
This project investigates how the brain achieves speech 
adaptation to accents with EEG (electroencephalogram) 
data recorded from brain activities. During the recording, 
subjects hear typical English speech sounds “Beer” and 
“Pier” (canonical group), as well as variations of these two 
sounds (reversed group) generated by mismatching 
acoustics dimensions, VOT and F0. Previous behavioral 
data indicate a downweighting on the F0 dimension when 
people hear mismatched sounds, which leads to difficulty 
differentiating  the sounds. Now we are interested in if such 
a pattern can be observed in brain data as well. 

The goal of the study is to employ  classification models to 
test whether it’s easier to differentiate brain activities in the 
canonical group or in the reversed group. Our hypothesis is 
that the model will perform higher accuracy on the 
canonical group than the reversed group.
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Introduction

Data

● We followed the general design of deep Convolutional Neural Network by Schirrmeister, 
which includes four convolution-max-pooling blocks and uses exponential linear unit as 
the activation function. We also use batch normalization and dropout.

● L1 and L2 regularizer are applied to the kernel of convolution layer
● Two models with exact same architecture and parameters are trained on each subject, 

one for the canonical case and the other for the reverse case
● 5-fold cross-validation accuracy of two models are compared for each subject

Analysis
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 The dataset includes a two-hour brain recording with 
sampling rate of 512 Hz (512*60*60*2 data points) for a 
single electrode and a single subject. There are a total of 32 
electrodes and 23 participants. We then applied a 0.1 - 32 
Hz filter and noise removal. 

Methods

Event-ids Subjects Channels Signal 
Timepoints

● Stimuli - 
standard, 
deviant

● can/standard
● can/deviant
● rev/standard
● rev/deviant
● can/test1
● can/test2
● rev/test1
● rev/test2

● Subject 001 - 
011, 015 - 016,
021 - 025,
027 - 033

  
● 23 subjects 

participated 
total.

● An electrode 
capturing 
brainwave 
activity.

● 32 channels 
total.

● A1 - A32.

● Specific 
time-windows 
extracted from 
the continuous 
EEG signal.

● These are also 
called Epochs.

● 91 timepoints 
obtained total 
for each subject.

● Interval :  
-0.20315 ~ 0.5 

The canonical and reverse models have fairly similar 
validation accuracies when compared for all subjects. 
We used a one-sided two-sample t-test where:
● Null hypothesis: 

Classification Accuracy (Rev) ≥ Classification accuracy (Can)
● Alternative hypothesis: 

Classification accuracy (Rev) < Classification accuracy (Can) 

The t-test yielded a p-value of o.99 when applied over 
all subjects. So, we fail to reject the null hypothesis.

Figure 3: Individual Cross validation accuracy of two types of 
sounds for each subject

 Figure 1 : Image of EEG 
activity of subject 001 for 
channels A1 - A20.

There is a significant decline in 
the validation accuracy in the 
canonical case for the second 
half of subjects, suggesting 
changes in data collection 
methods. 

In fact, a one-sided two-sample 
t-test does find that subjects 1, 8, 
16, 21, and 29 do have p-values 
less than 0.05 when tested 
individually.

Figure 4: Average cross-validation accuracy for 
two types of sounds

Figure 5: Empirical Distribution of the 
difference in validation accuracy between the 
canonical and reverse cases approximates a 
t-distribution.
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Figure 6: Train and validation accuracy for two cases (averaging all subjects).
The neural network doesn’t overfit, suggesting that in general, brain activity is 
consistent across tests within both canonical and reverse cases.

Figure 2: Convolutional Neural Network’s block. We repeat each of these blocks four 
times in the neural network.

The result contradicts behavioral data as subjects had 
a lower accuracy in distinguishing between “beer” 
and “pier” in the reverse case than in the standard 
case but our neural network did not. This suggests 
that even in the accented case, there are patterns in 
the brain data that can be used to distinguish the 
exact word being spoken. It must be these patterns 
that the neural network trained on the reverse case is 
picking up. Thus, even though subjects are less able 
to classify between beer and pier when listening to 
accented sounds, their brain has already started 
noticing patterns to make the classification, allowing 
for the rapid acclimatization of accented speech that 
we see in daily life. 

We would need data from more subjects to conclude 
this hypothesis convincingly. Furthermore, we can 
try different neural network architectures and see if 
the result holds. Another extension would be to train 
the model with all subjects, for both the standard and 
canonical cases. We opted not do so here since 
people process speech differently, but doing this will 
increase the number of observations passed into the 
model

Investigating Speech Adaptation with CNN

Data Input: (156 trials, 1 subject, 32 channels, 91 timepoints)
Analogous to Image Representation:

 (Batch Size, 3 Color Channels, Height, Width)


