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introduction

The objective of this analysis is to predict the median house value across different locales using a
dataset that encapsulates various house-related attributes. Our model aims to identify key predictors
such as population density, location (latitude and longitude), age of structures, the number of

_ , , _ Data Splitting: Test-Set Observed vs Predicted Resp
bedrooms, and more, ultimately seeking a sound estimate of median house values.

The dataset was split into training (80%) and test (20%) sets.
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