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Abstract

A method is presented to estimate the probability distributions of climate system
properties based on a hierarchical Bayesian model. At the base of the model, we
use simulations of a climate model in which the outputs depend on the climate system
properties and can also be compared with observations. The degree to which the model
outputs are “consistent” with the observations is used to obtain the likelihood for the
climate system properties. We define the climate system properties as those properties
of the climate model that control the large-scale response of the climate system to
external forcings. In this paper, we use the MIT 2D climate model (MIT2DCM) to
provide simulations of ocean, surface and upper atmospheric temperature behavior over
zones defined by latitude bands. In the MIT2DCM, the climate system properties can
be set via three parameters: Climate sensitivity (the equilibrium surface temperature
change in response to a doubling of CO2 concentrations), the rate of deep-ocean heat
uptake (as set by the diffusion of temperature anomalies into the deep-ocean below the
climatological mixed layer), and net strength of the anthropogenic aerosol forcings. In
this work, we use output from MIT2DCM coupled with historical temperature records
to make inference about these climate system properties. Even though the MIT2DCM
is far less computationally demanding than a full 3D climate model, the task of running
the model for each combination of the climate parameters and processing its output
is computationally demanding. Thus, a statistical model is required to approximate
the model output. We obtain results that are critical for understanding uncertainty in
future climate change and provide an independent check that the information contained
in recent climate change is robust to statistical treatment.
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1 Introduction

Two major points about our knowledge of the climate system were summarized in the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2007). First,
the global average annual temperature of the Earth’s surface has increased by as much as
0.7 degrees Celsius since the late 19th century. Second, most of this observed warming is
attributed to human influence on the climate system since the beginning of the industrial
revolution with anthropogenic factors (primarily increasing greenhouse gas concentrations)
being partly responsible for the warming. The first point is based on evidence in the ob-
servational records of surface temperatures with similar evidence from temperatures in both
the upper-atmosphere and ocean temperature records beginning in the 1950s. The second
point is supported by the literature on climate model experiments in which the simulations
of the historical period (~1850 to present) are compared against the observational record.
In short, the historical record cannot be explained by natural climate forcings or unforced
climate variability. Thus, only simulations with both anthropogenic and natural forcings can
best replicate the past changes in temperature. Furthermore, experiments with these same
models predict even larger warming in the future if the concentrations of greenhouse gases
are not stabilized by reducing emissions.

The subject of this paper is to use climate change observations to explore the distributions
for properties of the climate system that control the simulations of future climate change
in response to expected climate forcings. These simulations provide information on long-
term climate predictions and are made by simulating the future state of the global climate
system using a climate model. A hierarchy of climate models exists (Claussen et al., 2002)
that classifies the range of model complexities according to the simulated spatial scales and
climate-relevant processes. As discussed in Section 10.5.1 of Chapter 10 in the IPCC AR4
(Meehl et al., 2007), these classes of models are listed as Simple Climate Models (SCMs),
Earth-system Models of Intermediate Complexity (EMICs), and Atmosphere-Ocean General
Circulation Models (AOGCMs). Depending on the scale required or the key processes to
be included, one can choose a model from one of these classes for a given project. For
example, to simulate the full spatial distribution of climate variables (e.g., temperature,
precipitation, or winds), three-dimensional AOGCMs are required. These models discretize
the earth’s atmosphere, oceans, and land into grid boxes that have a typical size of 250 km
x 250 km. We note that many climate relevant phenomena having spatial scales smaller
than 250 km (in particular clouds) occur within those grid boxes and are accounted for by
parameterizations. Changing the parameterizations will change the sub-gridscale effects and
can affect the large-scale model output substantially. We will return to this issue later.

On the other extreme, if only the global or hemispheric mean temperatures are required,
a SCM can be an appropriate model for simulations provided details on smaller scales can
be disregarded. In this case, processes smaller than hemispheric scales are parameterized
(e.g., all mixing processes within and between the atmosphere or oceans) such as is done
for processes within an AOGCM grid-box. These models are extremely computationally
efficient and are well suited for testing climate policy scenarios when a full AOGCM is not
required. The disadvantage is that many processes are highly parameterized and so key
feedbacks between climate sub-systems may not be adequately represented in simulations.



For example, the solubility of carbon dioxide in sea-water is highly temperature dependent
and so hemispheric mean temperatures would not distinguish between polar and tropical
regions where temperatures determine the flux of CO2 into the ocean. When the polar
warming is 2-3 times stronger than the tropical warming, this polar amplification would
need to be parameterized in an SCM.

This previous example highlights the need for the third class of climate models, EMICs.
EMICs have been developed to explore research questions where SCMs are too simple and
AOGCMs are too computationally inefficient. Typically, EMICs have high latitude reso-
lution to resolve the tropical to polar temperature changes but only simplified longitude
representation of the land and ocean distributions. This intermediate spatial resolution be-
tween SCMs and AOGCMs provides a more computationally efficient numerical structure
for simulating the climate system. In this paper, we use an EMIC that includes parameter-
izations identical to those in AOGCMs while only simulating the zonal-mean state of the
climate on a latitude-height grid. More details will be described in Section 2.

Common to all these climate models are properties that determine the large-scale response
to climate forcings (e.g., increasing concentrations of greenhouse gases). These are typically
characterized by two properties: Climate sensitivity and the rate of heat uptake by the deep-
ocean. Climate sensitivity is defined as the equilibrium global-mean annual-mean surface
temperature change in response to a doubling of CO2 concentration and is denoted by S .
This is the temperature response after all transient processes come into balance, such as
ocean and land surface. The rate of heat uptake by the deep-ocean is the controlling process
that limits the rate of surface warming as it approaches equilibrium. This is determined
by all processes that mix excess heat from the surface ocean into the deeper layers and can
be characterized by an effective diffusion coefficient denoted by K, . Together, these two
properties determine the transient response of the climate system to changes in large-scale
radiative forcings.

Depending on the climate model being used, these two properties can either be directly
set via parameters in the model or be estimated from simulations using the full system. In
the latter case, the combination of different parameterizations (and their internal param-
eter settings) ultimately determines these climate system properties and so the dynamical
response of the model cannot be estimated a priori. In this case, there may be many com-
binations of parameters that lead to the same climate system properties and so a thorough
search of the parameter space would be required for calibration purposes. In this paper we
consider an EMIC climate model for which the climate system properties can be adjusted
via single parameters. This will be discussed in Section 2.

An additional requirement is to include the uncertainty in the external radiative forcing.
For the calibration of a climate model to the observed temperature record, we must include
the uncertainty in the forcing over the same time period. This forcing uncertainty arises
mainly from the poor knowledge of the historical record for aerosols. Aerosols are the
suspended particulate matter in the atmosphere that have a short life-time (approx. days
to months) and can reflect or absorb solar and infrared radiation (see Forster et al. (2007).)
A record of the concentrations for aerosols does not exist (unlike greenhouse gases) and so
we rely on the emissions record for the various species to estimate the radiative forcing. As
such we refer to the uncertainty in the net anthropogenic aerosol forcing, written here as



Fuaer - This primarily represents the uncertainty in all aerosols but also can represent any
unmodeled external forcings. Together with & and IC, , these are three parameters that can
be calibrated against the historical record of observed temperatures. As alluded to before,
our goal is to provide a full quantification of the probabilistic uncertainties for these three
parameters using output from the MIT 2D climate model (Sokolov and Stone (1998a); Forest
et al. (2006)) (MIT2DCM), historical records, GCM simulations and expert judgment.

The MIT2DCM provides simulations of ocean, surface and upper atmospheric tempera-
ture behavior. The model uses a system of latitude and height coordinates to simulate the
average state of the climate over zones defined by latitude bands. Details of the structure
of the model are presented in Section 2. The MIT2DCM averages over longitude, but its
output matches climate observations and produces similar predictions as those of full 3D
atmosphere-ocean general circulation models (GCM). The computer effort involved in run-
ning the MIT2DCM is a fraction of that of a full 3D model. So, it is relatively easy to explore
different values for the climate system properties, that are represented by low dimensional
parameters.

Typical output from a run of the MIT2DCM consists of temperatures at 46 different
latitudes, with 11 vertical layers for the 1860-1995 period, every 30 minutes. In this paper
we consider three summaries of such output that we refer to as “diagnostics”: A vector of
288 components, consisting of the upper air temperature changes between the 1986-1995 and
1961-1980 periods at 36 latitudes and 8 levels; Surface temperature change, consisting of the
difference between the decadal average temperatures for 1946-1995 periods and the average
temperature of 1906-1995 at 4 different equal-area zonal bands, resulting in a 20 dimensional
vector; and deep ocean temperature trend, calculated for the 1952-1995 period. Historical
observations and GCM output are obtained in correspondence to the three diagnostics. We
notice that in all three cases we avoid using absolute temperature values and consider some
measure of temperature change. This is a common practice among climatologists to account
for systematic biases in the model output. Seee Tebaldi and Sansé (2007) for an illustration
of this facts.

Figure 1 shows summaries of the three diagnostics obtained from the MIT2DCM simu-
lations performed on a three dimensional grid of 426 points for 8 = (\/K, ,S , Faer ). For
comparison purposes we superimpose each diagnostic, calculated from historical records, to
the model results. In essence our problem is to find the values of @ that make the model
output as similar to the historical records as possible. More precisely, for a given diagnostic,
denote z the observation and n(6@) the output of the model for a given 6. A likelihood for 8
is obtained by assuming that the difference is Gaussian. Using prior information on the cli-
mate properties from the literature, we obtain a posterior for 8. Unfortunately, output from
the MIT2DCM is available only at a few hundreds pre-specified points on an irregular grid.
Also, running and post-processing times needed to calculate n(8) prevents us from embed-
ding its evaluation within an iterative method. So, to fully explore the posterior distribution
of @ we create an auxiliary statistical model that provides an approximation to 7. For this
purpose we use a Gaussian process. This is justified, from a Bayesian viewpoint, by the fact
that for a given @ the value of 7 is unknown, so we may consider it as a random process.
The setting of our problem is that of calibration of computer model parameters as described
in Kennedy and O’Hagan (2001). The focus is not on prediction or data assimilation, but
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Figure 1: Top: Deep ocean temperature trends diagnostic. The index correspond to the output
for the 426 different combinations of the climate parameters. The horizontal line corresponds to
the observation. Center: Surface temperature diagnostic. The boxplots correspond to the model
output for the five decades and four latitude bands. The crosses correspond to the observations.
Bottom: Upper air temperature diagnostics. The boxplots correspond to the model output for the
different latitudes and pressure bands. The observations are marked with crosses.
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on inference for the parameters that control the computer model and that have a precise
physical meaning. For two of the diagnostics the output is multivariate. So the calibration
procedure has to incorporate information about a covariance matrix. We use GCM output
to elicit a prior distribution for such matrices.

In the following section we provide the scientific background for the MIT2DCM output
that we use in this paper. Our statistical analysis builds on previous work aimed at estimating
the posterior distributions of climate system properties. This is is described in Section 2.4.
The statistical model we consider in this work applies the methods proposed in Sansé et al.
(2007), which are described in Section 3. As for most calibration problems, we expect the
prior information on @ to be crucial for the estimation of the climate system properties. In
this paper we focus on the estimating the the amount of information that is provided by the
data. We do so by quantifying the overlap between prior and posterior distributions using
Bhattacharyya distances, which are defined in Section 3.2. Our results for each of the three
diagnostics are presented in Section 4. Our conclusions are presented in the last section.

2 Scientific background

The description of the generation of the MIT2D data follows a series of papers. The climate
model was initially described in Sokolov and Stone (1998a) with an update to the ocean
model described in Forest et al. (2006). The description of the forcings applied for the
1860-1995 period is given in the supplemental material from Forest et al. (2006). Here we
provide a brief description of the model, the historical forcings, the experimental design, and
a discussion of other methods used for estimating the probability distributions for climate
sensitivity.

2.1 Description of MIT 2D Climate Model

The MIT 2D climate model consists of a zonally-averaged atmospheric GCM coupled to a
mixed-layer Q-flux ocean model, with heat anomalies diffused below the mixed-layer. The
model details can be found in Sokolov and Stone (1998b). The atmospheric model is a
zonally averaged version of the Goddard Institute for Space Studies (GISS) Model II general
circulation model (Hansen et al., 1983) with parameterizations of the eddy transports of
momentum, heat, and moisture by baroclinic eddies (Stone and Yao, 1987, 1990). The
model version we use has 46 latitude bands, for a resolution of 4°; and 11 vertical layers with
4 layers above the tropopause (above 200 hPa).

The model also employs the 2.5D Q-flux ocean mixed layer model with 4°x 5°latitude-
longitude grid cells and diffusion of heat anomalies into the deep-ocean below the climato-
logical mixed layer. Allowing for changing sea-ice in multiple grid cells, this provides smooth
melting transitions as compared to a single zonal-mean ocean grid-cell. This ocean com-
ponent model is described by Hansen et al. (1983). The atmospheric model uses the GISS
radiative transfer code which contains all radiatively important trace gases as well as aerosols
and their effect on radiative transfer. The surface area of each latitude band is divided into a
percentage of land, ocean, land-ice, and sea-ice with the surface fluxes computed separately
for each surface type. This allows for appropriate treatment of radiative forcings dependent



on underlying surface type such as anthropogenic aerosols. The atmospheric component of
the model, therefore, provides most important nonlinear interactions between components
of the atmospheric system.

As discussed previously, the MIT 2D model has two parameters that determine the
timescale and magnitude of the decadal to century timescale response to an external forcing.
These are the equilibrium climate sensitivity (S ) to a doubling of CO, concentrations and
the global-mean vertical thermal diffusivity (/C, ) for the mixing of thermal anomalies into
the deep ocean. We note that § is set by adjusting a cloud feedback parameter, k, that
adjusts the cloud fractions used in the radiative transfer calculations. Specifically, we set
the adjusted cloudiness, C’, by multiplying the model calculated cloudiness, C,, by a term
proportional to the global mean surface temperature, AT to obtain: C' = C,(1 + kAT). In
this manner, we vary k£ to adjust S and have a one-to-one mapping for specifying S . We
also note that the vertical thermal diffusivity for heat anomalies has a latitude-longitude
dependence that is scaled by the global-mean K, value. This implies that adjustments for
different relative rates of heat uptake in different regions are not permitted with this design.
In sensitivity tests to changes in this pattern of deep-ocean heat uptake, we found the global
mean changes in ocean temperatures were insensitive to such changes.

2.2 Temperature Change Diagnostics

As mentioned in the introduction, we have elected to use three climate change diagnostics,
which are the same as used in Forest et al. (2002). This allows us to isolate the effect of the
additional forcings on the posterior distributions. The climate change diagnostics used in
Forest et al. (2002) were:

e Deep-ocean temperatures: trend in global-mean 0-3km deep layer of pentadal
averages from 1952-1995. Source of observational records: Levitus et al. (2005). We
will refer to this diagnostic as DO.

e Surface temperatures: 4 equal-area latitude averages for each of five decades from
1946-1995 referenced to 1905-1995 climatology. Source of observational records: Jones
et al. (1999). We will refer to this diagnostic as ST.

e Upper-air temperatures: Difference between 1986-1995 and 1961-1980 averages at
eight standard pressure levels from 850-50 hPa on 5 degree grid. Source of observational
records Parker et al. (1997). We will refer to this diagnostic as UA.

Observations for the upper air diagnostic are missing for a number of latitude-height coor-
dinates, mostly in the Southern Hemisphere. This reduces the dimension of the diagnostic
from 288 to 220. Additionally, by looking at the bottom panel of Figure 1 we observe that
in the stratospheric layers (50-200 hPa), the diagnostic provides little information, as the
modeled temperatures are insensitive to § as shown by the smaller range of temperature
changes at these levels. The weak dependence on S is consistent with the local cooling being
driven by the decrease in stratospheric ozone concentrations (not the changes in CO2 or
other greenhouse gas concentrations). Recalling that different values of S are mainly due



to different cloud feedbacks in the troposphere, stratospheric temperatures will not vary
significantly as § is varied. As such, the modeled temperatures do not vary significantly in
our ensemble and we are not gaining any relevant information for the likelihood estimates.
There are a few ways to address this. In this paper, we restrict ourselves to using only the
four layers that correspond to 50-200 hPa pressure levels (or altitudes from about 11 to 20
km). This amounts to requiring that we get the stratospheric cooling correct and neglect
the weak tropospheric warming.

2.3 Summary of Applied Climate Forcings

The current set of simulations uses a set of historical climate forcings during the period
1860-1995. The external forcings are changes in: greenhouse gas concentrations Hansen
and 22 others (2002), sulfate aerosol loadings scaled by SO2 emissions Smith et al. (2003),
tropospheric and stratospheric ozone concentrations(Hansen and 22 others, 2002), land-use
vegetation changes (Ramankutty and Foley, 1999), solar irradiance changes (Lean, 2000),
and stratospheric aerosols from volcanic eruptions (Sato et al., 1993, updated to 2001).
GSOLSYV is the shorthand notation for this set of forcings.

2.4 Previous Estimation Work

Section 9.6 in Chapter 9 of the IPCC AR4 (Hegerl et al., 2007) provides a summary of
estimates of probability distributions for climate sensitivity taken from the recent literature.
Section 10.5 in Chapter 10 of the IPCC AR4 (Meehl et al., 2007) further discusses the
uncertainties in quantifying climate change projections by accounting for additional model
uncertainties. In this paper, we are restricting the discussion to those methods that use
the 20th century instrumental record to estimate the distribution of climate sensitivity. Six
groups have published results in this category (Andronova and Schlesinger, 2001; Gregory
et al., 2002; Knutti et al., 2003; Forest et al., 2006; Frame et al., 2005). (Note we exclude
Forster and Gregory (2006) because it does not use the record back to beginning of 20th
century.) The underlying methods in all of these are very similar to the basic methodology
used in this paper. Namely, a set of climate simulations were made with a climate model with
various settings for S . In each case, the simulations were compared against the observed
temperature record and assigned a likelihood that it is consistent with the observations.
From the set of simulations, a distribution, p(S ), is estimated. Several choices are made in
each method: What climate model is used to perform the simulations? What observational
diagnostic is used? and What noise model is required to determine consistency between the
simulation and observations? In all cases except Forest et al. (2006) and Frame et al. (2005),
global mean temperature is used as the diagnostic variable and so only univariate statistical
methods are required. !

Forest et al. (2002) presented an estimate of the joint probability density function (PDF)
for uncertain climate system properties. Other groups (Andronova and Schlesinger, 2001;

1 Gregory et al. (2002) do make use of the optimal fingerprint detection results to estimate the net aerosol
forcing from temperature change patterns but then only consider global mean temperature response to
estimate S . It appears that this amounts to double use of the surface temperature record.



Gregory et al., 2002; Knutti et al., 2003; Forest et al., 2006; Frame et al., 2005; Forster and
Gregory, 2006) have estimated similar PDFs although each uses different methods and data.
However all are based on estimating the degree to which a climate model can reproduce the
historical climate record. Parameters within each model are perturbed to alter the response
to climate forcings and a statistical comparison is used to reject combinations of model
parameters.

The method is based on the optimal fingerprint detection technique for comparing model
and observational data. This technique consists of running a climate model under a set
of prescribed forcings and using climate change detection diagnostics to determine whether
the simulated climate change is observed in the climate record and is distinguishable from
unforced variability of the climate system (see Mitchell et al. (2001) or International ad
hoc Detection and Attribution Group (2005) and references therein). In statistical terms,
letting Tips be the historical records, 7°(6) the model output that depends on parameters 6
and Cy the covariance matrix, a likelihood function is obtained from the statistics (7°(0) —
Tops)' O (T (0) — Tops). Tt is not possible to estimate the true climate system variability, Cy,
on century time-scales from observations and therefore, climate models are run with fixed
boundary conditions for thousands of years to obtain estimates of the climate variability.

The work presented here is based on obtaining a likelihood for the climate sensitivity
(S ), the rate of heat uptake by the deep ocean (K, ), and the net aerosol forcing (Foe, )
and analyze the uncertainty in such parameters using a posterior distribution, after the in-
corporation of expert prior knowledge. This is the same framework of Forest et al. (2001,
2002). The uncertain parameters and the climate model data from the MIT2DCM are iden-
tical to those in Forest et al. (2006). The method used in Forest et al. (2006) is based on
evaluating the likelihood only at a set of pre-specified combinations of the climate system
properties. Also, the estimation of C’;,l is done using an eigenvector decomposition of GCM
runs, prior to forming the likelihood. As part of ongoing investigations into this method,
Curry et al. (2005) considered the impact of using different truncation numbers in the esti-
mate of the noise covariance inverse. This truncation represents the number of eigenvectors
retained in the inverse estimate and various information criteria were used to determine an
appropriate truncation value for the multivariate diagnostics. The methods developed in
Sansé et al. (2007) and used in this paper interpolate over the space of climate parameters
and account for most estimation uncertainties, in particular those due to the covariance
matrix. Additional details are presented in Section 3.

3 Statistical model

We consider a statistical model along the lines of that developed in Sansé et al. (2007). In
what follows vectors will be denoted in bold face and matrices will correspond to capital
letters. Recalling the notation in the introduction, let z € R" correspond to a summary of
the historical data collected around the world over several decades. Thus n = 1 for DO,
n = 20 for ST and n = 109 for UA (although our initial UA analysis was performed with
n = 220). The model runs are denoted as y; € R", j = 1,...,p. These are a collection
of p n-dimensional vectors, one for each combination of the climate parameters. We denote
this as Y € R"*P. For ST and UA, we consider additional information provided by CMG



control runs, consisting of k& n-dimensional vectors w;, and let W € R"** be the matrix of
such control runs. Also, for ST and UA, each component of the n dimensional data vectors
is indexed by a two dimensional location x;,7 = 1,...,n. x; indicates latitude and decade
for ST and latitude and altitude for UA. The values of the climate parameters where the
MIT2DCM is evaluated will be denoted as t = (K, ,S , Fuer ) € R® so that the model
output at location @ and parameter values t is denoted as m(x,t). A summary of the
notation is presented in Table 1.

Variable Notation Size Dimension
Locations Ti,...,e, n=120;109 z; €R?
Historical records Z1,...,2p, n=1;20;109 z,€eR
Climate parameters  t1,...,¢, p =426 t; e R
Surface diagnostics — y1,...,Yp p = 426 y; € R?
Control runs wy,...,w, k=091;162;40 w; e R"

Table 1: Summary of the available information.

We denote as {(x) the true, unobserved, diagnostic at location &. We note that the
three diagnostics refer to linear functionals, or filters, of the temperature. We denote 8 =
(61, 04,03) as the ‘true’ value of the climate system properties (v/K, ;S , Fuer ). Then we
assume that

zi:C(mi)+£¢=n(mi,9)+§i 1=1,...,n. (1)

This means that the observations deviate from the true value of the diagnostic by an error
&. & represents observation errors, including errors on spatial and temporal scales that
are smaller than the grid cell size and that are introduced by the filter. In the atmospheric
science literature, this is known as representativeness error. Given the global scale of the data
used in this application, we find it difficult to separate representativeness and observational
errors. We assume that & = (£,...,&,) ~ N,(0,0°%), where ¥ is a covariance matrix and
o? is a scale parameter. For the univariate diagnostic n = 1 and we assume that X is a
scalar equal to one. Note that Equation (1) does not incorporate possible additive biases of
the computer code, since, as mentioned earlier, these should be accounted for by the fact
that the diagnostics measure temperature change. Multiplicative biases are not considered
either, since these are difficult to estimate in a calibration problem like the one we consider
in this work.

The value of n(x,0) is unknown for general (n, @), so we treat it as a random process.
More specifically, we assume that n(x, -) corresponds to a Gaussian process. We model such
process by specifying a mean and a stationary covariance function. This is the statistical
equivalent model that allows for fast approximations to the numerical simulator. We assume
that E(n(x,t)) = h(x,t)'3, where h and 8 are ¢g-dimensional vectors. They define a linear
combination of effects due to locations and parameter values. The covariance function is
given by

cov(n(@;. £), n(a;, ) = r(t,)o*"Sy, ®)

for some correlation function r(-,-). Thus, we are assuming separability between x and
t. Since there are 426 different points ¢ the full covariance matrix for ST is of dimension
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8,520 x 8,520 and of dimension 46,434 x 46,434 for UA, so, separability is key to building
a model that can be fitted with an iterative procedure. For ST and UA, we assume that
w; ~ N,(0,X). This yields the prior distribution for ¥,

() o oxp { ~Fu(s5) b+,

where S = 1/k Z§:1 w;wj. Note that p(X) is proper for k > 2n + 1. For ST we will use two
control runs, one corresponds to £ = 162 and the other to £ = 91. So in both cases the prior
is proper. For UA we use a control run with & = 40, implying that p(3) is not proper. Note
that we are assuming that the covariances of the observations and the climate models are
proportional. Thus, the dependence structure in the temperature diagnostics is captured by
all three sources of information. Forest et al. (2006) implicitly make the same assumption.
This is usually referred to in the climate literature as unforced or natural variability and
cannot be estimated from the observational data alone because the records are too short for
the 50-100-year timescales of interest. An important output of our model is an estimate of
the unforced variability, based on all three available types of data.

Define a matrix R € RP*? such that R;; = r(|[t;—t,||). Let 7(8) = (r(||t: =8|, ..., r(||t,—
0|))). Let H(:) = [h(x1,"),..., h(xy, )] € R*" and let H = [H(t),..., H(t,)] € R"™*9,
then using equations (1) and (2),

(i)~ (7 Yo 53575 5005)). o

where vec(-) denotes the operation of stacking the columns of matrix into a vector and ®
denotes the Kronecker product.

There is no natural distance in the space of climate parameters that will help us define
a correlation function, so we consider each component separately and let

r(t,t') = ri(ty — t1; d1)r2(ta — th; do)r3(ts — th; ¢3),

where 7;(t;,t}) = exp{—1/¢;|t; — t;|}. Here ¢; measures the correlation range in the same
units as t;. So, large values of ¢; imply that the correlation will be small only for points
that are very far apart. The separability assumption is very common in the literature of
statistical modeling of computer output, see, for example, Paulo (2005), who discusses the
choice of default priors for the parameters of a separable correlation function in the Matern
class.

3.1 Prior distributions

Calibration problems are known to be ill posed in the sense that often times different configu-
rations of parameter values produce similar results. Fortunately in this application knowledge
about likely values of the climate parameters is available. So we can specify scientifically
sound priors for such parameters.

The prior for §; = /K, corresponds to a beta distribution with support on (0, 6) and
parameters (3.5,6). The prior for 6, = S is specified as a beta distribution with support

11



on (0,15) and parameters (2.85,14). The prior for 63 = F,., is a beta distribution on
(—1.5,.5) with parameters (4,4). With the exception of the prior on §, = S , we based the
distributions for /K, and F,, partly on the previous work in Forest et al. (2002) and
Forest et al. (2006). The widths were chosen to extend well outside the range suggested by
likelihoods from Forest et al. (2006) while the shapes were designed to be rather diffuse in
the interior (i.e., the cumulative density function approximately linear.) These ranges are
also supported by the locations of the state-of-the-art 3D GCMs well within the parameter
space (Sokolov et al., 2003). The likelihoods of a model outside these regions are near zero.
For the prior on S, we use the Webster and Sokolov (2000) estimate as based on expert
elicitation study of Morgan and Keith (1995). These results were based on the understanding
of climate science experts in the early 1990’s who would have considered model results as
well as changes during the 20" century and the glacial-interglacial records for about the past
500,000 years.

Regarding the other parameters in the model, we have already discussed the prior we use
for X, which is based on GCM simulations. For the regression parameters 5 we assume a
flat prior p(8) o 1. For the scale parameters 0? and 7 we notice from Equation (3) that the
product v20? can be factorized from three of the four blocks in the covariance matrix. This
implies that the two parameters are nearly un-identifiable. In practice, separate estimation of
o? and 7?2 is possible only by using very informative priors. In this application we fix v = 1
and let p(o?) oc 1/02. The priors for the range parameters ¢; are p(¢;) oc 1/¢;, 0 =1,...,3.
Berger et al. (2001) showed that posterior impropriety could result from the choice of an
improper prior for the range parameter of an isotropic Gaussian field. The results in Paulo
(2005) show that impropriety of the posterior is not a problem when separability of the
correlation function is assumed.

3.2 Bhattacharyya distances

A typical feature of calibration problems for computer models is that prior information on the
parameters to be calibrated is usually fairly influential on the posterior results. Quantifying
the overlap between prior and posterior distributions for the calibration parameters provides
a measure of the information in the data and the model about such parameters.

A measure of the overlap between two probability densities is given by the Bhattacharyya
distance. This is defined, for two densities fi(z) and fo(x

B(fif2) = [ VAR /Ff /\/Tf

Clearly B(f1, fa) = B(fs f1), B(fi,f:) > 0 and, by Jensen’s inequality, B(fi, fs) <
Moreover B(fi, fo) =1 if and only if f; = f, and B(fl, f2) =0 if and only if f; and f, have
no overlap. So B(f1, f2) provides a bounded symmetric measure of the similarity between
two distributions. Zhou and Sansé (2007) use it two compare the outputs of an atmospheric
transport model run under two different boundary conditions. They found that B(fi, fo)
provides similar information to the percentage of overlap between the highest density interval
corresponding to f; and that corresponding to fo for a given probability. For multivariate
settings, B(fi, f2) is easier to calculate than interval overlaps.
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In our application f; correspond to either prior or posterior distributions of the climate
parameters. The latter are known only up to a proportionality constant. Let fi(z) =
q,(:L‘)/C,,z = 17 2) then

B/, ) = ( [ Vr@h@a: [ de)m _
(Ef2

1/2 1/2
X)a @ (X) g2(X)
a) = (Ef2\/q2(X)Ef1\/q1<X)> ;

where Fy, denotes the expectation with respect to the density f;. So, it is possible to obtain
an approximation to B(f, f2) from samples of f; and fs, using the law of large numbers.
When X = (Z,W), so that X consists of two block of random variables, the marginals f;(z)
can be can be calculated as

J

72 = [ el ftw)dw = 5 Y Flelut?)

J=1

where w) ~ f;. Note that f;(z|w) will usually be the full conditional of z.

3.3 Implementation

The details of the implementation of the statistical model follow along the lines of Sansé
et al. (2007). We run a similar MCMC to sample from the posterior distribution of all
parameters in the model, for each one of the diagnostics separately. In order to obtain
the posterior distribution of # based on the information on more than one diagnostic, we
assume conditional independence. Thus, using a super-index one or two to denote the
quantities that define the statistical model for two different diagnostics, we have that the
joint likelihood f(2', Y, 22, Y?|0, =, Z,) is factorized as the product of f,(z',Y'|#,=;) and
f2(22,Y?0,2,), where Z; denotes all the parameters other than 0 used in the model for di-
agnostic i. Given a prior p(6,Z1,Z3) = p(0)p(Z1)p(Es) it is possible to run a MCMC to
obtain samples from p(f, =1, Zy|2', Y'!, 2%, Y?). This approach is computationally demand-
ing and likely slow to converge. Additionally, we are interested in observing how the posterior
distribution conditional on z*, Y'! is changed by the use of the diagnostic 22, Y2,

We start by running a MCMC to get samples of p(f|z',Y'). We then run a second
MCMC for p(f|z', Y, 2%, Y?). In this case the full conditional for # is proportional to
p(0|Z1, 28, Y1) fo(2%,Y?|0,=,). So, to obtain a sample of § we can perform a Metropolis-
Hasting step and draw a proposed sample, say 6*, from p(f|=;,2',Y!). The acceptance
ratio will be given by the likelihood ratio fo(22,Y?2(0*,Z5)/fo(22,Y?0,Z,). We use the
approximation p(|Z, 21, Y!) ~ p(0|2',Y!) and use the samples from the first MCMC as
proposals for the second one.

4 Results

We considered two distributions for the climate system properties. One, that will be referred
to as the uniform prior, consist of the product of three densities uniform over the ranges
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\/H S Faer
5% 0.84 0.73 -1.05
Informative Prior | 50% || 2.15 2.33  -0.5
95% || 3.78 5.03 0.05
5% 0.3 075 -14
Uniform Prior | 50% || 3.0 759  -0.5
95% 5.7 14.25 04

Table 2: Summary of the prior distributions of the climate system properties.
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Figure 2: Bivariate prior distributions for the climate system properties.

(0,6),(0,15) and (—1.5,.5). The second is the one described in Section 3.1, and will be
referred to as the informative prior. Notice that, in both cases, we are a priori assuming
that the three parameters are independent. Some quantiles that describe the characteristics
of both distributions are reported in Table 2. The contours of the bivariate prior densities
are presented in Figure 2.

4.1 Deep ocean temperature trend (DO)

We started by considering the DO diagnostic, the trend in deep-ocean temperatures. Here
x is irrelevant (the diagnostic is a scalar), so we let h(x,t) = h(t) = (1,t1,1s,t3)", with
g = 4. A posteriori we observe that the 2.5% and the 97.5% quantiles of the distributions
of B;,2 = 1,...,4 are all positive for the informative prior. This is also the case for the
2.5% and the 97.5% posterior quantiles in the uniform prior case, with exception of the 2.5%
quantile of 3;, which is equal to —4 * 1075. We note that this implies that 3; is almost
significantly positive, but not quite and that this is the only diagnostic where K, has a
positive coefficient. So, for both priors, the posterior carries substantial evidence that the
baseline for DO is positive and increasing any of the three climate system properties increases
DO.

To check the ability of the model to predict the values of DO we chose 43 combinations
of climate parameters at random. We excluded those data from the estimation procedure
and then obtained samples from their joint posterior prediction distributions. The results
are shown in Figure 3. They are based on 100 samples from the predictive distribution
taken from 10,000 iterations of the MCMC with a lag of 100, using as starting value the last
iterates of a chain of 100,000 iterations. We observe that in all but two cases (nos. 8 and
42) the predictive interval contains the observation and that the widths of most intervals are
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Figure 3: Predictive distribution for DO at 43 randomly selected combinations of the climate sys-
tem parameters. The intervals are given by the 2.5% and 97.5% quantiles. Right hand (black) and
left hand (red) intervals for informative and uniform priors respectively. The small dots correspond
to the predictive mean and the larger dots to the MIT2DCM output.

small compared to the variability in the data.

A summary of the posterior distribution of the climate system properties for DO is
presented in the first three columns of Table 3. We see substantial differences between the
posteriors obtained under the informative and the uniform priors, especially for S and F, .
In these two cases the marginal posterior densities corresponding to the informative prior are
concentrated around smaller values than the ones obtained for the uniform prior. When the
values in Table 3 are compared to those in Table 2 we observe that the posterior densities
follow the behavior of the priors. A better picture of this situation is provided by the plots
in Figure 4. Here the posterior densities corresponding to DO are plotted with dotted cyan
lines. For the informative prior we observe that the posterior densities of /K, and S are
very close to the priors. This is not the case for F,., , where the posterior shows substantially
larger tails. For the uniform prior, all three posterior densities are pretty flat. Overall we find
that the likelihood obatained from DO carries little information about the climate system
properties. We observe that, for & the posterior density shows some irregularities, this is
a consequence of the fact that the samples of #, tended to fluctuate around the values of
S used in the design for the runs of the MIT2DCM.

The bivariate posterior distributions for the informative prior are presented in the first
row of Figure 5. These can be compared with the plots in Figure 2. We observe some
elongation of the contours of the posterior density of 6 and 63, reflecting the fact that the
tails of the posterior of #3 are larger than those of the prior. Figure 6 shows the contours
of the bivariate posterior densities under the uniform prior. A quantitative measure of the
similarity between the joint priors and posteriors is given by the Bhattacharyya distances
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Deep ocean Surface temperature Upper air
\/IG S f—aeT \/IC S faer \/IC S faer
5% 0.88 092 -099 | 0.82 1.75 -0.71 | 1.33 2.27 -0.79
Inf. |50% | 2.13 231 -0.53 | 1.99 3.21 -0.39 | 259 3.79 -0.27
95% || 3.71 4.83 -0.005| 3.08 5.68 -0.051| 4.15 6.08 0.17
5% 0.24 073 -1.37 | 019 226 -0.82 | 1.58 291 -1.33
Unfm. | 50% || 2.65 6.71 -0.80 | 2.03 7.23 -0.49 | 4.18 6.52 -0.32
95% || 5.61 14.11 0.21 5.07 14.05 -0.05 | 5.88 13.06 0.37

Table 3: Summary of the posterior distributions of the climate system properties.

| DO DOUni. ST ST Uni. DO+ ST UA UA Uni

Prior 0.97 0.89 0.70 0.59 0.72 0.49 0.43
DO 1 0.48 0.67 0.34 0.76 0.30 0.10
DO Uni. 1 0.30 0.54 0.44 0.26 0.32
ST 1 0.55 0.99 0.63 0.11
ST Uni 1 0.54 0.38 0.20
DO + ST 1 0.78 0.10
UA 1 0.50

Table 4: First row in bold face: Bhattacharyya distances between the prior and the posterior
distributions corresponding to the different diagnostics. All other rows: Bhattacharyya
distances between the posterior distributions for different diagnostics and priors.

reported in the first two entries of the first row of Table 4. We observe that the two numbers
are close to 1, so that, especially in the case of the informative prior, the data are not
changing the prior information substantially.

4.2 Surface temperature change

In order to define h for the analysis of ST, we considered h(t,z) = (1,t1,1s,t3,21,22),
where z; is latitude and z5 is the decade. We used & = 162 control runs obtained from
the GCM developed at the Hadley Centre, Bracknell, UK, code-named HadCM2. The
posterior distributions of 8 show that the baseline for the surface temperature change is not
significantly different from zero. Increasing /K, has a decreasing effect on ST, while for
S and F,., the effect is positive. Latitude does not seem to have a significant effect on ST.
In contrast, the decades have a significant positive effect.

We performed a predictive assessment similar to the one presented for DO. In Figure 7 we
present the predictive intervals for six combinations of the climate parameters of the 43 left
out of the inference. We observe that most of the MIT2CM output are within the predictive
intervals. These have a typical width of .2 degrees. Also the latitudinal and decadal patterns
of the model simulations are well captured by the predictions.

Some quantiles of posterior distributions of the climate parameters are reported in the
fourth, fifth and sixth columns of Table 3. When compared to the prior quantiles in Table 2
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\/IG S -,FaeT
5% || 0.84 145 -0.79
50% || 1.97 2.86 -0.46
95% || 3.15 5.04 -0.05

Table 5: Posterior quantiles of the climate system properties using DO and ST.

we see important differences both for the informative and the uniform prior. The marginal
posterior densities in the first column of Figure 4 show that the posterior for v/KC, is slightly
shifted to the right with respect to the prior. The posterior for S is shifted to the left, while
the posterior for F,., is much more concentrated around the median than the prior. This is
in sharp contrast to the behavior of the posterior based on DO, which has much larger tails
than the prior. In the second column of Figure 4 we present the posterior densities based
on a uniform prior. As for the DO diagnostic we observe that the distributions tend to be
diffuse and strongly influenced by the location of the design points. The posterior density
of Fuer is a notorious exception. In fact this looks similar to the posterior obtained using
the informative prior. The values of the posterior quantiles indicate that the uniform prior
based posterior is shifted to the left with respect to the informative prior based posterior.
These results indicate that the ST diagnostic contains useful information regarding F,., .

From the plots of the bivariate densities in Figures 5 and 6, we observe some differences
between the densities from DO and those from ST. In the informative case we observe that
the joint of /K, and S for DO has a lower center of mass than that for SR. The joint
of § and F,., for ST is tilted downward and is less concentrated when compared to the
one for DO. Far more dramatic differences are observed in the uniform prior case. Here
it is clear that the densities obtained using ST have a range of F,.,. far more concentrated
around the median and a range of S higher than those of the densities obtained using DO.
The values of the Bhattacharyya distances between the priors and the posteriors for the
ST diagnostic, reported in Table 4, are smaller than those computed for the ST diagnostic.
This confirms the analysis of the quantiles and the graphics of the univariate and bivariate
posterior densities.

We considered two more posterior distributions obtained using ST. One is the result of
resampling the posterior distribution from DO, following the method described in Section
3.3. The resulting univariate posterior densities are presented in Figure 8. For /K, and
S the posterior follows very closely the one obtained using only ST. The posterior density for
Fuer is somewhat influenced by the DO results. For a numerical comparison we report some
of the quantiles of these densities in Table 5. Additionally we notice that the Bhattacharyya
distance between the joint posterior distribution and the informative prior is almost the
same as the distance between the ST posterior and the informative prior. Furthermore,
the distances between the those two posteriors is very close to one. The above discussion
provides evidence that the posterior distribution is dominated by the ST diagnostic.

Finally, we consider the issue of using a different prior for 3 based on a different GCM.
We use k = 91 replicates of w; based on GFDL with the informative prior for 8. The plots
of the univariate posterior distributions of v/IC, , S and F,., show minimal differences to the
posteriors obtained using the control runs from HadCM2. On the other hand we expect the
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posterior of X to be affected by the use of different control runs. In Figure 10 we present the
posterior densities of the log-eigenvalues of 3 as well as boxplots for the posterior samples of
the eigenvector corresponding to the largest eigenvalues. We observe that in both cases the
first eigenvalue has large variability, slightly larger in the HDCM case. For the eigenvector
we observe a more regular pattern in the GFDL case than in the HDCM one. In particular it
is noticeable that, for the GFDL case, the coefficients are increasing as a function of latitude
for the first two decades, and decreasing for the last two ones. Although the overall patterns
show warming for each latitude, the relative warming rates differ for the leading eigenmodes.

4.3 Upper air temperature change

As mentioned in Section 2.2, we restrict our analysis to the first four layers of the atmo-
sphere. In Figure 1 we observe that, for the first four layers, the MIT2DCM simulations
can have significant departures from the observations. In contrast to the ST, for which
most simulated values differ one or two tenths of a degree Celsius from the observations,
the UA simulations can be more than one degree away from the observations, especially at
latitudes away from the poles. This implies that UA is likely to provide only weak infor-
mation about the most likely values of 8. As in the previous two cases we considered h as
a linear function of 0,6, and A3. For UA the position variable  is two dimensional and
corresponds to latitude, x1, and altitude, x5. So we fitted our model with h(x,t) equal to
(1,11, t9, t3, cos(2x2m/180), logyy x2). The posterior distribution of B shows that the baseline
for the upper air temperature change is negative. As for the ST, increasing /K, has a de-
creasing effect on ST, while for § and F,., the effect is positive. The coefficient for the term
cos(2xom/180) is significantly positive, implying a positive effect at the equator and nega-
tive effects at the poles. The coefficient for altitude is also positive, implying an increasing
temperature change with increasing altitude.

To assess the predictive capability of the model we did an analysis similar to the one
presented for DO and ST. In this case, we observed that the predictive intervals calculated
from samples of the predictive distributions were extremely wide. In Figure 11 we present
the predictive means for six combinations of the climate parameters. We observe that the
predictive means track the simulations very well. We also observe that there are large
differences between the simulations and the observations. Clearly these differences have no
effect on the predictive mean but they produce very large predictive variances.

The last three columns of Table 3 report some of the quantiles of the posterior distri-
butions for UA obtained with the informative and the uniform prior. For the informative
prior, the quantiles as well as the plots of the univariate posterior density in Figure 4 show a
tendency to concentrate more values around large values of /K, than the prior. A similar,
but much less pronounced phenomenon is observed for & and F,.. . In spite of this, the
bivariate distributions in Figure 5 show that the joint density of S and /K, , obtained from
UA, has the smallest model values for § , when compared to the corresponding densities
obtained from DO and ST.

The posterior distributions from UA using a uniform prior are shown in the second column
of Figure 4 and Figure 6. These, together with the posterior quantiles indicate that UA
produces a very strong shift of probability towards large values of the parameters, especially
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Figure 10: Posterior density of the log-eigenvalues for the ¥ under the Surface Temperature

diagnostic using two different control runs to obtain the prior (top two panels).

The densities

have been rescaled so that all have the same height. Distributions for the components of the first

eigenvectors (bottom panels).
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for /K, and F,. . The values of the Bhattacharyya distances corresponding to the last
two columns of Table 4 are the smallest of all the distances reported. This indicates that the
posterior distributions obtained from UA have the least amount of overlap with either the
priors or any of the posteriors produced with the other two diagnostics. Interestingly, there
seems to be substantial overlap between the posterior based on UA with the informative
prior and the posterior obtained from DO plus ST.

5 Discussion and Conclusions

This paper provides a successful implementation of a Bayesian model for the calibration of
the parameters in the MIT2DCM. We have explored the posterior distribution of the climate
system properties based on different summaries of climate data and climate simulation. Our
model is able to blend information from different sources, including historical records, GCM
output, MIT2DCM output and expert knowledge based on the scientific literature. All the
variability from parameter estimation is accounted for in the results. So the present analysis
provides an assessment of how posterior distributions differ from those in Forest et al. (2006)
when such variability is considered. Results for the point estimates of the climate system
properties are similar to the analysis in Forest et al. (2006), in particular for & and Fg, .
Nevertheless, we observe substantial differences in the shapes of the posterior distributions.
Consistent with Forest et al. (2006), we find that ST is the most informative of the three
diagnostics, which is where tightening of the distributions occurs most. Similarly, the least
information is in the UA diagnostic where we see a widening of the distributions. The most
robust feature in the results are the strong constraints on F,.. where the posterior is inde-
pendent of the the priors. We observed very small differences in the posterior distributions
obtained using different GCM runs.

Our graphical results as well as the numerical values of the Bhattachryya distances for
the posterior distributions obtained with informative priors show a substantial overlap with
the prior. To asses the significance of the differences between prior and posterior for I, and
S we consider the distributions of two quantities, related to these climate properties, used to
characterize climate models predictions. These are the Transient Climate Response (TCR)
and Sea Level Rise (SLR) due to thermal expansion. They are estimated by calculating
the climate system response to a standardized forcing scenario (F(t) = 1%/year increase in
CO2 concentrations) and taking the change in temperature (TCR) and sea-level (SLR) at
the time of CO2 doubling (year 70). We use samples from different distributions of I, and
S to estimate the distribution of TCR and SLR. The results for the informative prior, the
ST and the ST4+DO based posteriors are shown in Figure 12. For both quantities we observe
significant changes in their distributions when the prior of 8 is updated wih either ST or ST
+ DO.

Regarding the UA diagnostic, we found that it is the most complex and difficult one to
use. In fact we performed three separate analyses involving upper air temperature change.
Our first attempt consisted of using the full 220 dimensional diagnostic, corresponding to
the eight pressure layers. We then analyzed the first four and the last four layers separately.
Of all three cases considered, the one that corresponds to the 50 to 200 hPa layers, is the one
providing the most information. As mentioned in Section 4.3, the predictive variance in this
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Figure 12: Cumulative distribution functions for TCR (top) and SLR (bottom) using 5,000 from
the prior distribution of K, and S (thin line), the posterior distribution obtained using ST (thick)
and the posterior distribution using ST + DO (dashed).

case is very large. For the full UA diagnostic it is even larger. For the UA diagnostic based
on the 300 to 850 hPa the mixing of the MCMC was very poor, with most of the samples
corresponding to design points and a very low acceptance ratio.

For the UA, we have already commented on the discrepancies between the MIT2DCM
simulations and the historical values, which tend to produce large predictive variances. As
a consequence the statistical emulator performs poorly for points not in the original design
grid. An additional problem of the UA is that it carries little information about the climate
system properties in most of the layers. We have excluded any observational errors in our
model. We justify this on the grounds that data sources are very heterogeneous and it is
impractical to keep track of all possible sources of observational error. On the other hand the
observations we use are the results of averaging large numbers of data, so the observational
variability should be very small. In the atmosphere observations are both scarce and noisy,
especially in comparison to the data used for DO and ST. So including an additional source
of error for the analysis of the UA is an extension to be considered. To further complicate
this picture, we know that the UA data have a known cold bias in the lower stratospheric
region (50-200 hPa) in the Parker et al. (1997) data set (see Mears et al. (2006)). Taking
this into account by using more recent data sets such as HadAT2 (Thorne et al., 2005) may
eliminate this bias but perhaps not simplify the issues.

The current form of the emulator is purely statistical, and no physical considerations
have been incorporated into it. One approach to incorporating a more realistic structure
would be to use a simple energy balance model (EBM). For the surface and deep ocean
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temperatures, an EBM can be constructed with several latitude zones and an ocean model
similar to the Q-flux mixed layer model used in the MIT 2D climate model. We can consider
the energy balance equation for a given latitude zone as: cp% =F - )\I"-®, — &, where
cp is the heat capacity per unit mass, % is the time rate of change of the temperature
anomaly, F' is the local radiative forcing, related to Fg, , A is related to S , and ®,  are the
vertical and horizontal heat fluxes out of the latitude zone, related to IC, . The details of
such a model are beyond the scope of this paper although Schneider (1992) provides a good
introduction to the design of such models. For the upper-air temperature diagnostics, as
already discussed, we need to consider simplifying the diagnostic to capture the large-scale
behavior. Typically, an EBM does not include the vertical temperature structure in the
atmosphere and so the relation between surface and upper-air temperature changes needs
additional consideration. Fixed vertical temperature dependence is not desired in a standard
EBM because the interactions between clouds, water vapor, temperature and winds lead to
different feedbacks. It may be possible to address these vertical temperature dependence
issues by allowing coefficients in the EBM to vary accordingly. MIT 2D climate model can
provide sufficient quantities of data to explore alternative EBM structures such as these.

In this paper we have tackled a calibration problem with a multidimensional response
variable. This involves the estimation of ¥, which is an important by-product of the analy-
sis, since it provides information about the second order properties of the climate variability.
For example, we have estimates of the eigen-decomposition which show a clear distinction
between eigenspectrum from GFDL and HadCM2 models. Looking at the first two eigenvec-
tors in each case we find that they differ in their patterns of latitude dependence, but not in
those of decadal dependence. The task of estimating ¥ is complicated when the diagnostic is
of large dimensionality and there is weak prior information available, like in the case of UA.
An alternative would be to consider a parametric structure for 3, based on a valid space and
time covariance function. In addition to providing less flexibility, this approach could run
into the known problem that covariance parameters can be difficult to estimate. A different
dimension reduction approach is that of truncating the number of eigenvalues of . In fact,
the posterior distribution of ¥ indicates that only the first few eigenvalues are significantly
large, so eliminating those modes of variability with very small amplitudes in the data is
likely to be effective. We are currently working in a fully Bayesian implementation of this
approach.
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