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In 1990, the ROSAT X-ray telescope was launched to observe "X-ray 
binaries", a class of binary stars that are luminous in X-rays.1 While some 
X-ray sources have an extended shape—like the expanding gas cloud of a 
supernova remnant—most are point-like and thus hard to classify by 
visual inspection only. With follow-up observations of the sources with 
three other telescopes, including the brightness measurements from the 
optical regime by Gaia and SDSS and the infrared measurements by 
WISE, it is possible to differentiate the source types.
The goal of our study is to learn a statistical model that takes in 
X-ray and brightness measurements of astronomical objects 
and produces an accurate classification of quasars and 
galaxies.

Our dataset has 4198 astronomical bodies and 26 predictor variables. 
There are five classes for the response variable: quasars, broad-line active 
galactic nuclei (BLAGN), narrow-line active galactic nuclei (NLAGN), 
galaxies, and stars. Quasars and broad-line active galactic nuclei were 
combined to form one class, and galaxies and narrow-line active galactic 
nuclei were combined to form another. Stars were removed from the data 
considered in the statistical models. Some predictor variables were 
log-transformed for better visualization and analysis.

We conclude that we can indeed classify quasars and broad-line active galactic nuclei versus galaxies and narrow-line 
active galactic nuclei with relative accuracy. The metric used for determining the optimal model was having the highest 
AUC. Using this metric, we found the statistical model that optimally performed this classification was a lasso 
regression on the full predictor space, with a misclassification rate of 12%. 

1. Comparat, J. et al. 2020, 
Astronomy & Astrophysics, in press 
(arXiv:1912.03068)

Table 3: Confusion Matrix of LASSO Regression 

Methods
● We utilized various classification techniques to build binary classifiers

○ Main methods:  logistic regression, forward/backward subset selection, LASSO, Ridge Regression, classification tree, random forest, XGBoost, 
KNN, Naive Bayes, and SVM with linear, polynomial, and radial kernels

○ Vif reduction was used to address multicollinearity within the data for the regression models.
● The highest AUCs are from lasso regression on the full predictor space, boosting, and random forest, which yields 0.934, 0.933, 0.933, respectively.

○ LASSO regression is a shrinkage method performing both variable selection and regularization
○ Boosting is a family of algorithms that consists of iteratively learning weak classifiers and add them to a final stronger learner
○ Random Forest is an ensemble learning model that involves constructing and aggregating multiple decision trees

● We decided to use our LASSO regression model to generate final predictions because it has the greatest AUC.

Table 2: AUCs for the Models Considered

Table 1: Predictor Variables and Descriptions 

Figure 1: Pairwise Plot of ROSAT data 

The pairwise plot of ROSAT 
observations shows a strong 
correlation between the log of 
RXS_CRate, the log of RXS_ExiML, 
and the RXS_SRC_FLUX variables. 
The scatter plots and density plots, 
however, show a lot of overlap 
between the classes.

● The AUC for models on full predictor 
space are unanimously greater than 
that for models with vif-reduced 
inputs. While models on full 
predictor space yield to more 
accurate predictions, the issue with 
multicollinearity may undermine 
their inferential ability.

● The AUC for our non-vif LASSO 
Regression model is 0.934. This is 
also the highest AUC among those 
AUCs from all the models. The AUC 
for LASSO is visualized below.

● The MCR for our non-vif LASSO Regression model is 
0.12.

● The sensitivity and specificity are both about 0.86.
● The plot below shows the coefficients of the predictor 

variables given different log of lambda values. The log 
of our best lambda was -9.094. This means 24 
predictor variables contribute to the model.

Figure 2: ROC Curve of LASSO Regression

LASSO Predictions

Galaxy/
NLAGN

Quasar/
BLAGN

Response 
Variable

Galaxy/
NLAGN 113 27

Quasar/
BLAGN 118 929

Model AUC

Lasso Regression (non-vif) 0.934

Boosting 0.933

Random Forest 0.933

Backward Selection (non-vif) 0.930

Forward Selection (non-vif) 0.930

Logistic Regression (non-vif) 0.929

Backward Selection (vif-reduced) 0.928

Forward Selection (vif-reduced) 0.928

Lasso Regression (vif-reduced) 0.928

Logistic Regression (vif-reduced) 0.928

Ridge Regression (non-vif) 0.926

Ridge Regression (vif-reduced) 0.923

SVM - Linear 0.917

SVM - Polynomial 0.916

Naive Bayes 0.879

SVM - Radial 0.869

KNN 0.738

Decision Tree 0.655
Figure 3: Lambda of LASSO Regression

Predictor Variable Name Description

RXS_(ExiML, CRate, Ext, LOGGALNH, 
SRC_FLUX)

ROSAT observations: detection likelihood, source X-ray 
count rate, source extent in ROSAT CCD pixels, log-base-10 

of hydrogen column density (cm^(-2)), source flux in 
0.1-2.4 keV band (erg/cm^2/sec)

ALLW_(W1,W2,W3,W4,J,H,K)mag source magnitudes as measured by WISE, in 7 infrared (IR) 
bands

SDSS_MODELMAG_(u,g,r,i,z) first version of source magnitudes as measured by SDSS, in 
5 optical and near-IR bands

SDSS_FIBER2MAG_(u,g,r,i,z) second version of source magnitudes as measured by SDSS, 
in 5 optical and near-IR bands

Z_BEST best estimate of source redshift

GAIA_DR2_phot_(g,bp,rp)_mean_mag source magnitudes as measured by Gaia, in 3 optical bands


