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Abstract

Likelihood-based methods such as maximum likelihood, REML, and Bayesian methods are attrac-
tive approaches to estimating covariance parameters in spatial models based on Gaussian processes.
Finding such estimates can be computationally infeasible for large datasets, however, requiring O(n3)
calculations for each evaluation of the likelihood based on n observations. We propose the method of
covariance tapering to approximate the likelihood in this setting. In this approach, covariance ma-
trices are “tapered,” or multiplied element-wise by a compactly supported correlation matrix. This
produces matrices which can be be manipulated using more efficient sparse matrix algorithms. We
present two approximations to the Gaussian likelihood using tapering. The first tapers the model
covariance matrix only, whereas the second tapers both the model and sample covariance matrices.
Tapering the model covariance matrix can be viewed as changing the underlying model to one in
which the spatial covariance function is the direct product of the original covariance function and the
tapering function. Focusing on the particular case of the Matérn class of covariance functions, we give
conditions under which tapered and untapered covariance functions give equivalent (mutually abso-
lutely continuous) measures for Gaussian processes on bounded domains. This allows us to evaluate
the behavior of estimators maximizing our approximations to the likelihood under a bounded domain
asymptotic framework. We give conditions under which estimators maximizing our approximations
converge almost surely and quantify their efficiency using using the robust information criterion of
Heyde (1997). We present results from a simulation study showing concordance between our asymp-
totic results and what we observe for moderate but increasing sample sizes. Finally, we discuss a
potential application of these methods to a large spatial estimation problem, that of making statis-
tical inference about the climatological (long-run mean) temperature difference between two sets of
output from a computer model of global climate, run under two different land use scenarios.



1 Introduction

Much recent work has focused on the problem of estimating the autocovariance functions of spatially
correlated stochastic processes. Researchers in geology, hydrology, agriculture, epidemiology, and the en-
vironmental and atmospheric sciences require models which can capture correlations among observations
due to spatial location. For example, early interest in this problem arose when researchers realized that
spatial dependence in agricultural field trials could bias their results (see eg. Whittle, 1954). A more
recent example of the importance of spatial modeling is the prediction of air pollution levels at locations
which are not regularly monitored, in order to judge compliance with environmental regulations (Holland
et al., 2003). In this case, the quality of prediction depends heavily on the model for the relationship
between pollution at monitored and unmonitored locations.

Traditional approaches to estimating spatial covariance functions, such as fitting a parametric function
to the empirical variogram using weighted least squares, make no explicit distributional assumptions (see
Cressie, 1993, chap 2). Likelihood-based methods of estimating the spatial covariance function, such as
maximum likelihood, restricted maximum likelihood (REML), and Bayesian estimation, have been posed
as alternatives (Cook and Pocock, 1983; Kitanidis, 1983; Mardia and Marshall, 1984; Kitanidis, 1986;
Handcock and Stein, 1993). In particular, a widely adopted model assumes the existence of an underlying
stochastic process Z = {Z(s), s ∈ S ⊂ <d}, where Z is stationary and Gaussian, with specified mean
function E[Z(s)] = m(s;β) and isotropic covariance function

Cov(Z(s), Z(s′)) = K(||s− s′||; θ).

The functions m and K depend on the unknown parameters β ∈ <p and θ ∈ <q, which are to be estimated
based on a finite number of observations Zn = (Z(s1), . . . , Z(sn))′ at locations in Sn = {s1, . . . , sn ∈ S} .

It is often the case in recent data-rich applications that n is large. As will be clear from what follows,
this creates difficulties primarily in estimating the covariance parameters θ, so we suppose for simplicity
that the mean of Z is known to be zero. (We return to the non-zero mean case and methods for joint
estimation of β and θ in Section 6.) Then the log-likelihood function for θ based on Zn is

ln(θ) = −n

2
log(2π)− 1

2
log |Σn(θ)| − 1

2
Z ′

nΣn(θ)−1Zn, (1)

where Σn(θ) = {K(||si − sj ||; θ)}.
Maximizing (1) to find the MLE for θ was first advocated by Cook and Pocock (1983), Kitanidis

(1983), and Mardia and Marshall (1984). Controversy arose over the fact that (1) can be multimodal for
certain covariance functions, implying that numerical maximization algorithms can easily converge to a
local and not the global maximum (Warnes and Ripley, 1987). However, this does not appear to occur
for the class of covariance functions we consider (Mardia and Watkins, 1989; Stein, 1999).

Bayesian methods have gained popularity as well, primarily in applications requiring predictive dis-
tributions for the process at locations that have not been observed. The predictor of Z(s∗), s∗ /∈ Sn,
equal to the conditional mean E [Z(s∗)|Z(s), s ∈ Sn] is called the kriging predictor, after D.G. Krige,
who advocated its use in early mining applications (Krige, 1951). When the true covariance function is
known, the kriging predictor is the best linear unbiased predictor (BLUP) of Z(s∗). In practice, however,
the true covariance function (or θ in the model above) must be estimated, and it is common to plug an
estimate into the kriging equations and proceed as if the true covariance were known. However, inference
based on this procedure ignores the uncertainty involved in estimating θ. For this reason, many authors
have taken a Bayesian approach, deriving a joint posterior distribution for both θ and Z(s∗) (Kitanidis,
1986; Handcock and Stein, 1993; Handcock and Wallis, 1994).

Whether frequentist or Bayesian in nature, likelihood-based covariance estimation has been widely
adopted in both the statistics and earth sciences communities. Its benefits include ease of incorporation
into larger models, the use of model comparison criteria such as AIC and BIC, and various optimality
properties. Although the assumption of normality may seem restrictive, one can often justify its use
in spatial applications by Central Limit Theorem arguments, as observations often consist of averages,
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or by the fact that the normal distribution possesses the maximum entropy property (Pardo-Igúzquiza,
1998). In return, one inherits the many useful analytical results that have been developed for Gaussian
processes (see Abrahamsen, 1997, for a review). One notable extension of this approach to non-Gaussian
distributions modifies the generalized linear model framework to allow the linear predictor to include an
additive error term with spatially correlated Gaussian process distribution (Diggle et al., 1998).

When the number of observations is large, however, the computational burden of evaluating the
log-likelihood (1) can make likelihood-based estimation of θ computationally infeasible. Finding the
determinant and inverse of Σn(θ) each require O(n3) operations. Moreover, if numerical methods such
as numerical maximization or Markov chain Monte Carlo are required, estimation will involve repeated
evaluations of the likelihood. Techniques for overcoming this computational hurdle have been developed
mainly for datasets in which the sampling locations form a regular lattice, in which case spectral methods
can be used (Whittle, 1954; Guyon, 1982; Stein, 1995; Dahlhaus, 2000). However, the computational
advantages of working in the spectral domain do not directly apply when the data are irregularly spaced
or even when some observations from the lattice are missing. For analyzing large irregularly spaced spatial
datasets, therefore, it is desirable to have a method which will reduce computational expense, while also
producing results comparable to those that would have been given by exact likelihood-based techniques.
To address this need, we propose using the method of covariance tapering, in which covariance matrices
are multiplied element-wise by a compactly supported correlation matrix, giving matrices which can be be
manipulated using more efficient sparse matrix algorithms. We give two approximations to the Gaussian
log-likelihood using tapering and evaluate the behavior of estimators maximizing these approximations,
deriving results in a bounded domain asymptotic framework.

The computational difficulty of applying likelihood-based methods to large spatial problems was rec-
ognized by some of its earliest advocates (Mardia and Marshall, 1984; Vecchia, 1988). The next section
describes existing methods of addressing this problem, several of which involve likelihood approximation.
Section 3 describes the method of covariance tapering and proposes two different approximations to the
log-likelihood function (1). Section 4 gives some theoretical results regarding the performance of estima-
tors maximizing these approximations and presents results of a simulation study. Section 5 describes a
potential application of our methods to the problem of making statistical inference about the climatolog-
ical (long-run mean) temperature difference between two sets of output from a computer model of global
climate, run under two different land use scenarios. In Section 6, we discuss work that remains to be
done, including extensions of our theoretical results and analysis of the climate model data. We propose
to fit a Bayesian hierarchical model for the long-run temperature differences, conditional on what we
observe for a finite number of model iterations. The approximations we have developed will be used to
facilitate fitting the model.

2 Current techniques for large spatial datasets

Under certain sampling schemes, evaluating the log-likelihood function (1) can be done efficiently without
resorting to approximation. Zimmerman (1989) outlines several of these cases. For example, when the
sampling locations Sn form a regular lattice of R rows and C columns, the covariance matrix is block
Toeplitz, and matrix inversion algorithms exist which reduce the required number of computations to
O(R2C3), from O(R3C3) for an arbitrary RC×RC matrix (Akaike, 1973). If the sampling locations form
a regular rectangular lattice and the covariance function K is separable (that is, if K can be expressed
as a product of functions in each coordinate), then the covariance matrix is a Kronecker product of two
symmetric Toeplitz matrices, and the inverse can be found using O(R2C2) computations (Zimmerman,
1989).

Another way in which calculations for lattice data can be simplified is via a spectral representation
of the process Z. If Z is stationary, then it can be represented using the Fourier-Stieltjes integral

Z(s) =
∫

exp{is′ω}dY (ω),
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where Y are random functions with uncorrelated increments (see eg. Yaglom, 1987). Whittle (1954)
proposed an approximation to the likelihood for lattice data based on Y rather than Z. Discussion of its
construction is beyond the scope of this document; we mention only that it can be evaluated efficiently
using the fast Fourier transform (Press et al., 1992). Fuentes (2004) extended this idea to construct
an approximation for irregularly space data, dividing the spatial domain into a lattice of blocks, then
working with the process obtained by integrating Z over each of the blocks.

The remaining approaches we discuss share the common theme of approximating the likelihood by im-
posing various conditional independence assumptions. Vecchia (1988) proposed one such approximation.
The likelihood is first factored into a product of conditional densities:

L(θ; z) =
n∏

i=1

pθ(zi|zj , 1 ≤ j ≤ i− 1).

Then, the conditioning sets {zj , 1 ≤ j ≤ i − 1} are replaced with smaller sets zim consisting of the
min(i, m) observations at those locations closest to that of zi, giving

L(θ; z) ≈ Lm(θ; z) =
n∏

i=1

pθ(zi|zim).

This approach maintains a multivariate normal distribution for z, with the covariance matrix remaining
positive definite, as the product of valid conditional densities is a valid joint density. As m increases, Lm

approaches the true likelihood L. Vecchia suggested maximizing Lm(θ; z) to obtain θ̂m for a sequence of
increasing m, monitoring the behavior of −2 log Lm(θ̂m; z), and stopping when this criterion stabilizes.
A likelihood approximation of this type was used by Eide et al. (2002) in fitting a hierarchical Bayesian
model to predict the porosity of some offshore petroleum reservoirs. Stein et al. (2004) extended Vecchia’s
idea to apply to REML estimators and noted that because the derivative of the approximate log-likelihood
forms an unbiased estimating equation for θ, the efficiency of the resulting estimators can be compared
to those of the usual REML estimators using the robust information criterion described by Heyde (1997).
Using this measure, the authors concluded that when defining the smaller conditioning sets zim, it is
helpful to include some distant observations, not just the nearest neighbors.

Caragea (2003) explored a related approach, which divides the sampling domain into subregions. The
likelihood is then approximated using either 1) the likelihood for the means over each of the subregions,
2) the likelihood for the observations, assuming subregions are independent, or 3) the likelihood for the
observations, assuming they are conditionally independent given the means of the subregions. Caragea
explored the behavior of estimators maximizing these approximations for data forming a time series,
where increasing the sample size corresponded to taking observations in an unbounded domain.

3 Covariance tapering

The intuition behind the subsetting approach of Vecchia (1988) is that correlations between pairs of
distant locations often are nearly zero. If we have reason to believe that for a given data set these distant
observations are truly independent, then we can model this using a compactly supported covariance
function (Gaspari and Cohn, 1999; Gneiting, 2002). The covariance matrix Σn then contains zeroes
corresponding to these distant pairs, and sparse matrix algorithms (see eg. Pissanetzky, 1984) can be
used to manipulate it more efficiently. However, if we do not truly believe the underlying process possesses
such a covariance function, we can still exploit this idea for computational purposes. The goal is to set to
zero certain elements of Σn, such that the resulting matrix remains positive definite and retains some of the
original properties of Σn. To this end, consider taking the direct product of the true covariance function
K0(x; θ) and a “tapering function” Ktaper(x; γ), an isotropic correlation function which is identically zero
outside a range described by γ. Denote this function by

K1(x; θ, γ) = K0(x; θ)Ktaper(x; γ), x > 0. (2)
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Then the covariance matrix {K1(||si − sj ||; θ, γ)} for observations in Sn can be written as Σn(θ) ◦ Tn(γ),
where Σn(θ) is the original covariance matrix, Tn(γ) = {Ktaper(||si − sj ||; γ)}, and the “◦” notation
refers to the element-wise product, also called the “Schur” or “Hadamard” product. Then Σn(θ) ◦ Tn(γ)
is positive definite (Horn and Johnson, 1991, Theorem 5.2.1). Note that we require Ktaper to be a
correlation function, with Ktaper(0; γ) = 1. This ensures the marginal variance of Z is the same under
K0 and K1. We give a stronger reason for this requirement in Theorem 1.

There are a variety of compactly supported correlation functions that can be used for tapering. A
well known correlation function used in spatial statistics is the spherical correlation function

Ktaper(x; γ) = (1− x/γ)2+ (1 + x/(2γ)) , (3)

where (y)+ = yI{y>0}. The function Ktaper is thus identically zero for x ≥ γ. Tapering a covariance
function and the associated covariance matrix are illustrated in Figures 1 and 2, using the spherical
correlation function (3). Although the spherical correlation has been widely used in spatial statistics, it
is not ideal for our application, as we demonstrate in Section 4.2. In that section, we return to the choice
of an appropriate tapering function.

3.1 Likelihood approximation via covariance tapering

We propose two approximations to the log-likelihood (1) using covariance tapering. The most obvious
approximation simply replaces the model covariance matrix Σn(θ) with Σn(θ) ◦ Tn(γ), giving

ln,1taper(θ) = −n

2
log(2π)− 1

2
log |Σn(θ) ◦ Tn(γ)| − 1

2
Z ′

n [Σn(θ) ◦ Tn(γ)]−1
Zn. (4)

This is the expression for the log density of Zn under the model that the underlying stochastic process
Z is Gaussian with mean zero and covariance function (2). The effects of using a misspecified covariance
function have been widely studied with respect to the performance of kriging predictions (see Section 4.3
of Stein, 1999, for a review), but the implications for estimation have not been as well studied.

One possible objection to approximation (4) is that taking its derivative with respect to the elements
of θ and setting this equal to zero gives a biased estimating equation for θ (see Technical Appendix,
Section A.1). To remedy the bias, first note that we can rewrite the quadratic form in (1) as a trace
involving the empirical covariance matrix Σ̂n = ZnZ ′

n :

Z ′
nΣn(θ)−1Zn = tr

{
Z ′

nΣn(θ)−1Zn

}
= tr

{
ZnZ ′

nΣn(θ)−1
}

= tr
{

Σ̂nΣn(θ)−1
}

.

This suggests replacing Σ̂n with Σ̂n ◦ Tn(γ) as well, giving

ln,2tapers(θ) = −n

2
log(2π)− 1

2
log |Σn(θ) ◦ Tn(γ)| − 1

2
tr
{[

Σ̂n ◦ Tn(γ)
]
[Σn(θ) ◦ Tn(γ)]−1

}
= −n

2
log(2π)− 1

2
log |Σn(θ) ◦ Tn(γ)| − 1

2
Z ′

n

(
[Σn(θ) ◦ Tn(γ)]−1 ◦ Tn(γ)

)
Zn, (5)

where the last equality follows from the fact that for square matrices A, B, and C, with B symmetric,

tr {(A ◦B)C} =
∑

i

∑
j

(Ai,jBi,j)Cj,i =
∑

i

∑
j

Ai,j(Cj,iBj,i) = tr {A(C ◦B)} .

Maximizing ln,2tapers(θ) now corresponds to solving an unbiased estimating equation for θ (see Technical
Appendix, Section A.1).

The function ln,2taper possesses an interesting property. It is equal to a constant plus the log of a

normal density for Zn with mean zero and covariance matrix
(
[Σn(θ) ◦ Tn(γ)]−1 ◦ Tn(γ)

)−1

. However,
these densities for various n and Zn do not correspond to any infinite dimensional distribution for the
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process Z on <d. They fail to meet the consistency conditions of Kolmogorov’s Existence Theorem (see
Billingsley, 1986), because it is not true in general that for an invertible matrix A, the first m rows and
columns of A−1 equal the inverse of the first m rows and columns of A. Therefore, for example, the
covariance between Z(si) and Z(sj), i, j ≤ n under the density for the vector Zn observed at locations
in Sn is not necessarily the same as the covariance between the same Z(si) and Z(sj) under the density
for Zn+1 when Sn+1 consists of Sn and only one additional point. This strange behavior makes ln,2tapers

more difficult to analyze than ln,1taper, but we prefer to use it for estimation because it appears to perform
much better in practice, as we demonstrate in the simulation study of Section 4.4.

In this paper, we consider the MLEs θ̂n obtained by maximizing the log-likelihood (1) and the esti-
mators θ̂n,1taper and θ̂n,2tapers obtained by maximizing approximations (4) and (5), respectively. We are
also interested in the use of these approximations in Bayesian estimation, and this is in an important
part of our application and future work, discussed in Section 6.

In most cases it is difficult to write an exact expression for the maximizer of these functions and so
we resort to numerical methods. It is worth noting, however, that if K0 can be written as

K0(x; θ) = σ2C0(x;φ) (6)

for some correlation function C0 and φ ∈ <q−1, then we can do the maximization with respect to
θ = (σ2, φ) using profile versions of these expressions. That is, we can find the value of φ maximizing
supσ2 ln(σ2, φ), then calculate the corresponding value of σ2 directly. See Technical Appendix, Section
A.2 for details. Maximizing over one fewer parameters can improve the speed and convergence of any
numerical maximization algorithms that are used. For general-purpose maximization, we use a quasi-
Newton method called BFGS (see Nocedal and Wright, 1999), which is available as an option to the
optim() function for numerical optimization in R.

4 Performance of estimators using tapering methods

In this section, we evaluate the performance of the estimators θ̂n,1taper and θ̂n,2tapers obtained by max-
imizing approximations (4) and (5), respectively. We first examine their asymptotic behavior as n goes
to infinity. However, the type of asymptotic analysis required is different from that of the usual case, in
which the observations are iid. When taking an increasing number of observations from a spatial process,
we either can assume that the domain of the sampling region S increases to infinity, called “increasing
domain” asymptotics, or we can assume that S is bounded and that observations become increasingly
dense within S, called “bounded domain” or “infill” asymptotics (see Cressie, 1993, Section 5.8). The
increasing domain asymptotic framework is the spatial analogue of the type of asymptotic analysis usually
done in time series. It is typically easier to analyze, because for processes whose correlations decay with
distance, taking observations in an increasingly large domain gives roughly independent observations of
the same scenario. However, we believe the bounded domain asymptotic framework is more relevant, as
it corresponds to the type of increased sampling that is actually feasible for most spatial problems.

The asymptotic behavior of the MLE and REML estimator for θ has been studied primarily in an
increasing domain framework (Mardia and Marshall, 1984; Cressie and Lahiri, 1996; Watkins, 1990). The
only results we are aware of for the MLE in a bounded domain framework pertain to the Matérn class
of covariance functions. We also focus on this class, and so we review its properties and results for the
MLEs under this model in the next section. These provide some idea of what results we might hope to
hold for the tapering-based estimators as well.
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4.1 Matérn covariance functions

The Matérn class of covariance functions (Matérn, 1986) is widely used in practice and has easily inter-
pretable parameters. A Matérn covariance function with parameters σ2, ρ, and ν is defined by

K(x;σ2, ρ, ν) =
σ2(x/ρ)ν

Γ(ν)2ν−1
Kν(x/ρ),

where Kν is the modified Bessel function of order ν (see Abromowitz and Stegun, 1967, Section 9.6). This
covariance function has the form of (6), with σ2 representing the marginal variance of the process and the
rest of the function its correlation structure. The range parameter ρ controls how quickly the correlation
decays with distance, while the smoothness parameter ν controls the function’s differentiability at the
origin. In particular, K is 2m times differentiable at the origin, and the process Z is m times mean
square differentiable, if and only if ν > m (Stein, 1999, Section 2.7). This flexibility in parameterizing
the smoothness of the process by changing ν is the main reason this family has been advocated as a default
covariance model for most spatial applications (Stein, 1999; Banerjee et al., 2004). When ν = 1/2, the
expression simplifies to the exponential covariance function

K(x;σ2, ρ) = σ2 exp{−x/ρ}, (7)

which is not differentiable at the origin, whereas letting ν → ∞ gives the so-called Gaussian covariance
function

K(x;σ2, ρ) = σ2 exp{−x2/ρ}, (8)

which has infinitely many derivatives at the origin.

Zhang (2004) proved several interesting results concerning the Matérn class, which are crucial in
evaluating the performance of our estimators. The first concerns the equivalence of two mean-zero
Gaussian measures G(0,K0) and G(0,K1). (Throughout, we use G(m,K) to denote the measure for
the process Z which is Gaussian with mean function m and covariance function K.) Recall that two
probability measures P0 and P1 on the same measurable space (Ω,F) are said to be equivalent, or
mutually absolutely continuous, if P0(A) = 0 if and only if P1(A) = 0, for all A ∈ F . We denote this
equivalence by P0 ≡ P1. Zhang (2004) proved that if K0 is Matérn with parameters σ2

0 , ρ0, and ν, and
K1 is Matérn with parameters σ2

1 , ρ1, and ν, then G(0,K0) ≡ G(0,K1) on the paths of {Z(s), s ∈ S} for
any bounded infinite subset S ∈ <d with d = 1, 2, 3, if and only if σ2

0/ρ2ν
0 = σ2

1/ρ2ν
1 .

This has immediate consequences for estimation of σ2 and ρ. Specifically, if the process {Z(s), s ∈
S ⊂ <d} with d = 1, 2, or 3 is observed on a bounded sequence of subsets in S, then there cannot exist
consistent estimators of σ2 and ρ. This is easily seen, because under the true probability measure G(0,K0),
a sequence of consistent estimators {(σ̂2

n, ρ̂n)}∞n=1 contains a subsequence that converges almost surely to
(σ2

0 , ρ0). On the other hand, under G(0,K1), {(σ̂2
n, ρ̂n)}∞n=1 contains a subsequence that converges almost

surely to (σ2
1 , ρ1). But if σ2

0/ρ2ν
0 = σ2

1/ρ2ν
1 , then G(0,K0) ≡ G(0,K1), so the subsequence converges

almost surely to (σ2
1 , ρ1) under G(0,K0) as well. The fact that the sequence {(σ̂2

n, ρ̂n)}∞n=1 contains two
subsequences converging almost surely to two different values under G(0,K0) contradicts the fact that it
is consistent.

Although the individual parameters σ2 and ρ cannot be consistently estimated, Zhang (2004) showed
the ratio c = σ2/ρ2ν can be consistently estimated. In particular, he showed that for known ν and for any
fixed ρ∗, the estimator σ̂2

n obtained by maximizing the likelihood Ln(σ2, ρ∗) is such that σ̂2
n/ρ∗2ν → σ2

0/ρ2ν
0

almost surely under G(0,K0). In practice, it is typical to estimate both σ2 and ρ simultaneously by
maximizing Ln(σ2, ρ), rather than fixing ρ∗. Indeed, in a simulation study illustrating his results, Zhang
(2004) maximized over both parameters without reference to the fact that his theorem does not apply to
this procedure. As part of our simulation study in Section 4.4, we show that the value of ρ∗ chosen can
severely affect the efficiency of the resulting estimators of c, and that maximizing over both parameters
appears to work better than choosing a bad value for ρ∗ and only slightly worse than fixing ρ∗ at the
true value. However, it is unclear whether Zhang’s asymptotic result can be extended to the case of joint
maximization.
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The asymptotic distribution of the MLE was also derived in a very special case by Ying (1991).
He considered the Gaussian process defined on the real line with mean zero and exponential covariance
function (7), commonly known as the Ornstein-Uhlenbeck process. This is a special case of the processes
considered by Zhang (2004), so again, there exist no consistent estimators of σ2 and ρ. However, by
exploiting the Markovian structure of the process, Ying showed the method described by Zhang, fixing
ρ∗ and maximizing Ln(σ2, ρ∗), gives an estimate of c = σ2/ρ which converges almost surely to the true
value and is also asymptotically normally distributed. Additionally, Ying showed these results also hold
when one fixes σ2 and estimates ρ, or when one maximizes over both parameters simultaneously. However,
the Markovian structure used in proving these results does not exist in general.

4.2 Equivalence under tapered and untapered covariance functions

Recall that in Section 3.1, we stated that approximation (4) corresponds to replacing the covariance
function K0(x; θ) with K1(x; θ, γ) = K0(x; θ)Ktaper(x; γ) in the model for the underlying stochastic
process Z. If the tapering function Ktaper is such that the measures G(0,K0) ≡ G(0,K1) on the paths
of Z, this can be used as a tool for showing almost sure convergence of estimators maximizing (4). That
is, if we can show convergence occurs with probability one under G(0,K1), then we will have also shown
it occurs with probability one under the true measure G(0,K0). In this section, we give conditions on
Ktaper under which equivalence between G(0,K0) and G(0,K1) holds for a process Z ∈ <. We conjecture
that this result holds for higher dimensions as well, with a few modifications.

In the results that follow, we find it useful to characterize covariance functions in terms of their
representation in the spectral domain. Briefly, the result known as Bochner’s theorem (Bochner, 1955)
states that a continuous function K in <d is positive definite if and only if it has spectral representation

K(x) =
∫
<d

exp{iω′x}F (dω),

where F is a positive bounded symmetric measure. If F has a density with respect to Lebesgue measure,
it is called the spectral density and we denote it by f . For reference, the spectral density corresponding
to the Matérn covariance K(x;σ2, ρ, ν) is

f(ω) = σ2 Γ(ν + 1/2)√
πΓ(ν)ρ2ν

1
(ρ−2 + ||ω||2)ν+d/2

. (9)

Let f0 be the spectral density of the true covariance function K0 and f1 be the spectral density
of a “misspecified” covariance function K1. A key result of Stein (1993) is that the simple condition
limω→∞

f1(ω)
f0(ω) = γ for some 0 < γ < ∞ and a technical condition on f0 are sufficient for asymptotically

optimal prediction using K1 instead of K0. That is, if Stein’s condition is satisfied, then the ratio of
the mean squared error of the kriging predictor using G(0,K1) to the mean squared error using the
true measure G(0,K0) goes to one with n. Furrer et al. (2005) used covariance tapering to decrease the
computational burden of kriging, which involves inverting Σn(θ) for a fixed value of θ. They applied
Stein’s condition to the case that K1 corresponds to a tapered version of K0, assumed to have Matérn
structure. They showed that if the spectral density ftaper corresponding to Ktaper satisfies

ftaper(ω) <
Mε

(1 + ||ω||2)ν+d/2+ε
(10)

for some ε > 0 and Mε < ∞, then Stein’s condition is satisfied for a process in <d. We are interested
in conditions on ftaper that give equivalence of measures G(0,K0) and G(0,K1), where K0 and K1 are
untapered and tapered Matérn covariance functions, respectively. The following theorem gives some
conditions extending (10) which force the tail behavior of f0 and f1 to satisfy an even stronger condition,
which guarantees equivalence.
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Theorem 1. Let Z be a stationary random process on < and let G(0,K0) and G(0,K1) represent two
mean zero Gaussian measures for Z with covariance functions K0 and K1, respectively. Specifically, let
K0 be a Matérn covariance function with parameters σ2, ρ, and ν. Let K1 be the direct product of K0

and an isotropic covariance function Ktaper which is identically zero beyond a range described by γ:

K1(x;σ2, ρ, ν, γ) = K0(x;σ2, ρ, ν)Ktaper(x; γ).

Let ftaper be the spectral density corresponding to Ktaper. Suppose there exist ε > 0 and Mε < ∞ such
that

1. ftaper(ω) ≤ Mε

(1+ω2)ν+1/2+ε ,

2. ε > max{1/4, 1− ν}, and

3.
∫
< ftaper(ω)dω = 1.

Then G(0,K0) and G(0,K1) are equivalent on the paths of {Z(s), s ∈ S}, for any bounded subset S ⊂ <.

The proof of this theorem is given in Technical Appendix, Section A.3. Note that condition 3 means
that Ktaper must be a correlation function.

Two practical questions immediately arise regarding Theorem 1. First, what values of ν are plausible
for a given dataset? Second, for a given range of plausible values of ν, what tapering functions satisfy
the conditions of Theorem 1? With regard to the first problem, the consensus seems to be that for most
spatial fields, the Gaussian covariance function (8) is too smooth (Banerjee et al., 2004), but the upper
bound for plausible ν will depend on the particular dataset being analyzed. Based on our experience
analyzing temperature fields, we see no difficulties arising from constraining ν to be less than three in
this case. However, one can always choose a higher upper bound for ν to be more conservative.

With regard to the second question, we currently use the compactly supported radial basis functions
constructed by Wendland (1995, 1998). These functions are generated using recursive transformations
of the truncated power function φl(r) = (1 − r)l

+. Specifically, for a given dimension d and nonnegative
integer k, the function φd,k is defined as Ikφbd/2c+k+1, where (Iφ)(r) =

∫∞
r

tφ(t)dt. Then φd,k is positive
definite on <d and has the form

φd,k(r) =
{

pd,k(r) 0 ≤ r ≤ 1
0 r > 1

with pd,k a polynomial of degree bd/2c+ 3k + 1, and this function is of minimal degree among the class
of polynomials having up to 2k continuous derivatives (Wendland, 1998). Note that the functions for
d = 2, 3 are the same, and that φd,k remains positive definite in lower dimensions but is no longer of
minimal degree. The first several functions for d = 1, 2, 3 are given in Table 1. To adapt φd,k to be a
correlation function with support over [0, γ), we find a positive constant cd,k such that cd,kφd,k(0) = 1,
then form

Ktaper(x, γ) = cd,kφd,k(x/γ). (11)

Now, if fd,k is the spectral density corresponding to φd,k, Wendland (1998, Theorem 2.1) showed that
there exists a positive constant M such that fd,k(ω) ≤ M(1 + ||ω||2)−d/2−k−1/2. Therefore, Ktaper as
defined in (11) satisfies the conditions of Theorem 1 for all ν < ν′ whenever k > max{1/2, ν′ − 1/4}. We
conjecture that Theorem 1 holds for d ≥ 1 if the first two conditions are replaced with 1. ftaper(ω) ≤

Mε

(1+ω2)ν+d/2+ε , and 2. ε > max{d/4, 1 − ν}. In this case, Ktaper will satisfy the conditions for all ν < ν′

whenever k > max{1/2, ν′ − 1/2 + d/4}.
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4.3 Almost sure convergence under the approximations

Now we return to the asymptotic behavior of estimators maximizing the approximations (4) and (5)
under the Matérn model. First, we make use of Theorem 1 to prove a result similar to Zhang’s (2004)
result concerning the MLE, but instead using approximation (4). Like Zhang, we consider the model
G(0,K0), with K0 the Matérn covariance function with parameters σ2

0 , ρ0, and known ν.

Recall that Zhang (2004) showed that fixing ρ∗ and maximizing the likelihood Ln(σ2, ρ∗) gives an
estimator σ̂2

n satisfying σ̂2
n/ρ∗2ν → c0 = σ2

0/ρ2ν
0 almost surely under G(0,K0). The main tool in the

proof of this result is the equivalence of G(0,K0) and G(0,K1), where K1 is Matérn with parameters
σ2∗ = σ2

0(ρ∗/ρ0)2ν , ρ∗, and ν. Then, to show σ̂2
n/ρ∗2ν → c0 almost surely under G(0,K0), the fact that

G(0,K0) ≡ G(0,K1) implies it is sufficient to show σ̂2
n/ρ∗2ν → c0 almost surely under G(0,K1). In other

words, one needs to show σ̂2
n → σ2∗ almost surely under G(0,K1). Luckily, this is straightfoward.

Additionally, Theorem 1 tells us there is a tapered Matérn covariance function K2 such that G(0,K2) ≡
G(0,K1). Therefore, to show that the estimator σ̂2

n,1taper maximizing (4) for fixed ρ∗ and known ν
converges almost surely, it is sufficient to show that σ̂2

n,1taper → σ2∗ almost surely under G(0,K2), giving
the following theorem. The details of the proof are in Technical Appendix, Section A.4. This theorem is
limited to processes in one dimension by reliance on Theorem 1 in its proof; we note that extension of
Theorem 1 to higher dimensions would immediately extend this theorem as well.

Theorem 2. Let Z be a stationary, mean zero Gaussian process on < with Matérn covariance function
with parameters σ2

0, ρ0, and ν. Suppose that ν is known, but σ2
0 and ρ0 are unknown. Let {Sn}∞n=1 be an

increasing sequence of finite subsets of < such that
⋃∞

n=1 Sn is bounded and infinite. Let ln,1taper(σ2, ρ)
be the approximation to the log-likelihood given in (4) under this model, with the tapering function also
satisfying the conditions of Theorem 1. For any fixed ρ∗ > 0, let σ̂2

n,1taper maximize ln,1taper(σ2, ρ∗).
Then σ̂2

n,1taper/ρ∗2ν → σ2
0/ρ2ν

0 almost surely as n →∞.

As noted in Section 3.1, the approximation defined in (5) does not correspond to altering the infinite-
dimensional distribution for Z. Therefore, the equivalence result in Theorem 1 is not applicable in this
case. Instead, we directly examine the expression for σ̂2

n,2tapers obtained by fixing ρ∗ and maximizing (5).
This provides a condition, much harder to check, that σ̂2

n,2tapers converges almost surely.

Theorem 3. Let Z be a stationary, mean zero Gaussian process on <d, d = 1, 2, 3, with Matérn covariance
function K0(x;σ2

0 , ρ0, ν) = σ2
0C0(x; ρ0, ν). Suppose that ν is known, but σ2

0 and ρ0 are unknown. Let
{Sn}∞n=1 be an increasing sequence of finite subsets of < such that

⋃∞
n=1 Sn is bounded and infinite. Let

ln,2tapers(σ2, ρ) be the approximation to the log-likelihood given in (5) under this model. Let Ktaper(x; γ)
be a tapering function. Fix ρ∗, and for all n define the matrix

Wn =
[
(Γn(ρ∗, ν) ◦ Tn(γ))−1 ◦ Tn(γ)

]−1
,

where Γn(ρ∗, ν) = {C0(||si − sj ||; ρ∗, ν)} and Tn(γ) = {Ktaper(||si − sj ||; γ)}. Denote by {λn,i}n
i=1 the

eigenvalues of W−1
n Γn(ρ∗, ν). Suppose that either of the following two conditions holds:

1. supn

(
1
n

∑n
i=1 λq

n,i

)1/q
< ∞ for some 1 < q ≤ ∞, or

2. limn(supi≤n λn,i)n−1 log n = 0.

Then the estimator σ̂2
n,2tapers maximizing ln,2tapers(σ2, ρ∗) satisfies σ̂2

n,2tapers/ρ∗2ν → σ2
0/ρ2ν

0 almost
surely as n →∞.

The proof of this theorem is in the Technical Appendix, Section A.5. In Section 6, we discuss the role
of the eigenvalues in proving this Theorem and how these conditions may be checked in practice.
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4.4 Simulation study

To explore whether the convergence described in Theorems 2 and 3 agrees with what we observe for our
estimators using finite but increasing sample sizes, and to compare our results to what has been observed
in the literature for the Matérn covariance, we carried out a simulation study similar to that in Zhang
(2004). For each of 1000 iterations, we simulated observations from a Gaussian process with mean zero
and exponential covariance function (7), with σ2 = 1 and ρ = 0.2. This function is shown in Figure 3
(a). Note that it has negligible correlation (< 0.05) for values of x greater than about 0.6. We generated
observations at all 289 locations shown in Figure 3 (b). Then we estimated σ2 and ρ by maximizing
either the log-likelihood (1), the approximation (4), or the approximation (5). When using the tapering
approximations, we used the function c2,1φ2,1(x/γ) described in Section 4.2, with either γ = 0.6 or
γ = 0.3. The tapered versions of K0 are also shown in Figure 3 (a). We carried out the estimation using
three different sample sizes, with n = 125, 221, or 289. The sampling locations are shown in Figure 3 (b).

4.4.1 Joint estimation of σ2 and ρ

Although Zhang (2004) showed for the exponential model only that c = σ2/ρ can be estimated consistently
by fixing ρ = ρ∗ and maximizing the likelihood Ln(σ2, ρ∗) as a function of σ2, his simulation maximized
Ln(σ2, ρ) over both σ2 and ρ, then examined the performance of the estimators σ̂2, ρ̂, and ĉ = σ̂/ρ̂. We
note that our results also apply only to estimators that fix ρ∗, but to compare with Zhang’s results and
because joint estimation of σ2 and ρ is what is commonly done in practice, we start by estimating both.
In the next section we carry out the same procedure with ρ∗ fixed at various values.

The distributions of the estimators of σ2 and ρ are shown in Figures 4 and 5, respectively. First note
that the leftmost column in each plot duplicates Zhang’s (2004) simulation result, in that the distributions
of the MLEs of these individual parameters don’t appear to be changing with n. Bias is evident in the
distributions of the estimators maximizing ln,1taper, which is greater for the more severe taper range of
γ = 0.3. For the parameter ρ, this bias appears to be diminishing with n, although there is no evidence
for this with σ2. The most striking thing about these plots, however, is how similar the distributions of
the estimators maximizing ln,2taper look to those of the MLEs.

We compare the distributions of ĉ = σ̂2/ρ̂ in Figure 6. Again, the leftmost column duplicates Zhang’s
(2004) simulation results, in that the MLE of this ratio is becoming more concentrated about its true
value as n increases. The same holds for the estimators maximizing ln,2tapers, whose distributions appear
very similar to those of the MLE. What bias exists in the distributions of the estimators maximizing
ln,1taper appears to be decreasing with n, although it is unclear from this simulation study whether it
would disappear entirely if n were large enough.

4.4.2 Estimating σ2 for fixed values of ρ

Now we examine the behavior of estimators covered by Zhang’s (2004) results and our Theorems 2
and 3. That is, we know that for any fixed ρ∗, maximizing either the log-likelihood ln(σ2, ρ∗) or the
approximations ln,1taper(σ2, ρ∗) or ln,2tapers(σ2, ρ∗) will provide an estimator of σ2 such that the ratio
σ̂2/ρ∗ converges almost surely to c0 = σ2

0/ρ0. However, intuition suggests that the efficiency of these
estimators for small samples could vary widely, depending on the particular value of ρ∗ that is chosen.
To explore this possibility, we carried out the same simulation as above (using the same 1000 simulated
data sets) but estimated σ2 with ρ∗ fixed at either 0.1, the true value of 0.2, or 0.4. The results are shown
in Figures 7 through 9, respectively.

We begin by comparing the results for ρ∗ fixed at the true value of 0.2 (Figure 8) to those of the
unconstrained MLE (Figure 6). The distributions for the MLE look relatively similar, although the
distributions for fixed ρ∗ appear slightly more concentrated around the true value. The bias in the
estimators maximizing ln,1taper is also noticeably reduced when ρ∗ is fixed at the true value. However,
the efficiency of estimators maximizing ln,2tapers actually seems to decrease when ρ∗ is fixed at the true
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value, compared to when it is estimated. It is not obvious why this should be so.

The effect of fixing ρ∗ at something other than the true value of ρ0 = 0.2 shows up as bias in the
estimators which only gradually decreases with n. In Figure 7, ρ∗ is fixed at half the true value. Estimators
of c = σ2/ρ are correspondingly biased upward. For the estimators maximizing ln,1taper, which are biased
downward when ρ is not constrained, this actually appears to improve their performance, so that they
appear preferable to estimators maximizing ln,2taper. On the other hand, when ρ∗ is fixed at twice the
true value of ρ0 (Figure 9), we see the opposite effect: the usual bias in ln,1taper is magnified by the
additional effect of choosing too large a ρ∗. Again, the bias is decreasing with n for all the estimators,
although quite slowly for ln,1taper under the more severe taper range.

4.5 Estimating uncertainty in the tapering-based estimators

Recall that in Section 3.1, we noted that maximizing approximation (4) corresponds to solving a biased
estimating equation for θ, whereas maximizing approximation (5) corresponds to solving an unbiased
estimating equation for θ. In this section, we explain a criterion which can be used in practice to compute
a rough estimate for the sampling variability in θ̂n,2tapers, based on the theory of unbiased estimating
equations.

Consider a function G(Zn; θ) with Eθ [G(Zn; θ)] = 0 for all possible values of θ. G is called an unbiased
estimating function for θ; that is, we set G(Zn; θ) equal to zero and solve for θ to obtain an estimate.
Heyde (1997) defined the robust information matrix corresponding to G as

E(G) = E
[
Ġ
]′

E [GG′]−1 E
[
Ġ
]
, (12)

where Ġ is the matrix of derivatives of the vector G. When G is the score function, E(G) is simply the
Fisher information matrix. Among a class of estimating functions, a function G is said to be OF−optimal
if it maximizes E(G); that is, there is no other G∗ for which the matrix E(G∗)−E(G) is positive definite
(Heyde, 1997). The score function is often OF−optimal, and it is in our particular case. However, if the
score function is not among the estimating equations under consideration (for instance, for computational
reasons), then we might study the behavior of E(G) for those G in the class of estimating equations we are
considering. For example, Stein et al. (2004) suggested comparing the diagonal elements of the inverse
Fisher information matrix to the diagonal elements of the inverse of E(G), where G was based on his
approximation to the spatial likelihood, described in Section 2.

Under certain conditions, norming by the sample equivalent of E(G)−1 gives asymptotic normality
of the estimator θ̂n obtained by maximizing G(Zn; θ) (Heyde, 1997, Section 2.5). For the estimators
considered by Stein et al. (2004), as well as for our estimators, there is no proof of asymptotic normality
under a fixed domain sampling scheme. Indeed, this cannot be the case for the individual parameters
σ2 and ρ when the covariance is Matérn with smoothness ν, because Zhang (2004) showed these are not
even consistently estimable. To explore the appropriateness of the inverse elements of E(G)−1 as rough
estimators of sampling variance of our estimators, we calculated E(G) for each of the sample sizes and
estimation methods described in the simulation study of the previous section. We then compared the
diagonal elements of the inverse of E(G) to the empirical variances of the estimates found in the simulation
study. (The details of calculating E(G) for general matrices Σn and Tn are given in Technical Appendix,
Section A.6.) The results can be seen in Tables 2 through 4. The theoretical and simulated values
are roughly the same, although there are some discrepancies. In practice, one might consider using the
values of E(G)−1 (evaluated at the maximized value of θ) to give a rough idea of the sampling variability
of the estimators maximizing approximation (5). Based on this comparison to simulated variances, we
recommend doing the calculation, but treating the interpretation with some skepticism. We note that
one fortunate aspect of this calculation is that the n × n matrix inversions involved in calculating E(G)
are all for matrices that have been tapered to the same degree as in the estimation process (see Technical
Appendix, Section A.6). Therefore, this step should be computationally feasible. We also note that the
estimation of uncertainty regarding these estimators is somewhat more naturally posed in a Bayesian
framework, which we return to in Section 6.
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5 Climate modeling application

There are an increasing number of spatial problems in which covariance estimation plays a role and yet
the size of the data overwhelms our computational ability to do standard likelihood estimation, making
covariance tapering a useful tool. We focus on the problem of fitting a model to global temperature
data, generated by a computer model of climate run under two different land use scenarios. Such com-
puter models numerically solve a system of differential equations describing the evolving behavior of the
atmosphere, taking into account such things as radiation, physical dynamics, and surface-atmosphere
energy interactions (McGuffie and Henderson-Sellers, 2005). To the extent that the model accurately
reflects the true evolution of the climate system, it can be used to carry out “experiments” that would be
impossible in reality, for example, determining the effect of doubling the current level of carbon dioxide
in the atmosphere. As such, climate models are primary tools for predicting future climate under various
scenarios, and they are also useful for studying in what ways observed climate change might be due to a
particular type of human behavior.

Statistical analysis of output from climate models is common. For instance, climate modelers fre-
quently carry out tests of mean difference between models run under different input values, performing,
for instance, t-tests at each spatial location, sometimes adjusting for multiple testing and correlation
between observations using bootstrap-like techniques (Livezey and Chen, 1983; Feddema et al., 2005).
However, the fact that the output of most climate models is the result of a deterministic algorithm means
that interpretations of certain statistical methods, such as hypothesis testing, are no longer defensible
from a frequentist view of probability. That is, there is no chance mechanism generating the output,
as in the usual frequentist thought experiment involving a sequence of repeated trials, each resulting
in some random outcome (Berk et al., 2001). Rather, if we were to run the climate model repeatedly
with the same input values, we would get the same output values each time. On the other hand, the
differential equations being solved by the model are nonlinear, so the behavior of the model output is
chaotic, behaving as we would expect for a process which was truly random.

There are a number of ways of addressing this problem, most of which take a subjectivist Bayesian view
of probability. That is, although quantities associated with the model may not be intrinsically random,
we may describe our uncertainty regarding them using the language of prior and posterior probability
distributions. For instance, suppose we have uncertainty about the inputs themselves. The technique
called “Bayesian melding” (Poole and Raftery, 2000) is designed to combine prior distributions on model
inputs and outputs which respect the fact that the outputs are a function of the inputs. We may also
have uncertainty about what the model output would be for fixed but unobserved values of the inputs.
This is especially relevant if the model is expensive to run, and one would like to find a statistical model
to serve as a surrogate predictor (Sacks et al., 1989; O’Hagan, 2004). On the other hand, one may be
interested in the degree to which the model reflects reality, in which case one can statistically model both
model output and observations in relation to some true underlying state (Fuentes and Raftery, 2005).

However, the case we consider is different from all of these. Namely, we want to make inference
about the long-run or “climatological” behavior of the model output, conditional on fixed input values.
That is, when climate modelers ask which differences between two sets of model output are “significant,”
we believe they are referring to their uncertainty about the long-run behavior of the model itself; how
the model relates to reality is a separate issue. There are certain aspects of the model which are of
interest, but which can only be known with certainty if the model is run forever and at all spatial
locations. That is, for fixed input values x, consider the model output as a function Zx(s, t) of both space
and time. Then, let Zx(s) = limt→∞

1
T

∑T
t=1 Zx(s, t), assuming such a limit exists. We observe only

Zobs = {(Zx(s, t), Zx′(s, t)); s ∈ S, t ∈ T}, where S and T are finite sets and x and x′ represent two sets
of input values. Then we can address, using the posterior distribution for Zx(s) and Zx′(s) given Zobs,
such questions as

• What is the posterior mean surface of Zx(s) − Zx′(s)? For example, x and x′ may represent a
change in carbon dioxide emissions and Z a temperature field at a specified height.
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• For what locations s is the posterior probability that Zx(s) − Zx′(s) > T greater than 95%? If Z
corresponds to temperature, a benchmark value for T in climate change studies is often 1◦C.

• If fx,s(y) is a (perhaps random) function giving a particular impact of Zx(s) taking value y at
location s, what is the posterior expected value of

∫
S∗ [fx,s(Zx(s))− fx′,s(Zx′(s))]ds, where S∗ is a

region of interest? For instance, f might be a measure of negative health outcomes.

Among the possible anthropogenic causes of climate change, increased emission of greenhouse gases
is the most widely studied. However, recent climate models also take into account the effect of surface
vegetation, which can be altered due to farming or deforestation (see e.g. Bonan, 1998). The data we
consider comes from Feddema et al. (2005) and consists of temperature output from the DOE-PCM
climate model (Washington et al., 2000) coupled with the NCAR land surface model (Bonan, 1996). The
model was run with preindustrial atmospheric conditions under two different land-use scenarios, simulated
by the IMAGE 2.2 model (Alcamo, 1994; Alcamo et al., 1998). One of these scenarios corresponds to
modern day land cover, while the other corresponds to an estimate of what modern day land cover would
be, had there been no human interference. These are shown in Figure 10. The model was run for 100
years in each case, and the last 40 years are used for analysis. The data consist of temperature output
from the model at each of 8192 locations, corresponding to a grid of 128 longitudes and 64 latitudes. The
output consists of yearly averages over the winter months (December, January, and February), yearly
averages over the summer months (June, July, and August), and yearly averages over the entire year.
Figure 11 shows the output from the model under each scenario, averaged over the 40 years. These are
virtually indistinguishable, although the differences in the means, shown in Figure 12, reflect that the
mean temperature is generally lower under the modern-day land cover classes than for the potential land
cover classes. In particular, the locations of the largest temperature changes correspond roughly to those
locations in which land cover conversion has taken place; compare Figures 12 and 13.

6 Proposed research

The next logical steps for this research fall roughly into three categories: studying the properties of the
tapering functions themselves, extending the results for the behavior of estimators using tapering, and
the climate modeling application, to which we will apply tapering techniques. This section describes our
proposed work in each of these areas.

6.1 Comparing tapering functions

Theorem 1 suggests one criterion for choosing a tapering function for a real-valued process Z. We believe
that the result will also hold for processes Z on <d, d ≥ 1 if the first two conditions of the theorem
are changed to 1. ftaper(ω) ≤ Mε

(1+ω2)ν+d/2+ε , and 2. ε > max{d/4, 1 − ν}, but we have not yet proven
this result, as the required integrals are more difficult to bound in multiple dimensions. We note that
proving this result will automatically extend our Theorem 2 as well, which is currently limited to one
dimension by reliance on Theorem 1, but which in principle should extend also to d = 2, 3 (but not to
higher dimensions, due to reliance on Zhang’s (2004) result, which is true only for d ≤ 3.)

Another useful criterion would be a characterization of tapering functions in terms of the spatial,
rather than the spectral domain. To do this, we will use the principal irregular term (PIT) of the
tapering function Ktaper, defined to be the first term in the series expansion about 0 of Ktaper that
is not proportional to |x| raised to an even power (Matheron, 1971; Stein, 1999). The behavior of a
covariance function at the origin and the tail behavior of its spectral density are related by the Abelian
and Tauberian theorems (see Stein, 1999, Section 2.8). We will provide conditions equivalent to those in
Theorem 4.2 using the PIT rather than the spectral density, as these would be much easier to check in
practice.
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Finally, within the class of tapering functions satisfying the conditions of Theorem 1, we would like
to determine how the particular form of the tapering function and the value of the taper range γ should
be chosen. The tapers constructed by Wendland (1995, 1998) are of minimal degree, but we have not yet
considered whether this has any effect on the performance of our estimators, or what a more statistically
relevant criterion might be. A few references of note are Gaspari and Cohn (1999), Gneiting (2002), and
Ehm et al. (2004), who explore various optimality properties of tapering functions. If we cannot find
an appropriate theoretical criterion, we will compare the performance of our estimators using different
tapering functions via simulation. We will also develop a rule of thumb for choosing the taper range γ
that balances performance and computational efficiency.

6.2 Extending methods and theoretical results for estimators

One interesting unanswered question that is relevant to our research but does not deal with tapering
directly is whether Zhang’s (2004) result on the convergence of the MLE under the Matérn model can
be extended to the case that both ρ and σ2 are estimated, rather than fixing ρ∗ and estimating only σ2.
This result would hold if, for instance, the rate of convergence of σ̂2

n were uniform in ρ∗. If we found a
method of proof for the MLE, it would most likely apply to our estimators based on the approximation
as well, as the forms of the estimating equations are similar.

Concerning our tapering-based estimators, a critical aspect of this problem that requires further
study is determining when the conditions of Theorem 3 will hold. We have explored several approaches
to proving convergence under more general conditions, for example using results on M-estimators which
are functions of dependent observations, but the behavior of the quadratic form Zn([Γn ◦ Tn]−1 ◦ Tn)Zn

as n →∞ is the crux in all of these approaches. This quadratic form is expressible as
∑n

i=1 λn,iχ
2
i , where

χ2
i are iid χ2

1 random variables and λn,i depends on the probability measure for Z. In the statement
of Theorem 3, we have used the original probability measure, giving that λn,i is the ith eigenvalue of
([Γn ◦ Tn]−1 ◦ Tn)Γn. On the other hand, if we require the tapering function to satisfy the conditions
of Theorem 1, then the true probability measure is equivalent to the probability measure under which
Zn ∼ Nn(0,Σn ◦ Tn), which gives that λn,i is the ith eigenvalue of ([Γn ◦ Tn]−1 ◦ Tn)[Γn ◦ Tn], which may
be more tractable. The condition on the eigenvalues we require in Theorem 3 can be cast in terms of
the condition numbers of the matrices involved, which is a function of the sampling locations Sn as well
as the covariance and tapering functions. These conditions should be easier to check when the sampling
locations form a regular lattice, so we propose to explore this case first, in hopes of gaining insight into
the general requirements.

So far, we have only applied the idea of tapering to provide approximations to the MLE. However, this
idea generalizes very naturally to the case of REML or Bayesian estimation. We will give approximations
similar to (4) and (5) for REML estimation. Some results exist concerning equivalence of Gaussian
measures with different means; we will explore whether these can be used to extend our convergence
results to the task of estimating both the mean and variance of the process. To simplify the problem,
we will focus on the case that the mean is regression function of a small number of unknown parameters
and fixed spatial basis functions, a common assumption in practice. We will also explore the particulars
of fitting a Bayesian model incorporating (4) or (5) in place of the exact form of the likelihood. We
have done some preliminary work in this direction, estimating σ2 and ρ in a mean-zero model with
exponential covariance function (7), using a conjugate (inverse Gamma) prior for σ2 and a Gamma prior
for ρ. Several issues of interest have arisen. For instance, if one uses a Gibbs sampler, with a Metropolis
step for sampling ρ, then the likelihood needs only to be evaluated during the Metropolis step, but the
parameters of the full conditional distribution for σ2 still involve inverting the covariance matrix. Even
if covariance tapering is used at each step, this method does not appear optimal from a computational
point of view. On the other hand, one might consider sampling ρ and σ2 jointly using the Metropolis
algorithm, or even importance sampling, requiring only one evaluation of the likelihood at each iteration.
However, the Metropolis algorithm will potentially take longer to converge to the equilibrium distribution,
so there appears to be some tradeoff in computational efficiency between these two options concerning
the best sampling algorithm to use. Another issue is the parameterization of the covariance function
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itself. Would the sampler perform better if the model were reparameterized in terms of Zhang’s (2004)
estimable parameter c = σ2/ρ and some other non-estimable parameter?

A final aspect of the tapering-based estimators that we have not addressed here is their numerical
performance in terms of computation time. We have written functions in R using the SparseM package
(Koenker and Ng, 2005), which uses the sparse factorization and permutation algorithm of Ng and Peyton
(1993). An initial study of the time required to find the determinant and inverse of Σn ◦Tn for increasing
n suggests that these functions are more efficient than standard matrix algorithms when n is larger than
about 200. It has been suggested to us (Reinhard Furrer, personal communication) that the R functions
in SparseM are relatively inefficient, but that the underlying source code is efficient and may be called
directly from R. We plan to implement this approach, and we will give more detailed results concerning
the computation time.

6.3 Climate modeling application

We propose to fit a Bayesian hierarchical model to the temperature output, allowing us to answer the
types of questions posed in Section 5. In particular, we will consider a model under which the (prior)
distribution of the observed quantities Zobs, conditional on the long-run functions Zx(s) and Zx′(s), takes
them to be observations from an underlying stochastic process in each case with the long-run functions
as their means. That is, for observed s and t, take

Zx(s, t) = Zx(s) + ex(s, t),

where ex(s, t) is a mean zero Gaussian process. We will model Zx(s) as a linear combination of spatial
functions φj(s, x), representing functions of the input x (for example. indicator functions for the land-
cover class at each location s) and possibly also a limited number of spherical harmonic functions, to
capture variations in the mean surface unrelated to land cover. Write Zx(s) =

∑J
j=1 φj(s, x)αj , where

the uncertainty is expressed via a prior distribution on {αj}. We expect ex(s, t) to behave like a mean
zero Gaussian process which is stationary in time. A simple model would also assume stationarity and
isotropy in space and independence in time. Although we do not anticipate this model will fit well, we will
try fitting it first. That is, take ex(s, t) at locations in Sn and at time t to be normally distributed with
mean zero and covariance matrix Σ(θx) = {K(||si − sj ||; θx)}. Then we can find posterior distributions
for the covariance parameters θx, along with {αj}, using the approximations to the likelihood we have
developed, taking the likelihood for all observations to be the product of the likelihoods at each timepoint.
We anticipate fitting even this simple model will require considerable computational resources.

Moving towards a more complicated model for ex(s, t), one possibility, short of fitting a full spatial-
temporal model for ex(s, t), is to decompose ex(s, t) into a part that is correlated in time and one that
is independent in time. We envision a simple model for the time dependent component, taking it to be
a linear combination of spatial functions ξk(s, x), representing primary modes of variability; these are
multiplied by coefficients βk,t, following a simple time-series model such as an AR process. The full model
would then be

Zx(s, t) = Zx(s) + ex(s, t) =
J∑

j=1

φj(s, x)αj +
K∑

k=1

ξk(s, x)βk,t + ηx(s, t).

The rationale for decomposing the second-order structure into a sum of finite basis functions whose
coefficients vary in time is that in observed climate data, principle component analysis reveals that
most of the variability from year to year consists of variations in a few spatial functions. For instance,
variability in the first function is typically attributed to the Southern Oscillation, or El Niño. We will
consider fixing the {ξk(s, x)} a priori, using existing climate data as a guide. Then, fitting the model
for ex(s, t) corresponds to fitting a model for a finite number of {βk,t}, as well as the spatial covariance
function of the residual process ηx(s, t), which we could then model as we originally described modeling
ex(s, t), as a mean zero Gaussian process with stationary and isotropic covariance function, with only a
few parameters θx to be estimated.
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7 Figures
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Figure 1: Illustration of tapering a covariance function. In this case, the original covariance function
is Matérn (see Section 4.1) with parameters σ2 = 2, ρ = 0.2, and ν = 2. The tapering function is the
spherical correlation function (3) with γ = 0.6. Note that the original covariance function is smoother at
the origin than the tapering function. This is problematic, as we show in Theorem 1.

Original Covariance Taper Product
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Figure 2: Illustration of tapering a covariance matrix. The sampling locations Sn consist of 20 equally
spaced points between 0 and 1, and the covariance function and taper are the same as those in Figure 1.
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Figure 3: (a) Exponential covariance function used in the simulation and the same function tapered at
two different ranges. (b) Locations used in the simulation study: n=125 includes points marked “◦”
only, n=221 also includes those marked “×”, and n=289 also includes those marked “+.” The smallest,
with n = 125, consisted of the set {i/10, j/10}i,j∈{0,...,10}

⋃
(x, y)x,y∈{0.05,.15}. The next, with n = 221,

consisted additionally of the 96 points in {(.05 + .1i, .05 + .1j)}i,j∈{0,...,9}. The largest, with n = 289,
consisted additionally of the 68 points in {(i/40, j/40)}i,j∈{0,...,8} which had not been included previously.
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Figure 4: Distributions of estimators of σ2. True value of σ2
0 = 1 is shown as a dotted vertical line.

17



0.0 0.2 0.4

0
50

15
0

25
0

0.0 0.2 0.4

0
50

15
0

25
0

0.0 0.2 0.4

0
50

15
0

25
0

0.0 0.2 0.4

0
50

15
0

25
0

0.0 0.2 0.4

0
50

15
0

25
0

0.0 0.2 0.4

0
50

15
0

25
0

0.0 0.2 0.4

0
50

15
0

25
0

0.0 0.2 0.4

0
50

15
0

25
0

0.0 0.2 0.4

0
50

15
0

25
0

0.0 0.2 0.4

0
50

15
0

25
0

0.0 0.2 0.4

0
50

15
0

25
0

0.0 0.2 0.4
0

50
15

0
25

0

0.0 0.2 0.4

0
50

15
0

25
0

0.0 0.2 0.4

0
50

15
0

25
0

0.0 0.2 0.4

0
50

15
0

25
0

n=289

n=221

n=125

MLE 1 Taper 2 Tapers

γ = 0.3 γ = 0.6 γ = 0.3 γ = 0.6

Figure 5: Distributions of estimators of ρ. True value of ρ0 = 0.2 is shown as a dotted vertical line. The
histograms for the estimators based on ln,1taper with γ = 0.3 have been truncated to facilitate comparison
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Figure 6: Distributions of estimators of c = σ2/ρ. True value of c0 = 5 is shown as a dotted vertical line.
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Figure 7: Distributions of estimators of c = σ2/ρ when ρ is fixed at 0.01.
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Figure 8: Distributions of estimators of c = σ2/ρ when ρ is fixed at 0.02 (the true value).
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Figure 9: Distributions of estimators of c = σ2/ρ when ρ is fixed at 0.04.
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Figure 10: Land cover classes under which the model was run.
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Figure 11: Temperature output under the modern day land cover classes, averaged over 40 years, and
standard deviations of these values. The scale is degrees Kelvin.
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Figure 13: Land cover classes in the potential land cover dataset which were converted to agriculture or
grassland in the modern day land cover dataset.
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Figure 14: Illustration of how ξ and k are chosen in the proof of Theorem 1. (A) First, we require that
ξ > 1/2. This is the desired rate of convergence. Also, we require that k be strictly between 0 and
1, so that ∆ = ωk → ∞ as ω → ∞, but ω − ∆ > 0. (B) The solid diagonal line corresponds to the
requirement that k > 2ν+1+ξ

2ν+1+2ε in (19). Because this line intersects k = 1 at 2ε and we require k < 1, this
adds an additional requirement that ξ < 2ε. Note also that the intercept 2ν+1

2ν+1+2ε lies strictly between
0 and 1. The dotted diagonal line corresponds to the requirement that k > ξ

2(ν+ε) in (22). But we’ve
already specified that ξ < 2ε, so this bound is redundant, because the function has a zero intercept and
is 1 for 2(ε + ν) > 2ε. (C) The solid diagonal line is the same as in (B). The last requirement is that
k > ξ−2

2ν+3 in (24). The right hand side is 1 when ξ = 2ν + 5. If 2ν + 5 > 2ε, as is shown here, this bound
(dashed/dotted diagonal line) is also redundant. (D) But if 2ν + 5 ≤ 2ε, then there are values of ξ for
which we can’t find a k both larger than this bound and strictly less than 1. So we add a requirement that
ξ < 2ν +5. Clearly 2ν +5 > 1/2, so this does not contradict our lower bound for ξ. Putting it all together,
this means we first choose ξ ∈ (1/2,min{2ε, 2ν + 5}). Then choose k ∈

(
max

{
2ν+1+ξ
2ν+1+2ε ,

ξ−2
2ν+3

})
.
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8 Tables

d = 1 k = 0 φ1,0(r) = (1− r)+
k = 1 φ1,1(r) ∝ (1− r)3+(3r + 1)
k = 2 φ1,2(r) ∝ (1− r)5+(8r25r + 1)

d = 2, 3 k = 0 φd,0(r) = (1− r)2+
k = 1 φd,1(r) ∝ (1− r)4+(4r + 1)
k = 2 φd,2(r) ∝ (1− r)6+(35r2/3 + 6r + 1)

Table 1:

MLE Tapered, γ = 0.3 Tapered, γ = 0.6
Theoretical Simulated Theoretical Simulated Theoretical Simulated

n = 125 0.0768 0.0756 0.0846 0.0768 0.0805 0.0728
n = 221 0.0752 0.0726 0.0849 0.0761 0.0792 0.0714
n = 289 0.0748 0.0754 0.0843 0.0775 0.0787 0.0732

Table 2: Comparison of theoretical and simulated variances for estimators of σ2, under the same conditions
as in the simulation study.

MLE Tapered, γ = 0.3 Tapered, γ = 0.6
Theoretical Simulated Theoretical Simulated Theoretical Simulated

n = 125 0.0042 0.0041 0.0047 0.0044 0.0044 0.0040
n = 221 0.0037 0.0035 0.0041 0.0036 0.0039 0.0035
n = 289 0.0035 0.0035 0.0041 0.0040 0.0037 0.0035

Table 3: Comparison of theoretical and simulated variances for estimators of ρ.

MLE Tapered, γ = 0.3 Tapered, γ = 0.6
Theoretical Simulated Theoretical Simulated Theoretical Simulated

n = 125 0.5484 0.6195 0.6307 0.6925 0.5584 0.6167
n = 221 0.2799 0.2950 0.2960 0.3224 0.2843 0.3076
n = 289 0.2041 0.2208 0.2980 0.3310 0.2104 0.2348

Table 4: Comparison of theoretical and simulated variances for estimators of c = σ2/ρ.
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A Technical Appendix

A.1 Estimating functions

A function G(Zn; θ) of the data vector Zn and parameters θ is called an unbiased estimating function
for θ if Eθ[G(Zn; θ)] = 0 for all possible values of θ. In this section we give expressions for the score
function for our model, obtained by differentiating the log-likelihood (1) with respect to θ, as well as the
estimating functions obtained by differentiating approximations (4) and (5). In particular, we show that
the estimating function corresponding to (4) is biased, while the estimating function corresponding to (5)
is, like the score function, unbiased. For ease of notation, in what follows we suppress the dependence of
any quantity on n and the dependence of the covariance matrices Σn(θ) and Tn(γ) on θ and γ. We make
use of the following three facts from matrix calculus:

∂

∂θi
log |Σ| = tr

{
Σ−1 ∂Σ

∂θi

}
∂

∂θi
Σ−1 = −Σ−1 ∂Σ

∂θi
Σ−1

∂

∂θi
[Σ ◦ T ] =

∂Σ
∂θi

◦ T when T does not depend on θ.

First, let G represent the score function, the vector-valued function whose ith element is

Gi =
∂

∂θi
l(θ)

= −1
2
tr
{

Σ−1 ∂Σ
∂θi

}
+

1
2
Z ′Σ−1 ∂Σ

∂θi
Σ−1Z. (13)

We can verify the well known fact that E [G] = 0 in this particular case. The two terms of (13) will cancel
when the expected value is taken, because

E
[
Z ′Σ−1 ∂Σ

∂θi
Σ−1Z

]
= E

[
tr
{

Σ−1 ∂Σ
∂θi

Σ−1ZZ ′
}]

= tr
{

Σ−1 ∂Σ
∂θi

Σ−1E [ZZ ′]
}

= tr
{

Σ−1 ∂Σ
∂θi

}
.

Now let G1taper be the estimating equation corresponding to (4). That is, G1taper is the vector-valued
function with ith element

G1taper,i =
∂

∂θi
l1taper(θ)

= −1
2
tr
{

[Σ ◦ T ]−1

[
∂Σ
∂θi

◦ T

]}
+

1
2
Z ′ [Σ ◦ T ]−1

[
∂Σ
∂θi

◦ T

]
[Σ ◦ T ]−1

Z.

Then cancellation of the two terms under the expected value does not occur, and so E [G1taper] 6= 0.

However, let G2tapers be the estimating equation corresponding to (5). Its ith element is

G2tapers.i =
∂

∂θi
l2tapers(θ)

= −1
2
tr
{

[Σ ◦ T ]−1

[
∂Σ
∂θi

◦ T

]}
+

1
2
tr
{[

Σ̂ ◦ T
]
[Σ ◦ T ]−1

[
∂Σ
∂θi

◦ T

]
[Σ ◦ T ]−1

}
. (14)

Now the cancellation does occur, and so E [G2tapers] = 0.
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A.2 Profile likelihoods

For any fixed value of φ, the value of σ2 which maximizes (1) is σ̂2
n(φ) = Z ′

nΓn(φ)−1Zn/n, where Γn(φ) =
Σn(θ)/σ2 = {C0(||si − sj ||;φ)}, the correlation matrix. If we plug this value into the log-likelihood, we
obtain the profile log-likelihood

pln(φ) = sup
σ2

ln(σ2, φ)

= −n

2
log(2π)− n

2
log

Z ′
nΓn(φ)−1Zn

n
− 1

2
log |Γn(φ)| − n

2
. (15)

Therefore, maximizing the log-likelihood (1) over both σ2 and φ is equivalent to maximizing (15) over
φ to obtain φ̂n, then calculating σ̂2

n(φ̂n). Profile versions of the approximations (4) and (5) can also be
used. These are

pln,1taper(φ) = −n

2
log(2π)− n

2
log

Z ′
n [Γn(φ) ◦ Tn(γ)]−1

Zn

n
− 1

2
log |Γn(φ) ◦ Tn(γ)| − n

2
, (16)

with σ̂2
n,1taper = Z ′

n

[
Γn(φ̂n,1taper) ◦ Tn(γ)

]−1

Zn/n, and

pln,2tapers(φ) = −n

2
log(2π)− n

2
log

Z ′
n

(
[Γn(φ) ◦ Tn(γ)]−1 ◦ Tn(γ)

)
Zn

n
− 1

2
log |Γn(φ) ◦Tn(γ)|− n

2
, (17)

with σ̂2
n,2tapers = Z ′

n

([
Γn(φ̂n,2tapers) ◦ Tn(γ)

]−1

◦ Tn(γ)
)

Zn/n.

A.3 Proof of Theorem 1

Let f1 be the spectral density corresponding to K1. The Fourier transform of the product of two functions
is the convolution of their Fourier transforms; hence,

f1(ω) =
∫
<

f0(x)ftaper(ω − x)dx. (18)

Stein (2004, Theorem A.1) provides the following two conditions, which are sufficient to give G(0,K0) ≡
G(0,K1) on the paths of {Z(s), s ∈ S} for any bounded subset S ⊂ <d:

A. ∃η > d such that f0(ω)|ω|η is bounded away from 0 and ∞ as |ω| → ∞,

B. ∃c < ∞ such that
∫
||ω||>c

{
f1(ω)−f0(ω)

f0(ω)

}2

dω < ∞.

In our case, condition A is satisfied for η = 2ν +1, with f0(ω) being the Matérn spectral density (9) with
d = 1. In addition, both f0 and ftaper are isotropic, so f0(ω) = f0(−ω) and f1(ω) = f1(−ω). Therefore,

we need only show there exists a c < ∞ such that
∫∞

c

{
f1(ω)−f0(ω)

f0(ω)

}2

dω < ∞.

Consider ω > 0. Throughout, we use the notation f(ω) = O(g(ω)) to indicate that f(ω) ≥ 0 and
that there exist 0 < L < ∞ and 0 < c < ∞ such that f(ω) ≤ Lg(ω) for all ω ≥ c. We will show that∣∣∣ f1(ω)
f0(ω) − 1

∣∣∣ = O(w−ξ), where ξ > 1/2. This implies that there exist 0 < L < ∞ and 0 < c < ∞ such that∫ ∞

c

{
f1(ω)− f0(ω)

f0(ω)

}2

dω ≤
∫ ∞

c

L2

ω2ξ
dω < ∞.

We begin by dividing the range of integration in (18) into three intervals: (−∞, ω−∆], (ω−∆, ω+∆],
and (ω + ∆,∞). The intuition is that the ratio f1(ω)/f0(ω) is going to one when evaluated over the
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middle interval, but it is going to zero when evaluated over the outer intervals. We choose ∆ as follows.
As ε > 1/4, we can choose ξ ∈ (1/2,min{2ε, 2ν + 5}). Then we can choose k ∈

(
max

{
2ν+1+ξ
2ν+1+2ε ,

ξ−2
2ν+3

}
, 1
)

and let ∆ = ωk. The rationale for this choice is that it forces certain inequalities to hold which are needed
in the remainder of the proof; these are illustrated in Figure 14. Addressing each interval separately, we
have

• When x ∈ (−∞, ω −∆], ω − x ≥ ∆, so condition 1 of the theorem implies

ftaper(ω − x) ≤ Mε

(1 + (ω − x)2)ν+1/2+ε
≤ Mε

(1 + ∆2)ν+1/2+ε
=

Mε

(1 + ω2k)ν+1/2+ε
.

Write f0(x) = σ2 M0
(ρ−2+x2)ν+1/2 . Note that

∫
< f0(x)dx = σ2. Therefore,

0 <

∫ ω−∆

−∞ f0(x)ftaper(ω − x)dx

f0(ω)
≤

Mε

(1+ω2k)ν+1/2+ε

∫
< f0(x)dx

f0(ω)

≤ Mε

M0

(ρ−1 + ω2)ν+1/2

(1 + ω2k)ν+1/2+ε
= O(ω−ξ), (19)

because k > 2ν+1+ξ
2ν+1+2ε .

• When x ∈ (ω −∆, ω + ∆], we expand f0(x) about ω. Specifically, for some ω∗ ∈ (ω −∆, ω + ∆],∫ ω+∆

ω−∆
f0(x)ftaper(ω − x)dx

f0(ω)
=

∫ ω+∆

ω−∆
[f0(ω) + f ′0(ω)(ω − x) + f ′′0 (ω∗) (ω−x)2

2 ]ftaper(ω − x)dx

f0(ω)

=
∫ ω+∆

ω−∆

ftaper(ω − x)dx + (20)

f ′′0 (ω∗)
2f0(ω)

∫ ω+∆

ω−∆

(ω − x)2ftaper(ω − x)dx, (21)

as the integral of the term corresponding to the first derivative is zero.

The integral in (20) is clearly less than one by condition 3 of the theorem; we will show it is
bounded below by 1 − O(ω−ξ). Likewise, calculating f ′′0 shows (21) is greater than zero whenever
ω >

√
1

2ρ2(ν+1) ; we will show it is bounded above by O(ω−ξ). Addressing the integral in (20) first,
we have ∫ ω+∆

ω−∆

ftaper(ω − x)dx = 1−
∫
|x|>∆

ftaper(x)dx

≥ 1−
∫
|x|>∆

Mε

(1 + x2)ν+1/2+ε
dx

≥ 1−
∫
|x|>∆

Mε

x2(ν+1/2+ε)
dx

= 1− Mε

(ν + ε)∆2(ν+ε)
= 1− Mε

(ν + ε)ω2k(ν+ε)

= 1−O(ω−ξ) (22)

because k > 2ν+1+ξ
2ν+1+2ε and ξ < 2ε imply that k > ξ

2(ν+ε) .

Now we evaluate (21). Let Mbnd be the normalizing constant required for Mbnd

(1+x2)ν+1/2+ε to integrate

to 1. We recognize this as the density of t2(ν+ε)/
√

2(ν + ε), where t2ν+ε denotes a random variable
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with t distribution and (possibly fractional) degrees of freedom 2(ν + ε). Then,∫ ω+∆

ω−∆

(ω − x)2ftaper(ω − x)dx =
∫ ∆

−∆

x2ftaper(x)dx

≤
∫ ∆

−∆

x2 Mε

(1 + x2)ν+1/2+ε
dx

≤ Mε

Mbnd

∫ ∞

−∞
x2 Mbnd

(1 + x2)ν+1/2+ε
dx

=
Mε

Mbnd
Var

(
t2(ν+ε)√
2(ν + ε)

)
≡ L < ∞,

because ν + ε > 1 by condition 2 of the theorem. Now,

f ′′0 (ω∗) =
σ2M0(2ν + 1)

(ρ−2 + ω∗2)ν+3/2

[
(2ν + 3)ω∗2

ρ−2 + ω∗2
− 1
]

,

which is decreasing whenever ω∗ >
√

3
2ρ2(ν+1) . Therefore, eventually ω−∆ will be large enough so

that supω∗∈(ω−∆,ω+∆) f ′′0 (ω∗) = f ′′0 (ω −∆) = f ′′0 (ω − ωk), and so we can write (21) as

f ′′0 (ω∗)
2f0(ω)

∫ ω+∆

ω−∆

(ω − x)2ftaper(ω − x)dx ≤ L

2f0(ω)
sup

ω∗∈(ω−∆,ω+∆)

f ′′0 (ω∗) (23)

≤ L(2ν + 1)
2

(ρ−2 + ω2)ν+1/2

(ρ−2 + (ω − ωk)2)ν+3/2

[
(2ν + 3)(ω − ωk)2

ρ−2 + (ω − ωk)2
− 1
]

= O(ω−ξ), (24)

because k > ξ−2
2ν+3 .

• When x ∈ (ω + ∆,∞), f0(x) ≤ f0(ω), so

0 <

∫∞
ω+∆

f0(x)ftaper(ω − x)dx

f0(ω)
≤

∫ ∞

ω+∆

ftaper(ω − x)dx

=
∫ −∆

−∞
ftaper(x)dx

=
1
2

∫
|x|>∆

ftaper(x)dx = O(ω−ξ) (25)

by the same reasoning as in (22).

As f1(ω)
f0ω is the sum of the terms in (19), (22), (24), and (25), we have shown that

∣∣∣ f1(ω)
f0(ω) − 1

∣∣∣ = O(w−ξ),
which completes the proof.

A.4 Proof of Theorem 2

This result is an easy consequence of our Theorem 1, as well as Theorem 2 of Zhang (2004). Let
G(0,K0) be the true probability measure for Z (Gaussian with mean zero and Matérn covariance function
with parameters σ0, ρ0, and ν). According to Theorem 2 of Zhang (2004), we may find for any fixed
ρ∗ > 0 a σ2∗ > 0 such that G(0,K0) and G(0,K1) are equivalent, where G(0,K1) is the mean zero
Gaussian measure for Z with Matérn covariance function with parameters σ2∗, ρ∗, and ν. That is, let
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σ2∗ = σ2
0(ρ0/ρ∗)2ν . By Theorem 1, we also know that G(0,K1) is equivalent to G(0,K2), the mean

zero Gaussian measure with covariance function equal to the direct product of K1 and and Ktaper, a
tapering function satisfying the conditions of Theorem 1. Therefore, to show σ̂2

n,1taper/ρ∗2ν → σ2
0/ρ2ν

0

a.s. [G(0,K0)], it is sufficient to show σ̂2
n,1taper → σ2∗ a.s. [G(0,K2)].

Because ρ∗ and ν are fixed, the exact expression for σ̂2
n,1taper is

σ̂2
n,1taper = Zn [Γn(ρ∗, ν) ◦ Tn(γ)]−1

Zn/n,

where Γn(ρ∗, ν) = 1
σ2∗

{
K1(||si − sj ||;σ2∗, ρ∗, ν)

}
and Tn(γ) = {Ktaper(||si − sj ||; γ)} .

But under G(0,K2), Zn ∼ Nn(0, σ2∗Γn(ρ∗, ν) ◦ Tn(γ)), so σ̂2
n,1taper is distributed as σ2∗/n times a χ2

random variable with n degrees of freedom. Therefore, σ̂2
n,1taper → σ2∗ a.s. [G(0,K2)] by the Strong Law

of Large Numbers.

A.5 Proof of Theorem 3

Begin as in the proof of Theorem 2, letting G(0,K0) denote the true probability measure and G(0,K1)
the probability measure with K1 equal to a Matérn covariance with parameters σ2∗ = σ2

0(ρ0/ρ∗)2ν , ρ∗,
and ν. Then G(0,K0) and G(0,K1) are equivalent by Theorem 2 of Zhang (2004), so it is sufficient to
show σ̂2

n,2tapers → σ2∗ a.s. [G(0,K1)].

The exact expression for σ̂2
n,2tapers is

σ̂2
n,2tapers = Z ′

n

(
[Γn(ρ∗, ν) ◦ Tn(γ)]−1 ◦ Tn(γ)

)
Zn/n

= Z ′
nW−1

n Zn/n.

Under G(0,K1), Zn ∼ Nn(0,Σ(σ2∗, ρ∗, ν)). Write Γn(ρ∗, ν) = RR′. Then 1
σ∗R−1Zn ∼ Nn(0, In), so

σ̂2
n,2tapers = Z ′

nW−1
n Zn/n

=
1
n

(
1
σ∗

R−1Zn

)′
(σ∗R)′ W−1

n (σ∗R)
(

1
σ∗

R−1Zn

)
=

1
n

X ′
n

[
(σ∗R)′ W−1

n (σ∗R)
]
Xn, whereXn ∼ Nn(0, In)

=
σ2∗

n

n∑
i=1

λn,iχ
2
i , (26)

where χ2
i are iid χ2

1 random variables and λni is the ith eigenvalue of R′W−1
n R, which is the same as the

ith eigenvalue of W−1
n Γn.

Cuzick (1995) gave conditions for the almost sure convergence of weighted sums of iid random vari-
ables. Specifically, let Yn =

∑n
i=1 an,iXi, where Xi are iid with mean zero and {an,i} is an array of

constants. Then if supn

(
n−1

∑n
i=1 |an,i|q

)1/q
< ∞ for some 1 < q ≤ ∞, and E|X|p < ∞, p−1 + q−1 =

1, Yn/n → 0 almost surely. (The case q = 0 is interpreted to mean the an, i are uniformly bounded.) The
result also holds when q = 1 under the additional assumption that lim supi≤n |an,i|n−1 log n. We finish
the proof by applying these results to (26), with Xi = χ2

i − 1 and an,i = λn,i.

A.6 Information matrices

The following fact, using the moment properties of the multivariate normal distribution, is useful in the
derivation of the information matrices in this section.

Lemma 1. Suppose matrices A and B are symmetric and Z has multivariate normal distribution with
mean zero and covariance matrix Σ. Then

Cov (Z ′AZ,Z ′BZ) = 2tr {AΣBΣ} .
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Proof.

Cov (Z ′AZ,Z ′BZ) = Cov
(
tr
{

Σ̂A
}

, tr
{

Σ̂B
})

= E
[
tr
{

(Σ̂− Σ)A
}

tr
{

(Σ̂− Σ)B
}]

= E

∑
i

∑
j

(Σ̂− Σ)ijAji

(∑
k

∑
l

(Σ̂− Σ)klBlk

)
=

∑
i

∑
j

∑
k

∑
l

AjiE
[
(Σ̂− Σ)ij(Σ̂− Σ)kl

]
Blk

=
∑

i

∑
j

∑
k

∑
l

AjiCov(ZiZj , ZkZl)Blk

=
∑

i

∑
j

∑
k

∑
l

Aji(E [ZiZjZkZl]− E [ZiZj ] E [ZkZl])Blk

=
∑

i

∑
j

∑
k

∑
l

Aji(ΣijΣkl + ΣikΣjl + ΣilΣjk − ΣijΣkl)Blk

=
∑

i

∑
j

∑
k

∑
l

AijΣjlBlkΣki +
∑

i

∑
j

∑
k

∑
l

AijΣjkBklΣli

= 2tr {ΣAΣB} ,

The Fisher information matrix E(U) = E [UU ′] has i, jth element

E [UU ′]i,j =
1
4
E
[(

Z ′Σ−1 ∂Σ
∂θi

Σ−1Z − tr
{

Σ−1 ∂Σ
∂θi

})(
Z ′Σ−1 ∂Σ

∂θj
Σ−1Z − tr

{
Σ−1 ∂Σ

∂θj

})]
=

1
4
Cov

(
Z ′Σ−1 ∂Σ

∂θi
Σ−1Z,Z ′Σ−1 ∂Σ

∂θj
Σ−1Z

)
=

1
2
tr
{(

Σ−1 ∂Σ
∂θi

Σ−1

)
Σ
(

Σ−1 ∂Σ
∂θj

Σ−1

)
Σ
}

=
1
2
tr
{

Σ−1 ∂Σ
∂θi

Σ−1 ∂Σ
∂θj

}
. (27)

Here we have applied Lemma 1 with A = Σ−1 ∂Σ
∂θi

Σ−1 and B = Σ−1 ∂Σ
∂θj

Σ−1.

Now we calculate E(G) = E
[
Ġ
]′

E [GG′]−1 E
[
Ġ
]
. We start with E

[
Ġ
]
, differentiating the first and

second terms of (14) separately. First,

∂

∂θj
tr
{

[Σ ◦ T ]−1

[
∂Σ
∂θi

◦ T

]}
= −tr

{
[Σ ◦ T ]−1

[
∂Σ
∂θi

◦ T

]
[Σ ◦ T ]−1

[
∂Σ
∂θj

◦ T

]}
+tr

{
[Σ ◦ T ]−1

[
∂2Σ

∂θi∂θj
◦ T

]}
.

Note this expression is a constant with respect to the data. Next,

∂

∂θj
tr
{[

Σ̂ ◦ T
]
[Σ ◦ T ]−1

[
∂Σ
∂θi

◦ T

]
[Σ ◦ T ]−1

}
= −tr

{[
Σ̂ ◦ T

]
[Σ ◦ T ]−1

[
∂Σ
∂θj

◦ T

]
[Σ ◦ T ]−1

[
∂Σ
∂θi

◦ T

]
[Σ ◦ T ]−1

}
+tr

{[
Σ̂ ◦ T

]
[Σ ◦ T ]−1

[
∂2Σ

∂θi∂θj
◦ T

]
[Σ ◦ T ]−1

}
−tr

{[
Σ̂ ◦ T

]
[Σ ◦ T ]−1

[
∂Σ
∂θi

◦ T

]
[Σ ◦ T ]−1

[
∂Σ
∂θj

◦ T

]
[Σ ◦ T ]−1

}
,
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which has expected value

tr
{

[Σ ◦ T ]−1

[
∂2Σ

∂θi∂θj
◦ T

]}
− 2tr

{
[Σ ◦ T ]−1

[
∂Σ
∂θi

◦ T

]
[Σ ◦ T ]−1

[
∂Σ
∂θj

◦ T

]}
.

Putting the summands back together, we have

E
[
Ġi,j

]
= −1

2
tr
{[

∂Σ
∂θi

◦ T

]
[Σ ◦ T ]−1

[
∂Σ
∂θj

◦ T

]
[Σ ◦ T ]−1

}
. (28)

Next we calculate E [GG′] . Here, we note that for any conformable matrix C, tr
{[

Σ̂ ◦ T
]
C
}

=

tr
{

Σ̂[C ◦ T ]
}

= Z ′[C ◦ T ]Z, so Lemma 1 also implies that Cov
(
tr
{

[Σ̂ ◦ T ]A
}

, tr
{

[Σ̂ ◦ T ]B
})

=

2tr {[A ◦ T ]Σ[B ◦ T ]Σ}. Thus, the i, jth entry of E [GG′] is

E [GG′]i,j =
1
4
E
[(

tr
{[

Σ̂ ◦ T
]
[Σ ◦ T ]−1

[
∂Σ
∂θi

◦ T

]
[Σ ◦ T ]−1

}
− tr

{
[Σ ◦ T ]−1

[
∂Σ
∂θi

◦ T

]})
(

tr
{[

Σ̂ ◦ T
]
[Σ ◦ T ]−1

[
∂Σ
∂θj

◦ T

]
[Σ ◦ T ]−1

}
− tr

{
[Σ ◦ T ]−1

[
∂Σ
∂θj

◦ T

]})]
=

1
4
Cov

(
tr
{[

Σ̂ ◦ T
]
[Σ ◦ T ]−1

[
∂Σ
∂θi

◦ T

]
[Σ ◦ T ]−1

}
, tr
{[

Σ̂ ◦ T
]
[Σ ◦ T ]−1

[
∂Σ
∂θj

◦ T

]
[Σ ◦ T ]−1

})
=

1
2
tr
{[(

[Σ ◦ T ]−1

[
∂Σ
∂θi

◦ T

]
[Σ ◦ T ]−1

)
◦ T

]
Σ
[(

[Σ ◦ T ]−1

[
∂Σ
∂θi

◦ T

]
[Σ ◦ T ]−1

)
◦ T

]
Σ
}

.
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