define the hyper Dirichlet mixture model
in Section 8. I discuss my preliminary results from this model in Section 9. Finally, in Section 10, I present
research questions which will guide my work. These are divided into two main categories: extending the
current application, and studying hyper Markov generalizations for other non-parametric processes.

3 Definitions and Notation

Throughout this paper we consider a graph, G, with vertex set (or node set) V and edge set E. There is
an edge from one vertex, γ1, to another vertex, γ2, if (γ1, γ2) ∈ E. By convention, we assume that (γ, γ) ∈ E

for all γ. We call such edges loops. There is no practical difference if loops are excluded from E, though
some minor changes are required for certain definitions. If A ⊆ V, then GA is the subgraph of G over A.
The subgraph GA has vertex set A, and edge set EA = (A ×A) ∩ E. We say that A induces the subgraph
GA. If EA = A×A, then GA is complete. A clique is a set A such that GA is complete and for any proper
superset B ⊃ A, GB is not complete. For example, if G itself is complete, then there is one clique, viz. V.
A graph is decomposable if it admits a perfect ordering of its cliques.

Definition 1 Perfect Ordering. Suppose a graph G has n cliques. Let the cliques have an arbitrary
ordering C1, . . . ,Cn. Define Hk = ∪k

i=1Ci. For k ≥ 2 define Sk = Ck ∩ Hk−1 and Rk = Ck \ Hk−1. The
ordering of the cliques is a perfect ordering if for each 2 ≤ k ≤ n, there exists jk < k such that Sk ⊂ Cjk

.

The sets Hk are called the histories. The separators, Sk, separate Ck from the previous history. The sets
Rk are called the residuals, which represent the new nodes being added to the history. In a perfect ordering,
each new clique is separated from the current set of nodes by a single one of the earlier cliques.

In graphical models, for every γ ∈ V, Xγ is a random variable taking values in the space (Xγ ,Fγ). In this
sense, we consider V an index set of components of some random variable X = (Xγ : γ ∈ V). We denote
the range and σ-field of X by (X ,F) = (×γ∈VXγ ,×γ∈VFγ). Furthermore, we extend these definitions to
subsets, A ⊆ V.

XA = (XA : γ ∈ A)

XA = ×γ∈AXγ

FA = ×γ∈AFγ

Let α be a measure over some XA, then α = α/α(XA). In other words, α is the probability measure
proportional to α. If B ⊆ A, then αB is the marginal of α over XB. Thus, αB(U) = α(U×XA\B), ∀ U ∈ FB.
If α and β are both measures on some space (X ,F), then we define their sum, α + β, by

[α + β](U) = α(U) + β(U), ∀ U ∈ F .

If x ∈ X , then the delta measure δx is a point mass concentrated at x.

δx(U) =

{

1, x ∈ U
0, x 6∈ U

, ∀U ∈ F .

For the remainder of the paper, we consider undirected graphs, which implies that (i, j) ∈ E if and only
if (j, i) ∈ E. We also assume that the graph is connected and decomposable.
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4 Markov and Hyper Markov Measures

An undirected graph depicts the conditional independence structure for some variable X . Distributions that
satisfy these constraints are called Markov measures.

Definition 2 Markov Probability Measure. If θ is a probability measure on (X ,F), we say it is
Markov on a decomposable graph, G, if for any decomposition (A,B),

XA ⊥⊥ XB|XA∩B[θ],

where X ∼ θ.

I J K

Figure 1: A graph depicting conditional independence of I and K given J .

For example, let G be the graph depicted in Figure 1. A measure θ is Markov on G, if and only if
XI ⊥⊥ XK |XJ whenever X ∼ θ. It will be useful to keep Figure 1 in mind throughout this paper. While the
graph visually has only three variables, it is representative of any connected graph of two cliques. Instead
of one variable, let I , J , and K contain multiple variables, with J being the variables that belong to both
cliques. I is the set of variables in one clique but not the other, and K vice versa.

We denote the set of all distributions that are Markov on G by M (G). Dawid and Lauritzen (1993)
showed that a probability measure is Markov if and only if it satisfies the global Markov property :

XA ⊥⊥ XB | XC whenever C separates A and B. (1)

A Markov measure is determined by its clique marginals. If Q is a measure over XA and R is a measure
over XB, we say that they are consistent if they induce the same marginal over XA∩B. In other words, if Q
and R are consistent, then QA∩B = RA∩B. Dawid and Lauritzen (1993) showed that under this condition,
there is a unique distribution P , such that (i) PA = Q, (ii) PB = R, and (iii) XA ⊥⊥ XB|XA∩B[P ]. We call
P the Markov combination of Q and R, and denote it P = Q ? R.

In Bayesian statistics, we consider random measures. Thus, the measure has its own distribution called
the prior. In this paper, we reserve the term law to refer to a distribution over measures. This is merely for
clarity to simplify some definitions. For the prior law of a random measure, there exists a property that is
similar to Definition 2.

Definition 3 Hyper Markov Law. If L is a law on M (G), we say it is hyper Markov on a decomposable
graph, G, if for any decomposition, (A,B),

θA ⊥⊥ θB|θA∩B [L],

where θ ∼ L.

We note that if the prior for θ is a hyper Markov law, then by definition, θ must be Markov. As with
Markov laws, the hyper Markov property can restated as the global hyper Markov property : if S separates
A and B, then θA ⊥⊥ θB|θS. Note that a hyper Markov distribution may contain additional independence
constraints not specified by the graph.

As with Markov measures, hyper Markov laws are determined by their clique marginals. Suppose each
clique is endowed with a prior law for some random distribution. We say that the laws are hyperconsistent
if they agree where the cliques intersect. Given two hyperconsistent laws, there is a natural way to combine
them into a joint prior as shown in the next definition.

Definition 4 Let Q over M (GA) and R over M (GB) be hyperconsistent laws. The hyper Markov combi-
nation of Q and R, denoted Q � R, is the unique law, L, such that:
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1. L is concentrated on M (GA∪B),

2. LA = Q,

3. LB = R,

4. θA ⊥⊥ θB|θA∩B[L].

This law exists and is unique by Lemma 3.3 of Dawid and Lauritzen (1993). In the same paper, they
generalize this to multiple cliques by iteratively forming hyper Markov combinations.

Suppose that the graph, G, has a perfect ordering of cliques, (C1, . . . ,Ck). Further suppose that each
clique is endowed with a marginal law, MCi

, and that these laws are pairwise hyperconsistent. Define the
following:

LH1
= MC1

, (2)

LHi
= LHi−1

�MCi
, for 1 < i ≤ k. (3)

Theorem 3.9 of Dawid and Lauritzen (1993) proves that L = LHk
is the unique hyper Markov law whose

clique marginals are the given hyperconsistent laws (MCi
).

5 The Dirichlet Process

The Dirichlet process is a prior law, which provides a distribution over the space of probability dis-
tributions on (X ,F). The Dirichlet process is non-parametric, meaning that it cannot be specified by a
finite-dimensional parameter. In this section, the Dirichlet process is introduced and some of its useful
properties are given.

Definition 5 Dirichlet Process. Let A be any subset of V. Let α be a measure over (XA,FA), and
let θ be a random probability measure over the same space. We say that the distribution of θ is a Dirichlet
process with base measure α, and write θ ∼ DPα, if

(P(A1), P(A2), . . . , P(Ak)) ∼ Dir(α(A1), α(A2), . . . , α(Ak)), (4)

whenever (Ai)
k
i=1 is a partition of A.

5.1 Dirichlet Process as a Stick-Breaking Prior

A stick-breaking process is an almost surely discrete random probability measure, θ, that can be expressed
as

θ(·) =

N
∑

k=1

mkδZk
(·), (5)

where the Zk are independently distributed atoms from some distribution, G, and
∑N

k=1 mk = 1 almost
surely. The number of atoms, N , may be finite or infinite. The masses (or weights) are determined by
successively breaking random pieces of a unit-length stick. Thus, m1 = t1, m2 = (1 − t1)t2, and mk =

tk
∏k−1

i=1 (1 − ti). For finite N , mN is defined to be 1 −
∑N−1

i=1 mi, or equivalently
∏

i=1(1 − ti). If θ is a
measure over X , and A ⊆ V, then the marginal measure over XA is θA. For a stick-breaking measure, we
write

θA(·) =
N

∑

k=1

mkδZkA
(·), (6)

where ZkA is the marginal value of Zk on A.
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Traditionally, stick-breaking measures are defined such that tk is a Beta(ak, bk) random variable for
1 ≤ k < N . Thus, a stick-breaking measure is specified by the probability distribution, G, the number of
atoms, N , and the countable sequence of Beta parameters (ak, bk)N−1

k=1 . Sethuraman (1994) showed that a
Dirichlet Process, DPα, is a stick-breaking measure with Zk ∼ α, and (ak, bk) = (0, α(X )) for all k ∈ N.
This relationship leads to an alternative definition of the Dirichlet process.

Definition 6 Dirichlet Process (stick-breaking representation). Let A be any subset of V. Let G be a
probability measure on (XA,FA), and let θ be a random probability measure over the same space. For ν > 0,
we say that the distribution of θ is a Dirichlet process with base measure (or distribution) G and precision
ν, and write θ ∼ DP (νG), if

(P(A1), P(A2), . . . , P(Ak)) ∼ Dir(νG(A1), νG(A2), . . . , νG(Ak)), (7)

whenever (Ai)
k
i=1 is a partition of A.

This definition is equivalent to Definition 5 by letting α = νG. Here, ν and G are easily translated as the
parameters of a stick-breaking measure. That is, the random atoms are iid G, and pk ∼ Beta(0, ν) for all
k ∈ N. Because the stick-breaking representation is useful for many of the theorems I prove, Definition 6 will
be the definition of choice for much of this paper. The next theorem is an important result about Dirichlet
processes.

Theorem 7 Posterior Dirichlet Process. Let θ ∼ DP (νG) and, given θ, let X1, . . . , Xn be an iid
sample from θ.

(i) Xi ∼ G ∀ i.

(ii) θ|(X1, . . . , Xn) ∼ DP (ν′G′), where ν′ = ν + n and G′ = (ν + n)−1(νP +
∑n

i=1 δXi
).

For a proof, see Theorem 1.9.4 of Schervish (1995), p. 54.
The first property states that if the random measure is integrated out, then the marginal distribution

of the data is α. This property implies that a Markov base measure ensures that the Dirichlet process,
integrated over all possible θ, is a Markov distribution. However, this does not guarantee that DP (νG) is
a hyper Markov law. That requires the stronger condition that θ ∼ DP (νG) is a Markov distribution with
probability one. The second property states that if the prior law of θ is a Dirichlet process, then the posterior
law is also a Dirichlet process, with an easily updated base measure. In Section 7, I use this property to
show that a hyper Dirichlet process prior results in a hyper Dirichlet process posterior.

6 A Dirichlet Mixture of Gaussians

A parametric mixture model is of the form f(·) =
∑k

i=1 pif(·|πi), where
∑k

i=1 pi = 1 and {f(·|π)} is some
family of distributions indexed by a parameter π. Estimating a mixture model requires making inferences
about the components (i.e. the πi’s) as well as the mixing weights of each (i.e. pi). In some cases, the
number of components, k, is unknown and must also be estimated. Dirichlet processes have been used in
this area to handle all three problems simultaneously.

Escobar and West (1995) fit a Dirichlet mixture of Gaussians. In their model, the data X1, . . . , Xn are
conditionally independent and normally distributed, Xi|πi ∼ N(µi, Vi). The parameters are drawn from
some prior distribution on R×R

+. Having observed data, Dn = {x1, . . . , xn}, the predictive distribution of
Yn+1 is a Gaussian mixture specified by the posterior distribution of πn+1|Dn. Calculation of this posterior
is an example of Bayesian density estimation. When the shape of the prior is unknown, a Dirichlet process
prior may be used, which results in a Dirichlet mixture of (Gaussian) distributions. We denote the prior law
by L = DP (νG0).

Denote by π(i) = (π1, . . . , πi−1, πi+1, . . . , πn) the parameter values excluding πi. The conditional prior
law for πi given the other parameters is
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πi|π
(i) ∼

ν

ν + n − 1
G0(πi) +

n
∑

j=1,j 6=i

1

ν + n − 1
δπj

(πi). (8)

It is clear from Equation 8 that there is a positive probability that πi is equal to some other πj (i 6= j.)
Therefore, the number of distinct values in π may be less than n. Denote the distinct values of π by
π∗ = (π∗

1 , . . . , π∗
k), where the element π∗

j appears nj times. The conditional prior can be rewritten as a
mixture of k + 1 components.

F (πi|π
(i)) =

ν

ν + n
G0(πi) +

k
∑

j=1

nj

ν + n
δπ∗

j
(πi). (9)

An immediate result of Equation 9 is that the conditional distribution of Xi given π(i) contains k Gaussian
components and one non-Gaussian component, derived from the base measure of the Dirichlet process.
Inference about the number of components is handled implicitly in the following sense. The parameters
are unknown, but their posterior distribution is inferred from the data. In turn, this distribution implies a
distribution over k, the number of components. Thus, the Dirichlet mixture yields a finite, but unknown
number of mixture components. It is not necessary to specify k a priori.

Recall that the observations are conditionally independent given their parameters. As such, the pre-
dictive distribution of the next observation conditioned on the current sample and parameters satisfies
F (Xn+1|π, Dn) =

∫

F (Xn+1|πn+1)dF (πn+1|π) = F (Xn+1|π). Bayesian density estimation is solved by in-
tegrating out the unknown π. This integral is intractable, but it can be estimated using a Gibbs sampler.
The required conditional prior is given by

f(πi|π
(i), Dn) ∝ νfG0

(xi)dGi(πi) +

n
∑

j=1,j 6=i

f(xi|πj), (10)

where fG0
is the marginal distribution of xi when πi ∼ G0, and Gi is the posterior distribution of πi given

xi when πi ∼ G0 and xi|πi ∼ f(·|πi). Thus, the conditional prior is a mixture distribution:

F (πi|π
(i), Dn) = w0Gi(πi) +

n
∑

j=1,j 6=i

wjδπj
(πi), (11)

where the weights are wi = qi/
∑k

j=0 qj , with q0 = νfG0
(xi) and qj = njf(xi|πj) for j > 0.

Equation 11 reveals the necessary conditions for creating a Gibbs sampler. First, the base measure must
lead to a tractable calculation of fG0

(xi) =
∫

f(xi|πi)dG0(πi). Second, we must be able to sample from the
posterior update Gi. These conditions are met by using a conjugate prior as the base measure.

In the univariate model employed by Escobar and West (1995), G0 is specified as a Normal × Inverse-
Gamma distribution. The variance parameter Vi is Inverse-Gamma, where V −1

i ∼ G(s/2, S/2), a gamma
distribution with shape s/2 and scale S/2. Conditional on the variance, the mean has distribution N(m, τVi).
This IG×N prior is conjugate to the Normal distribution. The posterior for (Vi|xi) is Inverse-Gamma with
V −1

i ∼ G((1 + s)/2, Si/2), where Si = S + (xi − m)2/(1 + τ). The conditional posterior for (µi|Vi, xi) is
N((m + τxi)/(1 + τ), τVi/(1 + τ)). The marginal distribution of xi is T (s, m, M), the t-distribution with s
degrees of freedom, non-centrality parameter m, and scale parameter M 1/2, where M = (1 + τ)S/s.

7 The Hyper Dirichlet Process

Drawing from both the hyper Markov literature and previous results on Dirichlet processes, I construct
a hyper Dirichlet process by considering a separate Dirichlet process for each clique. I begin with a graph
consisting of two cliques, A and B, and call the separator C = A ∩ B. I place a Dirichlet process prior over
XA, say Q = DP (ν1Q), and another prior over XB, say R = DP (ν2R). The hyper Dirichlet process is a
Markov measure such that the clique marginal measures are the specified Dirichlet processes. I summarize
this construction below; the details of which are in a separate paper I’ve written (Heinz, submitted). I begin
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by generalizing the definition of a Markov combination of distributions to general finite measures. Of course,
I must require some type of consistency condition.

The marginal laws over XC are QC = DP (ν1QC) and RC = DP (ν2RC). To find the hyper Markov
combination, I must ensure that these marginals are equivalent. From the stick-breaking construction, it
is evident that this requires that ν1 = ν2 and RC = QC. From this analysis, I define consistency of finite
measures. The measures α over XA and β over XB are consistent if α(XA) = β(XB) and αC = βC. From
here, I generalize the definition of a Markov combination.

Definition 8 Markov Combination of Finite Measures. Suppose α and β are consistent finite mea-
sures. The Markov combination, denoted µ = α ? β, is

µ = α(XA) ·
(

α ? β
)

.

In the preceding paragraphs, I have shown that two DP measures are hyperconsistent if the base measures
are consistent. In the stick-breaking construction, this means that the precisions are equal and the base
distributions agree over C. I now suppose that Q and R are hyperconsistent. By Lemma 3.3 of Dawid and
Lauritzen (1993), this ensures the existence of a unique hyper Markov combination, L = Q�R. It does not
guarantee that L is a Dirichlet process. Since the Dirichlet process is so well-studied, it is useful to determine
conditions that ensure this property.

Let D = DP (νG) and note that DA = Q and DB = R. Therefore, if it is hyper Markov, it must be that
D = Q �R by Definition 4. The problem now reduces to determining when this process is hyper Markov.
For insight, I consider a case in which it is not hyper Markov.

The hyper Markov property requires in part that if θ ∼ L, then θA ⊥⊥ θB|θC almost surely [L]. Consider the
case in which QA\B and RB\A are continuous measures, but QC = RC is degenerate at some point c. Clearly,
θC = δc with probability one. Recall from Equation 6 that θA =

∑∞
k=1 mkZkA and θB =

∑∞
k=1 mkZkB, for

some random ~m whose elements sum to 1 and random atoms Zk, where ZkA and ZkB are marginal values of
Zk. Since RB is continuous, each ZkB is distinct almost surely. Therefore, if we observe θB, then we know ~w
modulo permutations. Obviously, these weights provide information about the value of θA. Indeed, we now
know every mass in the pmf of θA, though we do not know the location of these masses. Furthermore, this
information is not known if we only observe θC, whose degenerate distribution gives no information about
either θA or θB.

As this counterexample shows, I want to ensure that θB does not provide information about the weights
that is not given by observing θC alone. I have discovered that I can do so by imposing a constraint on R.

Refinement Condition:

ZkC = ZkC =⇒ ZkB = ZkB ∀k, a.s.[R]. (12)

The basic idea behind this theory is that whenever two of the random atoms coincide, information about
the weights is lost. The corresponding weights are no longer observed. Instead, we observe only their sum.
The Refinement Condition ensures that if the information is lost from θC, then it is also lost from θB. In
my other paper, I show that this condition is sufficient to imply that DP (αQ ? R) is hyper Markov as long
as Q ? R is well-defined.

This condition is sufficient, but it is clearly not necessary. To see this, note that conditional independence
holds by symmetry if we replace B with A and R with Q. For example, suppose QA = δa for some a. For
θ ∼DP(αQ ? R), the marginal θA is almost surely δa. Thus, it is trivially true that θA ⊥⊥ θB|θC, even if the
Refinement Condition (as written) does not hold. In this counterexample, the refinement condition holds
for QA and QC rather than RA and RC. I conjecture that the necessary and sufficient condition for hyper
Markovity is that either Q or R satisfies the Refinement Condition, but I do not know the proof. A side goal
of my research plan is to prove or disprove this conjecture if possible.

At first glance, the Refinement Condition may appear unduly restrictive, but it is actually very general.
As an important example, if the base measures are continuous, then it holds trivially. When the Refinement
Condition is satisfied, I call the hyper Markov combination a hyper Dirichlet process and write θ ∼ HDP (νG)
to emphasize this. A key aspect of this construction is that the hyper Dirichlet process is also a standard
Dirichlet process. Hence, my research has uncovered a non-parametric process that takes advantage of a
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conditional independence structure and there is already a wealth of information about it. In particular,
many applications which rely on Dirichlet processes can be generalized to use a hyper Dirichlet process in
graphical cases. For example, I can create a mixture model of graphical components as in the next section.

Another useful property of the hyper Dirichlet process prior is that hyper Markovity will persist in
the posterior if the Refinement Condition is satisfied. Consider (X1, . . . , Xn), a sample of n independent
observations of θ, where θ ∼ HDP (νG). From Theorem 7, we see that the posterior is DP (ν ′G′), where
G′ = αG +

∑n
i=1 δXi

and ν′ = ν + n. Because the Refinement Condition holds for G, the new points of
mass, (δXi

) will be constrained so that G′ also satisfies the Refinement Condition. The details of this proof
are omitted for space, but they can be found in Heinz (submitted).

8 Hyper Dirichlet Mixtures

My work extends the Escobar and West (1995) model to allow multivariate observations as well as the
specification of a graphical model. In this way, my model is at the confluence of the hyper Markov prior
literature and the Bayesian density estimation literature. It is a hyper Dirichlet mixture of graphical Gaussian
distributions. In other words, my model is a mixture of components, each of which is a Markov distribution.

I begin by assuming that the graph, G, is known and has cliques C = {C1, . . . ,Ck} and separators
S = {S2, . . . ,Sk}. The set of all Markov distributions for G is denoted by M (G). The family of p-variate
Normal distributions is Np = {N(µp, Σ)}, where p is the number of nodes on G. The graphical Gaussian
model, NG = Np ∩M (G), is the sub-family of Normal distributions which are Markov with respect to G. A
prior distribution for this family is a measure over R

p × QG , where QG = {Σ : N(0, Σ) ∈ NG}. I specify a
hyper Dirichlet mixture by

(µi, Vi) ∼ HDPG(νG0)

(Xi|µi, Vi) ∼ Np(µi, Vi),

where G0 is a distribution on R
p × QG . I generalize Escobar and West’s IG × N prior to a hyper inverse

Wishart × hyper Normal (HIW × HN) prior. That is, if (µ, V ) ∼ G0, then

V ∼ HIWG(d, D) (13)

(µ|V ) ∼ Np(m, τV ) (14)

(X |µ, V ) = Np(µ, V ), (15)

where HIWG is the hyper Inverse Wishart, hyper Markov with respect to G, having d degrees of freedom and
location D. I write the density of the hyper inverse Wishart in terms of the clique and separator marginal
densities. For a p × p matrix, V , let VAB denote the sub-matrix of V with rows in A and columns in B.
The density of the HIW (d, D) distribution is

dHIW (V ; d, D) =

∏k
j=1 dIW (VCjCj

; d, DCjCj
)

∏k
j=2 dIW (VSjSj

; d, DSjSj
)

, (16)

where dHIW (x; d, D) is the density of the saturated inverse Wishart distribution evaluated at x with d
degrees of freedom and location D.

I will now show that G0 is a hyper Markov prior, which implies that the model specified by (13) - (15)
is a mixture of Markov distributions.

The hyper Inverse Wishart is a distribution for V ∈ QG . It is a hyper Markov prior for the graphical
Gaussian with known mean (Dawid and Lauritzen, 1993; Letac and Massam, 2007). By definition, this
ensures that Np(m, τV ) is a Markov distribution for µi. As such, we can express the density in terms of the
marginal densities of the cliques and separators, as in Equation 16.

dHN(µ; m, V ) =

∏k
j=1 dN(µC; mCj

VCjCj
)

∏k
j=2 dN(µSj

; mSj
, VSjSj

)
, (17)
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where dN(x; m, V ) is the Normal density evaluated at x with mean m and variance V .
Because V ∈ QG , G0 is a prior law over M (G). Let (A,B) be a decomposition of G with S = A ∩ B.

The density of G0 is

g(µ, V )

= g(V )g(µ|V )

=
dHIW (VAA; d, DAA)dHIW (VBB; d, DBB)

dIW (VSS; d, DSS)
·
dHN(µA; mA, VAA)dHN(µB; mB, VBB)

dN(µS; mS, VSS)
(18)

Noting that S ⊆ B, we also have

f(µB, VBB, µS, VSS) = f(VBB)f(µB|VBB). (19)

Equations 18 and 19 together imply

f(µA, VAA|µB, VBB, µS, VSS) =
f(µ, V )

f(µB, VB)

=
dHIW (VAA; d, DAA)dHN(µA; mA, VAA)

dIW (VSS; d, DSS)dN(µS; mS, VSS)

= f(µA, VAA|µS, VSS),

which implies that G0 is a hyper Markov prior.
In addition to being hyper Markov, G0 is also conjugate. Consider observing a random variable, X , where

X ∼ N(µ, V ) and the parameters (µ, V ) ∼ G0 are unknown. The posterior distribution is f(µ, V |X) =
f(V |X)f(µ|V, X). By conditioning on V , the posterior calculation for µ reduces to the Normal-Normal
Bayesian model with known covariance. Thus, (µ|V, X) is Normal with mean (τm+X)/(τ+1) and covariance
τV/(τ + 1). Furthermore, X |V is marginally normal with mean m and covariance (1 + τ)V . This gives an
expression for the marginal model, integrated over all µ.

V ∼ HIWG(d, D)

(X |V ) ∼ N(m, (1 + τV ))

Recall that the density of the hyper inverse Wishart can be expressed in terms of clique and separator
marginals, as in Equation 16. Likewise, the posterior can be found by updating each clique and separator
individually. Thus, the posterior distribution of V after observing Dn is

(V |X) ∼

∏

c∈C dIW (Vc; d + n, Dc + Φc)
∏

s∈S dIW (Vs; d + n, Ds + Φs)
, (20)

where Φ =
∑n

i=1 xix
′
i is n times the sample covariance matrix. Therefore, the posterior distribution of (V |X)

is HIW (d + n, D + Φ).
Taking further advantage of the hyper Markov structure, I find the marginal distribution for X by

integrating each clique and separator individually. My model leads to a new Markov distribution. The
marginal distribution of X for the 1-sample problem is

X ∼

∏

c∈C dT
(

Xc; d + 1 − |c|, mc,
τ+1

d+1−|c|Dc

)

∏

s∈S dT
(

Xs; d + 1 − |s|, ms,
τ+1

d+1−|s|Ds

) , (21)

where dT (x; d, m, D) represents the density evaluated at x of the multivariate t-distribution having d degrees
of freedom, non-centrality parameter m, and scale parameter D, and |c| is the number of elements in c. I
call this the hyper t-distribution because it generalizes the multivariate t in the same way that hyper inverse
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Wishart generalizes the inverse Wishart. The notation for the hyper t-distribution specified by Equation 21
is HT (d + 1, m, (τ + 1)D). Dawid and Lauritzen (1993) present what they call the matrix T distribution,
which is a special case of my hyper t distribution in which m = 0. This case is not general enough for my
model. As a mixture of several distributions with different centers, I need to consider cases in which m 6= 0.
This is what led me to discover the more general form of the hyper t.

Recall that there are two requirements for solving the Bayesian density estimation problem using a Gibbs
sampler. First, the marginal density of X must be tractable. Secondly, we must be able to generate the
posterior distribution of (µ, V |X). My model meets both of these requirements. The marginal density
is easily calculated using Equation 21. The most difficult step of the algorithm is to generate a hyper
inverse Wishart random variable. However, this can be done following the method of Carvalho et al. (2007).
Essentially, the algorithm begins by generating an inverse Wishart for VC1

. For i > 1, VCi
is generated

as a conditional inverse Wishart, given that the elements of VSi
are known. Since the clique sub-matrices

are sufficient for V , the other values can be computed analytically. The posterior density estimate can be
sampled using the following Gibbs algorithm.

1. Choose initial values for each πi. A suitable method is to draw from the posterior distribution given
Xi.

2. For i = 1, . . . , n: Sample (µi, Vi) according to Equation 11, using the current values of µj and Vj for
j 6= i.

(a) Set q0 = αdHT (Xi; d + 1, m, (τ + 1)D), and qj = njdN(Xi; µj , Vj).

(b) Reweight the qj ’s to sum to one.

(c) With probability qj , set (µi, Vi) := (µj , Vj). Otherwise draw a new value from G0.

3. Repeat Step 2 until convergence.

9 Preliminary Results

To test my hyper Dirichlet mixture model, I simulated Gaussian data with the graph [12][23]. I specified
the hyperparameters, which I used to generate component distributions. I then generated observations
according to a preset weighting of the components. The data set consisted of 300 observations and 3 mixing
components. Each observation had 3 variables. The simulation employed the following algorithm:

1. Specify the parameters for HIWG(D, d).

2. Specify the center (m) and spread (τ) of the component means

3. Specify the number of components and their relative weights (p1 . . . pk).

4. For each component, i = 1 . . . k:

(a) Generate a covariance matrix, Vi ∼ HIWG(D, d).

(b) Generate a mean, µi ∼ N(0, τVi).

5. For each observation, j = 1 . . . n:

(a) Randomly choose a component, i, according to the weights.

(b) Generate the observation, Xj ∼ N(µi, Vi).

A subtle difficulty in this algorithm is specifying D such that HIWG(D, d) is really hyper Markov. I
achieve this by specifying the clique submatrices, which are the sufficient statistics for the graphical Gaussian
distribution. When the edge (a, b) is missing, then the covariance element Dab can be analytically calculated
from the other values. A straightforward way to calculate the full matrix is to invert the clique sub-matrices,
combine them to find D−1, then invert once more to find D (Roverato, 2000; Carvalho et al., 2007). Denote
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the clique submatrices by DCiCi
and the separator submatrices by DSiSi

. The inverse covariance matrix can
be computed by

D−1 =
C

∑

i=1

[D−1
CiCi

]0 −
C

∑

i=2

[D−1
SiSi

]0, (22)

where the notation [A]0 means to extend the matrix with zeroes to the full size. A similar transformation
reduces the computational burden when trying to invert a matrix in QG . This is another way in which a
graphical structure reduces the complexity of model estimation.

In my simulation, the location parameter for the hyper Wishart distribution was

D =





1 .5 .1

.5 1 .2

.1 .2 1



 ,

where the bold values are determined analytically from the clique sub-matrices. As a simple check, one can
see that in the inverse-covariance matrix (D−1), the bold elements are 0, corresponding to the absence of an
edge in the graphical model.

I generated three graphical components according to this model. The means and covariance matrices are
given in Table 1. Since the component for each data point was random, the actual mixing weights in the
sample vary from the theoretical weights. This is shown in Table 2.

i pi µi Vi

1 8
15





0.116
−0.349
0.402









0.134 0.0505 0.00364
0.0505 0.0884 0.00637
0.00363 0.00637 0.0522





2 5
15





−0.123
0.205
0.290









0.125 0.0149 0.00371
0.0149 0.0459 0.0114
0.00371 0.0114 0.0728





3 2
15





−0.00218
−0.0119
−0.496









0.190 0.124 0.0344
0.124 0.158 0.0439
0.0344 0.0439 0.0869





Table 1: Randomly generated Normal mixture components for the small simulation

i n Actual Theoretical

1 164 .547 .533
2 110 .367 .333
3 26 .087 .133

Tot 300 1 1

Table 2: Actual and theoretical mixing weights for the small simulation

I initialized the Gibbs sampler by putting each point in its own component with parameters drawn
randomly from the posterior, f(µi, Vi|Xi). Thus, the 0th sample is a mixture of n Markov distributions,
one for each data point. I chose a burn-in of 3000 iterations then counted the next 9000 iterations as the
posterior sample. A major goal of my research plan is to find a method to determine the appropriate burn-in
period.

The first statistic I examined was the number of estimated components at each Gibbs draw. The number
of components ranged from 3 to 10. The median was 5, which accounted for 37% of the samples. Samples
with 4 components and samples with 6 components accounted for about 25% each, for a total of 87% within
5 ± 1. This is a great reduction from 300 data points to about 5 components, however the actual data is
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from a mixture of only 3 Normals. Thus, the initial estimate of the number of components is too high. I
investigated this further by plotting the component means against the sequence number of the Gibbs draw.
The plot is shown in Figure 2. The horizontal axis is the first dimension of the mean vector (µi1) for each
component. The vertical axis is the sequence number starting after the burn-in. In other words, each row
has a point for each component corresponding to the mean of X1 under that component distribution. This
plot takes advantage of the fact that µi1 is almost surely unique for each component. Thus, if two samples
show the same value of µi1 then they are from the same component. By following the plot from bottom to
top, one can see at a glance how the component means change as the Gibbs sampler evolves. In particular, a
long vertical line shows that a component persisted through many iterations. One notable fact is that when
I rank the components by this persistence, there is a large difference after the top three components before
the fourth component. Thus for a long time, the sampler is choosing the same three components and trying
different possible components, but discarding them right away. In a sense, there are three major components.
This is ostensibly good because I should expect three components. Unfortunately, the persistence of these
values through so many trials means one of two things. Either the sampler had not converged yet, or even
after convergence the sampler has a strong autocorrelation. The latter problem means that I can only keep
every cth output to get an independent sequence. The former problem is remedied by using a longer burn-in
period. This problem is less cumbersome since the solution does not increase with the number of useable
draws needed.

The Gibbs sampler appears to put too much weight on the data and not enough on the prior. That
is, there is a very high chance to keep components from iteration to iteration. The problem is not enough
emphasis on the Dirichlet prior, so that previously seen values are too likely. This can be resolved by choosing
good hyperparameters, which is one of my research goals. As I discuss in the next section, one idea is to add
an additional tier to the hierarchical model to allow D, d, m, and τ to be determined via sampling.

Another aspect of the data that I was really curious about was the relative weights of each cluster. In
particular, I was curious if the weights corresponded to the actual representativeness of each cluster in the
simulated data. It is somewhat difficult to find a good way to visualize this for a variety of reasons. One
problem is that the weight vector lies in some moderately high-dimensional simplex. Even considering this,
there is an additional complexity since the number of dimensions changes from sample to sample. Finally,
there is the matter of labeling, though this is trivial compared to the other issues. That is, a component that
persists from one observation to the next may be component 1 in one draw, and component 3 in another.
My solution is to sort the weights and look at side-by-side boxplots of the ranked component weights. This
shows what the largest component weight is in each sample, down to the smallest weight. In practice, I
only looked at the top 5 weights, since the remaining weights accounted for a very small proportion of
the data. The boxplots are shown in Figure 5. The horizontal lines are the correct weights from the
three simulated components. By looking at the medians, we see that the median of the largest component
decently approximates the actual weight of the largest component. The second- and third-largest components
sum to a reasonable approximation of the second actual weight. Although admittedly weak evidence, this
indicates that perhaps the second component is being split into two separate components. Unfortunately,
the individual data points in the simulation are not tagged to show which Normal component they come
from. This would be a good way to see if the Gibbs sampler is doing a good job separating the sample points
by their component distribution. The next simulation I run will have this improvement.

10 Further Ideas

10.1 Current Model

A major unresolved question about hyper Dirichlet mixtures is how many dimensions can be handled
realistically. Preliminary runs of the Gibbs sampler have exhibited some difficulty in mixing components.
A way to encourage mixing would be to use a prior for k, the number of unique parameter values. I can
specify the prior implicitly by placing a distribution on α, the prior precision for the hyper Dirichlet process.
Antoniak (1974) shows that the number of unique draws from a Dirichlet process depends on α and n,
however, it is unclear how this extends to Dirichlet mixtures. In a Dirichlet process, if n−1 observations are
known, then the probability of the nth observation being unique is α/(α + n). This implies a distribution
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Figure 3: A plot of the components versus the sample number
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Figure 4: A plot of the components (zoomed)

for k. This differs from a Dirichlet process mixture in which xi is also observed. The probability of a unique
draw, w0 in Equation 11, depends on H0 and f(Xi|πj) in addition to α and n. For example, if Xi is close
to Xj , then the probability that πi = πj is increased. This shows the importance of dimensionality. The
definition of “close” is not constant as the dimension increases. The relationship between the base measure,
α, and the induced distribution on k will be interesting to investigate. This is related to my next research
goal.
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Figure 5: Side-by-Side Boxplots of sorted weight values

I would like to incorporate learning about the hyperparameters into the algorithm. Escobar and West
(1995) extend their model by including a prior for m and τ . I can extend my model in the same way, using an
inverse Gamma prior for τ and a conditional prior for (m|τ) from the Normal family. Furthermore, I want to
find a suitable prior for d and D. In the extended model, α and d are the most interesting parameters because
they most influence the distribution for the number of components. α influences the overall probability of
repeating components before observing Xi. The degrees of freedom parameters controls the scale of the
hyper t-distribution. For small d the distribution is more concentrated around m, which leads to a relatively
large probability for drawing a new atom. This is assuming that m is near the majority of observations as
it should be. The hyperparameter τ controls how widely spread the component means are. If τ is small
relative to the spread of the data, then we expect the components to be similar.

When the hyper Dirichlet mixture is upgraded to estimate hyperparameters, it will be very useful to fit
Gaussian mixtures given a graphical model. Beyond this, I will consider problems in which the independence
structure is unknown. My first attempt will be to incorporate the kind of MCMC algorithm described by
Giudici and Green (1999). They propose an algorithm which incorporates dropping and adding edges to
the graph. I would like extend their work to my model, which would result in an algorithm that is able to
determine the structure of a mixture of graphical Gaussian models in addition to fitting the components. In
summary, the algorithm would incorporate ideas from three different research areas: hyper Markov models,
covariance (graph) selection, and non-parametric Bayesian density estimation. The end product will be a
non-parametric model with the only major assumption being that the data can be represented as a mixture
of Gaussians. Even this assumption can be relaxed by considering other distributions. For example, if the
data distribution exhibits heavy tails, a mixture of t-distributions could be estimated instead of Gaussians.
Another possible generalization is to replace the HIW prior for Vi with the more general class of inverse
Wisharts presented by Letac and Massam (2007).

Another goal is to develop good diagnostics to indicate that the Gibbs sampler converged and that it
converged to the correct answer. The available methods include predicting new observartions and cross-
validation. I also hope that my model shows self-consistency. I can demonstrate this by simulating data
from the fit of a real data sample. If the Gibbs sampler is well-behaved, then the simulated data should look
like the real data, and the model fit for simulated data should be close to the original fit.

10.2 Summary of Current and Proposed Research

To summarize, my work has already shown how hyper Markov priors can work in non-parametric settings.
I have found sufficient conditions for a Dirichlet process to be hyper Dirichlet. The theory of hyper Dirichlet
processes provides the benefits of the hyper Markov structure without requiring knowledge of the shape of
the prior law. My construction also benefits from previous research on standard Dirichlet processes. The
application I have studied to date is a mixture of Gaussian components, each of which is Markov for a given
graph. This model can be fit using a Gibbs sampler which I have programmed and tested in R.

My proposed research goals are as follows:
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• An immediate goal will be to translate the Gibbs sampler from R to C so that it can handle larger
data sets and run more efficiently. This is necessary to explore my research goals in a timely manner.

• I will investigate ways to determine the necessary burn-in period for the Gibbs sampler to converge.
A related question is to determine the autocorrelation of the observations after convergence. A large
correlation means that the sampler should only accept every cth iteration to obtain an iid sample from
the posterior.

• I will expand the Gibbs sampler to include learning about hyperparameters. I will do this by adding
a new tier to my hierarchical model with a prior for the hyperparameters, D, d, m and τ .

• I will examine the feasibility of learning about the graphical structure by adding or dropping edges as
part of the Gibbs sampler.

• I have a large data set that was previously used to investigate covariance selection (Levina et al., 2008).
I will use my sampler to estimate my model on this data set.

• I will investigate the tradeoff between my model and other estimation techniques, such as kernel
smoothing. I hope to have an algorithm that is fast as well as accurate.

• I will develop good diagnostics to test fits of my model.

• If possible, I would like to determine the necessary conditions for this process to be a hyper Markov
law. For a perfect ordering of cliques, I conjecture that for all i > 2, the Refinement Condition must
hold for the ith history or the ith clique.

10.3 Other Processes, Other Problems

There are other problems that I could investigate using a hyper Dirichlet process. These are ideas which
are out of the scope of my current work. Nevertheless, these ideas serve as examples for future work which
stems from what I have already accomplished. For example, rather than estimating parameters for Gaussian
distributions, I could estimate the “scale of membership” in k classes for n data points. This is a similar
idea to block modeling and GoM models, as in Airoldi et al. (2008). In a block model, observations are
assumed to be independent given the group membership for the data. This is akin to the mixture models
alluded to above. Grade of Membership (GoM) models extend this to allow group membership to be divided
for each observation. For example, Xi may have 20% membership in groups 2 and 4, and 60% membership
in group 7. This leads to a mixture model in which the mixing weights are allowed to vary by observation.
A third way to achieve mixing would be to consider what I call a “scale of membership”. This is the GoM
model which drops the constraint that the total membership grade for each point is 1. Thus, some points
can be very representative of many classes, while others are not members of any groups. The latent variable
of interest is Xi = (Xi1, . . . , Xik), where Xij represents how well observation i is represented by class j. A
hyper Dirichlet process could be used to model the distribution of X1, . . . , Xn. Given Xi, the observation
could be modeled by an additive model such as linear regression.

The “scale of membership” idea has been used in machine learning literature with the constraint Xij ∈
{0, 1}. Such processes are known as Beta processes or Indian buffet process (Thibaux and Jordan, 2007). In
this setting, instead of groups or components, there are features. Xij records whether or not observation i
has feature j. The generalization to a hyper Beta process is to think about independence constraints on the
different features. That is, the variable Xi = {Xi1, . . . , Xik} is a latent variable from a k-way contingency
table. Similar to the Dirichlet mixture, the beta process does not require us to choose the number of features
a priori. This is a natural extension of my earlier theory because a Beta process can also be written as a
countable sum of weighted random variables.
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