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Introduction & Background Methods

We then employed a range of regression models including a Linear Regression (L1 Regularization) as our baseline,

Diamonds, symbols of faithfulness and luxury, often vary along with Lasso Regression, Random Forest, XGBoost, and K-Nearest Neighbor. The performance of these models

significantly in price despite being similar in size. This
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also play a crucial role in determining a diamond's value. In | ] , | An alySlS and Results
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diamonds to understand how these attributes influence their fovien - siotyebied et el Preparing Data:
market value. Figure 1 . . .. . . . ..
s Before evaluating different predictive models, we implemented a split of our dataset, allocating 70% for training and
the remaining 30% for testing. For each selected model, we followed a two-step process: first, training the model
Our objective is to develop a model that can accurately predict the price of a diamond based on its properties. using the training dataset, and then applying the model to predict outcomes based on the test set's predictive variables.

Data Processing Metric Used:
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detailing our variables along with their respective Categorical Predictors: | Descriptions: variance 1n the dependent variable that 1s predictable from the Figure 2
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Model Performance Comparison:

In our analysis, both Random Forest and XGBoost
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- By observing the histograms for each quantitative variable, we " il cay I models significantly outperform other models in
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S This process removed 18 data points from our dataset. MSE Comparison of Models R_Squared Comparison of Models prediction of individual trees for regression tasks,

Histograms showing the distribution of each variable thereby Offering robust and reliable pI'GdiCtiOIlS.

Best Model Parameter:

The scatter plots below demonstrate that depth and I | We attained our optimal model ntree e nodesize classwt o
table remain relatively constant as the price increases, ; performance with the Random Description | Numberof | Number of variables randomly | Minimum size of | Prior probabilities | Size of the sample to draw

. . . . . . . trees to grow | sampled as candidates at each split| terminal nodes of the classes. from the training dataset.
suggesting that these two properties do not significantly Forest algorithm by using its o 500 3 5 NULL 37745
influence the price. Conversely, carat, X, y, and z exhibit g default parameters.

a more pronounced positive correlation with price.
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Faceted Scatter Plots of Price vs. Quantitative Variables



