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Reducing jail recidivism with proactive mental health interventions (Johnson County, KS)

‘ Reducing Incarceration through Prioritized Interventions. Bauman et. Al. ACM COMPASS 2018
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11 MILLION

people move through 3,100 Jails

22 BILLION

in cost

64%

suffer from mental iliness

68%

have a substance abuse disorder

44%

suffer from chronic health problems



Children in at least AMM US households are
exposed to high levels of lead

Impaired Attention Lack of Motor Skills

Learning Disability

Memory Problems
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Increasing Retention in Care for HIV+ Patients K Pt

CHICAGO DEPARTMENT OF PUBLIC HEALTH

Predictive Analytics for Retention in Care in an Urban HIV Clinic. Ramachandran et al. Nature
Scientific Reports 2020

The Chicago Center
for HIV Elimination
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How do we develop Human-ML collaborative systems to help
make decisions that lead to fair and equitable outcomes?

A{\

Human-Al Allocation of Balancing goals
Collaborative Limited of equity,
Systems Resources efficiency, and

effectiveness
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The focus is not just be on making the ML model fair but rather on

making the overall system and outcomes fair

Understand
(root

causes)

Define Measure/
(equity) Detect (bias)

Improve Mitigate Monitor &
(fairness) (the impact) Evaluate
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Bias (in outcomes) can come from any of these four components

ML :
> s Actions
Pipeline
Sample Bias System Developers
Measurement Bias Complexity or flaws
Label Bias Design Choices
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Many Bias Measures: How do we select what we care about?

* Statistical/Demographic Parity
* Impact Parity

* False Discovery Rate Parity

* False Omission Rate Parity

* False Positive Rate Parity

* False Negative Rate Parity
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FAIRNESS TREE Joint Work with Kit Rodolfa and Pedro Saleiro

Do you want to be fair based on disparate representation
OR

based on disparate errors of your system?

Representation

Do you need to select equal # of people from each group
OR

Do you trust the labels?
proportional to their % i

in the overall population?

Are your interventions punitive or assistive?

Punitive
(could hurt individuals)

Counterfactual Fairness

1 e ;

Can you intervene with most people

Equal Selection Parity Demographic Parity

Assistive
(will help individuals)

with need or only a small fraction?

Small Fraction Most People

Among which group are you most Among which group are you most
concerned with ensuring predictive equity? concerned with ensuring predictive equity?

o sl oune s [Eammed |
P o it et Peapl wth need
intervention is taken assistance

FDR Parity FPR Parity Recall Parity* FOR Parity
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Zoomed in Version

Are your interventions

punitive or assistive?

Punitive Assistive
(could hurt individuals) (will help individuals)

Can you intervene with
most people with need
or only a small fraction?

Small Fraction Most People

Among which group are you

Among which group are you
most concerned with ensuring most concerned with ensuring

predictive equity?

predictive equity?

Everyone w/o regard People for whom Intervention Everyone w/o regard People NOT People with
for actual outcome intervention is taken NOT warranted for actual need receiving assistance actual need

v \4 v

v \ 4 \4 v
FP/GS Parity FDR Parity FPR Parity Recall Parity* [l FN/GS Parity FOR Parity FNR Parity
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Aequitas

Open Source Bias & Fairness Audit Tool



Aequitas: Bias Audit Tool
http://datasciencepublicpolicy.org/aequitas

Joint Work with Pedro Saleiro

Bias and Fairness Audit Report

Generated by Aequitas for [Large US City] Criminal Justice Project
January 29, 2018

Project Goal: Identify individuals likely to get booked/charged by police in the near future
Performance Metric: Accuracy (Precision) in the top 150 identified individuals

Bias Metrics Considered: Demographic Disparity, Impact Disparity, FPR Disparity, FNR Disparity, FOR
Disparity, FDR Disparity

Reference Groups: Race/Ethnicity — White, Gender: Male, Age: None

Model Audited: #841 (Random Forest) Model Performance: 73%
A Aequitas has found that Model 841 is BIASED. The Bias is in the following attributes:

Race = Black is biased in Demographic Disparity (6X), Impact Disparity 1.8X) , FPR Disparity (5X), FOR Disparity
(1.5X) , FDR Disparity (1.7X)

46% (66) of the selected group (n=150), while only making up 24% of the total population.
FDR (30%) is 1.7X higher than Reference FDR (18%).

FOR (6%) is 1.5X higher than Reference FOR (4%).

FPR (0.02%) is 5X higher than Reference FPR (0.004%)
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http://datasciencepublicpolicy.org/aequitas

*

0% Performance 100%
Metric
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100%

Bias

0% 100%

Performance
Metric
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Case Study: Prioritizing Early Diabetes Screening

Data from 1M patients from 2006 to 2018

Outcome: Type 2 Diabetes diagnoses in the 3 years period after a provider visit.
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Case Study: Prioritizing Early Diabetes Screening

Performance Metric: Recall/Sensitivity@k (k= # of patients screened based on resources)
Group Metric: False Omission Rate

Protected Attributes: Age, Ethnicity and Sex

Test Set:

205,485 patients that visit a doctor during 2014

3.4% prevalence (7,154 diabetes diagnoses in 3 years interval after visit)
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Case Study: Reducing Misdemeanor Recidivism through

Diversion and Social Service Programs

Predictive Fairness to Reduce Misdemeanor Recidivism Through Social Service Interventions. Rodolfa et al.
ACM FAT* 2020

UNMET > MISDEMEANOR JAIL

NEEDS ARREST

worsening or failing to
improve
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Case Study: Breaking the Cycle

UNMET MISDEMEANOR JAIL
NEEDS af ARREST
/\/
~
~ ~
~ -~ - TAILORED

~ = — — — — _ _ _ _| INTERVENTIONS
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Policy Menu

Designing for Equality Equity
Efficiency

Additional Cost. 2% Additional Cost. 2%

72.7% Efficient
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code at github.com/dssg
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