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BACKGROUND

e CMU’s Division 3 Softball team was founded in 2019
e \We have collected practice data, play-by-play data, and batter & pitcher statistics

o Analyze player practice performance and explore the relationship between

practices and games

o Model softball outcome probabilities from the play-by-play data and batter &

pitcher statistics

e This will allow Coach Monica Harrison to plan practices and have an additional tool

to use for strategizing and deciding lineups

DATA

Practice data:
® 90 observations, 20 variables. Each
observation is a player-season

e We found no meaningful results in the

practice data

e \ery little data, the team is young and

the 2020 and 2021 seasons were heavily

affected by COVID-19
Processed data:
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Figure 1: Scatter plot of on-base percentage (OBP) in

competitive games vs. in practice. There is no significant

relationship between the two (p = .61)

e Merged play-by-play data with batter & pitcher statistics (2022 season only)

o Player level batter statistics, school level pitcher statistics

® 4637 observations, 91 variables. Each observation is an at-bat

® Spans across 124 games, played by 17 schools within CMU’s schedule

Predictor variables: We utilized 16 predictor variables for modelling. By the nature of

the merged data, the predictor variables can be categorized as follows:

Play-by-play

Batter statistics

Pitcher statistics
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Response variable: Seven at-bat
outcomes: Out, Single, BB (walk), K
(strike), Extra Base Hit (EBH), Home
Run (HR), and Bunt

Figure 2: Distribution of outcomes. Outs and
singles are the two most common outcomes

e Built multinomial logistic regression and random probability forest models to predict outcome probabilities Dataset

o Multinomial Logistic Regression: ]

o Random Probability Forest:

e To avoid data linkage, we assigned games (rather than individual at-bats) to cross validation folds

Distribution of outcome varies by
batter & pitcher statistics
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Player Out BB Bunt EBH HR

Count

Abby 4541% 7.75% 1.00% 2.49% 4.34%
Becky 50.72% 4.05% 0.36% 1.49% 0.68%
Carla 63.58% 5.49% 0.25% 8.30% 0.83%
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METHODS
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ANALYSIS & RESULTS

Our best model is the random probability
forest. Play-by-play variables are the most
important for our model
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Variable

K Single  Player Out BB Bunt EBH
5.21% 33.81% Abby 43.15% 27.55% 0.69% 5.23%
1.69% 41.01% Becky 45.28% 4.53% 0.65% 3.07%
3.12% 18.43% Carla 2457% 3.04% 1.14% 19.07%

CONCLUSION

e Did not find any meaningful results in the practice data
o Lack of data with newly founded team and several seasons affected by COVID-19
e \We fit a random probability forest model to predict softball outcomes from play-by-play

data and batter & pitcher statistics

O Best at predicting outs, singles, walks, and bunts
o Not very good for strikes, extra base hits, and home runs
e Next steps: Collect more data and create RShiny app for better user experience

Random probability forest model
predicts Out, Single, BB (Walk +
HBPSs), and Bunts well
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Estimated Probabilities

Sample batter probability

outcome matrices. Left table

HR K Single
140% 12.96% 9.04% Is against Emory (highest
1.54% 7.78% 37.16% BAA), right table is against
0.59% 26.72% 24.87%

Trine(lowest BAA)
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