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Abstract

Conditional density estimation and quantile regression are techniques that allow for a better
understanding of the relationship between a response variable and a set of covariates in compari-
son with usual regression methods. Therefore, these techniques are of great importance in many
scientific fields where knowledge about conditional means, obtained by regression methods, is
not enough to draw valuable conclusions of the problem at hand. Unfortunately, these tech-
niques are not immune to measurement error, which is a rather common problem. Moreover,
the available conditional density estimators lack of an ease of interpretability. In this proposal, I
first present a conditional density estimator based on finite mixture models and local likelihood
estimation, which has the advantage of being easily interpretable. An error-in-variables condi-
tional density estimator based on Fan, Yao and Tong’s double kernel approach is presented as
well. Second, I develop nonparametric error-in-variables quantile regression based on existing
quantile regression methods available for the error-free case.

Scientific Motivation

Through the years, astronomers have had varying ideas about the evolution of the universe. Many
of these ideas come from different large-scale patterns observed in small, low-quality astronomi-
cal data sets, which point to different theories of how the universe evolved. Nowadays, modern
computer technology allows astronomers to collect high-quality data from billions of objects, thus
giving an opportunity for testing current theories. As expected, these rich data sets require sta-
tistical techniques able to describe complicated, high-dimensional and nonlinear processes with a
precise assessment of uncertainty.

Among the hundreds of open questions that astronomers want to answer with new available
astronomical surveys is to what degree galaxy evolution is influenced by its local environment.
To study the role environment plays in the process of galaxy evolution, cosmologists often use a
galaxy’s “local density” (Dl) as an environmental measure and a galaxy’s star formation rate as
an evolutionary measure (e.g., Heavens et al., 2004; Gomez et al., 2003; Balogh et al., 2004) . An
indicator of the recent star-formation in any given galaxy is the Hα “emission line” (visible in the
galaxy spectra). The emission at this specific wavelength is from the process of hot, bright, young
stars ionizing the cool, neutral hydrogen that permeates the intergalactic medium. The greater the
flux in this line, the greater the amount of star-formation. When no star-formation is present in
the galaxy, light at this same wavelength is often seen as an “absorption line,” as electrons in the
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hydrogen atoms can get excited into a higher energy level. Local density is obtained by estimating
the density field on the point-like spatial galaxy distribution using a kernel density estimator.

Figure 1(a) shows the scatterplot between local density and Hα equivalent width (EW(Hα)) for
47592 galaxies, where −EW(Hα) is a measure of the intensity of an absorption line. A nonpara-
metric estimate of the conditional mean is also included. As can be seen in this figure, galaxies
located in very dense regions have a low recent star formation rate, while star-forming galaxies are
found in less dense regions. However, no further information is obtained from the conditional mean
estimate; thus, we need to use another statistical technique that provide us with more information.
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Figure 1: (a) Scatterplot between Dl and EW(Hα), and the local likelihood estimate of the condi-
tional mean; (b) smoothed 5th, 25th, 50th, 75th, 95th quantile curves using double-kernel smoothing

One of the available statistical techniques to study the underlying relationship between EW(Hα)
and Dl is quantile regression (Koenker and Bassett, 1978; Yu and Jones, 1998). Figure 1(b) displays
a zoomed version of the data plotted in Figure 1(a) along with the 5th, 25th, 50th, 75th and 95th
estimated conditional quantiles. We can observe how the conditional density functions have a
long right tail and how the 5th and 25th conditional quantiles functions seem to be constant.
However, it is impossible to determine how galaxy populations (star-forming and non-star-forming
galaxies) interact as galactic systems become denser and thus get a better insight on the underlying
cosmology. This situation may be due to the fact that the conditional mean and conditional
quantiles do not include all information about the relationship between EW(Hα) and Dl. For
this reason, it is needed to go further and estimate the conditional density, which completely
describes the conditional relationship among two random variables. On the other hand, we have
not accounted for errors in the measurement of local density resulting from the fact that local
densities were obtained by means of a kernel density estimator, which may cause attenuation biases
(Carroll et al., 1995). These two remarks have inspired us to pursue the following three research
aims which can be widely applicable in other scientific contexts as well.
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AIM 1. Produce conditional density estimators using finite mixture models.

To get a better understanding of the relationship between EW(Hα) and Dl, we use conditional
density (CD) estimation. The current approaches to estimate conditional densities are based on
kernel methods, but these estimates are highly dependent on the (fixed) bandwidths being used. A
factor that contributes to this problem is that the conditional densities of EW(Hα) given Dl seem
to have a long tail; therefore, it is desirable to have a “small” bandwidth in regions of high density
and a “large” bandwidth in the tail. In addition, it is hard to get a clear picture of the relationship
between EW(Hα) and Dl, since we are not sure which features of the conditional estimates are real.
I propose to develop a new set of conditional density estimators using finite mixture models. The
main idea is to model each of the mixture parameters as a function of the covariates using local
likelihood estimation. By modeling these parameter functions, this approach is expected to provide
a better insight on the underlying relationships between random variables than current conditional
density estimators.

AIM 2. Develop nonparametric error-in-variables quantile regression.

There exist many statistical methods to overcome the presence of measurement error in linear and
nonlinear models (Fuller, 1987; Carroll et al., 1995), but few results currently exist for quantile
regression functions (see Chesher, 2001; He and Liang, 2002). Given that covariate measurement
errors cause changes in conditional quantile regression functions by altering their shape, orientation
and location (Chesher, 2001), it is of major interest to develop nonparametric errors-in-variables
quantile regression. I undertake this problem in two ways. First, by approaching the quantile
regression problem as an approximate M-estimation problem and solving it using corrected score
methods (Nakamura, 1990; Novick and Stefanski, 2002). Second, by using a “double-kernel” ap-
proach to quantile regression (Yu and Jones, 1998) along with the “deconvolution” kernel proposed
by Fan and Truong (1993).

AIM 3. Produce a bandwidth selection method for error-in-variable conditional density
estimation.

Even though double kernel conditional density estimation (Fan et al., 1996; Hyndman and Yao,
2002) has some drawbacks, it is easily extended to handle covariate measurement error using a
deconvolution kernel (Fan and Truong, 1993). However, we still have to investigate if the current
approaches for bandwidth selection for double kernel estimators are equally useful when covariate
measurement error is present.

This proposal is organized in two sections. The first section corresponds to our first and third
aims and the second section to the second aim. In each section a review of relevant literature is
presented. Then, I present my approach and specific steps to accomplish the aims of this research.
I also provide some preliminary results.
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Conditional Density Estimation Using Finite Mixture Models

The problem of estimating the conditional density of Y given X , where Y ∈ R
d and X ∈ R

d

is considered. Addressing this problem is important because the conditional density of Y given
X provides a complete description of the stochastic behavior of the response variable given any
specific value of its covariates. Therefore, CD estimation generalizes the usual regression model,
where the main focus is the conditional mean (i.e., the “center” of the conditional distribution) and
quantile regression, which aims to model any conditional quantile. This generalization is most rele-
vant when the conditional mean itself does not reveal the underlying relationship between X and Y .

Current approaches to conditional density estimation

The conditional density function of a variable Y given X is defined as:

fY |X(y|x) =
fX,Y (x, y)

fX(x)
,

where fX(x) 6= 0. A “natural” estimator of the conditional density is

f̂Y |X(y|x) =
f̂X,Y (x, y)

f̂X(x)
, (1)

where f̂X,Y (x, y) is a kernel estimator of fX,Y (x, y) and f̂X(x) is a kernel estimator of fX(x).
Hyndman et al. (1996) studied asymptotic properties of this estimator and found two optimal
bandwidths, one for the numerator and one for the denominator, with respect to integrated mean-
square error.

Conditional density estimation can also be regarded as a nonparametric regression problem
(Fan et al., 1996), by noticing that as h̃→ 0

E{Kh̃(Y − y)|X = x} =

∫

R

Kh̃(Y − y)fY |X(y|x)dy

=

∫

R

K(u)f(uh̃+ y|x)du

≈ fY |X(y|x), (2)

where K is a symmetric density function on R and Kh(t) = h−1K(t/h). Therefore, we can esti-
mate fY |X(y|x) by regressing Kh̃(Y − y) on X. This regression problem can be solved using local
polynomial regression (see e.g. Fan and Gijbels, 1996) or local likelihood estimation (Tibshirani
and Hastie, 1987; Loader, 1999).

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from fX,Y (x, y). Applying the local polynomial
technique to the constructed data (X1,Kh̃(Y1 − y)), . . . , (Xn,Kh̃(Yn − y)) reduces the estimation

of the conditional density, fY |X(y|x), to find β̂(x, y) = (β̂0, . . . , β̂p) such that

β̂(x, y) = arg min
β

n∑

i=1

{
Kh̃(Yi − y) −A(Xi − x, β)

}2
Wh(Xi − x) (3)
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where

A(Xi − x, β) =

p∑

j=0

βj
(Xi − x)j

j!
(4)

and W is a symmetric density function on R and Wh(t) = h−1W (t/h). The local polynomial

estimator of f
(j)
p (y|X = x) is β̂j , in particular

f̂p(y|x) = A(0, β̂(x, y)) = β̂0. (5)

From now on, we refer to this class of estimators as ‘double-kernel’ estimators. Note that if p = 0,
the double-kernel estimator reduces to

f̂0(y|x) =
n∑

i=1

Wh(Xi − x)Kh̃(Yi − y)

/ n∑

i=1

Wh(Xi − x)

=
1

nh

n∑

i=1

Wh(Xi − x)Kh̃(Yi − y)/f̂n(x) (6)

The estimator in Eq. (6) was first presented by Hyndman et al. (1996) and corresponds to the
estimator in Eq. (1) when fX,Y (x, y) is estimated with the product kernel Kh̃ ×Wh. When p = 1,
the estimator in Eq. (5) has a smaller bias than the estimator in Eq. (6) (Fan and Gijbels, 1996);
however, it is not guaranteed to be non-negative and to integrate to 1, as is the case when p = 0
(Hyndman and Yao, 2002). Recognizing this problem, Hyndman and Yao (2002) proposed two
new non-negative estimators. The first proposal adds the constraint β0 > 0 to the minimization
problem in Eq. (3), by setting β0 = `(α) = exp (α). The second proposal takes

A(Xi − x, β) = exp





p∑

j=0

βj(Xi − x)j



 (7)

and f̂p(y|x) = A(0, β̃(x, y)) = exp {β̃0}. Hyndman and Yao (2002) noticed that their second pro-
posal is equivalent to using local likelihood estimation for the regression of K h̃(Yi − y) against Xi

with the Gaussian likelihood and link function log (·). They also proposed an algorithm for band-
width selection.

Figure 2 displays the conditional density estimated using the estimator in Eq. (5) with A as
in Eq. (7) and p = 1 (similar results are obtain with other double-kernel estimators). As can be
seen in this figure, kernel conditional density estimation provides a general view of the conditional
density function, but we cannot easily unveil the underlying structure of the data. This may be due
to the fact that these estimators do not consider local bandwidths to estimate the local structure.

I propose to model the conditional density as a finite mixture model (FMM). In this case,
each conditional density has a set of parameters that we model as a function of the conditioning
information. Although FMMs involve stronger distributional assumptions than the nonparametric
methods previously presented, they require less data and are more easily interpretable. In addi-
tion, kernel estimates may be approximated by much smaller mixtures without losing significant
information (Scott and Szewczyk, 2001).
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Figure 2: Double-kernel conditional density estimate for the data in Figure 1(a)

Nonparametric Mixture Regression

Let us assume that the conditional density fY |X(y|x) of Y given X can be written in the form

fY |X(y|x) =

kx∑

i=1

πi(x)gi(y|θi(x)) (8)

where the gi(y|θi(x)), i = 1, . . . , kx, are densities with a set of parameters θi(x) that depends
on x, and the πi(x)’s are a set of mixing proportions that sums to one for each x. Denote
θ(x) = (θ1(x), . . . ,θkx

(x)) and π(x) = (π1(x), . . . , πkx
(x)). Assuming the model in Eq. (8), I

propose to estimate the conditional density by modeling πi(·) and θi(·), i = 1, . . . , kx, as a function
of the conditioning information using local likelihood estimation (Loader, 1999). These functions
are referred to as parameter functions and the proposed conditional density estimator as nonpara-

metric mixture regression (NMR).

Let η(x) = (π1(x), . . . , πkx
(x),θ1(x), . . . ,θkx

(x)) and `(yj ,η(xj)) = log fY |X(yi|xi), with fY |X

as in Eq. (8). The local polynomial log-likelihood of a parameter vector

η = (π1(x1), . . . , πkx1
(x1),θ1(x1), . . . ,θkx1

(x1), . . . , π1(xn), . . . , πkxn
(xn),θ1(xn), . . . ,θkxn

(xn))

is

Lx(β) =

n∑

j=1

wj(x)`(Yj ,A(xj − x,β)), (9)

where

A(t,β) = (A1,1(t,β1,1), . . . , A1,q1
(t,β1,q1

), . . . , Akx,qkx
(t,βkx,qkx

), . . . , Akx,qkx
(t,βkx,qkx

)),
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with Al,m(·, βl,j) as in Eq. (4), m = 1, . . . , ql, l = 1, . . . , kx and ql the number of parameters of the
lth component. The β’s are vectors of coefficients and

wj(x) = W

(
xj − x

h(x)

)
, (10)

with W (u) a weight function that assigns largest weights to observations close to x.

Let β̂̂β̂β be the maximizer of the local likelihood Eq. (9), that is,

β̂̂β̂β(x) = arg max
β

n∑

j=1

wj(x)`(Yj ,A(xj − x,β)) (11)

= arg max
β

n∑

j=1

wj(x) log

kx∑

i=1

Ai,1(xj − x,βi,1) · gi(Yj |Ai,2(xj − x,βi,2), . . . , Ai,qi
(xj − x,βi,qi

)).

The local likelihood estimate of the set of parameters η(x) is then defined as η̂̂η̂η(x) = A(0, β̂̂β̂β(x)).

Letting gi(y|θi) = φ(y|µi, σ
2
i ), a density function with parameters µi and σ2

i , the number of
parameter functions is three for all the mixture components. Furthermore, if all parameter function
are approximated locally with the same order polynomial, that is, Ai,l(·, ·) = A(·, ·), Eq. (11) can
be written as

β̂̂β̂β(x) = arg max
β

n∑

j=1

wj(x) log

kx∑

i=1

A(xj − x,βi,1) · φ(yj|A(xj − x,βi,2), A(xj − x,βi,3)). (12)

Notice that when A(t,β) is a constant (p = 0), we obtain

β̂̂β̂β(x) = arg max
β

n∑

j=1

wj(x) log
kx∑

i=1

βi,1 · φ(yj |βi,2, βi,3). (13)

Therefore, the original problem is reduced to solving a finite mixture problem (see e.g., McLachlan
and Peel, 2000). We can thus make use of some existing techniques used in mixture models to
obtain a conditional density estimate.

The most popular algorithm to estimate the mixture parameters is the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977), which converges to a maximum likelihood estimate of the
mixture parameters. Figures 3(a), 3(b) and 3(c) show the estimated parameter functions using
NMR with kx = 3 and the EM algorithm for the data in Figure 1(a). As can be seen in this plot,
the predominant effect is observed in the proportion functions, where the fraction of star-forming
galaxies decreases with increasing local density. Likewise, the population of non-star-forming galax-
ies increases with increasing local density. The third component, while noisy, does not undergo a
significant change in proportion with density. The means and dispersions of the three populations
seems to remain constant as density changes.



8

Note that the EM algorithm requires the knowledge of kx, plus it is highly dependent on the
parameter initialization. These drawbacks may be multiplied in our case, since we need to fit
a mixture for each value x; therefore, it seems critical to modify this algorithm or find other
approaches. I consider two approaches that avoid the drawbacks of the EM algorithm for mixture
fitting: (i) the algorithm proposed by Figueiredo and Jain (2002), and (ii) the Iterative pairwise
replacement algorithm (IPRA, Scott and Szewczyk, 2001). Notice that the IPRA is not a likelihood-
type method, but it is worth to study its behavior given its properties (see below).
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Figure 3: Estimated conditional component (b) mean functions, (c) proportion functions, and (d)
standard-deviation functions using nonparametric mixture regression.
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As in nonparametric regression, local approximations of higher order are usually prefer due to
their ability to reduce bias, particularly at boundary regions. Frequently, local linear polynomial are
enough when we are interested in the parameter functions as opposed to their derivatives. However,
if the true parameter function are expected to have a substantial curvature, further bias reduction
can be obtained by fitting local quadratic polynomials. In any of these cases, Eq. (13) can be found
using the EM algorithm for mixture models and the degree of the polynomial is decided by the user.

The following section describe the IPRA and FJME algorithms. We start by introducing some
model selection criteria and a similarity measure for densities.

Model selection

When the number of mixtures kx is unknown, we could estimate kx as follows. Use the EM
algorithm to obtain a sequence of parameter estimates for a range of values of kx and estimate kx

as
k̂x = arg min

k
{C(β̂̂β̂β(x), k), k = kx,min, . . . , kx,max} (14)

where C(·, k) is some model selection criterion. There are multiple choices C(·, k); however, in this
paper we make use of the Bayesian Information Criterion (BIC, Schwarz, 1978) and the Integrated
Squared Error (ISE) criterion.

The BIC is defined as

BIC(β̂̂β̂β(x), k) = − logLx(β̂̂β̂β) +
N(k)

2
log nx (15)

where N(k) is the total number of estimated parameters and nx is the sample size. The ISE is
defined as

ISE(β̂̂β̂β(x), k) =

∫ ∞

−∞
(fk(y|x, β̂̂β̂β(x)) − f(y|x))2dy (16)

where fk(y|x, β̂̂β̂β(x)) is a conditional density estimate of Y given X using a mixture of k components.

Another approach, proposed by Figueiredo and Jain (2002), is to consider a mixture of kx

components as a mixture of k(> kx) components where kz(< k) components have zero weight. In
this case, we need to have a criterion that can select the “best” model in the entire set of available
models. As noticed by Figueiredo and Jain (2002), this approach resembles the Minimum Message
Length (MML) philosophy (Wallace and Freeman, 1987). MML criteria are based on the idea that
statistical inference can be view as data compression. In other words, if we can build a short code
for the available data, then we will have a good data generation model (Rissanen, 1989). Figueiredo
and Jain (2002) developed the following MML criterion

β̂̂β̂β(x) = arg min
β

− logLx(β̂̂β̂β) +N(k)knz log nx +
knz

2
log nx +

N(k)

2
·

∑

j:πj(x)>0

log πj(x) (17)

where knz is the number of non-zero-probabilities components.
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We finish this section by introducing the similarity measure for densities given by Scott and
Szewczyk (2001). They defined a similarity measure between two density functions g1, g2 as

sim(g1, g2) =

∫ ∞
−∞ g1(t)g2(t) dt

(∫ ∞
−∞ g2

1(t) dt
∫ ∞
−∞ g2

2(t) dt
)1/2

, (18)

based on the intuition that when g1 and g2 are similar,
∫
g1(x)g2(x) dx should be larger than when

g1 and g2 are not similar. Scott and Szewczyk (2001) showed that 0 ≤ sim(g1, g2) ≤ 1.

Figueiredo and Jain’s algorithm

Figueiredo and Jain (2002) noticed that the MML criterion for mixtures in Eq. (17) is equivalent
to an a posteriori density resulting from the use of a Dirichlet-type prior for the πi(x)’s and a flat

prior for the θθθi(x)’s. Therefore, to minimize Eq. (17), the values π̂
(t+1)
i (x), i = 1, . . . , k, calculated

in the M-step of the traditional EM algorithm for mixtures are changed to

π̂
(t+1)
i (x) =

max



0,

nx∑

j=1

γ
(t+1)
ji − N

2





kx∑

m=1

max



0,

nx∑

j=1

γ
(t+1)
jm − N

2





, for i = 1, . . . , k, (19)

where N is the number of parameters that specify each component, and the γ
(t+1)
ji ’s are the values

obtained in the traditional E-step.

Note that the modified M-step eliminates components that are not supported by the data; there-
fore, the EM algorithm can be initialized with a “large” number of components, which helps to move
components across low-likelihood regions and then eliminate all unnecessary components. However,
if the algorithm is initialized with an “extremely large” number of components, the first iteration of
the modified M-step may eliminate all of them. To avoid this problem, Figueiredo and Jain (2002)
used the component-wise EM algorithm (CEM, Celeux et al., 1999). The CEM algorithm differs
from the traditional EM algorithm in that it updates the estimation of the πi(x)’s and θθθi(x)’s one
by one, instead of all together. That is, CEM updates the estimates π1(x) and θθθ1(x) and continues
with the E-step, then it updates the estimates of π2(x) and θθθ2(x) and goes to the E-step, and so on.

Iterative Pairwise Replacement Algorithm

Scott and Szewczyk (2001) proposed the Iterative Pairwise Replacement Algorithm (IPRA),
which is an algorithm for fitting mixture models sequentially. The main idea behind IPRA is
that kernel estimates may be approximated by much smaller mixtures. This algorithm starts
by first constructing a kernel density estimate, using either the unbiased cross-validation (UCV)
bandwidth (Rudemo, 1982; Browman, 1984) or the normal reference rule (Silverman, 1986). Second,
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it sequentially eliminates the redundant components in the mixture until k̃ components remain,
where k̃ is selected based on the sample size. Each time, the two closest components, in terms of the
similarity measure in Eq. (18), are combined using the method of moments (MoM); that is, given
two components with parameters (w1, µ1, σ

2
1) and (w2, µ2, σ

2
2), respectively, the new component will

have parameters

(wi + wi+1, w
′
iµi + w′

i+1µi+1, w
′
iσ

2
i + w′

i+1σ
2
i+1 + w′

iw
′
i+1(µi − µi+1)

2) (20)

where w′
i = wi/(wi + wi+1) and w′

i+1 = 1 − w′
i. At this point, we end up with a mixture of k̃

components with the set of parameters {(w1, µ1, σ
2
1), . . . , (wk̃, µk̃, σ

2
k̃
)}, such that µ1 < . . . < µk̃.

Third, the similarity function in Eq. (18) is used to compare the current k∗-component mixture
and the (k∗−1)-component mixture obtained by combining each pair of adjacent components using
the MoM. The pair that maximizes sim(ĝk, ĝk−1) are then combined as in Eq. (20). This process
continues until a model with only k0 components (k0 is usually less than 30) is obtained. Next, us-
ing “L2E with data,” explained below, a pairwise combination is carried out until there is only one
component left. At each step the BIC and the L2E criterion are collected. Finally, an appropriate
number of components is chosen based on these criteria.

“L2E with data” refers to the method of finding the best (k−1)-component mixture, fk−1(y|x, β̂̂β̂β(x)),
by keeping all but one component fixed on an initial k-component estimate, fk(y|x, β̂̂β̂β(x)), in terms
of ISE. That is, we need to find the set of parameters such that

β̂̂β̂βk−1(x) = arg min
β

∫ ∞

−∞
(fk−1(y|x,β(x)) − fY |X(y|x))2 dy

≈ arg min
β

∫ ∞

−∞
fk−1(y|x,β(x))2 dy − 2

nx∑

j=1

wj(x)fk−1(yj|x,β(x)). (21)

Measurement Error

Let us assume that our variable of interest X cannot be measure precisely or is unobservable and
instead Z = X + e is manifest. This will be the error model used from now on. Note that

φZ(t) = φX(t)φe(t)

where φU is used to denote the characteristic function of a random variable U . Using a kernel W
with bandwidth hn and applying the Fourier inversion theorem, Fan and Truong (1993) consider
the following estimator of fX(x):

f̂n(x) =
1

2π

∫ ∞

−∞
exp (−itx)φW (thn)

φ̂n(t)

φe(t)
dt

=
1

nhn

n∑

i=1

Wn

(
x− Zi

hn

)
, (22)
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where φ̂n(t) is the empirical characteristic function:

φ̂n(t) =
1

n

n∑

i=1

exp (itXi),

and

Wn(x) =
1

2π

∫ ∞

−∞
exp (−itx) φW (t)

φe(t/hn)
dt. (23)

As in the nonparametric kernel regression (see, Fan and Truong, 1993), this deconvolution kernel
can be used to construct a new nonparametric error-in-variables conditional density estimator based
on the CD estimator in Eq. (6) and the deconvolution kernel density estimator in Eq. (22), as follows

f̂0,n(y|x) =
1

nhn

n∑

i=1

Wn

(
x− Zi

hn

)
Kh̃(y − Yi)/f̂n(x). (24)

Future Work

I have presented a new conditional density estimator which has the advantage of being easily inter-
pretable and provides us with information not easily accessible with existent regression methods.
Furthermore, I constructed a nonparametric error-in-variables conditional density estimator based
on a error-free conditional density estimator. However, there are some open issues regarding these
two estimators, which I will study as part of my thesis. First, when applying these estimators, as
in all other methods where kernel functions are used, bandwidth selection is a critical issue. In the
case of error-in-variables CD estimation, I will build on the bandwidth selection methods proposed
by Fan and Truong (1993) and Fan and Yim (2004). For nonparametric mixture regression, one
might like to choose a separate bandwidth for each fitting point; however, in practice, doing this in
a sensible manner is difficult. Therefore, I will simply study this estimator using a nearest neighbor
bandwidth and a constant bandwidth selected by using generalized cross validation. Second, I will
compare the performance of the Figueiredo and Jain’s algorithm, the classical EM algorithm for
mixture models and the IPRA when they are used for nonparametric mixture regression.



13

Nonparametric Error-in-variables Quantile Regression

Quantile regression (QR) is a statistical technique intended to estimate the full range of quantile
functions and capable of providing a more complete insight of the underlying relationships among
random variables than usual regression. It is of particular interest in problems where the shape
or the dispersion of conditional distributions varies with covariate values. This technique was in-
troduced by Koenker and Bassett (1978), and has been applied to many scientific fields such as
biology and ecology (Cade and Noon, 2003, and references therein), finance (Bassett and Chen,
2001) and econometrics (Fitzenberger et al., 2002) to mention a few. Despite the advances in QR
function estimation and inference methods, and the many applications of QR methods, covariate
measurement error (CME) has received scant attention in the context of QR estimation. QR is not
immune to CME as showed by Chesher (2001): CME alters the shape, orientation and location
of conditional quantile regression functions. Furthermore, ignoring this error may result in invalid
conclusions.

In the following three sections, I introduce two nonparametric approaches to QR and a method
to handle CME in regression problems. These existent methodologies will then be used to develop
nonparametric error-in-variables quantile regression.

Nonparametric Quantile Regression

Let W be a symmetric density kernel and denote the distribution function of W by Ω. As in Eq. (2),
it can be shown that as h̃→ 0

E

{
Ω

(
y − Y

h̃

)∣∣∣∣X = x

}
≈ F (y|x), (25)

where FY |X denotes the conditional distribution of Y given X.

Yu and Jones (1998) proposed to use this fact to estimate conditional quantiles. More precisely,
their estimator uses a further linear approximation:

E

{
Ω

(
y − Y

h̃

)∣∣∣∣X = z

}
≈ F (y|z) ≈ F (y|x) + Ḟ (y|x)(z − x) ≡ a+ b(z − x) (26)

where Ḟ (y|x) = ∂F (y|x)/∂x. Now, define ã = F̂h,h̃(y|x), where

(ã, b̃) = arg min
a,b

n∑

j=1

(
Ω

(
y − Yj

h̃

)
− a− b(Xj − x)

)2

K

(
x−Xj

h

)
. (27)

Solving Eq. (27) we obtain

F̂h,h̃(y|x) =

n∑

j=1

w∗
j (x;h)Ω

(
y − Yj

h̃

)
(28)
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where w∗
i (x;h) is the weight function associated with local linear fitting,

w∗
j (x;h) = wj(x;h)

/ n∑

l=1

wl(x;h)

where

wj(x, h) = K

(
x−Xj

h

)
[Sn,2 − (x−Xj)Sn,1],

with

Sn,l =

n∑

j=1

K

(
x−Xj

h

)
(x−Xj)

l.

To obtain a conditional quantile estimator, define q̃p(x) to satisfy F̂h,h̃(q̃p(x)|x) = p, so that

q̃p(x) = F̂−1

h,h̃
(p|x). (29)

Another possibility to estimate quantile functions, proposed by (Jones and Hall, 1990), is to
find the solution â of the following equation

Hp(a) ≡
n∑

j=1

Wj(x)ψ0(Yj − a) = 0, (30)

where

ψ0(z) =

{
αI(0,∞)(z) − (1 − α)I(−∞,0)(z) z 6= 0

0 z = 0.
(31)

with IA(z) the indicator function of A.

Monte Carlo Corrected Scores

Nakamura (1990) proposed a method for the analysis of data measured with error, called the
corrected-score method. Nakamura’s method is very attractive due to its generality and theoretical
robustness properties but, the identification of the corrected score has to be performed on a model-
by-model basis. To overcome this problem, Novick and Stefanski (2002) proposed to use Monte
Carlo methods to obtain corrected scores. I follow this approach to construct a conditional quantile
function estimator. In general, the corrected-score method does not assume a model for the observed
data, but rather assumes that, in the absence of measurement error, the parameter of interest
is consistently estimated by an m estimator. It is assumed that the parameter of interested is
consistently estimated by θ̂ satisfying

n∑

j=1

ψ(Yj , Xj , θ̂) = 0

where the score function ψ is conditionally unbiased, that is,

Eθ{ψ(Yj , Xj , θ)|Xj} = 0 j = 1, . . . , n.
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A corrected score is a function ψ̃ of the observed data having the property that

E{ψ̃(Yj, Zj , θ)|(Yj , Xj)} = ψ(Yj , Xj , θ), j = 1, . . . , n.

Suppose that Vk,j ∼ N (0, 1) and consider Z̃k,j = Zj + i
√
σVk,j, where i =

√
−1. Given that

a score function ψ can be expanded in an infinite power series in its second argument, and that
expectation and summation can be interchanged, Novick and Stefanski (2002) showed that

E[Re{ψ(Yj , Z̃k,j, θ)|(Yj , Xj)}] = ψ(Yj , Xj , θ),

that is, Re{ψ(Yj , Z̃k,j, θ)} is a corrected score. This corrected score depends on the particular
generated random variable Vk,j; thus, it is desirable to eliminate this dependency by generating m
random samples and taking the average corrected score, that is,

ψ̃(Yj, Zj , θ, σ) =
1

M

M∑

m=1

Re{ψ(Yj , Z̃m,j , θ)}. (32)

Proposed Estimators

In the same manner that I used the deconvolution kernel in Eq. (23) to account for errors in
covariates when estimating conditional densities, the deconvolution kernel can be used for quantile
regression as well. More precisely, using the double-kernel quantile regression estimator in Eq. (28)
with a local constant approximation, instead of a local linear approximation, I propose the following
quantile function estimator involving errors in variables:

q̃p,n(x) =
1

nhn

n∑

i=1

Wn

(
x− Zi

hn

)
Ω

(
y − Yi

h̃

)
/f̂n(x). (33)

A second proposal is to use Monte Carlo corrected scores where the score function is taken to
be ψ0 as in Eq. (31). It is possible that my choice of score function does not follow the assumptions
of the Monte Carlo corrected score method; however, this method has been shown to perform well
even in cases where its theoretical assumptions do not hold (Novick and Stefanski, 2002). Thus,
there is some possibility that this estimator can perform better than its naive counterpart, where
a naive estimator refers to an estimator that disregards measurement errors.

Future Work

I will study the performance of the two proposed error-in-variables quantile regression estimators
and compare them to their naive estimators. I will also develop a bandwidth selection method
based on the bandwidth selection methods for the naive counterparts of the proposed estimators.
Finally, the estimator in Eq. (33) uses only a local constant approximation; thus, I will study the
possibility of using a deconvolution kernel in the local linear approximation case.
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