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Four key uncertainties of future climate include: (i) Climate system response, as measured
by the temperature change under a specified external perturbation; (ii) Climate variations due to
natural and anthropogenic aerosols; (iii) Magnitude and character of natural climate variability; (iv)
Spatio-temporal patterns of change in climate variables. An honest assessment of such uncertain
climate properties is key to the support of any scientific statement about the current state of
Earth’s climate, and to the construction of forward-looking projections that may be used in policy
decisions. In order to quantify climate system properties, computer models are run under different
parameterizations. The present work is an attempt to provide a fully probabilistic quantification
of the uncertainties in the climate system properties. It is the result of a multi-year collaboration
between climate scientists at MIT and statisticians at UCSC.

In this work, we consider the MIT 2D climate model (Forest et al., 2006) (MIT2DCM). Such
a model provides simulations of ocean, surface and upper atmospheric temperature behavior. The
model uses a system of latitude and height coordinates to simulate the average state of the cli-
mate over zones defined by latitude bands. Despite the averaging over longitude, the model is
sufficiently complex to match climate observations and to make similar predictions as those of full
3D atmosphere-ocean general circulation models (GCM). In the MIT2DCM, the climate system
properties control the climate system response via three parameters: Climate sensitivity, denoted
as S, defined as the equilibrium global-mean surface temperature response to a doubling of CO2;
Diffusion of deep-ocean temperature anomalies, Kv; Net anthropogenic aerosol and unmodeled
forcings, Faer. Let θ = (Kv,S,Faer). In our approach, we estimate the posterior distribution of θ
using historical records and simulations from the MIT2DCM and GCMs.

Typical output from a run of the MIT2DCM consists of temperatures at 46 different latitudes,
with 11 vertical layers for the 1860-1995 period, every 30 minutes. Such output is summarized in
three “diagnostics”: A vector of 288 components, consisting of the upper air temperature changes
between the 1986-1995 and 1961-1980 periods at 36 latitudes and 8 levels; Surface temperature
change, consisting of the difference between the decadal average temperatures for 1946-1995 periods
and the average temperature of 1906-1995 at 4 different equal-area zonal bands, resulting in a 20
dimensional vector; Deep ocean temperature trend, calculated for the 1952-1995 period. Historical
observations and GCM output are obtained in correspondence to the three diagnostics.

The MIT2DCM is run by letting θ vary on a discrete grid. Prior information on climate
properties is available from the literature on climate models. For a given diagnostic, denote z the
observation and η the output of the model. Since η depends on θ, we can obtain a likelihood
function assuming that the difference is Gaussian. The resulting posterior provides information for
inference on the climate properties. Unfortunately, output from the MIT2DCM is available only
at a few hundreds pre-specified points on an irregular grid. Even though the MIT2DCM is much
faster than a GCM, the running and post-processing times needed to obtain a value for one of
the diagnostics prevents us from embedding its evaluation within an iterative method. So, to fully
explore the posterior distribution of θ we create an auxiliary statistical model that provides an
approximation to η. For this purpose we use a Gaussian process. This is justified, from a Bayesian
viewpoint, by the fact that for a given θ the value of η is unknown, so we may consider it as a
random process. In essence the setting of our problem is that of calibration of computer model
parameters as described in Kennedy and O’Hagan (2001). The focus is not on prediction or data



assimilation, but on inference for the parameters that control the computer model which have a
precise physical meaning. For two of the diagnostics the output is multivariate. So the calibration
procedure has to incorporate information about a covariance matrix. We use GCM output to elicit
a prior distribution for such matrices.

For a technical description of the model, let tj ∈ R3, j = 1, . . . , p be the available parameter
configurations. p = 499. Let xi ∈ R2, i = 1, . . . , n be the locations of the diagnostics’ components.
n = 1, 20 or 288. Then yij = η(xi, tj) denote the model runs and η(xi,θ) denotes the value of
the MIT2DCM at the ‘true’ value of the parameter. We assume that zi = η(xi,θ) + εi. Here εi

encompasses observational errors and model inaccuracies and biases. We let ε = (ε1, . . . , εn)′ ∼
N(0, σ2Σ). In the climate literature, Σ is usually referred to as the unforced variability. Estimating
Σ will be a byproduct of our model, but it is a problem that has an interest of its own. We then
assume that E(η(x, t)) = h(x, t)′β, where h is a polynomial in x and t and β a vector of coefficients
of dimension q. Additionally we have that cov(η(xi, t), η(xj , t

′)) = r(t, t′)γ2Σij . Here r(·, ·) is
a correlation function. We assume that the MIT2DCM can reproduce a correlation structure
compatible with the unforced variability. We obtain prior information about Σ by considering
output from a GCM and assuming that it also captures the unforced variability.

The proposed model assumes a separable structure for the covariance of η. The resulting
covariance matrix can be written as a Kronecker product of two smaller matrices. This is a key
modeling issue given our use of MCMC for the exploration of the posterior distribution. In fact,
for the surface diagnostic the full covariance matrix is of size (20 · 500) × (20 · 500), for the upper
air its size is (288 · 500) × (288 · 500), making computations, and even storage, very difficult for a
non structured matrix.

Our model tackles several interesting issues for both the climatologist and the statistician. We
study the properties of the climate using three parameters that are key for long-term climate pro-
jections. Such parameters provide information on how the climate will be affected by an increase in
the amount of human produced emissions and the capacity of the oceans to absorb heat. We pro-
vide a comprehensive answer that incorporates scientific information, structural assumptions and
different sources of data, observed and synthetic. The uncertainty is quantified using a joint prob-
ability distribution that yields a full description of the dependencies between the three parameters.
The model tackles a computer calibration problem where the output is of moderate multivariate
dimension. It accounts for all parameter estimation uncertainty. It provides an estimate of the
unforced variability. It uses the information from different summaries of the Earth’s climate that
have different physical responses to the accumulation of heat.
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