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Diamonds are the most popular gemstone in — | @ g0 [ v e We took a subset of 20,000 data points from the full dataset to expedite statistical analysis.
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We analyze data of 53 940 diamonds from Tiffany & Co.2 The processed data JA summary Of the MSES for the different models can be found In Table 2. The I|near regression and random " Model Test Set MSE
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Variable Variable Description = z - Y depth, and x were retained, while table, v, and z were removed. A variable importance plot from the Boosting
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Exploratory Data Analysis. After removing 39 outliers from the dataset, we ; , Figure 2. The predicted log(price) vs. observed log(price) for , N Figure 3. Variable importance plot for random forest showing that
| : : : , - " the two best models: Random Forest (left) and Linear ‘ the factor predictor variables clarity, color, and cut are the
. log-transform the predictor variable carat and the response variable price Regression (right). 3 » most important.

to reduce skewness. We visualize the distributions of the predictor variables
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of the primary factor variables, we conclude that there is little relationship 88 Overall, the models indicate that there IS a linear relatlonshlp between the predictor variables and the iewelry worldwide from 2010 to 2020 (in billion
between the factor variables. We find that there is a strong linear correlation  response variable price. Random forest and linear regression models were the best at predicting U.S. dollars). o |
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