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1 Introduction

This paper describes a Bayesian statistical analysis of long term changes in
the depth of the ocean’s mixed layer. The data are thermal profiles recorded
by ships. For this data there is no good sampling model and therefore no
obvious likelihood function. Our approach is to elicit posterior distributions
for small data sets directly from the expert. Then we infer the likelihood
function and use it on large data sets.

The typical Bayesian analysis posits data from a parametric family of
sampling distributions, as in Equation 1.

~y ∼ p(~y | θ) (1)

After ~y has been observed it is treated as fixed, and the likelihood function
is defined to be `(θ) ≡ p(~y | θ), a function of θ. The interpretation is that
likelihood ratios `(θ1)/`(θ2) quantify ~y ’s evidence for θ1 as opposed to θ2.

∗supported by NSF grant #ATM–0221939
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For our data set there is no believable sampling model p(~y | θ), so we
cannot assign `(θ) ≡ p(~y | θ). We take a different approach, wherein lies
the statistical novelty of this paper. For several values of i, about a dozen,
we show the expert ~yi and directly elicit her posterior distribution p(θ | ~yi).
Elicitation is done under conditions where the expert has an approximately
uniform prior for θ. After elicitation we know the prior and posterior and
can therefore infer the likelihood function.

After examing the dozen or so elicited posteriors and conferring with the
expert, we constructed an algorithm that accepts a ~y as input and yields
a likelihood function `(θ) as output. After contructing the algorithm we
checked that it gave sensible results on several hundred more ~y’s. We then
applied the algorithm to our full collection of data {~yi}

T
i=1 which, when com-

bined with our real prior, yields our posterior. We call ` a likelihood function
because it approximately summarizes the expert’s weight of evidence and,
when multiplied by the uniform prior, yields her posterior.

The data arise in a study of the ocean’s climate. The situation is more
complicated than described in this introduction, as the data are a time series
and our model must account for an annual cycle. Section 2 describes the
scientific background while Section 3 describes the data. Section 4 describes
our subjective likelihood, how it was elicited, and how it is modelled. It
contains whatever statistical novelty is in this paper. Section 6 describes our
prior, accounting for the annual cycle, year-to-year variation, heteroscedas-
ticity, and a possible secular trend. The posterior is found by MCMC; it is
described in Section 7. Section 8 is a discussion and Section 9 is an appendix
describing an alternative model that we ultimately rejected.

2 Application to an Ocean Mixed Layer

Recent evidence that the world’s oceans have warmed over the past fifty years
(Levitus et al. [2000]) and that the attendant increase in the ocean’s heat
content is an order of magnitude larger than the increase in the atmospheric
and cryospheric heat content (Levitus et al. [2001]) have made it abundantly
clear that a determination of how our global climate is changing in response to
long-term natural and/or anthropogenic forcing depends on the effectiveness
of the ocean as a heat reservoir. However, the effectiveness of the ocean
as a reservoir is curtailed by increasing thermal stratification which limits
the extent to which surface signals can be transmitted to depth. Interest,
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therefore, has focused on the upper ocean.
To a first approximation, oceanographers regard the ocean as having two

layers: a mixed layer from the surface down to as much as several hundred
meters, and a stratified layer beneath. The mixed layer is that part of the
surface ocean that displays uniformity in properties such as temperature,
salinity, and density. The mixed layer forms because the upper waters of the
ocean are mixed via waves and wind and also through thermal convection
where the surface waters overturn upon losing buoyancy to the atmosphere.
Such overturning creates a mixed layer. The depth M of the mixed layer
evolves through an annual cycle and depends on geographic location. Be-
cause M depends crucially on the heat content of the upper ocean, long-term
changes in heat content may result in long-term changes in M . Essentially we
address in this application, the question as to whether or not there has been
a secular trend in M in the North Atlantic subtropical gyre. Such an eval-
uation will increase our understanding of potential physical and biological
consequences of global warming.

3 Data

Hydrographic data, such as temperature, salinity and pressure, is collected
from ships, sent to the National Oceanographic Data Center (NODC), where
it is quality controlled and then made publicly available (www.nodc.noaa.
gov). This paper reports on an analysis of NODC historical hydrographic
data recorded over a small spatial region near Bermuda. A sufficiently small
region was chosen for our study so that we can safely ignore spatial variability.
An analysis of data from a wide region of the North Atlantic will appear
elsewhere. A map of the data is in Figure 1; the data’s temporal distribution
is shown in Figure 2.

The i’th data point ~yi is recorded at time ti and consists of temperatures
~yi = (yi1, . . . , yini

) measured at depths ~di = (di1, . . . , dini
). (Other properties

are also measured, but we do not report on them here.) The first depth
is always sufficiently close to the surface so that (1) we can assume yi1 is
approximately equal to the surface temperature and (2) we can take di1 =
0 without serious error. Temperature as a function of depth is called a
temperature profile. Figure 3 shows one such profile.

Generally speaking, the upper layer of the ocean, because it is vertically
mixed, should have a uniform temperature, while the stratified layer should
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Figure 1: data locations near Bermuda
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Figure 3: A nice profile: temperature as a function of depth measured at
intervals of 10m. M appears to be between about 40 and 60 meters.
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have a monotonically decreasing temperature. Figure 3 exemplifies these
characteristics. Locating the bottom of the mixed layer is fairly straight-
forward in such profiles. In Figure 3 we can say with confidence that M
is somewhere near 50 meters. Not all profiles, however, present such a clear
delineation of M . For examples, see Figure 4. Each of the profiles in Figure 4
has several depths which might plausibly be the bottom of the mixed layer.
A key question is: What do profiles such as those in Figure 4 tell us about
M?

If we had a physical model that predicted the spatial and temporal dis-
tribution of temperature with depth (i.e., a temperature profile), we could
fit the model to the data, and the likelihood function would quantify the
information for the parameter M . However, one of the remaining funda-
mental problems in oceanography is a complete theoretical description of the
thermocline, which expresses the horizontal and vertical change in the tem-
perature field. In the absence of a complete description, simplifications have
been offered. One such simplification of the nonlinear physics that governs
the thermocline yields a prediction that the temperature should decrease ex-
ponentially from M to the ocean floor (Mellor [1996]), where it is about 2 ◦C
throughout the world. If such a simplification were generally valid, then a
change-point model with three parameters — surface temperature, M , and
decay rate — would fit the data well. However, the data in our region of
interest do not exhibit exponential decay, as illustrated by Figure 5 which
shows the same profile displayed in Figure 3 along with several exponential
decay curves. Overall, our understanding of the physics of the thermocline
has not advanced to the point where we could offer a model to which to
fit the data. In such a void, we turn instead to the methods described in
Section 4.

4 Subjective Likelihood

4.1 Heuristic Explanation

In this section we consider what can be learned from a single profile ~y sampled
at depths ~d; the parameter of interest is M .

From either a likelihood or Bayesian perspective, what is needed is a
sampling model p(~y |M). However, in Section 3 we argued that no reliable
sampling model exists. So how can we describe what is learned from ~y ? Our
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approach is to ask an oceanographer directly.
We showed the oceanographer a profile (~y, ~d ) and asked what she could

tell us about M , based on that profile. Her response was to tell us Pr[M ∈ Ij]
for j = 1, . . . , n where Ij is the interval from dj to dj+1. (d1 = 0 is the ocean
surface; dn+1 is the floor.) The process was repeated for several profiles,
about a dozen. Figure 3 is an example. For this profile the oceanographer’s
assessments were

Pr[M ∈ I6] ≈ 10 Pr[M ∈ I5]

Pr[M ∈ some other interval] ≈ very small

The next step was to ask the oceanographer how she makes her assess-
ments. She told us that for an interval Ij = [dj, dj+1] she considers two
quantities: y1 − yj, the temperature drop from the surface to the top of Ij,
and (yj − yj+1)/(dj+1 − dj), the rate of temperature drop within Ij. Small
values of y1 − yj and large values of (yj − yj+1)/(dj+1 − dj) imply that Ij is
likely to contain M . She also said these are the only quantities that matter;
other aspects of the profile carry so little information as to be ignorable. To
formalize, define

~∆1 = (∆11, . . . , ∆1n) = (0, y1 − y2, . . . , y1 − yn)

~∆2 = (∆21, . . . , ∆2n) = ((y1 − y2)/(d2 − d1), . . . , (yn − 2)/(dn+1 − dn))

Then, according to the oceanographer, the probabilities Pr[M ∈ Ij]
n
j=1 are

some function g(~∆1, ~∆2).
The reasoning is this. If interval Ij contains M , then the temperature

above Ij should be roughly uniform, and y1−yj should be small. So g(~∆1, ~∆2)

should be a decreasing function of ~∆1. Similarly, if Ij contains M , then the

rate of temperature decrease in Ij should be large. So g(~∆1, ~∆2) should be

an increasing function of ~∆2.
After considering multiple profiles — some real and some artificially con-

structed to learn particular aspects of the oceanographer’s thinking — we
settled on

Pr[M ∈ Ij | ~y, ~d ]n1 ∝ g(~∆1, ~∆2) ≈ exp{−2~∆1} × [1− exp{−~∆2/0.3}] (2)

as providing sufficiently close approximation to the oceanographer’s posterior
probabilities for the intervals Ij. (The left-hand side of (2) is a vector with one
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component for each interval. The right-hand side is also a vector; notation
such as exp{−2~∆1} means element-wise multiplication and exponentiation.)

Figures 6 and 7 show how Equation 2 works for the profiles in Figures 3
and 4. Unnormalized posterior probabilities calculated according to Equa-
tion 2 are plotted as horizontal bars over their respective intervals. The
points to note are (1) the relative heights of the bars in Figure 6 and (2) the
fact that the probability distributions in Figure 7 are bimodal.
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Figure 6: The profile of Figures 3. The horizontal bars show posterior prob-
abilities of intervals calculated according to Equation 2, assuming a uniform
prior. The bar over I6 is approximately 10 times as high as the bar over I5.
The oceanographer agrees that the horizontal bars approximately match her
subjective evaluation.

Two more facts are needed to complete the specification of the likelihood.

1. Because we did not tell the oceanographer the time of year or physical
location of the profiles, her prior for M was approximately uniform.
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Figure 7: The three profiles of Figure 4. The horizontal bars show posterior
probabilities of intervals calculated according to Equation 2, assuming a uni-
form prior. The oceanographer agrees that the horizontal bars approximately
match her subjective evaluation.
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(She agrees.)

2. Her posterior for M is approximately uniform within each interval.
(She agrees.)

Equation 2 and Fact 2 specify the posterior density of M . It is piecewise
constant on the intervals Ij; its value on Ij is

p′(m | ~y) =
exp{−2∆1j} × [1− exp{−∆2j/0.3}]

(dj+1 − dj)
∑

k (exp{−2∆1k} × [1− exp{−∆2k/0.3}])
(3)

for m ∈ Ij. And since the prior was uniform, Equation 3 is also the likelihood
function.

More formally, for any depth m let j(m) be the interval containing m,
i.e., m ∈ Ij(m). Then we define the subjective likelihood function `′(m) by

`′(m) ∝
exp{−2∆1j(m)} × [1− exp{−∆2j(m)/0.3}]

dj(m)+1 − dj(m)

(4)

Equation 4 gives us a rule for computing the likelihood function for any
profile. In subsequent sections we apply the rule to a large collection of
profiles, more than the oceanographer can assess individually.

4.2 Semiformal Justification

Bayesian analysis derives from the joint distribution p(~y, M). To arrive at
p(~y, M) one typically specifies p(M) and p(~y |M). Our analysis also uses
p(~y, M) but arrives at it differently.

Since the oceanographer cannot tell us directly about p(~y, M) or p(~y |M),

but can tell us about the relationship between M and (~∆1, ~∆2), we work with
a transformation of variables

(~y, M)←→ (M, ~∆1, ~∆2, ~s ),

find the joint distribution of (M, ~∆1, ~∆2, ~s ), and derive that of (~y, M) by
back transformation. Specifically,

(y1, . . . , yn, m)←→ (m, ∆1j(m), ∆2j(m), s1, . . . , sn−2)

where

sk =

{

ydk
− ydk−1

for k = 1, . . . , j(m)− 1,

ydk+2
− ydk+3

for k = j(m), . . . , n− 2.
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For later use, we note that for a fixed m this is a linear transformation and the
absolute value of the Jacobian is 1/(dj(m)+1−dj(m)). But the transformation
and Jacobian vary according to j(m).

The joint density of (M, ~∆1, ~∆2, ~s ) is given by

p(m, ∆1j(m), ∆2j(m), ~s ) = p(m)p(∆1j(m), ∆2j(m) |m)p(~s |m, ∆1j(m), ∆2j(m))

≈ p(m)p(∆1j(m), ∆2j(m))p(~s )

∝ p(m)p(∆1j(m), ∆2j(m))

= p(∆1j(m), ∆2j(m))

The second line follows from the oceanographer’s judgement that M ⊥
(~∆1, ~∆2) and ~s ⊥ (M, ~∆1, ~∆2), at least approximately. The third line follows
because, while ~s does depend on m — i.e., ~s = h(m, ~y ) for some function h
— the dependence of p(~s ) on m is judged so slight as to be ignorable. The
term p(∆1j(m), ∆2j(m)) is retained because it does contain useful information
about m. The fourth line follows because in this section p(m) = 1 in accord
with the conditions of elicitation.

The oceanographer’s judgment expressed in Equation 2 is equivalent to
setting

p′(∆1j(m), ∆2j(m)) ∝ g(∆1j(m), ∆2j(m))

= exp{−2∆1j(m)} × [1− exp{−∆2j(m)/0.3}]

The joint density of (~y, M) comes from the transformation

(M, ~∆1, ~∆2, ~s)→ (~y, M).

Accounting for the Jacobian, it is

p′(~y, m) ∝
exp{−2∆1j(m)} × [1− exp{−∆2j(m)/0.3}]

dj(m)+1 − dj(m)

(5)

Since the prior was uniform, this is also the likelihood function, as heuristi-
cally justified in Equation 4.

Starting from Equation 5 one could, if one wished, try to derive p(~y |m),
the sampling model implied by our subjective elicitation exercise. In practice,
since we already have `(m), there is little need to do so.
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5 Three Modifications

The probabilities and likelihoods derived in Section 4 are not the final word.
Three more considerations come into play.

1. Of all the measurements in a temperature profile, the surface measure-
ment is the most noisy. Furthermore, the surface measurement can be
influenced by daily warming; it may undergo a temperature cycle each
day, and measurements made during the warm part of the cycle may
not reflect fundamental properties of the water column. The key to
recognizing such a situation is t1 > t2 ≈ t3.

When this happens, ~∆1 = (0, y1−y2, . . . , y1−yn) is not a good reflection
of the information in the profile. So, for profiles where y1 = max yi and
|y2 − y3| < 0.05, we set ~∆1 = (0, y2 − y2, . . . , y2 − yn).

2. The idea behind ~∆2j = (yj − yj+1)/(dj+1 − dj) is, obviously, that an
interval containing M is likely to have a large temperature drop. But
the oceanographer’s judgment is that temperature drops bigger than
about 0.3 ◦C are not more indicative of M than drops of about 0.3 ◦C.
Therefore, we set ~∆2j = min((yj − yj+1), 0.3)/(dj+1 − dj).

3. Equation 2 was constructed to mimic the oceanographer’s assessments
of high probability intervals. For low probability intervals it accurately
captures the fact that they have low probability, but might misstate
their probability ratios by several orders of magnitude. In addition, it
is widely believed that subjective probability assessments are often too
sharp; they understate the true amount of uncertainty. The result in
our analysis could be oversensitivity to outliers, or intervals with low
probabilities. Therefore, we modify Equation 3 and set

p(m | ~y) = max[p′(m), .01p′(m̂)] (6)

6 Model and Prior

The observations ~y1, . . . , ~yT , shown in Figure 1, run over a time index t =
t1, . . . , tT that spans multiple years, as shown in Figure 2.

Figure 8 shows the result of applying Equation 2 to each profile separately.
Each vertical bar is the maximum probability interval of some profile; its
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extent is indicated on the ordinate. Its abcissa is the day-of-year when that
profile was recorded. (The curve is a posterior mean and will be discussed
later.) There are two features of note. First, there is an annual cycle with
deeper mixed layers in the winter. And second, there is greater variability in
the winter. Our model will accomodate both features.
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Figure 8: Vertical bars are maximum probability intervals of all profiles
versus day-of-year. The curve is the posterior mean of µ(t).

Let M(t) be the mixed layer depth at time t. It is apparent that M(t)
undergoes an annual cycle, the precise details of which are unknown and may
vary from year to year.

Mean annual cycle We use µ to denote the mean annual cycle. Thus for
any time t,

µ(t) = µ(t mod 365).

We model µ with a process convolution (See Higdon [1998] for details.), as
described in the next paragraph.
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Let 0 ≤ v1 < v2 < · · · < v12 ≤ 365 be an equally spaced sequence of
points (mod365); let x1, . . . , x12, be values “at” those points; and let k be a
kernel. Our model is

µ(t) =
12

∑

`=1

x`k(t− v`)

The x`’s are modelled as unknowns to be fit from the data. A priori,

x1, . . . , x12 ∼ i.i.d.
�

(0, σ2
x)

The posterior means of the x`’s yields the estimate µ̂(t) =
∑

x̂`k(t − v`)
plotted in Figure 8.

Deviations from µ The mixed layer deepens in the Fall as atmospheric
temperatures decrease. Colder air means colder sea surface temperature,
which in turn means that surface waters become dense and sink. The sinking
causes surface waters to mix with deeper waters. The process continues
through the winter, leading to deeper mixing and increased values of M .
The effect is reversed in the Spring as surface waters warm. Spring heat
is conveyed downward through diffusion, a much slower process than Fall’s
convection. Thus the annual cycle is asymmetric and the summer mixed
layer is relatively shallow and stable.

Because weather varies from year to year, the actual cycle for M in a
particular year may differ from µ, especially in the winter. To account for
those differences we allow each winter month (November through April) to
have its own random effect. Our notation for the random effect of month m
in year y is by,m. Letting y(t) and m(t) denote the year and month of time
t, respectively, the random effect associated with a profile taken at time t is
by(t),m(t).

In addition to annual variations due to weather, we are interested in
a possible secular trend. We account for that in our model with a linear
regression term βt. We will be interested in the posterior distribution of β.

Finally, to account for M ’s greater variability in the winter than in the
summer, we use a piecewise constant variance: σ2 in the summer and 3σ2

in the winter. Modelling the variance as piecewise constant is crude but, we
believe, effective.
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Putting everything together, the full model and prior are

σ2
x, σ

2
b , σ

2
β, σ2 ∼ i.i.d. InvGam(.001, .001) mutually independent

x1, . . . , x12 | σ
2
x, σ

2
b , σ

2
β, σ2 ∼ i.i.d.

�
(0, σ2

x)

µ(t) =

12
∑

`=1

x`k(t− v`)

{by,m} | σ
2
x, σ

2
b , σ

2
β, σ2, ~x ∼ i.i.d.

�
(0, σ2

b )

β | σ2
x, σ

2
b , σ

2
β, σ2, ~x, {by,m} ∼

�
(0, σ2

β)

ν(t) = µ(t) + by(t),m(t) + βt

τ(t) =

{

σ2 if t is in winter

3σ2 if t is in summer

Mti | σ
2
x, σ

2
b , σ

2
β, σ2, ~x,~b, β ∼

�
(ν(ti), τ(ti)) mutually independent

~y | σ2
x, σ

2
b , σ

2
β, σ2, ~x,~b, β, ~M ∼ subjective likelihood, mutually independent

(7)

7 Computations and Posterior

The full conditional distributions are available for all parameters except the
Mti ’s. Therefore, one efficient method to sample from the posterior distribu-
tion is a Gibbs sampler with Metropolis-Hasting steps for the Mti ’s.

Conditionally on current values of ν(ti), we propose a new move M ∗

ti
∼

�
[0, ocean floor] and accept the move with probability

min







1,
`(M∗

ti
) exp{−

(M∗

i
−ν(ti))

2

2τ(ti)2
}

`(Mti) exp{− (Mi−ν(ti))2

2τ(ti)2
}







where ` is the subjective likelihood function defined by Equation 4.
Figure 8 shows µ̂(t) =

∑

x̂`k(t − v`), the estimate of µ calculated from
the posterior means x̂`. Note that it is asymmetric, as expected from our
understanding of the physical process. The asymmetry is partial justification
for modelling µ as a process convolution rather than a summation of sinu-
soids. Figure 9 is another way to view the fit of the model. For each profile
it shows the posterior mean of νi on the abcissa and the maximum probabil-
ity interval according to Equation 2 on the ordinate. Figure 9 indicates an
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overall reasonably good fit and heteroscedasticity associated with the deeper
mixed layers of winter. The x`’s themselves are not of interest, so we don’t
show any pictures.
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Figure 9: Maximum probability interval from Equation 2 vs. posterior mean
of νi.

One way to look for a secular trend is to fit a model identical to Equa-
tion 7 but without β and examine the random effects for evidence of trend.
Figure 10 does just that; it shows the posterior mean by,m’s from such a fit.
For each month they are plotted as a function of year. There is no evidence of
trend except possibly for December. However, the apparent trend in Decem-
ber is due to confounding. December measurements in recent years tended
to be early in the month, hence with shallower mixed layers and lower M ’s,
and therefore with negative by,m’s.

There is evidence of greater variability in the late winter since about 1990.
We’re not sure why that is, or even whether it’s real.

Another way to look for a secular trend is to examine the posterior dis-
tribution of β. See Figure 11. Again, there is no evidence of trend.
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Figure 10: Random effects: βy,m vs. year
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8 Discussion

Foundations We like our subjective likelihood approach in this analysis
because it incorporates expert judgment in the most direct way we can imag-
ine. We find it an elegant and practical solution to a difficult modelling prob-
lem. Of course, it does not have the usual philosophical underpinnings of the
customary Bayesian analysis. Also it raises the question: if the oceanogra-
pher can give her posterior for Mti after seeing one profile, why can’t she give
her posterior for β after seeing them all? We think the answer is obvious.
First, studying hundreds of profiles in detail (thousands when we analyze
the entire Atlantic Ocean) is too difficult, and second, carefully assimilating
information from all the profiles into an opinion about β is far removed from
oceanographers’ experience.

We could have analyzed the data with a nonparametric change-point
model in which temperature is roughly constant down to a depth M , then
decreases monotonically, but otherwise nonparametrically, to the ocean floor.
We tried and rejected such an approach for two reasons. First, it yields results
for single profiles that disagree with the expert’s opinions, and second, it is a
more circuitous use of expert opinion than the subjective likelihood function.
Our nonparametric change-point model is described in the Appendix.

Will subjective likelihood be accepted by the scientific community; will
there be other applications; will someone discover a fatal flaw? We don’t
know. We hope the answers are yes, yes, and no; but time will tell.

Modelling We made some fairly crude modelling choices. In particular,
there are probably better and more sophisticated ways to handle random
effects, heteroscedasticity, and the secular trend. We made our choices for
simplicity and in the belief that more sophistication would not change the
analysis very much. We acknowledge that improvements are possible.

Our model treats the profiles as conditionally independent given ~M .
That’s a questionable choice. Our expert says that the time constant of
the ocean, at least for this purpose, is about 5 days or so. Profiles taken
on consecutive days are probably created and influenced by almost the same
physical forces and are certainly dependent. Whether they are conditionally
dependent given M is another matter. In any case, there are few profiles in
our data set at time intervals of less than a week, so we are willing to treat
them as conditionally independent. A possible model enhancement is to use
a temporal covariance function with a range on the order of about 5 days.
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Another way to improve the model is to include more covariates. M is
related to air temperature, so one might try including covariates such as a
running mean monthly temperature, etc. But temperature covariates will be
highly correlated with time of year, so the potential for improved fit might
be only minor. M is also thought to be related to El-Nino/La-Nina, so the
NAO (North Atlantic Oscillation) index might be a good covariate to try.

Diagnostics and Robustness Figures 8 and 9 show overall goodness of
fit. Deviations from the fitted curves are a bit hard to interpret because the
likelihood function is not symmetric and need not even be unimodal. For
example, Figures 8 and 9 both show three profiles in which the interval of
highest probability is deeper than 300m, yet the fitted value for one is around
80m and for the other two around 120m. The model appears not to fit those
profiles well. What Figures 8 and 9 do not reveal is that each of those profiles
has a secondary probability mode, according to Equation 2, so the apparent
misfit is not so severe after all. Other profiles taken around the same dates
as these three have only shallower modes; so the model favors the shallower
modes in its posterior mean.

Determination of M can sometimes be complicated by daily warming of
surface waters. During a hot, sunny day surface waters can warm as much
as perhaps a couple of degrees down to a depth of perhaps 20m or so, then
cool again during the night. Consequently, a profile taken in midafternoon
might incorrectly indicate that M appears to be less than 20m. Our expert
oceanographer was aware of this possibility when assessing the profiles we
showed her. The coefficient of ∆1 in Equations 2 and 5, i.e. -2, reflects her
belief that temperature drops in the upper ocean are probably due to mixed
layers, not daily warming. But perhaps she’s overly confident on this point.
As a robustness check, we recalculated our posterior using a coefficient of
-0.15. It made little difference to the inference regarding trend.

Our agreement that `(m)/`(m̂) ≥ .01 ensures that the posterior will not
be too heavily influenced by a small number of profiles. Still, more thorough
model diagnostics are useful and will be reported elsewhere.

9 Appendix

This Appendix briefly describes a nonparametric changepoint model as an
alternative to the subjective likelihood analysis. In the end we prefer subjec-
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tive likelihood because (1) it directly tackles the strength of evidence problem
and (2), the changepoint model doesn’t accurately capture the expert’s pos-
terior opinion. In this Appendix it suffices to consider a single profile at a
single location in space and time.

We consider the profile, temperature as a function of depth, or t(d), to be
a realization of a random function. The function t is continuous, flat on [0, M ]
and monotonically decreasing on [M, ocean floor]. If temperature is properly
rescaled to the unit interval then t is a cdf, and we model it with a Dirichlet
process. (See Lavine and Mockus [1995] for details of modelling monotone
functions with Dirichlet processes.) We take M to be random, and the shape
parameter of the Dirichlet process to be flat on [0, M ] and exponential on
[M, ocean floor], to agree with first order physical calculations. We tried
three different values for the total mass parameter of the Dirichlet process,
α = .005, .01, .1. Finally, we model the observations as

yi ∼
�
(t(di), σ

2) mutually independent given t

The posterior is calculated by MCMC. Figures 12 and 13 show results for
two profiles. Figure 12 is the same profile shown in Figure 3; Figure 13 is
the third profile in Figure 4. The curves in Figures 12 and 13 are posterior
densities of M from the Dirichlet process changepoint model.

The expert’s assessment of Figure 12 is that

Pr[M ∈ I6] ≈ 10 Pr[M ∈ I5] and Pr[M /∈ I5 ∪ I6] = small

But the Dirichlet process changepoint model gives most of its posterior mass
to I5.

The expert’s assessment of Figure 13 is bimodal; there are two likely
locations for M , one around 30m and one around 350m. However, as the fig-
ure shows, the Dirichlet process changepoint posterior for M is concentrated
around one or the other of the two regions, but does not have two modes.

While it might be possible to refine the changepoint model to better
reflect expert opinion, we are not sure how to go about it. Since the expert’s
opinion is about the posterior and not about the sampling model, we thought
it more straightforward and justifiable to model that opinion directly through
subjective likelihood rather than indirectly through a sampling model.

24



0 50 100 150 200 250 300

13
14

15
16

17
18

19
20

Depth

T
em

pe
ra

tu
re

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

D
en

si
ty

Alpha
0.01
0.1
0.005

Figure 12: A profile and three posterior densities for M , according to the
Dirichlet process changepoint model.
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Figure 13: A profile and three posterior densities for M , according to the
Dirichlet process changepoint model.
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