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Abstract

Many common methods for estimating functional brain connectivity are limited
because they are bivariate, descriptive, and non-sparse. Furthermore, the functional
magnetic resonance imaging used to fit these models has poor temporal resolution,
causing spurious connections to be included. The first set of problems can be overcome
by learning functional network structure with penalized regression models, which are
multivariate, sparse, and predictive. To address the problem of spurious connections
we use anatomical networks—estimated with diffusion spectrum imaging and high-
definition fiber tractography—as soft constraints on functional connectivity. In the
first phase of this research we define anatomical and functional network nodes by clus-
tering fiber tract terminal points. In the second, we investigate how high-dimensional
regression methods can be used to estimate the edges in a functional network in a way
that reflects the underlying anatomical structure.

1 Introduction

Many cognitive tasks are thought to arise from the characteristics and dynamics of dis-
tributed networks of brain regions. Modeling these networks accurately will allow us to bet-
ter understand interesting brain functions and potentially to diagnose pathologies (McIn-
tosh, 2000; Honey et al., 2009).

Functional brain networks are often modeled as graphs. First, a set of regions-of-interest
(ROIs) are defined as the graph nodes and the activation at each ROI is measured over time,
typically with functional magnetic resonance imaging (fMRI). The graph edges are most
commonly estimated using a measure of pairwise statistical association like correlation,
partial correlation, coherence, or mutual information (Bullmore and Sporns, 2009; Smith
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et al., 2011). This standard modeling process has several limitations. Specifically, it is
intrinsically descriptive and does not allow for statistical or scientific validation through
predictive checks. Furthermore, it does not identify subtle graph structures like loops or
hierarchies very well and the lack of sparsity makes scientific interpretation more difficult
in general.

The biggest drawback to fMRI-based functional connectivity estimates, however, is the
fMRI modality itself. fMRI typically has a temporal resolution of 0.5-1 Hz, while neural
signals may take less than 100 ms to travel from one ROI to the next. In addition, fMRI
measures the level of blood oxygenation, which is not a direct indicator of neural activity.
As a result, fMRI-based functional network estimates likely include connections that have
no anatomical basis (in other words, type I errors).

Incorporating anatomical connectivity. Our hypothesis is that the connections in
a functional network are constrained by an underlying anatomical network, and that we
can improve functional connectivity models by explicitly including anatomical information.
To model anatomical networks we use diffusion spectrum imaging (DSI) (Hagmann et al.,
2006; Wedeen et al., 2005) and high-definition fiber tractography (HDFT) (Verstynen et al.,
2011; Jarbo et al., 2012). DSI indicates the directions of maximum water displacement in
each voxel of a subject’s brain; by connecting adjacent voxels according to these primary
directions any desired number of fiber tracts can be constructed. Because water tends to
diffuse more along the major axis of neurons, the fiber tracts indicate the location of major
white matter fiber bundles. Figure 1 shows an example of fiber tracts constructed in the
cortico-basal ganglia system.

The most direct way that anatomical networks can inform functional network estima-
tion is through measures of the structural connection strength between two network nodes.
This can be as simple as the number of fibers that connect a pair of ROIs, although more
sophisticated statistics like quantitative anisotropy are typically available because they
must be computed for the fiber tractography process (Yeh et al., 2010).

We can also use fiber tractography to influence functional connectivity estimates by
using clusters of fiber terminal points to define the functional network nodes. Defining
these nodes correctly is critical for accurate connectivity estimates (Smith et al., 2011), and
there are several benefits to defining the nodes with HDFT data. First, fiber tractography
has much better resolution than the most common node identification method of projecting
a generic brain atlas onto each individual subject. ROIs can also be defined directly from
the fMRI signal, but fMRI voxels are relatively large and may not capture complicated
structural patterns. Fiber tract terminal points have a sub-voxel resolution, and we can
represent this in functional network nodes by having each fMRI voxel contribute to graph
nodes in proportion to the cluster representation in the voxel. In addition, fMRI measures
the resting state blood oxygen level-dependent (rsBOLD) contrast, which is a noisy, indirect
indicator of neural activity. DSI provides more direct insight into neural connections.
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Figure 1: An example of HDFT fibers constructed in the cortico-basal ganglia system.
Fibers are shown in yellow and the basal ganglia is purple. The top inset shows the spatial
arrangement of the cortical terminal fiber points, and bottom inset shows the striatal
terminal points (color indicates depth). Source: Verstynen et al. (2012)
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There are drawbacks to defining graph nodes with structural networks. Most notably,
deterministic HDFT is prone to type II errors; small clusters of fibers are often overlooked
due to random noise and partial volume effects in the DSI process (Lemkaddem et al.,
2012). This phenomenon may explain some spurious functional connections, which is why
our proposed methods down-weight functional edges that lack an anatomical link but do
not rule them out entirely.

Clustering fiber tract endpoints. Fiber tract endpoints are often arranged in highly
irregular patterns, so defining graph nodes according to endpoint clusters is a challenging
task. For example, fiber terminal points in the striatum lie along curved stripes (shown
clearly in the bottom right panel of Figure 1), corresponding to projections from several
different cortical regions. This complex anatomy suggests a complex arrangement of func-
tional assignments, and it is critical that each stripe be identified as a unique cluster so
that the stripes become vertices in our functional network (Verstynen et al., 2012). Sim-
ple clustering algorithms like k-means fail to capture these irregular endpoint groupings,
but techniques like spectral clustering, diffusion maps, and density clustering show more
promise.

Both anatomical and functional networks can be defined and modeled at different scales.
Figure 2 from Jarbo et al. (2012) illustrates anatomical connectivity across the corpus cal-
losum; there are clearly patterns at both the lobe and sub-lobe scales. Similarly, Verstynen
et al. (2012) find that fiber tracts projecting into the basal ganglia can be segregated on at
least two levels. Ideally we would like to estimate functional connectivity simultaneously
at multiple scales, using a hierarchy of fiber tract clusters to define the functional network
nodes. Each level of this hierarchy would correspond to a partition of the set of fibers,
such that lower levels are refinements of the partitions on higher levels.

Penalized regression. We use penalized regression methods to estimate functional
connectivity networks; this family of models offers several advantages for this particular
application. First and foremost, the penalty function in many models can be modified to
incorporate anatomical connection strength as a soft constraint on functional connectivity.
In addition to encouraging functional models to conform to a subject’s anatomy, the spar-
sity induced by the penalty functions make the models statistically valid and scientifically
tractable.

The regression framework is also multivariate and predictive, overcoming two of the
main pitfalls of the correlation-type methods. Having predictive models is especially useful
because the connectivity estimates can be validated both by statistical methods like cross-
validation and also through repeat scans of the same subjects.
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Figure 2: Anatomical connectivity across the corpus callosum for pairs of ROIs, measured
as the fraction of subjects with a significant connection. Rows indicate left hemisphere
ROIs and columns indicate right hemisphere ROIs. There is clearly structure at both the
lobe and sub-lobe scales. Source: Jarbo et al. (2012)
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2 Literature Review

Estimating the anatomical network. Numerous methods exist for clustering fiber
tracts and estimating the connectivity of fiber bundles. The following examples are meant
to illustrate the breadth of approaches. Cammoun et al. (2011) construct a hierarchical
map of structural connectivity by defining about 1000 ROIs on a template brain and
recursively combining these by hand into 66 clusters. They map these template groups
onto fiber tracts for an individual subject and use the sum of inverse fiber lengths to
estimate pairwise cluster connectivity. The authors note that a multi-scale approach is
important for accurate structural mapping because of the large variation in the size of
fiber bundles and the anatomical regions they connect.

Guevara et al. (2011) implement a hierarchical fiber tract clustering routine that avoids
manual ROI labeling but requires a byzantine cascade of steps. A whole brain set of
about 1.5 million fiber tracts is subdivided into major regions according to an atlas, then
fiber groups are created within each region according to fiber length. These groups and
their pairwise connectivities are inputs to a hierarchical clustering of white matter voxel
space into parcels, but these parcels often have substantial overlap between different fiber
bundles. To fix this, the endpoints of fibers are clustered within a group into fascicles.
The combination of all of these subdivisions can lead to a sort of over-fitting, so fascicle
centroids are computed and clustered hierarchically. This process is shown to work well
in simulated fiber tract data, real fiber sets, and phantoms but it does not lend itself to
statistical analysis in any way.

As a preprocessing step for functional network node localization, Zhu et al. (2011) use
principal components analysis to transform fiber tract bundles into collections of unit nor-
malized vectors that indicate the bundles’ primary direction and shape. They use affinity
propagation to group several hundred fiber bundles constructed in a local neighborhood of
each proposed functional ROI into three clusters.

Estimating functional connectivity. Estimating fMRI-based functional networks
requires definition of network nodes and selection of the edge set. Standard approaches to
the first problem include expert manual labeling of ROIs, projection of a brain template
onto individuals, statistical decomposition of fMRI signals into independent or variance-
maximizing components, and task-based fMRI responses (Cammoun et al., 2011; Zhu et al.,
2011). Methods for determining the edge set can be divided into undirected and directed
graph structure learning techniques. The latter category includes Bayes nets, lag-based
approaches such as Granger causality, and methods that look for asymmetries in pairwise
conditional probabilities (Smith et al., 2011). The sparse regression methods that we will
investigate produce undirected graphs and we focus on comparable methods.

The simplest way to measure pairwise relationships is the Pearson correlation coefficient
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of the time series at two nodes (we refer to this as full correlation). This method has
several major shortcomings, most notably that it often identifies indirect connections as
direct (Smith et al., 2011). To overcome this problem, the partial correlation method finds
the correlation between two vertices after the effects of all other nodes have been regressed
out. Correlation can be replaced by any statistic that measures pairwise dependencies,
such as mutual information.

Both full and partial correlations can fail to detect a true but lagged relationship.
Coherence is a temporal generalization of correlation that can overcome this problem and
can allow non-stationarity to be detected. Pairwise coherence can be computed using
wavelet transforms or by estimating cross-spectral densities at various frequencies (Smith
et al., 2011).

Dynamic causal modeling (DCM) and structural equation modeling (SEM) have also
been used to estimate undirected graph structure. Smith et al. reject these methods be-
cause they do not allow for a computationally efficient search across all possible network
topologies and are intended to be used to compare only a few hypotheses about network
structure. DCM is particularly inappropriate because it assumes pre-specified input times,
but we are estimating a network of resting state functional connectivity where there are
no input times (Smith et al., 2011).

Smith et al. (2011) test the ability of each of these methods to detect graph edges and
edge directions, and the robustness of the methods to data problems. Using simulated fMRI
BOLD data, they find partial correlation and regularized precision matrix methods are the
best for detecting true network connections, estimating about 90% of true edges to have
higher weight than the 95th percentile strength of false positive edges. The full correlation
method is not far behind, but mutual information- and coherence-based techniques perform
poorly. Interestingly, the Bayes net approach is also effective for discovering graph edges,
but not for identifying edge directions.

Relating anatomical and functional connectivity. The principle underlying this
research is that anatomical connectivity and functional connectivity are related, and a
handful of papers show that this relationship is indeed plausible. Greicius et al. (2009)
use fRMI data to estimate functional connectivity and diffusion tensor imaging (DTI)
to estimate anatomical connectivity, and find that the former “reflects” the latter in the
default mode network across 23 subjects.

Honey et al. (2009) analyze the structure-function relationship with the same data types
that we use—DSI and fMRI—but use only pairwise correlation of the fMRI to estimate
connection strength between two functional graph nodes. They find that strong structural
connections are predictive of strong functional connections, but that strong functional
connections can occur without direct anatomical links.

Zhu et al. (2011) improve the accuracy of functional node localization by incorporating
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HDFT information, although they do this by maximizing the inter-subject consistency of
HDFT fiber bundles that intersect a proposed ROI. For this project we analyze data within
individual subjects, so this method is not feasible.

Bunea et al. (2011) use the lasso and elastic net methods to add anatomical informa-
tion to a model of brain output, but in a much different framework than our approach.
The response variables are cognitive function test scores, which are regressed on a variety
of covariates including ROI volumes and fiber tractography functions (such as fractional
anisotropy and mean diffusivity), as well as clinical measurements and demographic cate-
gories.

Penalized regression for graph structure learning. Meinshausen and Bühlmann
(2006) describe how penalized regression can be used to estimate the edges in an undirected
graphical model. The neighborhood of node a in vertex set Γ (denoted nea) is the smallest
set of nodes such that a is conditionally independent of the remaining nodes given a’s
neighborhood. These are precisely the nodes that are adjacent to a in a graphical model
representation of random vector X, and when X is Gaussian these nodes are indicated
by nonzero entries in the a’th row of the inverse covariance matrix (Lauritzen, 1996).
Estimating the presence of these edges from n observations of X can be achieved with
`1-penalized regression. Let Xa be the n-dimensional vector of observations of the a’th
column of the data matrix X, X(a) be the matrix of n observations (rows) of the other
p− 1 random variables in X, and βa be a length p− 1 vector. Then let

β̂a,λ = arg min
β

{
‖Xa −X(a)β‖22 + λ‖β‖1

}
.

The neighborhood estimate for node a is

n̂eλa =

{
b ∈ Γ : βa,λb 6= 0

}
and edge set estimate is

Êλ =

{
(a, b) : a ∈ n̂eλb OR b ∈ n̂eλa

}
.

We refer to this method as parallel lasso. Meinshausen and Bühlmann show that under a set
of assumptions about dimensionality (p >> n), non-singularity of the covariance matrix,
sparsity, effect size, and neighborhood stability, then both the neighborhood selection and
the full edge set estimation procedures are consistent. The tuning parameter λ can be
chosen to control the probability of falsely connecting two distinct connected components
in the true graph.

The strong assumptions required by Meinshausen and Bühlmann are a drawback to
this method. More general research on the lasso method establishes that the irrepresen-
tible conditions—which preclude irrelevant covariates from being correlated with relevant
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ones—are sufficient to for `1 regularization to recover a sparse support set (Zhao and Yu,
2006; Meinshausen and Yu, 2009; Zhang, 2011b). Unfortunately, these conditions are not
generally verifiable, and given the large impact of hemodynamic noise on fMRI data, they
are likely not satisfied in our application.

Zhao et al. (2009) develop a family of linear regression penalty functions called compos-
ite absolute penalties (CAP) that incorporates prior knowledge about covariate structure.
In particular, penalty functions can be created that represent hierarchical structures, with
the most natural example being ANOVA regression where interaction terms should not
enter the model until lower-order terms have entered.

Suppose there are K groups of covariates, and gk is a subset of the covariate indices for
k ∈ 1, . . . ,K. Let γk be the desired norm for group k and γ0 be an “overall norm”. The
coefficient vector for group k is βgk = (βj)j∈gk . The CAP penalty is

Tg,γ(β) =
K∑
k=1

(
‖βgk‖γk

)γ0 ,
and the full penalized regression problem is

β̂g,γ(λ) = arg min
β

{
L(X,Y, β) + λTg,γ(β)

}
.

If γi ≥ 1 for all i then the penalty function is convex which allows for efficient computation
of solutions (under typical loss functions). The authors demonstrate that CAP penalties
induce hierarchical sparsity if the overall norm γ0 is set to 1 and γk is set to be greater
than 1 for each group. If a set of variables g1 should enter the model before another set g2,
then g2 appears in every penalty term where g1 appears, and there should be at least one
penalty term where g2 is included but g1 is not. Under these conditions, once g2 enters the
model g1 almost surely enters as well.

The hierarchical version of this family of penalty functions assumes the average cor-
relation between predictors and the response increases monotonically when moving from
the leaves to the root. This is a natural assumption for the ANOVA regression setting but
it is the opposite of the brain anatomy structure we would like to characterize. That is,
we would like small clusters of brain nodes to enter our model only if the larger aggregate
clusters have already entered. Furthermore, Zhao et al. show in simulation studies that
CAP-penalized regression performs worse than regular lasso when the interaction effects
are very strong.

The CAP penalty is one of many structured sparsity-inducing regularizations that have
been proposed in the past decade. Other prominent examples include the adaptive lasso,
which uses weights on the elements of the `1 norm (Zou, 2006); adaptive bridge regression,
which uses weights in the penalty function and allows any p-norm (Kawano, 2012); group
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lasso, which has an `1 penalty on groups of covariates and an `2 penalty on individual
features (Yuan and Lin, 2006); and k-overlap norm regression, which estimates a model
whose support is a union of covariate groups (Argyriou et al., 2012; Jacob et al., 2009).

Stepwise procedures constitute another family of methods that can be used to obtain
sparse estimates in high-dimensional settings. Zhang (2011a) proposes an adaptive forward-
backward stepwise algorithm for high-dimensional regression and demonstrates that this
method performs better than lasso under certain conditions. Percival et al. (2011) use
a forward stepwise regression procedure to achieve structured sparsity in estimating the
association between protein mutations and HIV drug resistance. In each iteration, the co-
variates that are not yet included in the model are weighted according to their proximity to
included covariates and their correlation with the current model’s residuals. The candidate
covariate with the highest weight is then added to the model. This algorithm gives sparse
estimates of the coefficient vector such that non-zero components of the coefficient vector
tend to cluster together. Percival et al. show their algorithm is consistent in the sense
that with high probability all selected predictors are nonzero in the true target coefficient
vector and the number of false negatives is bounded by the number of small true nonzero
predictors, but the authors note that stepwise regression is a greedy algorithm unlike the
convex program of the lasso.

3 Preliminary Results

3.1 Data and model framework

Our data consist of DSI fiber tracts and fMRI time series for several subjects imaged in
the past year. We analyze each subject on an individual basis. The number of fiber tracts
varies depending on the particular brain region under investigation, but is typically about
10, 000. To estimate the anatomical network we focus primarily on fiber tract terminal
points. Denote xs ∈ R3 to be the subcortical terminus and xc ∈ R3 to be the cortical end.
Let Xs be the set of all n subcortical points and Xc be the set of all cortical points. The
full HDFT data set is X = Xs ∪Xc.

The functional data is a set of time series of the rsBOLD fMRI contrast, one for each
voxel in a standardized 96× 96× 51 whole-brain grid. We represent each voxel as a point
y ∈ N3 so that {yt}Tt=1 is the rsBOLD time series at voxel y.

To map the physical space into voxel space we define a function g : R3 → N3. In
practice this mapping is done in the fiber tractography process, before we see the data.
The set of endpoints in voxel y is g−1(y) = {x ∈ X : g(x) = y}. A clustering function
is also defined that assigns a label to each point: c : R3 → {1, . . . ,K}, where K—the
number of clusters—can either be fixed in advance or chosen based on the data. Applying
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this function to all the fiber endpoints in voxel y yields a cluster assignment vector for y:
c(g−1(y)).

Functional network nodes are formed using the voxel cluster vectors. In the simplest
set-up each voxel is labeled according to its modal cluster and the voxels with the same
label are grouped into a graph node. Suppose v is the vertex that corresponds to cluster
k. Then

v =
{
y : mode{c(g−1(y))} = k

}
.

Each node covers many voxels and their rsBOLD time series; these are averaged to create
a single time series for the node:

vt =
1

nv

∑
y∈v

yt.

where nv is the number of voxels in node v.

Fiber tractography provides many ways to estimate the strength of the connection
between two ROIs. The simplest methods are based only on the number of fibers that
connect a pair of nodes. For example, let nu and nv be the number of fibers with endpoints
in nodes u and v, and let nuv = nvu be the number of fibers that have one end in node u
and the other end in node v. The degree of connectivity is

αuv =
nuv
nunv

.

3.2 Clustering fiber endpoints

To define functional network nodes we cluster fiber tract terminal points. For our initial
exploration of endpoint clustering we analyze three fiber data sets separately. The first has
5,000 fibers where xs falls in the caudate nucleus, the second has 10,000 fibers such that
xs is in the putamen, and the third has 10,000 fibers with xs located in the thalamus.

Because of the striatal pattern of the fiber endpoints, particularly in the putamen,
simple clustering algorithms like k-means do not work well. Instead we use a spectral
clustering algorithm, following the 2006 tutorial by von Luxburg (2006). A substantial
portion of our preliminary work has been investigating and optimizing the performance of
this technique. For each of the six endpoint groups (three cortical and three subcortical) we
construct a k-nearest neighbor similarity graph and represent this graph as an adjacency
matrix W . The edge weights are

wij =

{
exp

{
−‖xi−xj‖

2

2c

}
xi and xj are k-neighbors

0 else.
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Two points are considered neighbors if either one is in the other’s top 1% of similarities.
This neighborhood definition is chosen empirically to create a connected but very sparse
graph. The choice of c remains a problem; we set it arbitrarily to the 10’th percentile
squared euclidean distance.

Outliers are known to be a problem for spectral clustering so we remove all points in
the first percentile of similarity degree (i.e. the row sum of W ). This is another arbitrary
threshold, but in our experience this step dramatically improves the results. After the final
clustering step each outlier can be assigned to the group with the closest cluster center,
although it is often easier to visualize the data when the outliers are omitted for good.

We construct the diagonal degree matrix D and use it to normalize the adjacency
matrix:

L = D−1W.

Keeping only the first twenty (ordered) eigenvalues from a spectral decomposition of L,
we choose the optimal number of clusters k to be the index of the largest weighted gap
between consecutive values in this set. The weights are designed to bias k toward lower
values. Figure 3 shows the eigenvalues for caudate points in a typical subject; it is not
obvious which eigenvalue gap is the most significant. This is clearly a crude heuristic and
is a major shortcoming of this method.

We assume the embedding dimension is equal to the optimal cluster number, and define
V to be a matrix with columns containing the first k eigenvectors. The original points are
now represented in eigen space by the rows of V , and these rows are clustered with the
k-means++ algorithm. Figure 4 shows the putamen points for an example subject colored
according to cluster. It is clear that spectral clustering is effective at identifying the natural
endpoint groups.

Many of the parameters in this process are chosen empirically to produce consistently
good clusterings, where the quality of a labeling is judged by a neuroimaging expert.
Perhaps the most influential parameter choice is the fraction of points to label as outliers
and remove from the graph Laplacian. Figure 5 shows a poor spectral clustering result
for one subject, in that there are two groups of green points that clearly do not belong
together (note this is a slightly different set of points than the baseline investigation).

Figures 6 and 7 illustrate a likely cause for this bad clustering result. The outlier
points in orange push all of the other points to be very close to each other in the first three
dimensions of the eigenspace, which causes dimensions 4-6 to be more heavily weighted in
the clustering process. In these higher dimensions the green groups are actually adjacent
to each other. Removing points in the first percentile of similarity degree seems to solve
this problem.
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3.3 fMRI pre-processing and simple connectivity models

For our preliminary investigation of functional connectivity we decouple this phase of the
research from the process of clustering fiber endpoints. Instead we use a fixed set of 105
ROIs identified in each subject by the brain template matching algorithm in FreesurferFis-
chl et al. (2002); Dale et al. (1999). Each ROI is associated with an rsBOLD time series
with 210 observations, averaged over all of the voxels contained in that ROI. These time
series are centered and scaled so the units are fractional deviations from the mean, and
they are smoothed with a bandpass filter.

Each pair of ROIs has several associated measures of anatomical connectivity; Figure
8a illustrates the simplest of these in heatmap form. Each cell shows the log of the count of
fibers between the ROIs at the cell’s row and column indices. ROI pairs with no connecting
fibers are blank (white space). We have not yet incorporated this anatomical connectivity
network into our functional connectivity estimates, but we present it here for the sake of
comparison.

As discussed in the literature review, the most common estimators for functional con-
nectivity are pairwise full and partial correlation. The heatmap of these estimates are
shown in Figures 8b and 8c; the more reddish a cell is, the more the row and column ROIs
are associated. One interesting pattern that emerges are the two diagonal lines of strong
association (ignoring the main diagonal, of course). These associations are a result of the
fact that symmetric pairs of nodes—where nearly identical ROIs occur in each hemisphere
of the brain—appear roughly 40 spots apart in the ROI list. This arrangement is used as
a diagnostic check to ensure estimation methods perform correctly at a baseline level.

Results from a preliminary application of parallel lasso are shown in Figure 8d. Each
row of this heatmap represents the index of the ROI used as the response node, and the
red cells in a row indicate that ROI’s estimated neighborhood. Once again the diagonal
pattern of hemispheric symmetry appears very strongly.

4 Research Plan

Comparing fiber clustering methods. The primary goal of this dissertation is to
explore and analyze high-dimensional regression methods for learning functional connec-
tivity networks in the presence of prior knowledge about the underlying physical structure
of those networks. The first step in this process is to identify which clustering algorithms
work best for grouping fiber tract terminal points into network nodes. We know näıve
k-means clustering does not work well because of the irregular spatial distribution of the
endpoints in the target brain regions, especially the striatum, and our preliminary results
show that spectral clustering can be effective but requires a substantial amount of tuning.
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We plan to compare a number of clustering algorithms, including expectation maximiza-
tion, hierarchical methods, density-based techniques, and variants of spectral clustering
such as diffusion maps. This phase of the research is expected to take about two months.

Multi-scale clustering. Ultimately we want to simultaneously estimate the functional
connectivity at multiple scales, and to define the nodes of the connectivity graph at each
scale according to a hierarchical clustering of fiber tract terminal points. Spectral clustering
works well to identify network nodes for the 5,000-10,000 points constructed in small brain
regions like the caudate and thalamus, but more global networks consist of hundreds of
thousands of fiber endpoints. Computing and storing all of the pairwise distances between
these points is not computationally feasible so we plan to use recently-developed active
clustering algorithms.

Active clustering assigns clusters hierarchically in a coarse-to-fine direction. At each
level of the hierarchy a small sample of seed points is drawn and clustered with a traditional
method. Each of the remaining points is then compared only to the seed clusters and is
assigned to the most similar group. The O(n log2 n) pairwise distance calculations required
for this process are a substantial improvement over the n2 calculations required for typical
clustering methods, and for active spectral clustering there are additional computational
savings because the spectral decomposition is done only on the small sample of seed points.
Assuming the tight clustering condition, which requires the similarities between points
within a true cluster to exceed the similarities between points in two different true clusters,
Eriksson et al. (2011) and Krishnamurthy et al. (2012) show the hierarchical version of this
algorithm has good statistical properties. The authors show the method still recovers the
true clusters with high probability even if a small subset of pairwise similarities is noisy
or anomalous. Implementing this method and exploring its performance under the more
severe violations of the tight clustering condition that likely occur in our data is expected
to take two to three months.

Learning functional connectivity. The second major goal of this project is to design
a regression-based strategy for estimating functional network structure in the presence of
anatomical constraints. When modeling the functional connectivity at only one resolution
the myriad sparse regression methods can be applied in a straightforward way. For example,
the weights in the adaptive lasso penalty function can be used to represent the weakness
of the anatomical connection between a target node i and all of the other nodes. Let the
weakness measure be γij . Then the neighborhood estimate for node i is the set of nonzero
entries in

β̂i,λ = arg min
β

{
‖Xi −X(i)β‖22 + λ

∑
j 6=i

γij |βj |
}
,

where Xi is the fMRI time series for node i and X(i) is an n× (p−1) matrix with the other
nodes’ time series. The full edge set is estimated to be either the union or intersection of
the node neighborhoods.
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There are several questions that should be addressed for methods that model connec-
tivity even at a single resolution. Do the consistency results proved by Meinshausen and
Bühlmann (2006) continue to hold when different penalty functions are used in a parallel
setting instead of lasso? Which of the three broad classes of regression approach—parallel
lasso, stepwise regression, or regularized estimation of the inverse covariance matrix—
performs best for our application, and how is the performance affected by incorporating
anatomical information as with the adaptive lasso example above? If there are substantial
correlations between the covariates, does a variant like the elastic net become optimal? To
answer these performance questions we will use cross-validation and eventually a repeat
scan of several of the subjects.

The more difficult aspect of learning functional connectivity is to estimate the network
structure for an entire hierarchy of nodes using a structured sparsity-inducing regression
penalty. To our knowledge none of the extant structured sparsity methods has good sta-
tistical and computational properties when covariate groups overlap completely, as they
must in a tree structure. Investigation of structured sparse regression is expected to take
four to six months.

Software. Statistical programming is a key component of this application-driven the-
sis. Many of the clustering and structured sparse algorithms that have been proposed do
not have publicly available implementations, leading us to write much of our own soft-
ware from scratch. As part of this project, our code will be disseminated publicly and
maintained regularly.
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A Figures

Figure 3: Eigenvalues of the normalized graph Laplacian of caudal fiber endpoints for a
typical subject. Vertical black lines indicate the largest three weighted gaps.
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Figure 4: Putamen fiber endpoints (excluding outliers) for one subject. The six clusters are
represented by color. Units are millimeters; X is the right-left axis and Y is the anterior-
posterior axis.
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Figure 5: Dorsolateral prefrontal cortex (DLPFC) fiber endpoints for one subject, colored
according to spectral clustering results. This clustering is of poor quality because it fails to
group the main stripes. Note in particular the two groups of green endpoints that should
not be considered one cluster.
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Figure 6: DLPFC fiber endpoints from Figure 5 represented in the first three dimensions of
the eigenspace derived from a spectral decomposition. Note how the orange outlier points
push all remaining points relatively close together.
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Figure 7: DLPFC fiber endpoints from Figure 5 represented in dimensions 4-6 of the
spectral decomposition eigen space. Note the two groups of green points are close together
in these dimensions.
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(a) Log fiber count (b) Full correlation

(c) Partial correlation (d) Parallel lasso neighborhoods

Figure 8: Various estimates of network connectivity for one subject. Panel (a) shows the
log of the fiber count between pairs of ROIs, which is a measure of anatomical connectivity.
The remaining three panels show estimates of functional connectivity. In panel (d), the
red cells indicate the estimated neighborhood for the nodes listed by row. These estimates
were made without using any structural information.
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