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Abstract

We propose a variety of models for incorporating learning over time into the cognitive as-
sessment modeling framework. In two of the models, we use Item Response Theory (IRT;
VanDerLinden and Hambleton 1997) where we assume that a continuous latent parameter
measures a student’s general proficiency in the area of interest. In the other two models, we
use Cognitive Diagnosis Models (CDMs; Rupp and Templin 2008) where we estimate whether
students possess a set of skills as the latent student parameter. In all four models, we assume
that students take multiple exams in the same content area over a period of time and that at each
time point, we are interested in tracking their learning. Therefore, the models consider what
the students knew at the previous time point when estimating their current knowledge. With
this information, we believe we can make better predictions about end of year, high-stakes
exam scores and inform teachers of areas where students are struggling. We may also be able
to compare different methods of teaching to find ones that most promote learning and make
some statements about the true rate and variability with which students learn which could help
teachers, researchers, and policy makers set more realistic goals for students. Each model
is discussed both empirically and mathematically. In a simulation study of one model, the
parameters describing student learning were recovered with 94.6% accuracy.
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1 Introduction
Schools throughout the country are appraised based on their students’ performance on end of year
accountability assessments. In fact, the No Child Left Behind Act of 2001 requires schools to meet
certain criteria on state exams in order to receive federal funding (Feng et al. 2006). To prepare for
these high stakes exams, students are given periodic assessments similar to the one they will see at
the end of the year. These benchmark tests are one example of time points over which we may want
to measure student learning. Another example is daily interaction with a cognitive tutor to prepare
students for an end of unit exam. While serial data points for an individual student naturally arise
in a variety of situations, most current psychometric models do not account for the learning that
undoubtedly occurs; the ones that do are limited in their use (Anozie and Junker 2007).

In Section 2, we describe some potential benefits of modeling these benchmark test data longi-
tudinally. In Section 3, we propose four models to estimate student learning over multiple testing
occasions. These models are a combination of new ideas and extensions and improvements to
overcome the limitations of the current techniques of modeling learning. We also present a taxo-
nomical representation of the four proposed learning models to provide the reader with a common
framework and a guide for choosing a model. Section 4 presents some preliminary results for a
subset of the proposed models. This section is meant to show that our ideas are plausible and can
be applied. We also provide a description of the real data set to which we intend to apply the
new models. Section 5 describes the methods we intend to employ when assessing and comparing
model fits. Section 6 outlines the thesis with details about the timeline that we intend to follow to
complete this work. Finally, in the Appendix, we review static cognitive assessment models.

2 Motivation
In this section, we present some potential benefits of modeling student performance on multiple
exams as longitudinal data.

We believe that a dynamic, rather than static, approach to tracking individual student learning
over the course of a school year will be a better predictor of student performance on end of year
state assessments (Anozie and Junker 2007; Ayers and Junker 2008). Because student performance
on these exams is a partial determinant for a school’s funding, it is imperative that schools know
how students are predicted to do. With this information, teachers can devote extra attention to stu-
dents who are not expected to do well and hopefully avert low scores. Furthermore, we believe our
models can be used to discover particular areas upon which teachers should focus more attention.
For example, we might determine that certain groups of students need more practice in the area of
geometry or even more specifically that a particular student could use more practice or additional
instruction in calculating the area of a circle. This type of information could help teachers make
more individualized lesson plans (Carver 2001; Bransford et al. 2000).

In addition to giving more information about student learning at the individual level, we believe
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dynamic models can be used to make statements about student learning in general. More specif-
ically, we may be able to compare interventions, like teaching a new curriculum for a period of
time, to discover which most promotes learning (Feng et al. 2009). Instead of assessing pre- to
post- test gains, we could actually compare learning rates. Additionally, the estimated learning
rates may allow us to make general statements about the true rate and variability with which stu-
dents learn (Koedinger et al. 2010). This could help teachers, researchers, and policy makers have
more realistic expectations about the amount of gain they should expect to see from their students.

3 Dynamic Cognitive Assessment Models

3.1 Static Models
We begin the introduction of dynamic cognitive assessment models with a brief review of static
models. In cognitive assessment theory, we assume that student i’s performance on item j is due
to a combination of his and the item’s features. Student features, θi, are defined by a student’s
proficiency in a topic and/or indicators for particular skills. Item features, βj , are defined by item
difficulty, discrimination, and/or guessing and slip probabilities.

Throughout this proposal, we assume that test items are graded dichotomously where Xij = 1
if student i answers item j correctly and 0 otherwise. This grading scheme is assumed because it is
common to grade assessment items as correct or incorrect, and therefore, the situation often arises
naturally. However, the theory can easily be extended to include polytomous responses (Thissen
and Steinberg 1986; Hemker et al. 2001). The binary responses follow a Bernoulli distribution
where Xij ∼ Bernoulli(P (Xij = 1|θi, βj)). Therefore, assuming local independence (Junker and
Sijtsma 2001), we can define the probability of student i’s response pattern on J items to be

P (Xi1 = xi1, Xi2 = xi2, ..., XiJ = xiJ |θi, β1, β2, ..., βJ)

=
J∏

j=1

P (Xij = 1|θi, βj)
xij(1− P (Xij = 1|θi, βj))

1−xij . (1)

While all static models fit into this basic framework, the divergence occurs with the choice of
P (Xij = 1|θi, βj). Static cognitive assessment models can be split into two categories: Cognitive
Diagnosis Models (CDMs; Rupp and Templin 2008) and Item Response Theory (IRT; VanDerLin-
den and Hambleton 1997) models. CDMs assume the student parameter is a vector of Bernoulli
random variables measuring whether a student possesses a set of K skills necessary to do well
on an assessment. Therefore, the student parameter, θi, is a vector of length K where θik = 1
if student i possesses skill k and 0 otherwise. IRT models assume the student parameter, θi, is a
continuous measure, usually from a normal distribution, of a student’s “general propensity to do
well” (Junker 1999). The Rasch model (Rasch 1960/1980; Harris 1989), a common IRT model
that we will use as an example throughout this proposal, is defined as

P (Xij = 1|θi, βj) =
1

1 + exp(θi − βj)
, (2)
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where βj is defined to be the difficulty of item j. For more information on the Rasch and other
static models, we direct the reader to the Appendix, Sections A.1 and A.2.

3.2 Common Framework
Just as static cognitive assessment models all derive from Equation 1, the dynamic models that
we propose can all be condensed into a common framework. This section presents the notation,
assumptions, and equation for that framework.

In order to introduce the dynamic likelihood we refer to throughout this proposal, we define
Xit = (Xit1, Xit2, ..., XitJ) to be the response vector where Xitj is the response of student i on
item j at time t. Then Xi = (Xi1, Xi2, ..., XiT ) is the complete response pattern for student i.
We generally assume that items are graded right or wrong for the reasons noted in Section 3.1 but
add that the dynamic theory presented in this proposal could possibly be extended to polytomous
response models as in Hemker et al. (2001) and Thissen and Steinberg (1986). We also assume
that θi = (θi1, θi2, ..., θiT ) is the vector of latent student features at each time point.

In addition to θi, we introduce zi = (zi1, zi2, ..., ziT ), a vector of unobserved states to describe
each student’s status at each time point. In the four dynamic models that we propose, this latent
state can be identical to θ, or an indicator of membership for latent states that describe the distribu-
tion of θ. Regardless of the definition, we assume that the relationships between student responses
and latent states can be described by the Attributes Assessment Model (Junker 1999), or as it is
referred to in the statistical literature, a directed acyclic graph (DAG; Wasserman 2004), which
is presented in Figure 1. The conditional independences inherent in a DAG allow us to assume
that observations at one time point are independent of the next given a student’s latent state, i.e.
Xit⊥Xit−1|zit, and the Markov property, i.e. zit+1⊥zit−1, ..., zi1|zit.

Using these assumptions, we define a general marginal distribution that is used throughout our
description of the dynamic learning models:

P (Xi, zi) = P (zi1)P (Xi1|zi1, β)
T−1∏
t=1

P (zit+1|zit)P (Xit+1|zit+1, β) (3)

3.3 Taxonomy
In this section, we discuss four ways to model learning over time within the cognitive assessment
framework. These models are called Kalman Filter + IRT, Parameter Driven Process for Change
+ IRT, Knowledge Tracing + CDM, and Parameter Driven Process for Change + CDM. While the
models will be described in subsequent sections, we refer the reader to a taxonomy, Figure 2 in the
Appendix, Section B. This taxonomy describes the relationship between the four models in order
to construct a framework for the reader.

Succinctly, the two models in the upper half of the figure extend IRT models while the two models
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in the lower half extend CDMs. The models on the left half track students learning over time by
allowing the student parameter, θ, to change at each time point. The models on the right half track
learning indirectly by instead tracking student membership in latent states which drive the distri-
butions of the student parameter, θ. We will expand upon these ideas in Sections 3.4 and 3.5 where
we also point the reader to the appropriate section of Figure 2.

3.4 Dynamic IRT Models
In this section, we present two ways to include time into a model that assumes a continuous pa-
rameter, θ, to describe student proficiency. The first will apply an extended Kalman Filter (KF;
Dethlefsen and Lundbye-Christensen 2006) to θ with the aim of tracing the value of this estimate
over time to track student learning. The second model is derived from the parameter driven process
for change (PDPC; Rijmen et al. 2005; 2008) model. In this model, we group students based on
similar response patterns where each group has a different true distribution for θ. Then by tracing
the students’ path through the latent knowledge state space, we can track learning. In this section,
we describe these ideas in more detail.

3.4.1 KF + IRT

In IRT, to evaluate a student’s proficiency in a given subject, we simply look at the estimate for his
latent variable, θ. Then, one idea for incorporating time into an IRT model is to directly trace a
student’s value of θ over time. If there were T benchmark tests given over the course of a year, we
would find a value for θ, which is identical to z in this case, at each of the T time points. In this
case, we could track learning gains and losses through the change in θ.

One approach for estimating a new θ at each time point would be to fit a separate IRT model.
However, with this method, we would ignore what we previously knew about the student because
we would not be accounting for the value of θ at the previous time points. Therefore, we suggest
fitting an IRT model at each time point with an extended Kalman filter (Dethlefsen and Lundbye-
Christensen 2006) to account for previous estimates of the students’ abilities. We call this model
the Kalman Filter + IRT (KF + IRT) model and depict it in the upper left corner of Figure 2.

The Kalman filter is a version of the hidden Markov model where the latent state is considered to
be a continuous variable. The latent state of the system, θ, is represented by a real number which
is adjusted by a linear operator plus some Gaussian noise at each time point. More specifically, if
θt is the true state at time t and Xt is an observed response, we have that

Xt = Ctθt + νt (4)
θt = Atθt−1 + δt, (5)

where νt and δt are process and observation noise, respectively, each from a multivariate normal
distribution with mean zero and estimated covariance matrices. Therefore, Equation 4 is static and
connects the latent state, θt, to the observed responses, Xt. Equation 5 is dynamic and describes
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the relationship between the latent state and its lagged values (Oud et al. 1999).

With these definitions, we can see that the Kalman filter is a natural way to trace the continu-
ous student ability parameter, θi, in a way that is analogous to a hidden Markov model. However,
we propose a few changes in order to adapt the Kalman filter to an education context. One change
that we propose is to use the extended Kalman filter (Durbin and Koopman 2000) which uses a
generalized linear model to describe the relationship between Xitj and θit. This is necessary be-
cause in IRT, we are interested in estimating the probability of Xitj as a function of θit and the
item features, βj; therefore, we assume a logit link, which naturally confines the probability to be
between 0 and 1. For example, in the Rasch model case, Equation 4 becomes

logit(P (Xitj|θit, βj)) = θit − βj. (6)

Additionally, we propose changing the relationship between θt and θt−1 to be additive at each time
increment instead of multiplicative. Then, equation 5 becomes

θit = θit−1 + δit, (7)

where δit ∼ N(α, σ2
α) is a random effect describing student i’s change in proficiency from time

t − 1 to t. Because the relationship between θs at successive time points is additive, the value of
δit is a measure of student i’s learning from time t− 1 to time t. To put the change in perspective,
we look at the estimates of α and σα which describe the average learning rate and variability of
learning for all students in the sample. These estimates are also of interest because in order to
compare different methods of teaching and find the one that most promotes learning, we would
simply look for the higher average rate of change, α.

The common equation for dynamic learning models, Equation 3, can be rewritten for the KF +
IRT model, where zit = θit, as

P (θi1)P (Xi1|θi1, β)
T−1∏
t=1

P (θit+1|θit)P (Xit+1|θit+1, β). (8)

where we assume θi1 ∼ N(0, 1) as is common in the static model. In this way, positive θs
are still above average and negative ones are below average. As in Equation 1, P (Xit|θit, β) =
J∏

j=1

P (Xitj|θit, βj) using the standard assumption of local independence (e.g. Junker and Sijtsma

2001). Also, while we used the Rasch model to exemplify P (Xitj|θit, βj), it is also be possible
to use any IRT model described in Section A.1. Finally, as described in this section, we assume
θit+1 = θit + δit where δit ∼ N(α, σ2

α) describes the extended Kalman Filter that we apply to the
latent student cognitive ability parameter.

3.4.2 PDPC + IRT

It is possible that KF + IRT may require estimating too many parameters, be computationally in-
feasible, or that we would lack the data to support watching individuals move through the latent

6



space. Alternatively, a researcher may not want information about individual students, but only
about groups of students for purposes like monitoring teacher performance or developing more
focused instruction. In these scenarios, a form of the PDPC model (Rijmen et al. 2005; 2008),
called PDPC + IRT and depicted in the upper right corner of Figure 2, may be more appropriate.

In PDPC + IRT, we define Z latent states to describe groups of students with similar response
patterns. Then, at each time point, we assume that students transition between these states accord-
ing to a time homogeneous hidden Markov model and estimate the latent state membership, zit.
The distribution of θit is then dependent on student i’s latent knowledge state at time t.

More specifically, we assume that θ|z ∼ N(µz, σ
2
z). Then knowing µz and σz for the Z pos-

sible states and a student’s trajectory through the latent state space, zi, as well as the posterior
probabilities of being in each of the other latent states, allows us to track that student’s learning.
By clustering students into groups, we can visualize student learning using the parameters of the θ
distribution as opposed to estimating a θ for each individual student as in KF + IRT. This simplifies
estimation.

Alternatively, if our goal is to compare learning in different curricula or after an intervention,
we would be interested in comparing the transition matrices of the latent knowledge states from
the time homogeneous hidden Markov model. The matrix with the higher probability of moving
to a more proficient state can be assumed to be the one that most promotes learning.

In PDPC + IRT, we assume that the clusters describing student ability are fixed over the T time
points and students transition between them over time. Another method of defining the clusters
would be to use trajectory clustering where students who learn similarly over the period of time
are grouped together (Stallard 2007; Manrique 2009; Connor 2006; Roeder et al. 1999). While we
think this is an important option to explore, it is beyond the scope of this thesis.

The main difference between PDPC + IRT and the PDPC model is that we are interested in watch-
ing students move through the latent space while other parameters remain fixed. There is a school
of thought, which includes PDPC, that follows student learning by allowing the item features to
change over time (Rijmen et al. 2005; 2008; Draney et al. 1995; Pavlik et al. 2009; Cen et al.
2006). We require that βj remain constant because our main goal is to compare the parameters of
the student ability distribution. Therefore, we do not allow any of the variability in latent states
to be absorbed by the item parameter assuring that it is contained in the student ability distri-
bution. Another difference is that we do not assume a particular IRT model. Any IRT model can
be incorporated into this framework with the constraint that item parameters are constant over time.

The likelihood function for PDPC + IRT is exactly Equation 3 where zi1 is the initial state and

P (zit+1|zit) is the transition probability in a Markov chain. P (Xit|zit, β) =

∫
θ

P (Xit|θit, βj)P (θit|zit)

where we use the law of total probability to expand the responses to be dependent on θ. By the
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local independence assumption, P (Xit|θit, βj) =
J∏

j=1

P (Xitj|θit, βj), where the probability of a

successful response is any of the static IRT models described in Section A.1. As described in this
section, we assume θit|zit ∼ N(µz, σ

2
z ).

3.5 Dynamic CDM Models
The dynamic models we have presented thus far assume the latent student parameter is a continu-
ous variable describing a student’s overall proficiency or in other words, that they fit into the IRT
framework. However, similar approaches can be taken if we are interested in estimating whether
students have mastered a set of skills. In static CDMs, presented in detail in the Appendix, Sec-
tion A.2, we typically want to estimate θ as a vector of K binary latent variables, defined as the
presence or absence of individual skills which the exam is covering. We present two ways of incor-
porating time into such a model. The first is an extension of Knowledge Tracing (KT; Corbett et al.
1995), a method of directly tracing students learning and forgetting skills over time. The second
approach uses the PDPC method as its base. This section will describe these ideas in more detail.

3.5.1 KT + CDM

In the KT + CDM model, depicted in the lower left corner of Figure 2, we assume that skills are
assigned to items before an exam is given and the goal is to estimate whether students have mas-
tered each skill of interest at each time point based both on how they respond to items and whether
they had the skill at the previous time point. Therefore, at each time point, we assume that every
skill is allowed to transition between mastered and not mastered independently of the other skills
according to a time homogeneous hidden Markov model. We are willing to relax these assump-
tions as we learn to work with and draw inferences from the complex models.

In this scenario, as introduced in Section 3.2, the latent states, z, are identical to the vector of skills,
θ. Then, to define the marginal likelihood, we start with the KF + IRT likelihood, Equation 8 where

now θit = (θit1, θit2, ..., θitK) and let θi1 =
K∏

k=1

P (θi1k) be the product of K initial state probabilities

in a Markov chain where we assume each θi1k ∼ Bern(pk), just as in a static model. Similarly,

P (θit+1|θit) =
K∏

k=1

P (θit+1k|θitk) is the product of K transition probabilities from the Markov chain

describing the acquisition of skills. Finally, as in Equation 1, P (Xit|θit) =
J∏

j=1

P (Xitj|θit), where

P (Xitj|θit) is defined to be any of the CDM models described in Section A.2.

With this KT + CDM model, we can follow students learning and forgetting skills over time.
Furthermore, we intend to accommodate the likely scenario that skills are not learned indepen-
dently using a model like that presented by (DeLaTorre and Douglas 2004). In essence, they use
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a hierarchical IRT model to describe the dependencies between skills. Also, in order to compare
different methods of teaching, one could estimate and compare different transition matrices for the
acquisition of skills for the different methods.

The KT + CDM model differs from the KT model (Corbett et al. 1995) in that KT was devel-
oped to estimate skill mastery in a particular cognitive tutor setting where the items were designed
such that each entry the user made was in reference to one particular skill and the probability that
the user had that skill was updated immediately. KT + CDM expands this model to incorporate the
more common situation of multiple skill items on multiple item exams. Furthermore, KT + CDM
allows us to use any CDM whereas current KT is restricted to the NIDA model.

With KT + CDM, we can track learning in a situation that does not depend on an update after
every student entry. It allows for paper and pencil benchmark tests which may be more realistic in
the classroom but retains the interpretability of the KT model. If a teacher gives her class bench-
mark exams and wants to see how they are learning, using the KT + CDM algorithm will allow us
to tell her specifically which skills each student has learned at each time point.

3.5.2 PDPC + CDM

Just as in IRT, it is possible that the KT + CDM method may become computationally infeasible,
or that there are not enough data to support the method because individual skills are not attempted
often enough or there are many skills to be estimated. Alternatively, a more parsimonious model
with information at a coarser grain size than knowing whether each student has each skill at every
time point may be desired or may be a better fit, as discussed in Section 5. In this scenario, we
may resort to an adaptation of the PDPC model for CDMs. We call this model PDPC + CDM and
depict it in the lower right corner of Figure 2.

Like PDPC + IRT, we cluster students into latent states, z, which can be thought of as groups
of students with similar skill or response patterns. Students are then allowed to transition between
these latent states according to a time homogeneous hidden Markov model. In order to track stu-
dents learning over time, we follow the trajectory of their latent states, the posterior probabilities
of being in each of the other latent states at each time point, and the parameters of the latent state
distributions. In a scenario with multiple skills, the number of latent states would not necessarily
be equal to 2K , the number of skill patterns, but for each latent state, we would be interested in the
probability of having each of the K skiills. In this situation, the probability of knowing some skills
may increase while others may decrease as students transition between states.

Just as in PDPC + IRT, we add the constraint that any parameter in the CDM that describes the
item (or skill as in the NIDA model) as opposed to the student must be independent of both time
and the latent state. This allows us to make comparisons of the distributions associated with
those latent states. The likelihood for PDPC + CDM is exactly the same as that of PDPC +
IRT where we assume P (Xitj|θit, βj) is a CDM instead of an IRT model. We also assume that
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θit|zit ∼
K∏

k=1

Bern(pkz), where pkz is the probability of having skill k for students in state z. In

this model, we assume that skills are either known or unknown.

4 Preliminary Results
In order to illustrate these methods of incorporating learning into the cognitive assessment frame-
work, we have simulated some data. In this section, we describe one data set and present some
preliminary results when applying the PDPC + IRT model as the model of choice.

4.1 Simulated Data
In this section, we describe the data set that we simulated.

1. We chose to simulate data for 1, 000 students answering a 15 item test at 5 time points.

2. We randomly assigned students to the initial states with equal probability.

• We chose 2 latent knowledge states.

3. We generated the path each student took through the latent knowledge state space.

• We defined the transition matrix to be P = [ 0.75 0.25
0.25 0.75 ]

4. We generated θs according to the latent class students belonged to at each time point.

• We set µ1 = −1, µ2 = 1, and σ1 = σ2 = 0.25.

• We chose these means for simple interpretation. We think of each state as a group of
students who does not do very well (µ = −1) and a group of students who does do
relatively well (µ = 1). We call these group 1 and group 2, respectively.

• While it is not necessary for the standard deviations to be equal, we do feel it is going
to be important for them to be small so that the states are separable. If the states are not
separable, estimation of state membership will be difficult because in reality, a student
could belong to either state. However, more exploration will better inform us as to what
constraints need to be placed on these values.

5. We generated student responses.

• We assumed a Rasch model.

• The difficulties of the items were taken to be a sequence of 15 numbers evenly dis-
tributed between −2 and 2. This ensures that we have items able to differentiate be-
tween students of most possible abilities (given our θs come from normal distributions
with means −1 and 1 and standard deviations 0.25).
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The goal now is to retrace these steps and estimate each student’s path over the five time points
and the parameters of the two θ distributions. To do this, we will use Markov Chain Monte Carlo
(MCMC) methods and the statistical program WinBUGS (Lunn et al. 2000).

4.2 Model
In order to pilot the PDPC + IRT method, we employed the following model:

Xitj ∼ Bernoulli(pijt),

where

logit(pijt) = θit − βj

θit|zit = z ∼ Normal(µz, 0.25)
µz ∼ Normal(0, 1)
zi1 ∼ Categorical(K, π0)
zit ∼ Categorical(K, P [zit−1, ])
K = 2
π0 is a vector of length K where each entry is 1

K

P is the known transition matrix from the simulation
β is the known vector of item difficulties from the simulation

In this model, we assumed many parameters were known. We did this in order to maintain sim-
plicity in the initial stages of developing the model. Specifically, we allowed the number of latent
states, the transition matrix and initial probabilities of being in each state, the standard deviations
of the θ distributions, and the item difficulties to be deterministic. As we get more comfortable with
the model, we will start to estimate these values as well. We did, however, estimate the path each
student took through the latent state space and his proficiency, θ, at each time point. In addition,
we estimated the means of the two θ distributions.

4.3 Results
Using WinBUGS, we ran 5 chains with different starting points for 6, 000 iterations, a burn-in of
600, and thinning of 27. This resulted in 200 simulated values which we use to calculate sample
statistics. Specifically, we report the median values pooled across the five chains. In this section,
we discuss the Gibbs sampler, compare the results to the “true,” simulated values, and discuss
problems that we encountered.

Because this is a parameter driven process for change model, we are particularly interested in
whether we were able to recapture the means of the θ|z = 1 and θ|z = 2 distributions. In fact,
we find that the estimated values (with 95% credible intervals) are very close to the true values of
µ1 = −1 and µ2 = 1 with µ̂1 = −1.001 (−1.029,−0.971) and µ̂2 = 1.002 (−0.973, 1.029). The
R̂ for these estimates are 1.10 and 1.06, respectively. Figure 3, along with the fact that R̂ ≤ 1.1
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(Gelman et al. 2004) for each value, show that the five simulated sequences adequately converged.
Therefore, we were able to recapture these parameter values within rounding to the one-hundredths
place. The narrow credible intervals, approximately 0.06 in width, also indicate that the recovery
was accurate and successful.

Next, we consider the recovery of the latent states, zit. Because there are only two latent states, the
median value that we use as the result corresponds to the latent state that is frequented most by the
MCMC chains. If we ignore time and look at the N · T = 5, 000 latent states that we are trying
to estimate, we find that 4, 729/5, 000 (94.6%) estimated latent states matched the students’ states
in the simulated data set. Therefore, students were generally classified to their true state. Random
chance would have classified approximately 2, 500 states correctly so we are doing 44.6% better.

We also found that only 228/1, 000 (22.8%) students were assigned to the wrong state at an av-
erage of 1.19 (sd = 0.43) time points. Therefore, 772/1, 000 (77.2%) students were placed in
the correct state at all 5 time points. Even if a student is placed in an incorrect state at one time
point, his states at other time points are still likely to be correctly determined. With no estimation
and given our transition matrix, the best we could do is use the maximum likelihood trajectory
where we assume that a student stays in the same state at all time points. This would correspond
to putting approximately 16% of students into the correct latent state at all five time points. We
achieve 77.2%. Therefore, we are estimating correct trajectories for 61.2% more students.

Figure 4 shows the simulated chains for 3 randomly selected students and time points with added
noise so that the chains were not completely overlapping. We see that for these three students, the
five chains agreed on latent state placement at each iteration. While this is the case for the majority
of student time points (3, 224/5, 000), there are some cases where the chain switches from one
state to the other at least once.

Figure 5 shows an example, for student 13 at time 2, where the five chains do not agree. We
claim that this discrepancy is a good result because if we look up this student’s response pattern
at time 2, we find he successfully answered the eight items with difficulty less than or equal to
0 and incorrectly answered the seven items with difficulty greater than 0. This would lead us to
believe that his θ value is approximately 0 instead of 0.69 as we know from the simulated data set.
Therefore, because we do not have a latent state corresponding to a θ of 0, it makes sense that the
five chains disagree. In fact, if we average the θ estimates across chains, we indeed get a mean of
0.08 which more closely matches that student’s data. Therefore, our estimation process is suffering
because we do not have a latent state in which he would belong. This seems to be the case in many
of the cases where there are switches from one state to another. It is possible that once we relax the
assumption that we know the number of latent states, this issue will automatically alleviate itself.
Otherwise, we will need to find a way to better define the number of latent states for WinBUGS
and be amenable to changing that after some exploratory work.

Another possible explanation for the chains to be switching state assignments is the label switching
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phenomenon (Jasra et al. 2006). While we do not believe that possibility to be likely at this time
since our assumptions are so strict, we do believe it is going to be an issue in the future.

Finally, we do not present many results about the latent student parameter, θ. This is done pur-
posely for two reasons. First, the focus of the PDPC + IRT model is not on the individual students’
θs but on their trajectories through the latent state space and the distributions describing those
states. Second, we do not present those results because, as we just described with the student who
has a “true” θ = 0.69 but behavior of a student with θ = 0, there is enough discrepancy between
the “true” θ and the corresponding response patterns that comparing the θs is not particularly in-
teresting. In the future, we may try to simulate a data set where the response patterns match more
closely the true θ. More items would be a good method of more accurately estimating θ.

We take these preliminary results about the recovery of the distributional means and latent tra-
jectories as good evidence that our methods are feasible. Obviously, there is still a lot that we must
do including trying the other three models, making the PDPC + IRT model less strict (because
we assumed so many parameters were known), making comparisons to the baseline model, and
applying the models to real data sets. We look forward to continuing to work with these methods.

4.4 Real Data
To pilot our models in a real scenario, we may use a subset of data from the Assistment System
on line mathematics tutor (Heffernan et al. 2001). The goal of the Assistment System is to prepare
students for the mathematics portion of the Massachusetts Comprehensive Assessment System
(MCAS), Massachusetts’ end of year exam meant to satisfy the requirements of NCLB (Ayers and
Junker 2008). In the Assistment System, students are given items in a cognitive tutor setting over
the course of the academic year. We will be interested in looking at a subset of these items that
focus on a particular area such as geometry. Then we can apply our methods and track student
learning in that subject over the course of the year. We also have access to the student’s MCAS
scores and can compare predictions using our methods to predictions using a static model. This is
important because it is one of the main methods of model fit that we intend to employ as described
in Section 5. Another nice aspect of the Assistment data is that it is coded as individual skills so
we can not only try the IRT models but the CDM ones as well.

Other options for real data are cognitive tutor data sets found in the PSLC DataShop (Koedinger
et al. 2008). These are desirable because there are often more items covering a more narrow range
of topics. Therefore, we would expect better estimates from the dense plethora of data than we
would find in the Assistment system. Unfortunately, we may not be able to find a data set that
covers more than a few days’ time or that has a posttest as natural as the MCAS exam. Therefore,
we may use one or both types of data sets throughout our analysis of the learning models.
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5 Model Comparison
In this section, we describe the methods we will employ to assess the fit of our models on real data.

Ayers and Junker (2008) found they could better predict students’ end of year MCAS exam scores
using a student’s cognitive ability estimate, θ, as opposed to the number of correct items a student
completed in the Assistment system. Following their work and that of Anozie and Junker (2007);
Schofield (2007), we intend to use an errors-in-variables regression to predict exam scores. We
would like to find that a dynamic estimate of θ is a better predictor than a static one. Therefore, we
will compare predictive results like the cross-validation average difference between true and pre-
dicted MCAS scores (mean absolute deviation (MAD) scores), assuming we use the Assistment
data set, and the cross-validation mean square error (MSE). We may also add a middle level of
learning where we assume a dynamic model with a common rate of change for all students. Ide-
ally, our models with the individual changes in cognitive ability for each student will best predict
end of year state exam scores. This not only would lend credibility to the models but would be
good evidence for teachers, researchers, and policy makers that the individual learning estimates
are more valuable than static ones and they could then use the estimates to better inform instruction,
experiments, and policy.

6 Proposed and Future Work
In this section, we outline the chapters we foresee going into the thesis along with proposed draft
completion dates.

1. Introduction: May, 2011

2. Static Model Review: completed
We will present the common static framework from the proposal as well as the review of
static models.

3. Common Framework for Dynamic Models: completed
We will present the common dynamic framework from the proposal.

4. Individual Models (4 chapters): September, 2010 - February, 2011
We will present both an empirical and mathematical description of each of the four models
we propose. In each case we will discuss the results of simulations on a variety of data sets
including ones built specifically for that model, for one of the other models and possibly for
other cognitive theory models altogether. We can then discuss the estimation and parameter
recovery of those simulations and hopefully present some insight into the advantages and
disadvantages of each model. Where appropriate, we will discuss the difficulties we en-
counter along with any computational tricks we discover for overcoming these difficulties.
We may also develop some guidelines for when each model is appropriate, e.g. perhaps a
certain sample size or number of skills is needed before considering a particular model.
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5. Application: February - April, 2011
We will apply at least one model to a real data set and present substantive conclusions relating
to predictive power when comparing to predictions from a static model. We may also be able
to give insight into the true rate and variability with which students learn.

6. Summary, Conclusions and Future Work: May, 2011

7 Conclusion
We propose four ideas for incorporating learning over time into the cognitive assessment frame-
work. These models extend both IRT and CDM models so the user has the choice of whether he
wants to define a student’s latent cognitive ability as a continuous measure of overall ability or a
discrete vector of skills. With the extensions to these models that we describe, we hope to develop
a solid theoretical basis for which to include time in cognitive assessment models.

We expect that applying these models to real data sets will be informative to teachers, researchers,
and policy makers for many reasons. On one hand, it may allow us to discover more about the rate
at which students learn. We can then compare the actual learning rates with expectations which
could be useful for helping teachers become better instructors and everyone have more realistic
expectations about what to expect in terms of student learning over relatively short periods of time.
We can also expect detailed information about individual students which has the potential to inform
teachers so that they can better prepare for end of year accountability exams. Finally, the models
presented can be used to make comparisons of learning between different types of experimental
interventions and curricula.

Obviously, there is still a lot of work that must be done before these models are ready to be used
mainstream. However, with the timeline presented in Section 6, we believe we can do accomplish
this feat in the next year.
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Appendices
A Static Models
In the main part of this proposal, we extend the theory behind cognitive assessment models to
account for the dynamic case. In this section, we present some of the most commonly used static
models that can be used in the new framework. We also note that while we assume dichotomous
responses, i.e. Xij = 1 if student i correctly answers item j and 0 otherwise, polytomous models
are also possible (Studer 2009; Hemker et al. 2001; Thissen and Steinberg 1986).

A.1 Item Response Theory Models
In Item Response Theory (IRT; VanDerLinden and Hambleton 1997) models, the student parame-
ter is usually defined to be normally distributed and is essentially measuring a student’s “general
propensity to do well” (Junker 1999). It’s often a univariate parameter called θ but could also be
multivariate. The item parameter, typically called β, can also be univariate or multivariate and
describes the difficulty and other attributes of the item. In this section, we will present a short
description of many of the static IRT models that are commonly used by defining the different
enumerations of the student and item parameters.

All of the IRT models presented use a logistic link to define P (Xij = 1|θi, βj), the probability
that student i correctly answers item j. Furthermore, we assume that the student parameter is a
random effect (Holland 1990) and the item parameter is a fixed effect. Therefore, IRT models are a
variation on mixed effects logistic regression models (Raudenbush and Bryk 2002; Hedeker 2005;
McCullagh and Nelder 1989).

• 3PL Model In the three parameter logistic (3PL) model 1,

P (Xij = 1|θi, βj) = gj +
1− gj

1 + exp(aj(θi − bj))
, (9)

where

– βj is assumed to be multidimensional with βj = (aj, bj, gj).

– θi is assumed to be unidimensional.

When P (Xij = 1|θi, βj) is plotted against different values of θ, we call it an Item Character-
istic Curve (ICC). Each of the parameters in β have both a mathematical and psychometric
definition. (Harris 1989)

1Some authors add a constant to the 3PL, 2PL and 1PL models such that, for example with the 3PL model,P (Xij =
1|θi, βj) = gj + 1−gj

1+exp(1.7aj(θi−bj))
. They do this so that the approximation to the Normal Ogive model, which we

do not discuss in this paper, is computationally simpler. We do not make this distinction as the notationally simpler
model without 1.7 is sufficient for the logistic model discussed in this proposal.
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– Mathematically, aj is the slope of the ICC. Psychometrically, aj is the discrimina-
tion parameter. Higher values of aj indicate that the item better differentiates between
students at bj , the point of inflection. Easy items (items with low bj’s) are used to
discriminate between students with low abilities where as hard problems are used to
discriminate between students with high abilities.

– Mathematically, bj is the point of inflection on the ICC. Psychometrically, bj is the
item difficulty parameter. At the pivot point, where proficiency equals difficulty or in
other words, where θi = bj , student i has a 50% chance of correctly solving question
j. Harder problems have higher values of bj while easier problems have lower values
of bj .

– Mathematically, gj is the limit of the curve as θ goes to −∞. Psychometrically, gj is
a guessing parameter which allows students, even those with low abilities, to answer
questions correctly by chance.

• 2PL Model The two parameter logistic (2PL) model is a more specific model than the 3PL
model that assumes no guessing, gj = 0. In other words, the 2PL model assumes that
students have no chance of correctly guessing the answer. They must have some proficiency
to get an answer right. (Harris 1989)

P (Xij = 1|θi, βj) =
1

1 + exp(aj(θi − bj))
, (10)

where

– βj is assumed to be multidimensional with βj = (aj, bj).

– θi is assumed to be unidimensional.

The mathematical and psychometric definitions of these parameters remain unchanged from
the 3PL model.

• 1PL or Rasch Model The 1PL model is an even less general model than the 2PL model
and is most commonly known as the Rasch model (Rasch 1960/1980). This model sets
gj = 0 and aj = 1. Therefore, students have no chance of guessing the correct answer and
furthermore, all questions on the exam are presumed to be equally discriminating. (Harris
1989) Then

P (Xij = 1|θi, βj) =
1

1 + exp(θi − βj)
, (11)

where

– βj is assumed to be unidimensional; hence, we substitute βj for bj .

– θi is assumed to be unidimensional.
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The mathematical and psychometric definition of βj remains unchanged from bj in the 3PL
model.

• Multidimensional IRT In multidimensional IRT (MIRT; VanDerLinden and Hambleton
1997) models, we are interested in changing the dimension of the student parameter. Many
tests are constructed to measure more than one type of ability. For example, with an exam
that covers both reading and math material or less disparate, two math subjects like proba-
bility and integration, we would most likely be more interested in separate estimates of the
proficiencies for each subject. In this case, θ, for each student, would be two dimensional.
(DeBoeck and Wilson 2004) In this case, the ICC remains the same as the 1PL, 2PL or 3PL
models but

– βj can be from the 3PL model: (aj, bj, gj), the 2PL model: (aj, bj) or the 1PL model:
(bj).

– θi is a linear combination of (θ1i, θ2i, ..., θKi) where K is the desired dimension of θ.

• Hierarchical Models Another way to expand the student parameter is hierarchically (Rau-
denbush and Bryk 2002). We may expect all students with similar characteristics to have the
same ability. For example all students in the same class were taught by the same teacher and
so we may expect them to have the same ability. In this case, we would actually be estimating
fewer than N student parameters (the number of teachers in this scenario). Alternatively, we
may think that students from the same class are similar but not exactly the same. In this case
we build in a class hierarchy. The hierarchy can be extended to any parameter that describes
students such as the school they attend, the district they are in, the teacher they have, their
gender, etc. These models are an extension to the logistic models because we still use a 1-,
2- or 3- PL model. (DeBoeck and Wilson 2004) In this case, the ICC remains the same as
the 1PL, 2PL or 3PL models but

– βj can be from the 3PL model: (aj, bj, gj), the 2PL model: (aj, bj) or the 1PL model:
(bj).

– θi is a linear combination of θs describing the student’s properties. For example, there
could be a separate θ for the teacher, school, district and then one that directly corre-
sponds to the additional variation in student i.

• LLTM In the Linear Logistic Test Model (LLTM) we are interested in reducing the dimen-
sion of the item parameter. Instead of assuming that each question has its own difficulty,
we might be interested in grouping similar questions together. For example if an exam tests
multiple skills, we may classify individual items by the skills necessary to complete them
and then be interested in the difficulty of the skill as opposed to the item. These are a sub-
class of the logistic models where we still use a 1-, 2- or 3- PL model. (DeBoeck and Wilson
2004) Therefore, the ICC remains the same as the particular model chosen but

– Whichever IRT model is chosen, each element in βj is a linear combination of D item
features. For example, in the Rasch model, βj = (β1j, β2j, ..., βDj).
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– θi is assumed to be unidimensional.

• Multidimensional LLTM Finally, we could adjust the dimensionality of both the student
and item parameters. This is known as the multidimensional LLTM (DeBoeck and Wilson
2004). Again, the ICC corresponds to the IRT model chosen but

– Whichever IRT model is chosen, each element in βj is a linear combination of D item
features. For example, in the Rasch model, βj = (β1j, β2j, ..., βDj).

– θi is a linear combination of (θ1i, θ2i, ..., θKi) where K is the desired dimension of θ.

A.2 Cognitive Diagnosis Models
In Cognitive Diagnosis Models (CDMs; Rupp and Templin 2008), the student parameter is defined
to be a vector of Bernoulli’s and is essentially measuring whether a student possesses a set of skills
necessary to do well on the assessment. Therefore, the student parameter, θi is a vector of length
K where θik = 1 if student i possesses skill k and 0 otherwise for each of K skills. Because we
are interested in knowing whether a student has a specific set of skills, it is necessary to know
which skills are required to answer each question correctly. We need an expert defined design
matrix, often called Q, where qjk = 1 indicates that a correct answer to item j require a student
to possess trait k and is 0 otherwise (Barnes 2005). In CDMs, the item parameter is typically
multidimensional and describes different attributes of the item. In this section, we present a short
description of some common static CDMs that are commonly used in cognitive assessment.

• DINA Model In the Deterministic Input; Noisy “And” gate (DINA) model,

P (Xij = 1|θi, βj) = (1− sj)
ξijg

1−ξij

j . (12)

In this model, a new indicator variable ξij is presented, which equals 1 if student i has
mastered all skills necessary to correctly answer item j and 0 if he has failed to master at
least one skill. In other words, it is the ideal response in that if there were no guessing and
slipping allowed, ξ would be equal to the student’s response. Mathematically,

ξij =
K∏

k=1

θ
qjk

ik . (13)

The item parameter, βj , is two dimensional with slip and guess parameters. The slip pa-
rameter, sj = P (Xij = 0|ξij = 1), is the probability that a student gets question j
incorrect even though he has mastered all of the necessary skills. The guess parameter,
gj = P (Xij = 1|ξij = 0), is similar to the guess parameter in the 3PL model. It is the prob-
ability a student correctly answers question j even though he doesn’t have all of the required
skills. (Macready and Dayton 1977; Haertel 1989; Junker and Sijtsma 2001)

Explicitly,
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– βj is assumed to be multidimensional with βj = (sj, gj).

– θi is assumed to be multidimensional with θi = (θi1, θi2, ..., θiK).

• NIDA Model In the Noisy Input, Deterministic “And” gate (NIDA) model,

P (Xij = 1|θi, βj) =
K∏

k=1

((1− sk)
θikg1−θik

k )qjk . (14)

The NIDA model is similar to the DINA model except we assume that each skill, as opposed
to each item, has an associated guess and slip parameter. (Maris 1999; Junker and Sijtsma
2001)

Explicitly,

– β is a skill parameter as opposed to an item parameter and is therefore subscripted by
k. It is assumed to be multidimensional with βk = (sk, gk).

– θi is multidimensional with θi = (θi1, θi2, ..., θiK).

• RedRUM In the Reduced Reparametrized Unified Model (RedRUM),

P (Xij = 1|θi, βj) = πj

K∏
k=1

(r1−θik
jk )qjk (15)

The RUM model is a generalization of the NIDA and DINA models where βj is defined as
πj , the maximal probability of success on item j, and rjk, the penalty for each skill, k, not
possessed (DiBello et al. 1995; Junker 2007; Hartz 2002).

If we constrain this model, it becomes exactly the NIDA or DINA model depending on
the parametrization. If we let πj =

∏K
k=1(1 − sjk)

qjk , rjk =
gjk

1−sjk
, and rearrange terms we

will discover the DINA and NIDA models (assuming for the NIDA model: sjk = sk and
gjk = gk and for the DINA model: sjk = sj and gjk = gj Hartz 2002).

Explicitly,

– βj is assumed to be multidimensional with βj = (πj, rjk).

– θi is assumed to be multidimensional with θi = (θi1, θi2, ..., θiK).
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Figure 1: A directed acyclic graph that depicts the relationship between student responses and
latent knowledge states over time. The conditional independences inherent in directed acyclic
graphs help us define the common framework for dynamic models.
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Figure 2: A graphical depiction of the four methods we present to incorporate time into cognitive
assessment models.
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Figure 3: Each plot shows the five MCMC chains for estimating µ1 and µ2. There are 200 iterations
from the original 2000 due to a burn-in of 600 and thinning of 27. All five chains overlap and span
a small range with R̂ ≤ 1.1 indicating convergence.
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Figure 4: Each plot shows the five MCMC chains for estimating 3 random students’ latent states
at 3 random time points (where zit = z[i, t]) from top to bottom. There are 200 iterations from the
original 6, 000 due to a burn-in of 600 and thinning of 27. We added noise to the binary results so
that the chains would not be completely overlapping. In these cases, all five of the chains agreed
at all simulation points about which state the students belonged.
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Figure 5: The two plots show the five MCMC chains for estimating student 13’s latent state and
θ at time t = 2. There are 200 iterations from the original 6, 000 due to a burn-in of 600 and
thinning of 27. We added noise to the binary results of the latent state so that the chains would not
be completely overlapping. We see that there was little agreement about which state this student
should be classified to. However, looking at the student’s response pattern indicates that he may
have a θ value close to 0 which means he doesn’t fit into either latent state and so it’s not surprising
that the estimation procedure has trouble placing him.

25



References
Anozie, N. and Junker, B. (2007), “Investigating the utility of a conjunctive model in Q-matrix

assessment using monthly student records in an online tutoring system,” Proposal submitted to
the National Council on Measurement in Education 2007 meeting.

Ayers, E. and Junker, B. (2008), “ IRT Modeling of Tutor Performance To Predict End-of-year
Exam Scores,” Educational and Psychological Measurement, 68, 972–987.

Barnes, T. (2005), “Q-matrix Method: Mining Student Response Data for Knowledge,” Proceed-
ings of the AAAI Workshop on Educational Data Mining Pittsburgh (AAAI Technical Report).

Bransford, J., Brown, A., and Cocking, R. (2000), How people learn: Brain, Mind, Experience,
and School, Washington DC: National Academy Press.

Carver, S. (2001), Cognition and instruction: Enriching the laboratory school experience of chil-
dren, teachers, parents, and undergraduates , Mahwah, NJ: Lawrence Erlbaum Associates, Inc.,
In Carver & Klahr (Eds.) Cognition and instruction: Twenty-five years of progress.

Cen, H., Koedinger, K., and Junker, B. (2006), Lecture Notes in Computer Science: Learning
Factors Analysis - A General Method for Cognitive Model Evaluation and Improvement, Berlin:
Springer.

Connor, J. (2006), “Multivariate Mixture Models to Describe Longitudinal Patterns of Frailty in
American Seniors,” Thesis, Department of Statistics, Carnegie Mellon University.

Corbett, A., Anderson, J., and O’Brien, A. (1995), “Student Modeling in the ACT Programming
Tutor,” Chapter 2 in P. Nichols, S. Chipman & R. Brennan, Cognitively Diagnostic Assessment.
Hillsdale, NJ: Erlbaum.

DeBoeck, P. and Wilson, M. (2004), Explanatory Item Response Model: A Generalized Linear
and Nonlinear Approach, New York: Springer.

DeLaTorre, J. and Douglas, J. (2004), “Higher-order Latent Trait Models for Cognitive Diagnosis,”
Psychometrika, 69, 333–353.

Dethlefsen, C. and Lundbye-Christensen, S. (2006), “Formulating State Space Models in R with
Focus on Longitudinal Regression Models,” Journal of Statistical Software, 16.

DiBello, L., Stout, W., and Roussos, L. (1995), “Unified Cognitive/Psychometric Diagnostic As-
sessment Likelihood-Based Classification Techniques,” Chapter 15 in P. Nichols, S. Chipman &
R. Brennan, Cognitively Diagnostic Assessment. Hillsdale, NJ: Erlbaum.

Draney, K., Pirolli, P., and Wilson, M. (1995), “A measurement model for complex cognitive
skills,” Chapter 15 in P. Nichols, S. Chipman & R. Brennan, Cognitively Diagnostic Assessment.
Hillsdale, NJ: Erlbaum.

26



Durbin, J. and Koopman, S. (2000), “Time Series Analysis of Non-Gaussian Observations Based
on State Space Models from both Classical and Bayesian Perspectives,” Journal of the Royal
Statistical Society B, 62, 3–56, with discussion.

Feng, M., Heffernan, N., and Beck, J. (2009), “Using learning decomposition to analyze instruc-
tional effectiveness in the ASSISTment system ,” Proceeding of the 14th International Confer-
ence on Artificial Intelligence in Education, 523–530.

Feng, M., Heffernan, N., and Koedinger, K. (2006), “Addressing the Testing Challenge with a Web-
Based E-Assessment System that Tutors as it Assesses,” Association for Computing Machinery,
307–316.

Gelman, A., Carlin, J., Stern, H., and Rubin, D. (2004), Bayesian Data Analysis, Boca Raton:
Chapman and Hall/CRC, 2nd ed.

Haertel, E. (1989), “Using restricted latent class models to map the skill structure of achievement
items,” Journal of Educational Measurement, 26, 333–352.

Harris, D. (1989), “Comparison of 1-, 2-, and 3-Parameter IRT Models,” Items: Instructional
Topics in Educational Measurement, 157–163.

Hartz, S. (2002), “A Bayesian framework for the Unified Model for assessing cognitive abili-
ties: Blending theory with practice,” Unpublished doctoral dissertation, University of Illinois at
Urbana-Champaign.

Hedeker, D. (2005), Generalized Linear Mixed Models. In B. Everitt & D. Howell (Eds.), Wiley,
New York: Encyclopedia of Statistics in Behavioral Science.

Heffernan, N., Koedinger, K., Junker, B., and Ritter, S. (2001), “Using Web-Based Cognitive As-
sessment Systems for Predicting Student Performance on State Exams,” Technical Report, Insti-
tute of Educational Statistics: US Dept. of Education, & Dept. of Computer Science Worcester
Polytechnic Institute Univ.

Hemker, B., VanDerArk, L., and Sijtsma, K. (2001), “On Measurement Properties of Continuation
Ratio Models,” Psychometrika, 66, 487–506.

Holland, P. (1990), “On The Sampling Theory Foundations of Item Response Theory Models,”
Psychometrika, 55, 577–601.

Jasra, A., Holmes, C., and Stephens, D. (2006), “Markov Chain Monte Carlo Methods and the
Label Switching Problem in Bayesian Mixture Modeling,” Statistical Science, 20, 50–67.

Junker, B. (1999), “Some statistical models and computational methods that may be useful for
cognitively-relevant assessment,” Prepared for the Committee on the Foundations of Assessment,
National Research Council.

27



— (2007), “Some Issues And Applications In Cognitive Diagnosis And Educational Data Mining,”
New Trends in Psychometrics.

Junker, B. and Sijtsma, K. (2001), “Cognitive Assessment Models with Few Assumptions, and
Connections with Nonparametric Item Response Theory,” Applied Psychological Measurement,
25, 258–272.

Koedinger, K., Cunningham, K., Skogsholm, A., and Leber, B. (2008), “An open repository and
analysis tools for fine-grained, longitudinal learner data. In Baker, R.S.J.d., Barnes, T., Beck,
J.E. (Eds.),” 1st International Conference on Educational Data Mining, Proceedings. Montreal,
Quebec, Canada, 157–166.

Koedinger, K., McLaughlin, E., and Heffernan, N. (2010), “A Quasi-Experimental Evaluation of
an On-line Formative Assessment and Tutoring System ,” Journal of Educational Computing
Research, 4.

Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000), “WinBUGS - a Bayesian modelling
framework: concepts, structure, and extensibility ,” Statistics and Computing, 10, 325–337.

Macready, G. and Dayton, C. (1977), “The use of probabilistic models in the assessment of mas-
tery,” Journal of Educational Statistics, 2, 99–120.

Manrique, D. (2009), “Mixed Membership Multivariate Longitudinal Models with Applications,”
Thesis proposal, Department of Statistics, Carnegie Mellon University.

Maris, E. (1999), “Estimating multiple classification latent class models,” Psychometrika, 64, 197–
212.

McCullagh, P. and Nelder, J. (1989), Generalized Linear Models, Boca Raton: Chapman and
Hall/CRC, 2nd ed.

Oud, J., Jansen, R., VanLeeuwe, J., Aarnoutse, C., and Voeten, M. (1999), “Monitoring Pupil
Development by Means of the Kalman Filter and Smoother Based Upon SEM State Space Mod-
eling,” Learning and Individual Differences, 11, 121–136.

Pavlik, P., Cen, H., and Koedinger, K. (2009), “Performance Factors Analysis - A New Alter-
native to Knowledge Tracing ,” Proceeding of the 14th International Conference on Artificial
Intelligence in Education (AIED09), 531–538.

Rasch, G. (1960/1980), Probabilistic models for some intelligence and attainment tests, Chicago:
The University of Chicago Press, 2nd ed., copenhagen, Danish Institute for Educational Re-
search), expanded edition (1980) with foreword and afterword by B.D. Wright.

Raudenbush, S. and Bryk, A. (2002), Hierarchical Linear Models: Applications and Data Analysis
Methods, California: Sage Publications, 2nd ed.

28



Rijmen, F., DeBoeck, P., and VanderMaas, H. (2005), “An IRT Model with a Parameter-Driven
Process for Change,” Psychometrika, 70, 651–669.

Rijmen, F., Vansteelandt, K., and DeBoeck, P. (2008), “Latent Class Models for Diary Method
Data: Parameter Estimation by Local Computations,” Psychometrika, 73, 167–182.

Roeder, K., Lynch, K., and Nagin, S. (1999), “Modeling Uncertainty in Latent Class Membership:
A Case Study in Criminology,” Journal of the American Statistical Association, 94, 766–776.

Rupp, A. and Templin, J. (2008), “Unique characteristics of diagnostic models: a review of the
current state-of-the-art,” Measurement, 6, 219–262.

Schofield, L. (2007), “Using cognitive test scores in social science research,” Thesis proposal,
Department of Statistics, Carnegie Mellon University.

Stallard, E. (2007), “Trajectories of Disability and Mortality Among the U.S. Elderly Population:
Evidence from the 1984-1999 NLTCS,” North American Actuarial Journal.

Studer, C. (2009), “A Unifying Framework for Cognitive Assessment Models,” Tech Report?

Thissen, D. and Steinberg, L. (1986), “A Taxonomy of Item Response Models,” Psychometrika,
51, 567–577.

VanDerLinden, W. and Hambleton, R. (1997), Handbook of modern item response theory, New
York: Springer-Verlag.

Wasserman, L. (2004), All of Statistics: A Concise Course in Statistical Inference, New York:
Springer Texts in Statistics.

29


