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Abstract

We address the position of subjectivism within Bayesian statistics. We argue, firstly, that
the subjectivist Bayes approach is the only feasible method for tackling many important
practical problems. Secondly, we describe the essential role of the subjectivist approach in
scientific analysis. Finally, we consider possible modifications to the Bayesian approach from
a subjectivist viewpoint.
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1 Introduction

The subjective Bayesian approach is based on a very simple collection of ideas. You are
uncertain about many things in the world. You can quantify your uncertainties as probabil-
ities, for the quantities you are interested in, and conditional probabilities for observations
you might make given the things you are interested in. When data arrives, Bayes theorem
tells you how to move from your prior probabilities to new conditional probabilities for the
quantities of interest. If you need to make decisions, then you may also specify a utility
function, given which your preferred decision is that which maximises expected utility with
respect to your conditional probability distribution.

There are many compelling accounts explaining how and why this view should form the
basis for statistical methodology; see, for example, [11] and the accompanying discussion.
In particular, [10] provides an excellent introduction to the subjectivist viewpoint, with a
wide ranging collection of references to the development of this position. There is also a rich
literature on elicitation, dealing with how generalised expert knowledge may be converted
into probabilistic form; for a recent overview, see [4].

Moving from principles to practice, however, can prove very challenging and so there are
many flavours of Bayesianism reflecting the technical challenges and requirements of different
fields. In particular, a form of Bayesian statistics, termed “objective Bayes” aims to gain
the formal advantages arising from the structural clarity of the Bayesian approach without
paying the “price” of introducing subjectivity into statistical analysis. Such attempts raise
important questions as to the role of subjectivism in Bayesian statistics. This account is my
subjective take on the issue of subjectivism.

My treatment is split into three parts. Firstly, the subjectivist Bayes approach is the only
feasible method for tackling many important practical problems, and in section 2 I’ll give
examples to illustrate this. Next, in section 3, I’ll look at scientific analyses, where the role
of subjectivity is more controversial, and argue the necessity of the subjective formulation in
this context. In section 4, I’ll consider how well the Bayes approach stands up to criticisms
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from the subjective viewpoint itself. Finally, in section 5, I’ll comment on the implications
of these developments.

2 Applied subjectivism

Among the most important growth areas for Bayesian methodology are those applications
that are so complicated that there is no obvious way to even formulate a more traditional
analysis. Such applications are widespread; for many examples, consult the series of Bayesian
case studies volumes from the Carnegie Mellon conference series. Here are just a couple of
areas that I have been personally involved in, with colleagues at Durham, chosen so that I
can discuss, from the inside, the central role played by subjectivity.

2.1 High reliability testing for complex systems

Suppose that we want to test some very complicated system - a large software system would
be a good example of this. Software testing is a crucial component of the software creation
cycle, employing large numbers of people and consuming much of the software budget. How-
ever, while there is a great deal of practical expertise in the software testing community,
there is little rigorous guidance for the basic questions of software testing, namely how much
testing does a system need, and how can we design an efficient test suite for this purpose.
The number of tests that we could, in principle, carry out is enormous, each test has non-
trivial costs, both in time and money, and we must plan testing (and retesting given each
fault we uncover) to a tight time/money budget. How can we design and analyse an optimal
test suite for the system?

This is an obvious example of a Bayesian application waiting to happen. There is enor-
mous uncertainty and we are forced to extrapolate beliefs about the results of all the tests
that we have not carried out from the outcomes of the relatively small number of tests that
we do carry out. There is a considerable amount of prior knowledge carried by the testers
who are familiar with the ways in which this software is likely to fail, both from general
considerations and from testing and field reports for earlier generations of the software. The
expertise of the testers therefore lies in the informed nature of the prior beliefs that they
hold. However, this expertise does not extend to an ability to analyse, without any formal
support tools, the conditional effect of test observations on their prior beliefs, still less to an
ability to design a test system to extract optimum information from this extremely complex
and interconnected probabilistic system.

A Bayesian approach proceeds as follows. Firstly, we construct a Bayesian belief net.
In this net the ancestor nodes represent the various general reasons that the testers may
attribute to software failure, for example incorrectly stripping leading zeroes from a number.
The links between ancestor nodes show relationships between these types of failure. The child
nodes are the various test types, where the structuring ensures that all tests represented by
a given test node are regarded exchangeably by the testers. Secondly, we quantify beliefs
as to the likely levels of failure of each type and the conditional effects of each failure type
on each category of test outcome. Finally, we may choose a test suite to optimise any
prespecified criterion, either based on the probability of any faults remaining in the system
or on the utility of allowing certain types of failure to pass undetected at software release.
This optimality calculation is tractable even for large systems. This is because what concerns
us, for any test suite, is the probability of faults remaining given that all the chosen tests
are successful, provided any faults that are detected will be fixed before release.
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In principle, this methodology, by combining Bayesian belief networks with optimal ex-
perimental design, is massively more efficient and flexible than current approaches. Is the
approach practical? From our experiences working with an industrial partner, BT, I would
say definitely yes. A general overview of the approach that we developed is given in [14].
As an indication of the potential increase in efficiency, we found that Bayesian automatic
design provided 8 tests which together were more efficient than 233 tests designed by the
original testing team, and identified additional tests that were appropriate for checking areas
of functionality that had not been covered by the original test suite. This is not a criticism
of the testers, who were very experienced, but simply illustrates that optimal multi-factor
probabilistic design is very difficult. Therefore, the right tools offer enormous potential for
efficiency gains.

Of course, there are many issues that must be sorted out before such benefits can be
realised, from the construction of user-friendly interfaces for building the models to (a much
larger obstacle!) the culture change required to recognise and routinely exploit such methods.
However, the subjective Bayes approach does provide a complete framework for quantifying
and managing the uncertainties of high-reliability testing. It is hard to imagine any other
approach which could do so.

2.2 Complex physical systems

Many large physical systems are studied through a combination of mathematical modelling,
computer simulation and matching against past physical data, which can, hopefully, be used
to extrapolate future system behaviour; for example, this accounts for much of what we
claim to know about the nature and pace of global climate change. Such analysis is riddled
with uncertainty. In climate modelling, each computer simulation can take between days
and months, and requires many input parameters to be set, whose values are unknown.
Therefore, we may view computer simulations with varied choices of input parameters as a
small sample of evaluations from a very high dimensional unknown function. The only way to
learn about the input parameters is by matching simulator output to historical data, which
is, itself, observed with error. Finally, and often most important, the computer simulator is
just a model, and we need to consider the ways in which the model and reality may differ.

Again, the subjectivist Bayesian approach offers a framework for specifying and synthe-
sising all of the uncertainties in the problem. There is a wide literature on the probabilistic
treatment of computer models; a good starting point with a wide collection of references
is the recent volume [13]. Our experience at Durham started with work on oil reservoir
simulators, which are constructed to help with all the problems involved in efficient man-
agement of reservoirs. Typically, these are very high dimensional computer models which
are very slow to evaluate. The approach that we employed for reservoir uncertainty analysis
was based on representing the reservoir simulator by an emulator. This is a probabilistic
description of our beliefs about the value of the simulator at each input value. This is com-
bined with statements of uncertainty about the input values, about the discrepancy between
the model and the reservoir and about the measurement uncertainty associated with the
historical data. This completely specified stochastic system provides a formal framework
allowing us to synthesise expert elicitation, historical data and a careful choice of simulator
runs. Modulo many challenging technical issues arising from the size and complexity of the
system, this specification allows us to identify “correct” settings for simulator inputs (often
termed history matching in the oil industry), see [1], and to assess uncertainty for forecasts
of future behaviour of the physical system, see [2]. Our approach relies on a Bayes linear
foundation (which I’ll discuss in section 4) to handle the technical difficulties involved with
the high dimensional analysis; for a full Bayes approach for related problems, see [9].

3



Our approach has been implemented in software employed by several users in the oil
industry, through our collaborators ESL (Energy SciTech Limited). This means that we
get to keep track, just a little, of how the approach works in practice. Here’s an example
of the type of success which ESL has reported to us. They were asked to match an oil
field containing 650 wells, based on 1 million plus grid cells (for each of which permeability,
porosity, fault lines, etc. are unknown inputs). Finding the previous best history match
had taken one man-year of effort. Our Bayesian approach, starting from scratch, found a
match using 32 runs (each lasting 4 hours and automatically chosen by the software), with a
fourfold improvement according to the oil company measure of match quality. This kind of
performance is impressive, although, of course, these remain very hard problems and much
must still be done to make the approach more flexible, tractable and reliable.

Applications such as these make it clear that careful representation of subjective beliefs
can give much improved performance in tasks that people are already trying to do. There
is an enormous territory where subjective Bayes methods are the only feasible way forward.
This is not to discount the large amount of work that must often be done to bring an
application into Bayes form, but simply to observe that for such applications there are no
real alternatives. In such cases, the benefits from the Bayesian formulation are potentially
very great and clearly demonstrable. The only remaining issue, therefore, is whether such
benefits outweigh the efforts required to achieve them. This “pain to gain” ratio is crucial
to the success of subjective Bayes applications. When the answer really matters, such as for
global climate change, the pain threshold would have to be very high indeed to dissuade us
from the analysis.

By explicitly introducing our uncertainty about the ways in which our models fall short of
reality, the subjective Bayes analysis also does something new and important. Only technical
experts are concerned with how climate models behave, while everybody has an interest in
how global climate will actually change. For example, the Guardian newspaper leader on
Burying Carbon (Feb 3, 2005) tell us that “the chances of the Gulf Stream - the Atlantic
thermohaline circulation that keeps Britain warm - shutting down are now thought to be
greater than 50% ”. This sounds like something we should know. However, I am reasonably
confident that no climate scientist has actually carried an uncertainty analysis which would
be sufficient to provide a logical bedrock for such a statement. We can only use the analysis of
a global climate model to guide rational policy towards climate change if we can construct a
statement of uncertainty about the relation between analysis from the climate model and the
behaviour of the real climate. To further complicate the assessment, there are many models
for climate change in current use, all of whose analyses should be synthesised as the basis
of any judgements about actual climate change. Specifying beliefs about the discrepancy
between models and reality is unfamiliar and difficult. However, we cannot avoid this task if
we want our statements to carry weight in the real world. A general framework for making
such specifications is described in [8].

3 Scientific subjectivism

3.1 The role of subjectivism in scientific enquiry

In the kind of applications we’ve discussed so far, the only serious issues about the role of
subjectivity are pragmatic ones. Each aspect of the specification, whether part of the “like-
lihood function” or the “prior distribution”, encodes a collection of subjective judgements.
The value of the Bayesian approach lies firstly in providing a language within which we
can express all these judgements and secondly in providing a calculus for analysing these
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judgements.
Controversy over the role of subjectivity tends to occur in those areas of scientific exper-

imentation where we do appear to have a greater choice of statistical approaches. Laying
aside the obvious consideration that any choice of analysis is the result of a host of subjec-
tive choices, there are, essentially, two types of objections to the explicit use of subjective
judgements; those of principle, namely that subjective judgements have no place in scientific
analyses; and those of practice, namely that the pain to gain ratio is just too high.

These are deep issues which have received much attention; a good starting place for
discussion of the role of Bayesian analysis in traditional science is [12]. Much of the argument
can be captured in simple examples. Here’s one such, versions of which are often used to
introduce the Bayesian idea to people who already have some familiarity with traditional
statistical analysis.

Firstly, we can imagine carrying out Fisher’s famous tea-tasting experiment. Here an
individual, Joan say, claims to be able to tell whether the milk or the tea has been added
first in a cup of tea. We perform the experiment of preparing ten cups of tea, choosing each
time on a coin flip whether to add the milk or tea first. Joan then tastes each cup and gives
an opinion as to which ingredient was added first. We count, the number, X, of correct
assessments. Suppose, for example, that X = 9.

Now compare the tea tasting experiment to an experiment where an individual, Harry
say, claims to have ESP as demonstrated by being able to forecast the outcome of fair coin
flips. We test Harry by getting forecasts for ten flips. Let X be the number of correct
forecasts. Suppose that, again, X = 9.

Within the traditional view of statistics, we might accept the same formalism for the
two experiments, namely that, for each experiment, each assessment is independent with
probability p of success. In each case, X has a binomial distribution parameters 10 and p,
where p = 1/2 corresponds to pure guessing. Within the traditional approach, the likelihood
is the same, the point null is the same if we carry out a test for whether p = 1/2, and
confidence intervals for p will be the same.

However, even without carrying out formal calculations, I would be fairly convinced of
Joan’s tea tasting powers while remaining unconvinced that Harry has ESP. You might
decide differently, but that is because you might make different prior judgements. This is
what the Bayesian approach adds. Firstly, we require our prior probability, g say, that Harry
or Joan is guessing. Then, if not guessing, we need to specify a prior distribution q over
possible values of p. Given g, q, we can use Bayes theorem to update our probability that
Harry or Joan is just guessing and, if not guessing, we can update our prior distribution
over p. We may further clarify the Bayesian account by giving a more careful description
of our uncertainty within each experiment based on our judgements of exchangeability for
the individual outcomes. This allows us to replace our judgements about the abstract model
parameter p with judgements about observable experimental outcomes as the basis for the
analysis.

Therefore, the Bayes approach shows us exactly how and where to input our prior judge-
ments. We have moved away from a traditional view of a statistical analysis, which attempts
to express what we may learn about some aspect of reality by analysing an individual data
set. Instead, the Bayesian analysis expresses our current state of belief based on combining
information from the data in question with whatever other knowledge we consider relevant.

The ESP experiment is particularly revealing for this discussion. I used to use it routinely
for teaching purposes, considering that it was sufficiently unlikely that Harry would actually
possess ESP that the comparison with the tea tasting experiment would be self-evident. I
eventually came to realise that some of my students considered it perfectly reasonable that
Harry might possess such powers. While writing this article, I tried googling “belief in
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ESP” over the net, which makes for some intriguing reading. Here’s a particularly relevant
discussion from an article in the September 2002 issue of Scientific American, by Michael
Sherme, titled “Smart People Believe Weird Things”. After noting that, for example, around
60% of college graduates appear to believe in ESP, Sherme reports the results of a study that
found “no correlation between science knowledge (facts about the world) and paranormal
beliefs. The authors, W. Richard Walker, Steven J. Hoekstra and Rodney J. Vogl, concluded:
“Students that scored well on these [science knowledge] tests were no more or less sceptical of
pseudo-scientific claims than students that scored very poorly. Apparently, the students were
not able to apply their scientific knowledge to evaluate these pseudo-scientific claims. We
suggest that this inability stems in part from the way that science is traditionally presented
to students: Students are taught what to think but not how to think.” Sherme continues
as follows. “To attenuate these paranormal belief statistics, we need to teach that science
is not a database of unconnected factoids but a set of methods designed to describe and
interpret phenomena, past or present, aimed at building a testable body of knowledge open
to rejection or confirmation.”

The subjective Bayesian approach may be viewed as a formal method for connecting
experimental factoids. Rather than treating each data set as though it has no wider context,
and carrying out each statistical analysis just as though this were the first investigation that
had ever been carried out of any relevance to the questions at issue, we consider instead how
the data in question adds to, or changes, our beliefs about these questions.

If we think about the ESP experiment in this way, then we should expand the problem
description to reflect this requirement. Here is a minimum that I should consider. First, I
would need to assess my probability for E, the event that ESP is a real phenomenon that at
least some people possess. This is the event that joins my analysis of Harry’s performance
with my generalised knowledge of the scientific phenomenon at issue. Conditional on E, I
should evaluate my probability for J , the event that Harry possesses ESP. Conditional on J
and on J complement, I should evaluate my probabilities for G, the event that Harry is just
guessing and C, the event that either the experiment is flawed or Harry is, somehow, cheating;
for example, the coin might be heads biased and Harry mostly calls heads. This is the event
that captures my generalised knowledge of the reliability of experimental procedures in this
area. If there is either cheating or ESP, I need a probability distribution over the magnitude
of the effect.

What do we achieve by this formalism? Firstly, this gives me a way of assessing my actual
posterior probability for whether Harry has ESP. Secondly, if I can lay out the considerations
that I use in a transparent way, it is easy for you to see how your conclusions might differ
from mine. If we disagree as to whether Harry has ESP, then we can trace this disagreement
back to differing probabilities for the general phenomenon, in this case ESP, or different
judgements about particulars of the experiment, such as Harry’s possible ability at sleight of
hand. More generally, by considering the range of prior judgements that might reasonably
be made, I can distinguish between the extent to which the experiment might convince me
as to Harry’s ESP, and the effect it might have on others. I could even determine how large
and how stringently controlled an experiment would need to be in order to have a chance of
convincing me of Harry’s powers. More generally, how large would the experiment need to
be to convince the wider community?

The above example provides a simple version of a general template for any scientific
Bayesian analysis. There are scientific questions at issue. Beliefs about these issues require
prior specification. Then we must consider the relevance of the scientific formulation to the
current experiment along with all the possible flaws in the experiment which would invali-
date the analysis. Finally, a likelihood must be specified, expressing data variability given
the hypotheses of interest. There are two versions of the subsequent analysis. Firstly, you
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may only want to know how to revise your own beliefs given the data. Such private analyses
are quite common. Many scientists carry out at least a rough Bayes assessment of their
results, even if they never make such analysis public. Secondly, you may wish to publish
your results, to contribute to, or even to settle, a scientific issue. It may be that you can
construct a prior specification that is very widely supported. Alternately, it may be that, as
with the ESP experiment, no such generally agreed prior specification may be made. Indeed,
the disagreement between experts may be precisely what the experiment is attempting to
resolve. Therefore, our Bayesian analysis of an experiment should begin with a probabilis-
tic description whose qualitative form can be agreed on by everyone. This means that all
features, in the prior and the likelihood, that cause substantial disagreement should have
explicit form in the representation, so that differing judgements can be expressed over them.
Statistical aspects of the representation may employ standard data sharing methodologies
such as meta-analysis, multi-level modelling and Bayes empirical Bayes, provided all the rel-
evant judgements are well sourced. We can then produce the range of posterior judgements,
given the data, which correspond to the range of “reasonable” prior judgements held within
the scientific community. We may argue that a scientific case is “proven” if the evidence
should be convincing given any reasonable assignment of prior beliefs. Otherwise, we can
assess the extent to which the community might still differ given the evidence. We should
make this analysis at the planning stage in order to design experiments that can be decisive
for the scientific community or to conclude that no such experiments are feasible.

All of this is clear in principle, though implementation of the program may be difficult
in individual cases. Each uncertainty statement is a well sourced statement of belief by an
individual. If individual judgements differ and if this is relevant, then such differences are
reflected in the analysis. However, in practice such an approach is rarely followed. Let us
consider again the objections to the Bayesian approach.

3.2 Potential objections to scientific subjectivism

The principled objection to Bayesian subjectivism is that the subjective Bayesian approach
answers problems wrongly, because of unnecessary and unhelpful appeals to arbitrary prior
assumptions, which should have no place in scientific analyses. Individual subjective rea-
soning is inappropriate for reaching objective scientific conclusions, which form the basis of
consensus within the scientific community.

This objection would perhaps have more force if there was a logically acceptable alterna-
tive. I do not here want to dwell on the difficulties in interpretation of the core concepts of
more traditional inference, such as significance and coverage properties: a valid confidence
interval may be empty, for example when constructed by the intersection of a series of re-
peated confidence intervals; a statistically significant result obtained with high power may
be almost certainly false, and so forth. Further, I do not know of any way to construct
even the basic building blocks of the inference, such as the relative frequency probabilities
that we must use if we reject the subjective interpretation, that will stand up to proper
logical scrutiny. Instead, let us address the principled objection directly. We cannot con-
sider whether the Bayes approach is appropriate without first clarifying the objectives of
the analysis. When we discussed the analysis of physical models, we made the fundamental
distinction between analysis of the model and analysis of the physical system. Analysing
various models may give us insights but at some point these insights must be integrated into
statements of uncertainty about the system itself. Analysing experimental data is essentially
the same. We must be clear as to whether we are analysing the experiment or the problem.

In the ESP experiment, the question is whether Harry has ESP, or, possibly, whether ESP
exists at all. If we analyse the experimental data as part of a wider effort to address our un-
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certainty about these questions, then external judgements are clearly relevant. As described
above, the beliefs that are analysed may be those of an individual, if that individual can
make a compelling argument for the rationality of a particular belief specification, or instead
we may analyse the collection of beliefs held by informed individuals in the community. The
Bayes analysis is appropriate for this task, as it is concerned to evaluate the relevant kinds of
uncertainty judgements, namely the uncertainties over the quantities that we want to learn
about, given the quantities that we observe, based on careful foundational arguments using
ideas such as coherence and exchangeability to show why this is the unavoidable way to
analyse our actual uncertainties.

On the other hand, suppose that, for now, we only want to analyse the data from this
individual experiment. Our goal, therefore, cannot be to consider directly the basic question
about the existence of ESP. Indeed, it is hard to say exactly what our goal is, which is why
there often is so much confusion in discussions between proponents of different approaches.
All that we can say informally is that the purpose of such analysis is to provide information
which will be helpful at some future time for whoever does attempt to address the real
questions of interest. We are now in the same position as the modeller; we have great
freedom in carrying out our analyses but we must be modest in the claims that we make for
them.

This is the world in which we find objective Bayes methodology. What does the word
“objective” mean in this context? It does not mean that there is an objective status for
the statements made by the methodology, as the approach doesn’t offer any other testable
meaning for probability statements beyond the uncertainty judgements of the individual.
Nor does it mean that there is some objectively testable property that the answers derived
by the analysis will necessarily satisfy. Thus, we have no way to judge in what sense, and to
what degree, we should have confidence in the conclusions of an objective Bayes analysis. It
does not even mean that there is some objectively testable principle that has been used to
assemble the ingredients of the analysis.

Instead, as with most other uses of the term, objective here usually means that we are
not attempting to address the question at issue (should we think that Harry has ESP?)
but instead we are constructing a model for the inference by introducing and attempting to
answer some surrogate question which is less challenging. I’m not sure what the question
would be here - perhaps we imagine somebody who has just arrived on this planet and we
wonder what our stranger would conclude if immediately confronted by Harry’s performance.
Of course, if we formulate this surrogate question too precisely then we will not be able to
answer it; after all, we have no idea what such a stranger would actually conclude. This
ambiguity can sometimes be benign. If we have a very large experiment, then a simple
automatic choice of prior, along with some large sample approximation argument to show
that the conclusion is not overly sensitive to the choice of prior, may save a lot of time
and effort as compared to a full subjectivist analysis while reaching substantially the same
conclusion. However, the value of such an analysis still lies in the robust approximation to
the full subjectivist analysis.

When analysis of the current experiment is sensitive to the prior specification, as in our
ESP experiment, it is clear that there is no objective answer to the question of Harry’s
powers, based on analysis of the given data. To pretend otherwise is to enter the world of
pseudo-science which we alluded to above, in which we behave just as those science students
who appear unable to make the links between reason, experience and observation. Subjective
Bayesian analysis is hard but necessary precisely because it does concern such a fully rounded
assessment.

Of course, the practical objection to routine use of subjective Bayesian analysis is that it
is too hard, because of the difficulty of finding justifiable prior distributions for the quantities
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of interest in complicated problems. If the questions at issue are not sufficiently important to
warrant a full subjectivist analysis, or if a simple analysis can bring out the most important
messages of the data very quickly, or if the area is sufficiently new that our views really are
like those of a stranger from another planet, then some form of automatic Bayes analysis may
be useful and revealing. However, just as with over-reliance on any other model, the danger
in relying too much on such automatic analyses is that we will forget their limitations.

And if statisticians risk confusion as to the meaning of their analyses, how much greater
is the danger for those non statisticians who rely on the output of statistical analyses? As
a current and tragic example, the General Medical Council for the UK has just ruled that
Professor Sir Roy Meadow should be struck off the medical register due to serious professional
misconduct for giving evidence beyond his expertise at a trial which led to a mother being
wrongfully jailed for the murder of her two baby sons. Much of the evidence of misconduct is
based around Prof Meadow’s statement at the trial that there was just a “one in 73 million”
chance that two babies with the given background could each suffer cot death. (This figure
was apparently obtained by squaring the circa 8,500 to one chance of a single baby dying of
cot death in a family.) The actual odds are now considered to be far lower. The GMC fitness
to practise panel said in its verdict that Prof Meadow had failed in his duty to check the
validity of his statistics. There are many features of the case which are worthy of comment.
Of particular relevance is Prof. Meadows defence of his claim. The following comes from the
Guardian, July 2nd, 2005.

“Prof Meadow, whose evidence was used in the cases of three other women wrongly
accused of killing their babies, said he had been quoting the statistic from a highly respected
report on sudden infant deaths, which at the time had yet to be published. Defending his
right to use the report in his evidence at Mrs Clark’s trial, he said, “I was quoting what I
believed to be a very thorough study ... by experts, several of whom I knew and respected.”
Nicola Davies QC, representing Prof Meadow, asked: “Did you have any difficulty with
quoting statistics from the study?” He replied: ”To me it was like I was quoting a radiologist’s
report or a piece of pathology ... I was quoting the statistics, I wasn’t pretending to be a
statistician.””

I have not seen the study in question, although I have read claims that Prof Meadow
quoted some calculations from the study which were taken out of context, ignoring the con-
ditions and qualifications around the quoted values. However, the general attitude displayed
to the statistical analysis, conferring on it a purely objective and value free status, surely lies
at the heart of the issue. Prof Meadow’s professional misfortune may only have been that the
statistical ‘mistake’ for which he is blamed was sufficiently elementary that it could easily be
argued that overlooking the error was professionally negligent. I can easily envisage a more
sophisticated treatment, say an ‘objective Bayes’ analysis, which, by placing ‘uninformative’
priors on certain key parameters in a more elaborate version of the model, could make es-
sentially the same ‘error’ but in a way which would be far harder to detect. As statistical
analyses become more sophisticated and more difficult for anyone but an expert statistician
to check, it becomes increasingly important that the meaning of the statistical analysis is
clearly conveyed. Any statistician who does a Bayesian analysis for a problem with impor-
tant practical consequences but does not make good and clear use of informed judgements,
and then labels that analysis as ‘objective’, should be aware of the misunderstandings and
mistakes that will follow when their claim is taken precisely at face value.
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4 Pure subjectivism

We have argued that the subjective Bayes approach is successful in practice, and is invaluable
for serious scientific analysis. This, however, leaves open possible criticisms of the Bayes
approach from the subjective viewpoint itself. Carrying out a careful Bayesian analysis can
prove very difficult. In part this is because such an analysis requires an extremely detailed
level of prior probabilistic belief specification. Typically, we find it difficult to make detailed
specifications in a way which genuinely corresponds to our prior beliefs. Therefore, artificial,
conventional prior forms are used, often bearing only a limited relation to our prior beliefs, so
that the resulting Bayesian analysis bears only a limited relation to our actual judgements.

Is such a detailed specification really necessary? A true subjectivist formulation might
start by recognising the limited abilities of the individual to make large collections of un-
certainty specifications. It is precisely this consideration that led de Finetti, in [3], the
most careful statement of the subjectivist position yet written, to chose expectation rather
than probability as his primitive for the subjectivist theory. With expectation as primitive,
we can assess directly whatever sub-collection of probabilities and expectations we consider
ourselves able to specify at any given time, whereas, if probability is the primitive, then we
must specify every probability before we can specify any expectation. Unfortunately, the
liberating aspect of this approach is somewhat lost in de Finetti’s development, as changes
in beliefs are still carried out by conditioning on events, which again requires a finely de-
tailed level of prior specification (although we may give bounds on the coherent inferences
consistent with any partial specification, see [10]).

Therefore, we must also consider whether it is an intrinsic part of the subjectivist position
that beliefs should change by conditioning via Bayes theorem. This question cuts to the heart
of the Bayes position, as it is impossible to demonstrate any definitive sense in which beliefs
should change by conditioning. You might think that someone, somewhere has proved that
conditioning is the correct way to modify beliefs, at least under certain conditions. However,
all that can be proved is results such as the following. Suppose that you specify a joint
probability distribution for a collection of random quantities. Suppose that you also write
down a rule for changing your probabilities for some of the quantities, as a function of the
numerical values of the remaining quantities. If this rule for changing your probabilities is
not the usual conditional probability formula, then you can be made a sure loser, in the
usual sense of placing a sequence of bets that pay off depending on various combinations of
outcomes of the random quantities.

This is not a demonstration that beliefs should change by conditioning: all that it does is
to eliminate non-Bayesian rules for updating beliefs in the class of rules based exclusively on
current beliefs and the values of the observables. The fundamental question remains as to
what relevance probabilities that are declared conditional on the outcome of certain events
should hold for the actual posterior probabilities that you assign when you do learn of the
outcomes. By the time that you observe the data, you may have come across further unan-
ticipated but relevant information (or you may not, and this also is relevant information),
and you may well have further general insights about the problem, by study of relevant liter-
ature, deeper mathematical treatment or careful data analysis. None of this corresponds to
Bayesian conditioning. Indeed, I cannot remember ever seeing a non-trivial Bayesian analysis
which actually proceeded according to the usual Bayes formalism. All of this illustrates the
simple observation that there is no stronger reason why there should be a rule for going from
prior to posterior beliefs than that there should be such a rule for constructing prior beliefs
in the first place. (For example, any attempt to view conditional beliefs as the beliefs that
you “should” hold were you to observe the conditioning event and “nothing else” is doomed
to self-contradiction, as the fact that you observed nothing else was not part of the original
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conditioning event, and would be informative were it to be included in the conditioning.)
For the above reasons, all attempts to present the Bayesian approach as a normative

theory, which describes how we should, in principle, modify our beliefs given evidence, must
be fundamentally incomplete. They are analogous to a similar discussion as to whether and
when, say, a global climate model is right or wrong. This is the wrong question. We know
that the global climate model differs from the actual climate - they are two quite different
things. Instead, our two tasks are firstly to identify why we consider that a particular climate
model is informative for climate, and secondly to quantify the value of this information, by
considering the residual uncertainty in climate behaviour, given the analysis of the climate
model.

If we view the Bayes formalism as providing a model for belief change which is neither
normative nor descriptive, then the natural questions are firstly why do we consider this
model relevant to actual problems of belief change and secondly how do we describe the
discrepancy between this model and the reality of changing beliefs? Our answers to these
questions are as follows; for details see [6]. We begin by distinguishing between your current
conditional probabilities P(A|B), P(A|Bc) and your posterior probability Pt(A) that you
will assign at future time t after you have observed either B or Bc. We need a temporal
principle to link beliefs that you specify now with those that you will specify at time t. This
link is provided by the temporal sure preference (TSP) principle, which is as follows.

“If you are sure that at future time t you will prefer the (small) random penalty A to
the (small) random penalty B, then you should not now prefer B to A.”

TSP places a very weak requirement on your temporal preferences, which would certainly
be satisfied within the conventional Bayesian formulation. However, unlike the Bayes formal-
ism, which seeks to make today’s specification logically compelling for tomorrow’s revision of
belief, TSP places our preferences in the right order, requiring logical certainty in the future
to be compelling for our current belief evaluations.

If we accept TSP for the current inference, then we can show, see [6], that this establishes
the following stochastic relationship between conditional and posterior probabilities, namely
that at the present moment you must make the specification

Pt(A) = P(A|B) +R (1)

where P(A|B) is the conditioning of A on the partition B = (B,Bc), namely

P(A|B) = P(A|B)B + P(A|Bc)Bc

where B,Bc are the indicator functions for the corresponding events, and R is a further
random quantity with

E(R) = E(R|B) = E(R|Bc) = 0

This corresponds closely to the interpretation that we have earlier suggested for math-
ematical models of physical systems. For example, a climate model does not tell us what
will actually happen, but instead is useful, for example, in giving us a mean forecast, with
associated variance, whose value lies in reducing, but not eliminating, our uncertainty about
climate behaviour. Similarly, from (1), we are justified in viewing P(A|B) as providing a
mean forecast for our future judgements, while the residual quantity R expresses the un-
certainty in the conditional mean forecast. Informally, the larger the variance of P(A|B)
as compared to the variance of R, the more informative a formal Bayes inference based on
conditioning on B will be for the actual posterior judgement on A. As the variance of Pt(A)
is fixed, we may both increase the variance of P(A|B) and decrease the variance of R by
refining the partition B.
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This argument clarifies the logical status of a Bayesian analysis. It also frees us from the
tyranny of conditioning. Even though (1) concerns probabilities, this relation can only be
derived within a formalism which starts with expectation as primitive. In that formulation,
probabilities are just expectation statements, and (1) is a special case of the following general
result. Suppose that D is a vector of quantities which will be observed by time t. Given TSP,
your current beliefs about your posterior expectation Et(X) for any other random vector X,
specified at time t, must satisfy the following relations:

X = Et(X) + S (2)

Et(X) = ED(X) + R (3)

where ED(X) is the Bayes linear mean for X determined by

ED(X) = E(X) + Cov(X, D)(Var(D))−1(D − E(D)

and R,S are further random quantities, with

E(R) = E(S) = Cov(R,D) = Cov(S, D) = Cov(R,S) = Cov(S, Et(X)) = 0

The Bayes linear analysis is based on direct specification of means, variances and covari-
ances; for an overview of the Bayes linear approach to statistics see [7]. From (2), (3), the
Bayes linear analysis for X bears the same relation to the actual posterior judgement for X
that the posterior judgement for X bears to the quantity X itself. Bayesian conditioning is
simply the special case of (3) in which D comprises the indicator functions for a partition.

If conditioning is not the operation underpinning the Bayesian analysis, then the re-
quirement of full probabilistic specification can be seen as an arbitrary imposition. We may
make full probabilistic specifications where this is natural and straightforward, and, this
representation will maximise the proportion of uncertainty expressed by ED(X). However,
this is a refinement of degree, not of kind. If the extra information is worth the effort in
prior specification and analysis that is required, then the full Bayes approach is worthwhile.
Otherwise a simpler analysis is appropriate. Placing the subjectivist analysis within a logical
framework which distinguishes between the model for the inference and the actual inference
gives us control of the level of detail of our prior specification and analysis, while reminding
us of the requirement to relate the formal analysis to the larger inferential problem which
should always be our primary concern. Of course, this raises further questions as to precisely
how such inferences should be conducted. This is largely unexplored territory; for theoretical
underpinnings embedding statistical models derived from exchangeability judgements within
this more fully subjectivist view, see [5]. Subjectivist theory offers a language and framework
rather than a complete description of belief representation and inference. Whether such a
complete description could ever be provided is, in my subjective opinion, extremely doubtful.

5 Concluding comments

The subjective Bayes approach is alive and well and proving very successful in many im-
portant practical applications. However, much of the potential of the approach is still to
be realised. Subjectivist analysis may appear daunting, but, of course, what is difficult is
making reasoned judgements about complex situations within any framework at all. The
subjectivist approach does not make these difficulties vanish, but it does offer a coherent
language and tool set for analysing all of the uncertainties in complicated problems, and
therefore provides the best method that I know for analysing uncertainty in important real
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world problems. But who will carry out such analyses? Modellers are skilled at modelling,
theorists develop theory, experimenters spend their time experimenting and statisticians tend
to view their role as analysing data. These are all essential skills. But we are missing the
specialism which moves beyond these comfort zones and puts all these activities together.

In section 2, we emphasised the distinction between analysing models and making in-
ferences about the systems that the models purport to represent. In section 3, we made
the similar distinction between making such inferences and analysing data collections of
some relevance to these questions. In section 4, we further distinguished between our ac-
tual inferences about such systems and the output of formal inferential mechanisms, such as
traditional Bayes. When we properly recognise, develop and apply the ideas and methods
of subjectivist analysis, then we will be able to carry out that synthesis of models, theory,
experiments and data analysis which is necessary to make real inferences about the real
world.
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