Identifying misclassified exoplanets Jane Hsieh - Leo Chen - Srujana Rao Yarasi - 36-600: Overview of Statistical Learning and Modeling

Introduction

Problem: Identifying exoplanets, or planets that lay outside our Solar System, is a difficult problem due to the distances involved and the limitations of our imaging technology.

The transit method: One technique for identifying exoplanets is imaging stars to detect when an orbiting exoplanet passes in front of its host star, ergo eclipsing our view of the star.

Data collection: Between 2009 and 2013, NASA's Kepler satellite observed over 100,000 stars to detect potential exoplanets with the transit method. Scientists later classified the observations as "confirmed" exoplanets or "false positives."

Goal: In this project we train a classifier that predicts whether exoplanets exist or not using observed properties of the planetary candidates and the stars they orbit taken from the Kepler satellite.

Analysis

We compared the accuracy of multiple models:

- 1. Logistic regression: uses a logit function to model probabilities for a binary response variable
- 2. Random Forest: trains multiple decision trees on subsets of the data and aggregates the probabilities derived from all the trees
- 3. KNN: uses similarity metrics to place new data into classes
- 4. SVM: maps the predictor variables into a higher dimensional space before constructing a linear boundary for class separation

For each of these models, we output the probability that the probability that a planetary candidate is "confirmed" or "false positive." To determine the separation threshold, or cutoff probability for classifying a planetary candidate as "confirmed" or "false positive," we use the Youden's J statistic, which optimizes the sensitivity and specificity metrics achieved at different separation thresholds. To compare model performances, we calculate the area under the curve (AUC), which measures model sensitivity and specificity under various separation thresholds.

We measured the *misclassification rate (MCR)* - the percentage of incorrect classification. Overall, the random forest performed the best with the MCR and AUC metrics.

We also determined which predictors were the most important for our random forest model, as seen on the graph to the right.

Model	Logistic regression	Random Forest	KNN
MCR	0.143	0.097	0.241
AUC	0.929	0.968	0.830
Separation Threshold	0.613	0.605	0.500

Data

This dataset comes from the Kepler satellite and contains 6859 data points. It contains 17 predictors, though we removed koi_eccen (the orbital eccentricity value) as that column contained zero for all rows.

Variable	Definition	Variable	Definition	
koi_prad	Radius of the planet	koi_period	The interval between consecutive pla	
koi_ror	Planet radius divided by the stellar radius	koi_depth	Fraction of stellar flux lost at minimum	
koi_slogg	Log10 of acceleration due to gravity at surface of star	koi_dor	Distance between planet & star at mid-transit	
koi_smass	Mass of the star	koi_duration	Duration of observed trans	
koi_smet	Log10 of Fe to H ratio at surface of the star, normalized by the solar Fe to H ratio	koi_impact	Sky-projected dist. b/w centers of of stellar conjunction, normalized by stell	
koi_srad	_srad Photospheric radius of the star		Angle b/w plane of the sky (perpendicular to	
koi_srho	Fitted Stellar Density	KOI_INCU	orbital plane of the planet car	
koi_steff	Photospheric temperature of the star	koi_insol	Equilibrium temperature based on ste	
koi_teq	Approximation for the temperature of the planet			

koi dor koi_smet koi prad koi srho koi duration koi_period koi ror koi steff koi impact koi_slogg koi_depth koi srad koi smass koi_teq koi_insol koi incl 🗢 35 40 Mean Decrea Confusion Matrix Confirm Confirmed 510 146 False Positive

Above Top: Plot showing the effect each predictor has on the accuracy of the random forest classification. **Above Bottom:** Confusion matrix Far Left: Table showing measures of accuracy for the four classification models. Out of the four, random forest performs the best with the lowest misclassification rate and highest area under curve. **Left:** The Receiver Operating Characteristics (ROC) Curve for all the models. The AUC statistic is the integral from these curves.

Predictor Importance for Random Forest

	nuonniorest			
-•				
•				
•				
5 50 55 60 65 ase in Accuracy				
ned	False Positive			
	312			
	1055			

Conclusion

Overall, the random forest performed better than the other classification models used in this project.

From the predictor importance analysis for the random forest, it appears that all 16 of the non-zero predictors played a role in the classification. The most important variables are **koi_dor** – the distance between the planet and the star, and **koi_smet** – the ratio of iron and hydrogen at the star's surface.

These conclusions can be used to inform future techniques for identifying exoplanets. Since koi_dor and koi_smet are the most important predictors for differentiating "confirmed" and "false positive" cases, these observations can be given more scrutiny in future analyses that try to identify exoplanets.

Bibliography

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.

Data columns in Kepler Objects of Interest Table. (2021, February 11). NASA Exoplanet Archive. Retrieved December 2, 2021, from https://exoplanetarchive.ipac.caltech.edu/docs/API_kepcandidate_columns.html

Freeman, P. (2021). Weeks 1-13. Retrieved from CMU Canvas site.

inetary transits

planetary transit

divided by stellar radius

disc & planet disc at ar radius

the line of sight) & the ndidate

llar parameters