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Abstract

A problem that is frequently found in large-scale multiple testing is that, in the
present stage of experiment (e.g. gene microarray, functional MRI), the signals are
so faint that it is impossible to attain a desired level of testing power, and one has
to enroll more samples in the follow-up experiment. Suppose we are going to enlarge
the sample size by n times in the follow-up experiment, where n > 1 is not necessary
an integer. A problem of great interest is, given data based on the current stage of
experiment, how to predict the testing power after the sample size is enlarged by n
times.

We consider test z-scores and model the test statistics in the current experiment
as Xj ∼ N(µj , 1), 1 ≤ j ≤ p. We propose a Fourier approach to predicting the
testing power after n replicates. The approach produces a very accurate prediction
for moderately large values of n ( n ≤ 7). Finally, we discuss potential applications
of this method on real data with emphasis on gene microarray data.

Acknowledgement : I would like to thank Peter Huggins for his valuable discussions.



1 Introduction

Until recently, “simultaneous inference” meant considering two or five or perhaps even 10
hypothesis tests at the same time. Rapid progress in technology, particularly in genomics
and imaging, has vastly upped the ante for simultaneous inference problems giving rise
to large scale multiple testing. Now 500 or 5,000 or even 50,000 tests may need to be
evaluated simultaneously, raising new problems for the statistician, but also opening new
analytic opportunities.

Simultaneous hypothesis testing begins with a collection of null hypotheses,

H01, H02, . . . H0p

corresponding test statistics, possibly not independent,

X1, X2, . . . , Xp

and their corresponding p-values, with ith p-value measuring how strongly xi, the observed
value of Xi, contradicts H0i; “Large-scale” means that p is a big number.

Consider for example gene microarray data. In this type of data, for a large number
of genes for two different groups of people, one is interested in finding which genes are
differentially expressed between these two groups. This is equivalent to testing a large
number of null hypotheses, one for each gene. The null hypothesis, for a particular gene,
corresponds to that gene being not differentially expressed. Given a set of hypotheses to
be tested and a set of test statistics, one for each hypothesis, a particular test statistic is
said to contain a signal if the corresponding null hypothesis is false.

One of the problems frequently faced in large scale multiple testing is that the signals
contained in the test statistics are faint. This can result in accepting a null hypothesis
which is false. An obvious way of addressing this problem is to strengthen the signals
by increasing the number of samples and perform the experiment again. Going back to
the gene expression example, this just means to increase by n times the number of people
in the two groups. Then the signal strength increases and so it becomes easier for any
test procedure to correctly reject the false null hypotheses. n can be called as replication
multiplicity. The larger the value of n, the easier it is to distinguish the null from the
alternative.

However, collecting more samples is a costly procedure. So it is important to know
beforehand from the available sample, what kind of results one can expect by enlarging the
sample size. Several quantities are of interest. A few examples are given below.

• Average power. When a null hypothesis is rejected, it is a positive. A positive may be
a true positive (TP) or a false positive (FP), depending on whether the hypothesis is
correctly or incorrectly rejected. The average power of a procedure is the fraction of
true positives that it yields. Larger sample size leads to increase in average power and
so it is important to consider the prediction of the expected average power obtained
from an enlarged sample.

• False Discovery Rate (FDR). FDR is the fraction of false positive out of all positives.
Control of the FDR has been widely accepted as a criterion in multiple testing (Ben-
jamini and Hochberg, 1995). The FDR level serves as an important guideline for
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practitioner. Increase in sample size means decrease in FDR and how to predict it is
of great interest.

• Required replication multiplicity. A larger sample usually means a larger power and a
better control of the FDR. Given a desired average power, or a desired level of FDR,
or both, it is of interest to know the minimum sample size or replication multiplicity
that is required.

All the quantities of interest described above can be computed using the two key quan-
tities ε, the proportion of non-null hypotheses, and PR, the (future) expected positive rate.
Recall that given a test procedure, positive rate (PR) is the fraction of null hypotheses
rejected. Future expected positive rate refers to the expected fraction of null hypotheses
rejected by the test statistic computed on an enlarged sample, had it been available.

The problem of estimating ε has been studied in great detail before e.g see Genovese and
Wasserman (2004), Cai and Jin (2009), Jin (2008), Jin and Cai (2006, 2007), Meishaussen
and Rice (2006). The main focus of this thesis proposal is to study an efficient estimation
procedure for the future expected positive rate, PR.

The next section gives a short review of the literature on multiple testing and false
discovery rate. In §3, we describe the specific model used for the p-values as well as the
Fourier approach for estimating a general functional. §4 defines the positive rate (PR)
which is the main quantity of interest. We also propose an estimator for estimating PR
and obtain the theoretical rates of convergence for its MSE. §5 describes simulation study
and §6 gives a summary of the proposed research.

2 Review

In large scale multiple testing, hypothesis tests that incorrectly reject the null hypothesis
are more likely to occur when one considers the family of tests as a whole. When dealing
with a large number of hypotheses to be tested simultaneously, especially with a small
proportion of hypotheses being false, as is the case in practice, attempts to control the
probability of at least one false positive results in a very conservative test procedure. The
sensitivity of the tests can be too low (Dudoit et al. (2002)).

The most significant development to overcome this kind of problem, is control of the
false discovery rate (FDR) proposed by Benjamini & Hochberg (1995). In a list of rejected
hypotheses, FDR controls the expected proportion of incorrectly rejected null hypotheses
(type I errors). In practical terms, the FDR is the expected false positive rate. It is a
less conservative procedure for comparison, with greater power than familywise error rate
(FWER) control, at a cost of increasing the likelihood of obtaining type I errors.

Because of its useful interpretation, FDR is a very convenient scale to work on. For
example, if we declare a collection of 100 tests with a maximum FDR of 0.05 to be actually
true, then we expect a maximum of 5 hypotheses to be false positives. When controlling
the FDR, an experimenter also needs to be aware of the sensitivity or false negative rate
(FNR), as he/she does not want to lose too many of the true non-null hypotheses by
setting the FDR too low. Thus, the increasing use of FDR needs to be accompanied by the
sensitivity or FNR assessment. At least four factors determine the FDR characteristics of
simulatneous multiple testing:
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• the proportion of no-null hypotheses.

• the distribution of the signals.

• measurement variability

• sample size.

Only the latter is under the experimenter’s control. Moreover, if the signals are too weak
then an increase in sample size will also lead to stronger signals. Among other things, the
analysis of FDR allows an assessment of sample size needed for testing. Knowing how many
samples are needed has been a problem for many researchers, but no clear recommendation
based on the FDR seems to be on offer. The standard sample size calculation from the
traditional hypothesis testing framework, based on controlling the false positive rate has
been studied before e.g. Dobbin et al.(2003), Wang and Chen, (2004) Yang et al. (2003),
Gadbury et al. (2004). However these are not appropiate for FDR control.

Hence it is worthwhile to study the relationship between power of a test based on
FDR control and the sample size required to achive a certain power. A method which
can estimate the sample size needed in an experiment to achieve a pre-specified power is
important.

3 Methodology

In this section, first the hypotheses along with the distribution of the test statistic is
described in detail. Next, the quantity of interest, the positive rate (PR) is explained and
the method for estimating it is discussed.

3.1 Gaussian Model

Let there be p independent hypotheses to be tested, the null hypothesis H0j : µj = 0
vs. the alternative H1j : µj 6= 0 for j = 1, . . . , p, where Xj, the test statistic for the jth

hypothesis computed from the available data, is modelled as an observation coming from
N(µj, 1) independent of Xj′ for j 6= j

′
. Let εp be the proportion of false null hypotheses.

Let F be the subset of {1, . . . , p} with |F| = pεp such that if j ∈ F , then H0j is false for
j = 1, . . . , p. Also assume that if H0j is false, then µj ∼ g for some denstiy g. Here, εp, F
and g are unknown. Then,

Xj
iid∼ N(0, 1)∀ j ∈ F c (3.1)

Xj′
iid∼
∫
φ(x− u) g(u) du∀ j ′ ∈ F c

Xj is independent of Xj′ ∀j ∈ F c, j
′ ∈ F

where φ(·) is the density of N(0, 1).
Next, consider the future sample, which is assumed to be n times the size of the current

sample with n > 1. Then the future sample can be considere as n replications of the current
sample. For the jth hypothesis, now there are n i.i.d. copies of the current test statistic Xj
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each of which are distributed as N(µj, 1) with µj described as before for j = 1, . . . , p. The
test statistic for the future data is constructed by summing across the n replications and
scaling by

√
n. Letting Yj be the test statistic for the future data for the jth hypothesis, it

follows that Yj ∼ N(
√
nµj, 1) for j = 1, . . . , p. In effect, the marginal density of the future

test statistics is

Yj
iid∼ N(0, 1)∀ j ∈ F c (3.2)

Yj′
iid∼
∫
φ(x−

√
nu) g(u) du∀ j ′ ∈ F c

Yj is independent of Yj′ ∀j ∈ F c, j
′ ∈ F

Now, assume that the enlarged sample is available, and consider the testing procedure
that rejects the jth null hypothsis H0j if |Yj| exceeds some fixed threshold t > 0 for j =
1, . . . , p. Then the future positive rate is nothing but the fraction of total number of rejected
null hypotheses i.e. 1

p

∑p
j=1 I(|Yj| > t). Then the future expected positive rate of §1 is

PR = PR(t;n) =
1

p

p∑
j=1

P (|Yj| > t) (3.3)

= 1− 1

p
E[Ψ(µj; t, n)]

= 1− (1− εp)Ψ(0; t, n)− εp
∫

Ψ(u; t, n)g(u) du.

where
Ψ(u; t, n) = 1− [Φ̄(t−

√
n · u) + Φ̄(t+

√
n · u)], (3.4)

with Φ̄ = 1− Φ being the survival function of N(0, 1) The central problem is then how to
estimate PR(t;n) from the sample availabe at the current stage i.e. Xj for j = 1, . . . , p.
In the next subsection a Fourier approach is proposed for estimating PR(t;n).

3.2 A Fourier approach for estimation

In this set up, a Fourier approach was proposed for estimating εp in Jin (2008). Note that,
εp = 1− 1

p

∑p
j=1E[I(µj = 0)]. This approach can be generalized to estimate a much broader

class of functionals of the form

T (h) =
1

p

p∑
j=1

E[h(µj)] (3.5)

for some function h. It should be noted, that from (3.3) and (3.4), it follows that PR is
of the form of (3.5) with h replaced by Ψ. Now for any general functional T of the form
(3.5), the idea is to construct an appropriate function f(x), and estimate T (g) with

T̂ (X1, X2, . . . , Xp) =
1

p

p∑
j=1

f(Xj).
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In fact, direct calculations show that

E[T̂ (X1, X2, . . . , Xp)] =
1

p

p∑
j=1

E[f(Xj)] =
1

p

p∑
j=1

E[(f ∗ φ)(µj)]

where ∗ is the usual convolution. So ideally, the estimator would be unbiased if it were
possible to construct an f such that

f ∗ φ ≡ h. (3.6)

However, for such an f to exist, in the frequency domain f should satisfy

f̂ · φ̂ = ĥ, or f̂(ξ) = eξ
2/2 · ĥ(ξ). (3.7)

where r̂ denotes the Fourier transform of r and φ is the standard normal density, φ̂(ξ) =
eξ

2/2. Generally, the function (f̂(ξ) = eξ
2/2 · ĥ(ξ)) is not integrable and hence such an f

does not exist. This is the case of PR with h = Ψ and also of εp with h(u) = 1{u=0}.

To overcome this difficulty i.e. to construct an f such that f̂ is integrable and f
approximately satistfies (3.7), a symmetric continuous function ω(ξ) is chosen, which will
be referred to as a kernel, so that the function ω(ξ) · eξ2/2 · ĥ(ξ) is integrable. Then f̂(ξ) in
(3.7) is replaced by

f̂(ξ;ω) = ω(ξ) · eξ2/2 · ĥ(ξ). (3.8)

By symmetry and inverse Fourier transformation, the unique f that satisfies (3.8) is

f(x;ω) =

∫
ω(ξ) · eξ2/2 · ĥ(ξ) cos(ξx) dξ. (3.9)

Note that a desirable kernel ω should be such that ω has sufficiently thin tail i.e. ω(ξ) ≈ 0
for large values of ξ in order to make the existence of f possible, but at the same time for
small values of ξ, ω(ξ) ≈ 1 so that,

f(·;ω) ∗ φ ≈ h. (3.10)

In the literature, it is frequently seen that tampering a function significantly in the
frequency domain may only result in a change that is uniformly small in the spatial domain.
In this case, the ideal f(·) as described in (3.6) cannot be constructed. The function f(·, ω)
in (3.9) is an approximate version of f(·) where the approximation is done in the Fourier
domain. The difference of f(·) and f(·, ω) is uniformly small although f̂(·) and f̂(·, ω) are
significantly different.

Having constructed f(·, ω) in (3.9) , the functional T (h) can be estimated with

T̂ (X1, X2, . . . , Xp;ω) =
1

p

p∑
j=1

f(Xj; ω). (3.11)

In the next section, an estimator for PR(t;n) is constructed using the approach de-
scribed above and its asymptotic properties are studied in detail. In the process, the
optimal kernel for estimating PR(t;n) is also derived along with the rate of mean squared
error for the estimator of PR(t;n) using the optimal kernel.
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4 Estimation of PR

In this section we construct an estimator for PR and obtain its rate of convergence. For
constructing an estimator of PR, we apply the general framework of Fourier approach as
introduced in Section 3.2 . From (3.3), it follows that

1− PR =
1

p
E[Ψ(µj)]

Now, PR is of the form T (h) as in (3.5) with h(·) = Ψ(·). From (3.9) and (3.11) it follows

that for any kernel ω, an estimator P̂R(ω) of PR can be constructed of the form

P̂R(ω) = 1− 1

p

p∑
j=1

f(Xj;ω) (4.1)

where

f(x;ω) =
1

2π
·
∫
ω(ξ) · eξ2/2 · Ψ̂(ξ) cos(xξ) dξ, (4.2)

where Ψ̂ denotes the Fourier transform of Ψ with

Ψ̂(ξ) =
2t√
n
· e−ξ2/(2n) · sin(tξ/

√
n)

tξ/
√
n

. (4.3)

Next, we calculate an upper bound for the bias and the variance of P̂R(ω). From §§3.1,

Xj
iid∼ N(µj, 1), 1

p
{#j : µj 6= 0) = εp and if µj 6= 0 then µj ∼ g for some density g for

j = 1, . . . , p. So this class of models can be parametrized by εp and g. We consider a very
broad class G1 with

G1 = {(εp, g) : 0 ≤ εp ≤ 1 &g is any density }

However, in a lot of real datasets, for example in the gene microarray data for Prostate,
Leukemia and Colon data, it is believed that the proportions of signals is very small i.e. εp
is very small. In these cases, the estimator of PR in (4.1) can be modified, to get a better
rate of convergence. For this we consider also another class of models G2. Also, for G2,
we only consider smooth densities g characterized by the tail behaviour of ĝ, the Fourier
transform of g. Hence, we take

G2 = {(εp, g) : 0 ≤ εp ≤ ε0p
−β, 0 ≤ β <

1

2
and |ξ|α|ĝ(ξ)| ≤ A for large |ξ|} (4.4)

which is smaller than G1. The class G2 has been considered before in Cai and Jin (2008).
In the following subsection, our goal is to find a uniform upper bound for the MSE

for P̂R over G1 for any kernel ω and then find an optimal kernel by minimizing the upper
bound with respect to the kernel ω. Subsection (4.2) deals with the same problem for G2.
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4.1 Estimating PR for G1

Lemma (4.1) gives a uniform upper bound of the MSE of P̂R(ω) over G1 for any given
kernel ω.

Lemma 4.1 Fix n ≥ 1 and t > 0, and a kernel ω. Over the class G1,(
E[P̂R(ω)]− PR

)2 ≤ t

π
√
n

∫
e−ξ

2/n · (ω(ξ)− 1)2 dξ. (4.5)

and

Var(P̂R(ω) ≤ t

π
√
n

∫
1

p
e(1−

1
n

)ξ2 · ω2(ξ) dξ. (4.6)

Proof of lemma 4.1 is in the appendix. Lemma 4.1 gives an upper bound to the MSE of
P̂R(ω),

MSE(P̂R(ω)) ≤ t

π
√
n

∫
e−ξ

2/n[(ω(ξ)− 1)2 +
1

p
eξ

2 · ω2(ξ)] dξ, (4.7)

Now, the optimal kernel ω is derived in Lemma (4.2) by minimizing the right hand side
of (4.7) using standard variation principle.

Lemma 4.2 Fix n ≥ 1 and t > 0. A continuous compactly-supported kernel that minimizes
the right hand side of (4.7) is given by

ω̃(ξ) =
(
1 +

1

p
eξ

2)−1
, −∞ < ξ <∞

Proof: From (4.7) it follows that the optimization problem amounts to minimizing

F (ω) =
1

π

t√
n

∫ ∞
−∞

[
(ω(ξ)− 1)2e−ξ

2/n +
1

p
ω2(ξ)eξ

2(1− 1
n

)
]
dξ

with respect to ω. In order to minimize F , we use calculus of variation principle. Let ω1

be any smooth and symmetric function. If F has a minimum at ω̃, then F (ω̃+ εω1) should
have a derivative equal to 0 with respect to ε at ε = 0.

∂F (ω̃ + εω1)

∂ε
ε=0 =

2

π

t√
n

∫ ∞
−∞

[
(ω̃(ξ)− 1)e−ξ

2/n +
1

p
ω̃(ξ)eξ

2(1− 1
n

)
]
ω1(ξ) dξ

Using the fact that, ∂F (ω̃+εω1)
∂ε ε=0 = 0 and ω1 smooth, we get

(ω̃(ξ)− 1)e−ξ
2/n +

1

p
ω̃(ξ)eξ

2(1− 1
n

) = 0∀ ξ

Hence it follows ω̃(ξ) = 1

1+ 1
p
eξ2

. �

Having obtained the optimal kernel ω̃, we can construct the estimator P̂R(ω̃) from
(4.1). The following theorem characterizes the MSE of P̂R(ω̃).
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Theorem 4.1 Fix n ≥ 1 and t > 0. For sufficiently large p, there is a constant C =
C(n, t) > 0 such that

MSE(P̂R(ω̃)) ≤ C · n2

log2(p)
· p−1/n.

Proof of theorem 4.1 is in the appendix. Recall from (3.10) and (4.2), that our main goal
behind the Fourier approach was to construct an f using a kernel ω such that

f(·;ω) ∗ φ(u) = Ψ(u)

With the optimal kernel ω̃, the difference between

f(·; ω̃) ∗ φ(u) and Ψ(u)

is surprisingly small. See for example Figure 1, where we compare two functions for t = 2
and n = 2, 4, 6, 8. For n ≤ 4, the difference between two functions is very small. As n
increases, the approximation becomes less accurate.
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Figure 1: Display of 1 − f(·; ω̃) ∗ φ(u) (dashed) and 1 − Ψ(u) (solid) with t = 2, and
n = 2, 4, 6, 8 from left to right then from top to bottom.
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4.2 Estimating PR for G2

We now study the special case where εp is small and g is a smooth density, as in the class
G2 in (4.4), a case that arises in many practical situations. In this case, it is possible to

reduce considerably the rate of mean squared error of P̂R. In (4.1) for any kernel ω , it

is possible to reduce the bias of P̂R(ω) without increasing its variance, by modifying the
estimation procedure as explained below. First, fix any kernel ω. Recall that

PR(t;n) = (1− εp)2Φ̄(t) + εp ·
∫

(1−Ψ(u; t, n)) g(u).

= 1− (1− εp)
2π

∫
Ψ̂(ξ; t) dξ − εp

2π
·
∫ [∫

Ψ̂(ξ; t, n) · cos(ξu) dξ
]
g(u) du (4.8)

At the same time, direct calculations show that

E[P̂R(ω)] = 1− (1− εp)
2π

∫
ω(ξ) · Ψ̂(ξ; t) dξ− εp

2π
·
∫ [∫

ω(ξ) · Ψ̂(ξ; t, n) · cos(ξu) dξ
]
g(u) du.

(4.9)
From (4.8) with (4.9) it follows that

Bias[P̂R(ω)] = (1− εp)b0(ω) + εpb1(ω) where

b0(ω) = 1
2π

∫
(1− ω(ξ)) · Ψ̂(ξ; t) dξ and

b1(ω) = 1
2π
·
∫ [∫

(1− ω(ξ)) · Ψ̂(ξ; t, n) · cos(ξu) dξ
]
g(u) du.

(4.10)

Now given any kernel ω, b0(ω) is known. So, if we use an estimator ε̂p for εp, and then
estimate PR by

P̂R(ω, ε̂p) = P̂R(ω) + (1− ε̂p)b0
then,

Bias[P̂R(ω, ε̂p)] = Bias(ε̂p) · b0(ω) + εpb1(ω) (4.11)

In case of G2 where εp is very small, Bias(ε̂p) is much smaller than (1 − εp) and so

comparing (4.10) with (4.11), it is easy to see that the bias for P̂R(ω, ε̂p) is smaller than

P̂R(ω). From the proof of Theorem (4.2) below, it follows that the rate of variance of

P̂R(ω, ε̂p) is the same as that of P̂R(ω), given any kernel ω. The problem of estimat-
ing εp, the proportion of non-null hypotheses, has been extensively studied in Jin(2008).
Estimation for εp is discussed below.

4.2.1 Estimation of proportion (εp)

Estimation of the proportion of non-null hypotheses in multiple testing is a very well-studied
problem, see for example Jin(2008) and Cai and Jin(2009). As mentioned in subsection
(3.2), the Fourier approach can be applied for estimating εp. The estimator proposed in
Jin(2008), based on this approach, is

ε̃p = 1− 1

p

p∑
j=1

∫
r̃(ξ)et

2ξ2/2 cos(tξXj) dξ t =
√

2γ0 log p (4.12)
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for an appropiately chosen γ0 between 0 and 1
2

and the kernel r̃ is any symmetric density on
[−1, 1]. It follows from Cai and Jin(2009) that ε̃p cannot achieve theoretically the optimal
rate in the class G2 although simulations show it performs very well numerically. Here we
propose another estimator ε̂p, a slightly modified version of ε̃p which performs numerically
at least as good as ε̃p and also achieves theoretically the optimal rate. The estimator we
propose here is,

ε̂p = 1− 1

p

p∑
j=1

∫
r(ξ)et

2ξ2/2 cos(tξXj) dξ t =
√

2γ0 log p (4.13)

where γ0 ∈ (0, 1
2
) and the kernel r is a smooth density on [−1, 1] with no mass on [−δ, δ]

for some small δ. The choice of an appropiate γ0 and δ as well as r will be discussed in
§5.1 .

4.2.2 Rate of MSE for PR

It follows from (4.11), the final estimator proposed for estimating PR in G2 is, for any given
kernel ω,

P̂R(ω, ε̂p) = P̂R(ω) +
(1− ε̂p)

2π

∫
(1− ω(ξ)) · Ψ̂(ξ; t) dξ (4.14)

Following the same procedure as in lemma 4.1, the optimal kernel ω∗ in this case can be
obtained by minimizing the MSE of P̂R(ω, εp) as a function of ω. It can be shown that
the optimal kernel for estimating PR is,

ω∗(ξ, εp, α) =
1

1 + (log p)α

pε2p
eξ2

−∞ < ξ <∞ (4.15)

Proof of (4.15) can be obtained by minor modifications of lemma 4.1, and hence is omitted.

Using the optimal kernel ω∗ in (4.15), the rate of MSE of P̂R(ω∗, ε̂p) in the class G2 is
given in the following theorem.

Theorem 4.2 Fix n ≥ 1 and t > 0. For sufficiently large p, there is a constant C > 0
such that

MSE[P̂R(ω∗, ε̂p)] ≤
C · n2

log2+α(1−1/n)(p)
· ε2(1−1/n)
p p−1/n.

The proof of the above theorem can be obtained by minor modifications of the Theorem
4.1 and hence is omitted. As we can see above, the kernel giving the optimal rate of
convergence for the class G2 depends on εp as well as α which are unknown in practice. We
shall discuss more about this problem in §6.

5 Simulation study

In this section, we discuss the choice of the kernel r and δ for estimating the proportion
of non-null effects (εp), as described in (4.13). Then we also test the performance of the

resulting estimator by simulation. We also test the performance of P̂R(ω∗, ε̂p) in (4.14) by
simulations.

11



5.1 Simulation study for estimating proportion

In this section, we discuss the choice of the tuning parameters γ0, δ, and r for estimating
εp. First consider the problem of estimating εp which involves the choice of the tuning
parameter γ0. Our proposed estimator from (4.13) is

ε̂p = 1− 1

p

p∑
j=1

∫
r(ξ)et

2ξ2/2 cos(tξXj) dξ, t =
√

2γ0 log p (5.1)

Recall from (4.13), r is a symmetric density on [−1, 1] with no mass on [−δ, δ] for some
small δ. We choose δ = 0.01 and

r(ξ) = C · e
1

1−ξ2 , δ < |ξ| < 1

and for ε̃p in (4.12) we again choose

r̃(ξ) = C · e
1

1−ξ2 , |ξ| < 1

Simulation results show that choosing γ0 ∈ [0.2, 0.25] gives good numerical result for both
ε̃p and ε̂p. Numerically, their performance depends both on the signal strength and on p.
Here, we do simulations for different signal strengths for p = 5000 in the following way :
for the signal strength s, we assume under H1, µ ∼ U(s, s + 1) with s fixed in [1, 4]. The
value for εp is taken to be 10%. For each value of s simulate in the following way.

1. Generate µ from U(s, s+1) and then generate an observation X from (1−εp)N(0, 1)+
εpN(µ, 1).

2. Repeat step 1, p times and estimate εp using ε̂p as well as ε̃p with γ0 = 0.2.

3. Repeat steps 1 & 2, 100 times and compute the mean squared error of ε̂p.

Figure (2) illustrates the performance of ε̃p and ε̂p. Both seem to perform equally good.
However, since ε̂p is theoretically optimal, we use ε̂p as an estimator of εp.

5.2 Simulation study for estimating PR

We now look at the numerical performance of our estimator. In this section, our objective
is to predict the positive rate for n replications using the available data. Then we compare
it with the actual positive rate for n replications.

Set p = 10, 000. Take the range of the threshold value t to be (1, 3) which is usually
the most interesting range for practical purposes. Set the proportion of non-null effects
εp = 0.10. For the number of replications n, take n = 2 and n = 4. Now, for each value of
n, we do the following steps:

1. Generate pεp values of µ from U( 1√
n
, 1√

n
+ 1).

2. For each such value of µ generate an observation from N(µ, 1). Generate p(1 − εp)
observations from N(0, 1).

12
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Figure 2: The plot displays the mean squared error of ε̃p (green) and ε̂p (blue). The mean
squared error is plotted on the y−axis versus the signal strength s along the x−axis. ε̂p
does slightly better for weaker signals whereas ε̃p does slightly better for strong signals, but
overall there is not too much difference.

3. Using our estimator PR∗(t, n) predict the positive rate for each value of the threshold
t.

4. Repeat steps, 2 and 3 for 100 independent cycles.

As it can be seen in Figure (3), for the case n = 2, the estimated PR almost merges
with the true PR with very low variance. For the case, n = 4, the bias and variance is
slightly larger, but the estimated PR crve is significantly higher than the PR from the
current data.

6 Proposed research

The next logical steps for this reseach falls into three categories: studying the minimax
risk for estimating PR in the class G2, trying to find an estimator for PR which adapts to
G2 assuming the parameters in G2 are unknown, and applying the estimation procedure for
PR to real datasets. This section describes our proposed work in details.

6.1 Minimax risk

From theorem 4.2, it follows that the rate of MSE of P̂R(ω∗, ε̂p) for estimating PR in G2

is

MSE[P̂R(ω∗, ε̂p)] ≤
C · n2

log2+α(1−1/n)(p)
· ε2(1−1/n)
p p−1/n.

13
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Figure 3: Display of the positive rate (PR) for threshold values t ∈ [1, 3]. The top row is
for εp = 5% and the bottom row is for εp = 10% with n = 2 and n = 4 replications from
left to right. The solid line(green) is the true PR and the blue dashed line is the estimated
PR. The yellow dashed line is the PR from the current data. The red dashed line is the
95% confidence interval.

Now the minimax rate for estimating PR in G2 is defined to be

R(G2) = inf
T̂

sup
G2

E[T̂ − PR]2

It will be interesting to calculate the minimax rate and compare with theMSE of P̂R(ω∗, ε̂p).
An estimator is said to be optimal if it achieves the minimax rate. So by computing the
minimax rate we can compare our proposed estimator to see if it is optimal or not, or how
far is it from the optimal rate.

6.2 Adapting to unknown class

Recall that the class G2 where we are trying to estimate PR in §§ 4.2 is defined to be

G2 = {(εp, g) : 0 ≤ εp ≤ ε0p
−β, 0 ≤ β <

1

2
and |ξ|α|ĝ(ξ)| ≤ A for large |ξ|}

14



Note that β corresponds to the proportion of non-null hypotheses and α corresponds to
the unknown density of the true signals. For practical purposes, both of these parameters
are unknown. However, from (4.14) and (4.15), it follows that the estimator P̂R(ω∗, ε̂p)
depends on both α and β. Hence, it will be worthwhile to find out a way to circumvent
these kind of problems, either by changing the estimation procedure to adapt to these
unknown parameters or by using plug-in estimators for the unknown parameters. In that
case we also need to find out how this adjustment affects the rate of MSE of the estimator.

6.3 Application on real data

For real data, we will focus mainly on DNA microarray data. This kind of data consists of
expression measurements for a large number of genes measured over a number of subjects,
consisting of controls and cases. Our objective is to test which genes are differentially
expressed. We select a fraction, say 1

3
of the controls and the cases, and predict the PR for

twice the sample size. The replication multiplicity, n, is equal to 2 in this case. Then, we
can compare the predicted PR with the PR computed from the remaining 2

3
of the subjects.

The specific datasets we will consider are the colon data and the leukemia data(Golub et
al (1999)).
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7 Appendix

7.1 Proof of Theorem 4.1

Denote the bias of PR∗p(t, n) by b∗(ω; t, n, p). Using (7.8) we get,∣∣b∗(ω; t, n, p)
∣∣ ≤ t

π
√
n

∫
|ω∗(ξ)− 1| · |sin(ξt/

√
n)

ξt/
√
n
| · e−ξ2/2n dξ.

Substituting ω∗ from Lemma 4.2, we get

∣∣b∗(ω; t, n, p)
∣∣ ≤ t

π
√
n

∫ [ 1
p
eξ

2

1 + 1
p
eξ2
∣∣sin(ξt/

√
n)

ξt/
√
n

∣∣ · e−ξ2/2n] dξ.
We introduce some more notations for simplicity. Let a(ξ) =

1
p
eξ

2(1− 1
2n )

1+ 1
p
eξ2

, b(ξ) =
∣∣ sin(ξt/

√
n)

ξt/
√
n

∣∣
and

I1 =

∫ 1
p
eξ

2(1− 1
2n

)

1 + 1
p
eξ2

∣∣sin(ξt/
√
n)

ξt/
√
n

∣∣ dξ. (7.1)

Then, I1 =
∫
a(ξ)b(ξ) dξ. The change of variable, ξ =

√
log p+ η

2
√

log p
in (7.1), gives

a(ξ) =

1
p
e

(
log p+η+ η2

4 log p

)
(1− 1

2n
)

1 + 1
p
e

(
log p+η+ η2

4 log p

) = p−
1
2n
e(η+

η2

4 log p
)(1− 1

2n
)

1 + e(η+
η2

4 log p
)

and b(ξ) =
∣∣∣sin

(
t
√

log p√
n

(1 + η
2 log p

)
)

t
√

log p√
n

(1 + η
2 log p

)

∣∣∣ ≤ √
n

t
√

log p

1∣∣1 + η
2 log p

∣∣ , and hence

I1 =

∫
a(ξ)b(ξ) dξ ≤

√
np−

1
2n

t log p

∫
1∣∣1 + η
2 log p

∣∣ e(η+
η2

4 log p
)(1− 1

2n
)

1 + e(η+
η2

4 log p
)
dη

As p→∞, by Dominated Convergence Theorem,∫
1∣∣1 + η
2 log p

∣∣ e(η+
η2

4 log p
)(1− 1

2n
)

1 + e(η+
η2

4 log p
)
dη ∼

∫
eη(1−

1
2n

)

1 + eη
dη ∼ 2n · C1 ⇒ I1 . C1

(n3/2p−
1
2n

t log p

)
(7.2)

Combining (7.1) and (7.2) gives,∣∣b∗(ω; t, n, p)
∣∣ . C1 · p−( 1

2n
) n

log p
≤ C1 · p−( 1

2n
) n

log p
, (7.3)

uniformly for all εp between 0 and 1. Using (7.11),

Var(PR∗p(t, n)) ≤ 1

p
· E
[( t

π
√
n

∫
ω∗(ξ)

sin(ξt/
√
n)

ξt/
√
n

e(1−
1
n

)ξ2/2 cos(ξX1) dξ
)2]

≤ t2

pπ2n

(∫
|ω∗(ξ)|

∣∣sin(ξt/
√
n)

ξt/
√
n

∣∣e(1− 1
n

)ξ2/2 dξ
)2
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Inserting ω∗ from Lemma 4.2 and using triangle inequality and symmetry around 0 gives,

Var(PR∗p(t, n)) ≤ 4
t2

pπ2n

(∫ ∞
0

1

1 + 1
p
eξ2
[∣∣sin(ξt/

√
n)

ξt/
√
n

∣∣eξ2(1− 1
n

) 1
2

]
dξ)2 (7.4)

We introduce some more notations.

Let , I21 =

∫ ∞
0

∣∣sin(ξt/
√
n)

ξt/
√
n

∣∣eξ2(1− 1
n

) 1
2

1 + 1
p
eξ2

dξ (7.5)

Also let, a1(ξ) = eξ
2(1− 1

n ) 1
2

1+ 1
p
eξ2

and, as before, b(ξ) =
∣∣ sin(ξt/

√
n)

ξt/
√
n

∣∣. Then, I21 =
∫∞

0
b(ξ)a1(ξ) dξ .

Using the change of variable, ξ =
√

log p+ η
2
√

log p
in I21 we get,

a1(ξ) =
e(log p+η+ η2

4 log p
)(1− 1

n
) 1
2

1 + 1
p
e(log p+η+ η2

4 log p
)

= p(1− 1
n

) 1
2
e(η+

η2

4 log p
)(1− 1

n
) 1
2

1 + eη+
η2

4 log p

and as before b(ξ) ≤
√
n

t
√

log p

1∣∣1 + η
2 log p

∣∣
Hence we get,

I21 ≤
√
n

t

p(1− 1
n

) 1
2

log p

∫ ∞
−∞

e(η+
η2

4 log p
)(1− 1

n
) 1
2

1 + eη+
η2

4 log p

1(η > −2 log p)

|1 + η
2 log p
|

dη

∼
√
n

t

Cp(1− 1
n

) 1
2

log p

∫ ∞
−∞

eη(1−
1
n

) 1
2

1 + eη
dη = C ·

√
n

t

p(1− 1
n

) 1
2

log p
(7.6)

The last approximation in (7.6) follows from Dominated Convergence Theorem.
Inserting I21 in (7.4) gives,

Var(PR∗p(t, n)) ≤ C · p
− 1
n

log2 p

(
1 +

n3/2

t log3/2 p

)2

∼ C · p
− 1
n

log2 p
(7.7)

Together, (7.3) and (7.7) gives,

MSE(PR∗p(t, n)) . C ·
(
p−

1
n

n2

log2 p
+

p−
1
n

log2 p

)
∼ C · p−

1
n

n2

log2 p

7.2 Proof of Lemma 4.1

Consider the first claim. For short, denote the bias by b(ω; t, n, p) = E[PRp(ω; t, n,X1, . . . , Xp)]−
PR(t;n). By (4.3) and (4.9),

|b(ω; t, n, p)| = t

π
√
n

∣∣∫ (ω(ξ)− 1)
sin(ξt/

√
n)

ξt/
√
n

e−ξ
2/2n ·

[
(1− ε) + ε

∫
cos(ξu) dFp(u)

]
dξ
∣∣

≤ t

π
√
n

∫
|ω(ξ)− 1| · |sin(ξt/

√
n)

ξt/
√
n
· |e−ξ2/2n dξ. (7.8)
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Use Hölder inequality,

(∫
|ω(ξ)−1|·|sin(ξt/

√
n)

ξt/
√
n
|·e−ξ2/2n dξ

)2 ≤ (

∫
(ω(ξ)−1)2 ·e−ξ2/n dξ

)
·(
∫ (sin(ξt/

√
n)

ξt/
√
n

)2

dξ),

(7.9)
where by elementary calculus,∫ (sin(ξt/

√
n)

ξt/
√
n

)2

dξ =

√
n

t

∫
sin2(η)

η2
dη =

√
nπ/t. (7.10)

Inserting (7.9) and (7.10) into (7.8) gives the first claim.
Consider the second claim. By definition and symmetry

Var[PRp(ω; t, n, )] =
1

p
· Var

( t

π
√
n

∫
ω(ξ)

sin(ξt/
√
n)

ξt/
√
n

e(1−
1
n

)ξ2/2 cos(ξX1) dξ
)

≤ 1

p
· E
[( t

π
√
n

∫
ω(ξ)

sin(ξt/
√
n)

ξt/
√
n

e(1−
1
n

)ξ2/2 cos(ξX1) dξ
)2]
. (7.11)

Since | cos(ξX1)| ≤ 1,

E
[(∫

ω(ξ)
sin(ξt/

√
n)

ξt/
√
n

e(1−
1
n

)ξ2/2 cos(ξX1) dξ
)2] ≤ (∫ |ω(ξ)| · |sin(ξt/

√
n)

ξt/
√
n
| · e(1−

1
n

)ξ2/2 dξ
)2
.

(7.12)
Now, by similar argument,

(∫
|ω(ξ)| · |sin(ξt/

√
n)

ξt/
√
n
| · e(1−

1
n

)ξ2/2 dξ
)2 ≤ t

π
√
n

∫
ω2(ξ)e(1−

1
n

)ξ2 dξ. (7.13)

Inserting (7.12) and (7.13) into (7.11) gives the second claim. �
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