Understanding Multilateral Sanctions using a Multi-way Network Approach

Sana Lakdawala Advised by Prof. Nynke Niezink

Balance Theory

- Balanced Triad: A balanced state offers a stable relational structure for the members in the triad (Heider 1946).
- A balanced triad will not violate any of the following (Holland and Leinhardt 1977):
 - A friend of a friend is a friend.
 - A friend of an enemy is an enemy.
 - An enemy of a friend is an enemy.
 - An enemy of an enemy is a friend.
- And additionally:
 - The lack of a tie is a vacuously positive relationship.
 - An enemy is not a friend.

Adapting Balance Theory for Multilateral Sanctions

Question: How does balance theory play a role in collaboration for multilateral sanctions?

Threat and Imposition of Sanctions (TIES)

- Dataset of 1412 sanction threats and impositions that have been created across 176 countries (1945-2005)
- Rarely examined as a network- even then this assumes independence in collaborations for sanction events

Relational Event Data

Node sizes have been scaled by number of collaborators

Exploratory Data Analysis

7

٠ A A A Δ A K 3 0 1 0 0 0 4 ۱ 2 0 1. 1. \triangle A K. A A A L K D 5 0 D 0 0 D 0 0 D A Δ A \wedge A A A 1 0 0 0 0 0 6 0 A \triangle A A 1 6 L 6 0 0 0 0 D 0 0 0 2 0 A A A A Δ A 0 0 0 D 0 A D Δ \triangle A A \triangle A A \triangle D D 0 D 0 0 0 0

- 0 Unbalanced
- 1 Balanced
- 2 Vacuously Balanced
- 3 Empty
- 4 One Positive Tie
- 5 One Negative Tie
- 6 Vacuously Unbalanced

Blank tiles are isomorphisms.

The Dynamic Network Actor Model (DyNAM)

- Created by Stadtfield et al. (2017)
- Goal:
 - Model undirected collaborations over time, taking into account axioms of balance
- Model Specifications:
 - Limit collaborations to two nodes (only 28% of multilateral sanctions are bilateral)
 - Only model the creation of ties, not their dissolution
 - Only model choice coordination, not the rate

Definitions

 $x^{i \leftrightarrow j}$

The network $\, {\mathfrak X}$, plus an added edge from i to j

 $s(i, x^{i \leftrightarrow j})$

The measure for an attribute s for node i if there was an added edge from i to j

The set of parameters corresponding to S

All actors in the graph

Model Definition

Multinomial choice probability for how actors propose and accept new ties:

$$p_{i \to j}(x, \beta) = \frac{exp(\beta^T s(i, x^{i \leftrightarrow j}))}{\sum_{a \in A} exp(\beta^T s(i, x^{i \leftrightarrow a}))}$$

Since each collaboration is assumed to be two actors choosing each other:

$$p_{i \leftrightarrow j}(x, \beta) = \frac{p_{i \rightarrow j}(x, \beta) p_{j \rightarrow i}(x, \beta)}{\sum_{k, l \in A, \ k \le l} p_{k \rightarrow l}(x, \beta) p_{l \rightarrow k}(x, \beta)}$$

Log-likelihood

We estimate the parameters of the model with maximum likelihood estimation:

$$\sum_{\omega} \log(L_{\omega}(x_{\omega},\beta,i_{\omega}\leftrightarrow j_{\omega})) = \sum_{\omega} \left[\log(p_{i_{\omega}\rightarrow j_{\omega}}(x_{\omega},\beta)) + \log(p_{j_{\omega}\rightarrow i_{\omega}}(x_{\omega},\beta)) - \log\left(\sum_{k,l\in N,k\leq l} p_{k\rightarrow l}(x_{\omega},\beta)p_{l\rightarrow k}(x_{\omega},\beta)\right) \right]$$

Here, ω denotes each collaboration event.

Statistic Functions

	Effect name	Effect $s_i(x, z)$	Network representation	· · · · · · · · · · · · · · · · · · ·
1	Degree ego	$\dot{x}_{i+}^{(1)}$	()	existing sanction
2	Degree alter	$\sum_{j} x_{ij}^{(1)} \dot{x}_{j+}^{(1)}$: a green edge
3	Covariate alter	$\sum_j x_{ij}^{(1)} v_j$	()()	is at least one existing collaboration
4	Covariate similarity	$\sum_j x_{ij}^{(1)} \operatorname{sim}(v_i, v_j)$	(i) (i) $(i) (i)$ $(i) (i)$:: a potential new ally ($\dot{x}_{ij}^{(1)}$ increases
5	Transitivity	$\sum_{j,h} x_{ij}^{(1)} \dot{x}_{ik}^{(1)} \dot{x}_{jk}^{(1)}$	()(j)	by 1)
6	Mixed transitivity	$\sum_{j,h} x_{ij}^{(1)} \dot{x}_{ik}^{(2)} \dot{x}_{jk}^{(2)}$	(K)	new collaboration ($x_{ii}^{(1)}$ increases by 1)
7	Simultaneous tie	$\sum_{j} x_{ij}^{(1)} \dot{x}_{ij}^{(2)}$	()()	-,

Results

	Mc	del 1	Model 2				
	par.	s.e.	par.	s.e.			
Unweighted degree (ego) -	-0.570^{***}	0.022	-0.568^{***}	0.022			
Weighted popularity	0.081^{***}	0.004	0.085^{***}	0.004			
Transitivity	0.139^{***}	0.008	0.134^{***}	0.010			
Regime (alter)	0.013^{***}	0.004	0.014^{***}	0.004			
Similar regime	0.001	0.004	0.001	0.004			
Mixed transitivity			0.001	0.004			
Tie in sanction network			-0.150^{*}	0.059			
AIC	14105		14101				
$p^* < 0.05; p^* < 0.01; p^* < 0.001$							

Next Steps

• Adapt the DyNAM approach for collaborations, ie:

Instead of:

- Adapt the DyNAM approach for three-way relations
 - Model collaboration over more than two actors
 - Condition this on a proposed sanction target from the primary sanction sender

