

Classifying BL Lacs with FERMI Data Authors: Saaniya Bhushan, Malcolm Ehlers, Cindy Xiong

Introduction

- The Fermi Gamma-Ray Space Telescope is used to detect high-energy photons produced by astronomical objects, among which are gamma-ray-emitting BL Lacertae objects, or BL Lacs. BL Lacs have beamed jets of matter pointed directly towards the Earth, which are streamed from black holes.
- However, BL Lacs are difficult to identify due to their spectra's similarities to other classes of astronomical objects.
- The goal of this analysis is to accurately classify BL Lacs, as well as determine the predictive variables most useful for said classification.

Data

- These data are from the Fermi LAT 10-Year Point Source Catalog (Ajello et al., 2020).
- It was collected by the Large Area Telescope, an instrument aboard the Fermi satellite.
- Each datum is a point in space which appears to produce light, which cannot be categorized by appearance alone.
- There are 4283 data in total, 1226 (28.6%) of which are BL Lacs and 3057 (71.4%) of which are not BL Lacs.
- The predictor variables in our data set include
 - Two recording the object's position in the sky
 - One recording signal strength
 - Two recording the variability of the signal
 - Fifteen for recording features of the spectrum
- The categorical response variable source_type recorded values of BLL or NOT BLL

References

Ajello, M., et al. 2020, The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope, online at https://arxiv.org/pdf/1905.10771.pdf

Freeman, P. E. 2021, online at https://github.com/pefreeman /36-290/tree/master/PROJECT DATASETS/FERMI

NASA. (2020, December 17). FERMILPSC - Fermi LAT 10-Year Point Source Catalog (4FGL-DR2). Retrieved September 26, 2021, from https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermilpsc.html.

Advisor: Peter Freeman

- We attempt to learn a number of classifiers.
 - Neighbors (KNN), and Naive Bayes.
- We use Area Under Curve (AUC) as our metric of model quality.
 - Possible AUC values range from 0 to 1, and higher values indicate better predictive ability.
- The highest AUCs are from logistic regression, logistic regression with forward selection, and random forest.

 - 0
- Optimal threshold for random forest: 0.709.
- MCR: 0.1988

		_		RC
Model	AUC			
Logistic Regression	0.876	0.8		
		0.6		
Forward Selection	0.877	Sensitivity 0.4 0.6		/
		0.2		
Classification Tree	0.822	0.0		
		1.5	1.0	0.
Random Forest	0.879	-		Speci
			e is the recei	
Gradient Boosting	0.869) curve for all adeoff betwee	
			pers of one cl	ass w
KNN	0.638	anoth	er class.	
			e Random Fo tivity is 0.839	
Naive Bayes	0.807		acy for actua	
		(i.e., t	he accuracy	for no

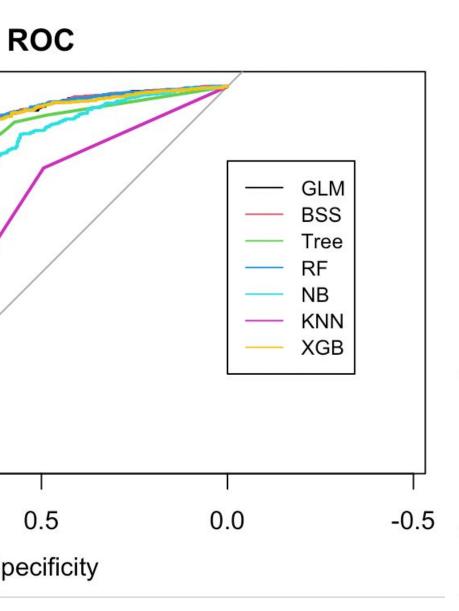
Confusion Matrix for Random Forest	Actual BLL	Actual NOT_BLL	
Predicted BLL	214	126	We w class
Predicted NOT_BLL	41	459	to sin

Analysis

• The methods we use are Logistic Regression, Forward Subset Selection, Classification Tree, Random Forest, Gradient Boosting, K Nearest

• AUC is a measure of how well a model performs over a range of classification thresholds.

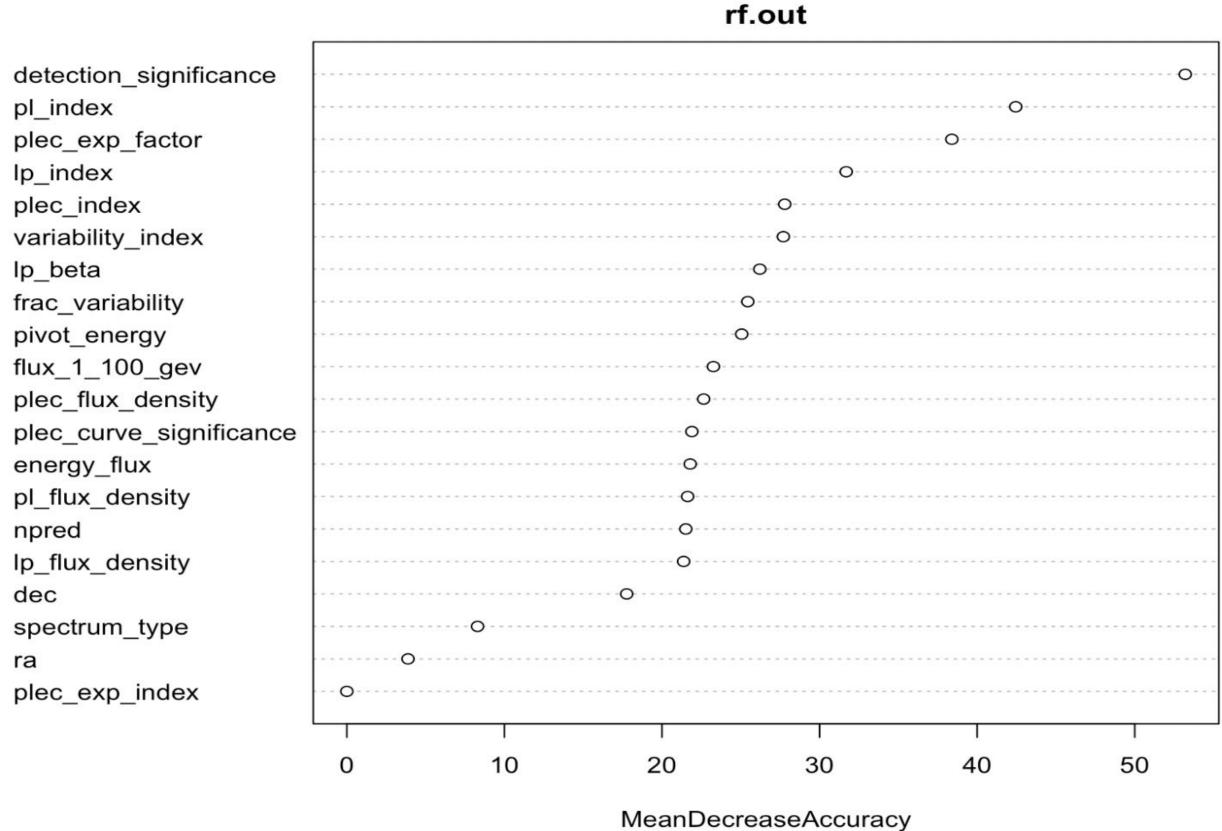
• Logistic regression models the probability that we would sample data of one of the classes, given specific values of the predictor variables. • Forward Selection chooses the optimal predictor variables by adding them one at a time and performing logistic regression at each step. Random forest aggregates decision tree constructed using subsets of predictor variables and bootstrapped samples of the dataset. • We select the Random Forest for our final predictions because it has the highest AUC value.



perating characteristic ne classifiers, showing e ability to identify well versus members of pl_flux_density

classifier, the the classification s) and the specificity on-BLLs) is 0.785.

- **Below** is the variable importance plot for the Random Forest classifier.
- We can see that the most important variable is the one that records signal strength.



Conclusion

were successfully able to construct a classifier using the Random Forest model that sifies objects in both classes relatively well, with an MCR 10% lower than if we were mply classify all objects as non-BLLs.

