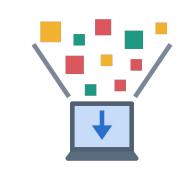
Factors Impacting US COVID-19 Vaccine Adoption: A Statistical Exploration

Carnegie Mellon

University


INTRODUCTION

Vaccine hesitancy is a complex phenomenon characterized by a range of attitudes and behaviors towards vaccination. It is defined as a delay in acceptance or refusal of vaccination despite the availability of vaccination services (1). Politics, culture, healthcare professionals, employment, vaccine attitudes and beliefs, social networks, and media play significant roles in shaping vaccine decision-making among hesitant adopters (2).

OBJECTIVE

To build a model to predict primary drivers of vaccine adoption and offer insights to aid policymakers, healthcare professionals, and public health campaigns.

The DATA

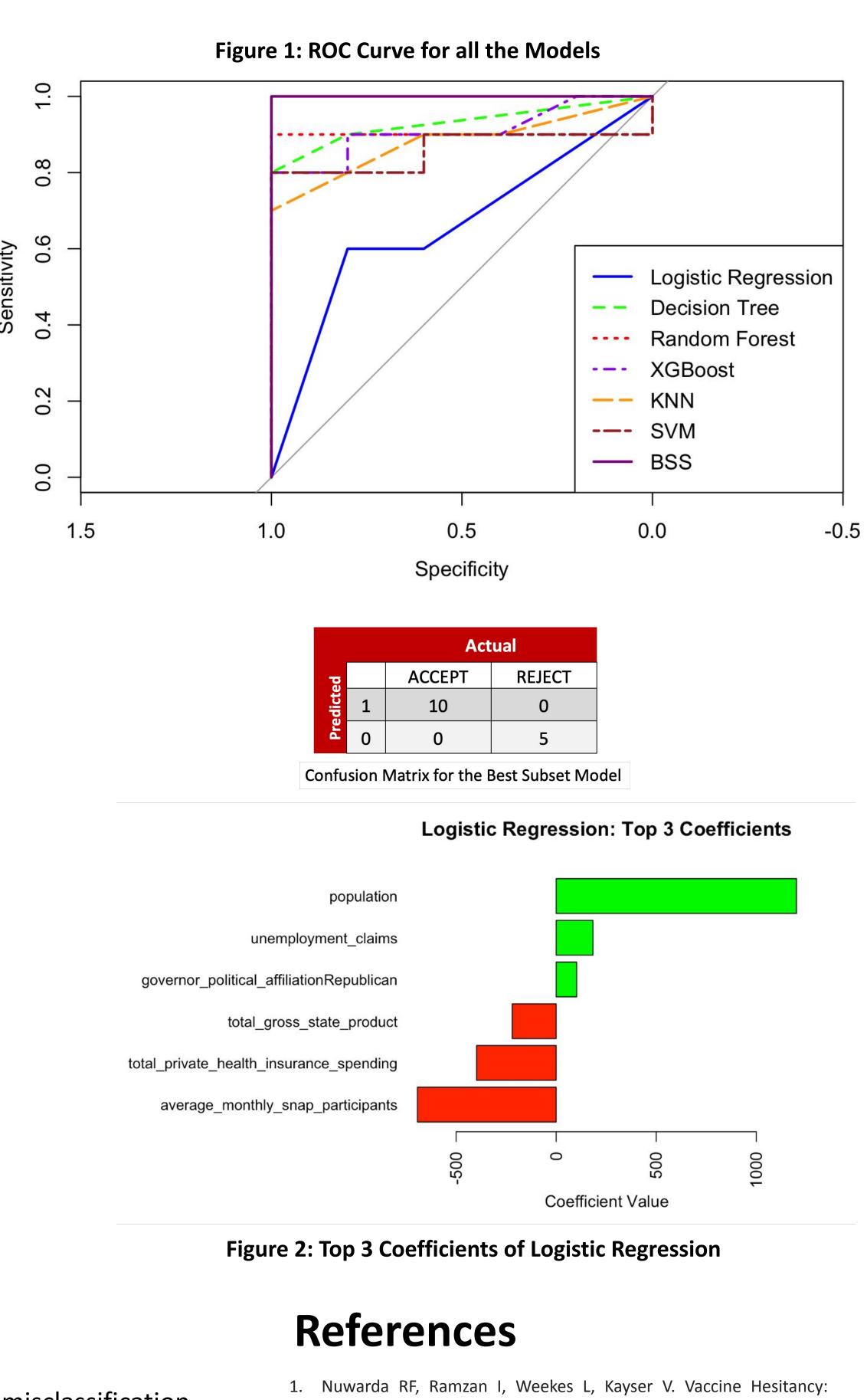
Data has been collected from Carnegie Mellon University's COVID cast project by the Delphi research group and from the Kaiser Family Foundation. The dataset contains 50 observations and 17 features as summarized in Table 1.

Feature Name	Description			
uninsured	Percentage of Uninsured			
total_private_health_insurance_spendi	Total Private Health Insurance Spending (2014)			
ng				
number_of_births	Number of Births (2019)			
infant mortality rate	Infant Mortality Rate (2018)			
	Firearm Death Rate per 100,000 Residents			
firearms_death_rate	(2018)			
median annual household income	Median Annual Household Income (2019)			
governor political affiliation	Governor Political Affiliation			
state senate majority political affil				
iation	State Senate Majority Political Affiliation			
state_house_majority_political_affili	State House Majority Political Affiliation			
ation	State house Majority Political Anniation			
	Total Gross State Product (millions of current			
total_gross_state_product	dollars)			
unemployment claims	Unemployment Claims, Week of 8/28/2021			
average monthly snap participants	Average Monthly SNAP Participants 2019			
smoking	Percent of Adults Who Smoke (2017)			
drug overdoses	Drug Overdose Death Rate (per 100,000, 2019)			
hospital inpatient day expenses	Hospital Adjusted Expenses per Inpatient Day			
	(2019)			
population	Total US Population (2019)			
vaccinated or accept	Vaccine acceptance among COVIDcastsurvey			
	respondents (August 2021)			
Table 1: The Features and Descriptions from the COVIDcast Dataset				
Iable I. The realules and Descriptions norm the Covidiast Dataset				

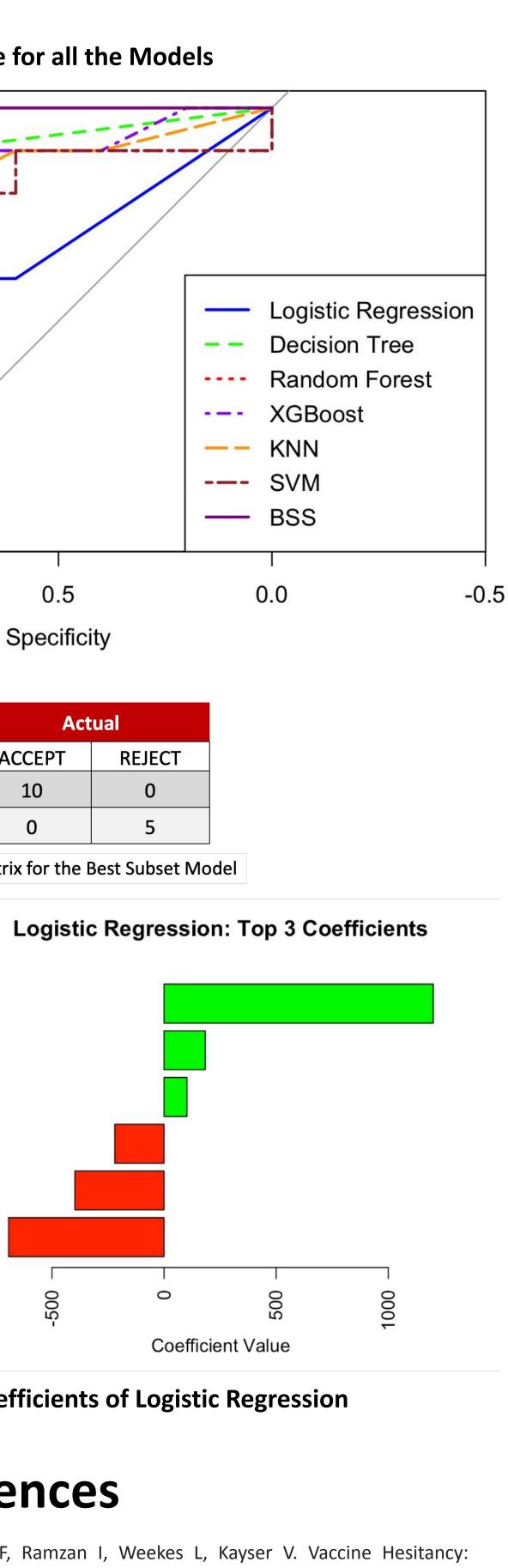
Amogh Ananda Rao, Ashita Jawali, Hamidreza Akhbariyoon, Anh-Thu Pham, Wrootchit Mishra Advisor: Dr. Peter Freeman, Statistics & Data Science Department, Carnegie Mellon University

ANALYSIS

After looking for missingness and outliers in the data, we decided not to remove any observation from the analysis dataset. We used square-root and logarithmic transformations to quantitative variables after understanding the distributions of all the features. To prevent overfitting the models, we performed a 70:30 division of the dataset to create two distinct subsets: one for training and the other for testing machine learning models.


The model performances have been summarized in Table 2. The decision tree was the best performing independent model with a ROC-AUC = 0.930 (J=0.857), followed by random forest, XGBoost, k-nearest neighbors, and support vector machine. Logistic regression, with a J=0.99, had the lowest ROC-AUC = 0.66. However, owing to the nature of the model, we have introduced explainability to this analysis in Figure 2. The best subset model had the best performance with a ROC-AUC = 1, and zero misclassification.

Model	Threshold	Misclassification Rate	ROC-AUC	
Logistic Regression	1.00	0.267	0.660	
Decision Tree	0.857	0.867	0.930	
Random Forest	0.490	0.067	0.900	
XGBoost	0.796	0.867	0.910	
K-nearest Neighbors	0.786	0.800	0.880	
Support Vector Machine	0.466	0.867	0.860	
Best Subset Model	0.500	1.00	1.00	


Table 2: Summary of Model Performances.

The Random Forest model appears to be the best as it has both a low misclassification rate and a high ROC-AUC value (0.900). The Decision Tree has a high ROC-AUC but a very high misclassification rate, which is not ideal for our dataset. Along with the feature explanations from logistic regression, this study provides a framework for a better understanding of vaccine adoption

		Actual		
sd		ACCEPT	REJECT	
Predicted	1	10	0	
Pre	0	0	5	

- Contemporary Issues and Historical Background. Vaccines (Basel). 2022 Sep 22;10(10):1595. doi: 10.3390/vaccines10101595. PMID: 36298459; PMCID: PMC9612044.
- 2. Purvis RS, Moore R, Willis DE, Hallgren E, McElfish PA. Factors influencing COVID-19 vaccine decision-making among hesitant adopters in the United States. Hum Vaccin Immunother. 2022 Nov 30;18(6):2114701. doi: 10.1080/21645515.2022.2114701. Epub 2022 Sep 7. PMID: 36070518; PMCID: PMC9746519.

