
DOES THE EFFECT OF MICRONUTRIENT SUPPLEMENTATION ONNEONATAL SURVIVAL VARY WITH RESPECT TO THE PERCENTILES OFTHE BIRTH WEIGHT DISTRIBUTION?Franesa Dominii, Sott L. Zeger, Giovanni Parmigiani, Joanne Katz, and Parul ChristianJohns Hopkins Bloomberg Shool of Publi Health615 N. Wolfe Street 21205Baltimore MDfdomini�jhsph.eduJuly 20, 2005AbstratSienti� Bakground: In developing ountries, higher infant mortality is partially ausedby poor maternal and fetal nutrition. Clinial trials of mironutrient supplementation are aimedat reduing the risk of infant mortality by inreasing birth weight. Beause infant mortality isgreatest among the low birth weight infants (LBW) (� 2500 grams), an e�etive intervention mayneed to inrease birth weight among the smallest babies. Although it has been demonstratedthat supplementation inreases the birth weight in a trial onduted in Nepal, there is inonlusiveevidene that the supplementation improves their survival. It has been hypothesized that a potentialbene�t of the treatment on survival among the LBW is partly ompensated by a null or even harmfule�ets among the largest infants. Exploratory analyses have suggested that the treatment e�eton birth weight might vary with respet to the perentiles of the birth weight distribution.Data: The methods in this paper are motivated by a double-blind randomized ommunity trialin rural Nepal (Christian et al 2003a,b). The investigators implemented an intervention programto evaluate bene�ts of the following mironutrient supplementations: foli aid and vitamin A(F+A); foli aid, iron, and vitamin A (F+I+A); foli aid, iron, zin, and vitamin A (F+I+Z+A);multiple nutrients and vitamin A (M+A). Eah mironutrient supplement was administered weeklyto 1000 pregnant women, who ultimately approximately delivered 800 live-born infants. The teammeasured the birth weight within 72 hours of delivery and then followed the infants for one yearto determine whether or not they survived. In addition, they measured several harateristis ofthe mother (maternal age, parity, maternal height, arm irumferene) and of the infant (weight,length, head and hest irumferene).In this ase study we fous on the supplementations F+I+A and M+A as ompared to vitaminA only and we address the following sienti� questions:1. Is there an overall e�et of the treatments on birth weight? Does this e�et vary with theperentiles of the birth weight distribution, in partiular, is it largest among the LBW infants?2. Is there an overall e�et of the treatments on survival? Does this e�et vary with the per-entiles of the birth weight distribution, in partiular, is it largest among the LBW infants?3. Do these perentile-spei� e�ets on birth weight and survival di�er by mironutrients?1



Statistial Approah: The data analysis is hallenged by measurement error and informa-tive missing data in birth weight and survival. In ommunity-based interventions in developingountries, most births our in the home without assistane from trained birth attendants. Ap-proximately 88% of the babies are measured within 72 hours of the delivery. The remaining 12%are measured between the 72 and the 2000 hours approximately. Hene, weights are obtained atvarying times following birth and therefore they are impreise measures of the \true weight atbirth". In addition, a high proportion of deaths of young infants our in the �rst few hours afterbirth. If there is a delay in reahing the mother and infant, then many of these infants would beweighed beause they have already died. For example in the F+I+A group, approximately 7% ofthe birth weight measurements are missing and among this 7%, approximately 34% of the babieshave died right within 24 hours of the delivery. These babies are likely to have been of lower birthweight than those who survived to be weighed, and therefore, these missing birth weights due todeath are likely to be informative.In this paper we develop a measurement error model with ounterfatual variables that addressthe sienti� questions for this birth weight-mortality ase study. Our approah integrates Bayesianmethods and data augmentation (Tanner and Wong, 1987; Tanner, 1991; Albert and Chib, 1993;Chib and Greenberg, 1998) with a ounterfatual model and prinipal strati�ation (Rubin, 1978;Holland, 1986; Frangakis and Rubin, 2002). We alulate marginal posterior distributions of thetreatment e�ets on birth weight and infant mortality that are allowed to vary with the perentiles ofthe birth weight distributions. We ompare our posterior inferenes with two simpler approahes.The �rst still relies on a Bayesian approah but ignores the unertainty in the imputation andpredition of the birth weight and does aount for the mother's ovariates. The seond is asimpler re-sampling approah that imputes the missing birth weights (Rubin, 1987).Results and Publi Health Impat: First we found that both F+I+A and M+A inreasebirth weight. However, the F+I+A inreases birth weight mainly among the LBW infants, whereasM+A inreases birth weight aross the entire birth weight distribution ompared to vitamin A only.The F+I+A redues the risk of infant mortality, whereas the M+A slightly inreases the risk ofearly infant mortality, espeially among the larger infants.Currently reommendations exist to supplement pregnant women in developing ountries. Thisase study provide ritial information toward the evaluation and planning of these publi healthinterventions.
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1 IntrodutionIn developing ountries, higher infant mortality is partially aused by poor maternal and fetalnutrition. Beause infant mortality is greatest among low birth weight (LBW � 2500 grams) andvery low birth weight (VLBW � 1500 grams) infants, it is assumed that an e�etive interventionmust inrease birth weight among the smallest babies, that is, in the left tail of the birth weightdistribution. That maternal nutritional supplementation inreases average birth weight has beendemonstrated in repliated randomized trials in several ountries (Lehtig et al., 1975; Ceesayet al., 1997; Caul�eld et al., 1999; Christian et al., 2003a). However, to date, there is limited diretevidene that maternal supplementation auses a redution in the prevalene of babies born atthe smallest weights and that this redution improves their survival (Garner et al., 1992; MIntireet al., 2001; West et al., 1999; Katz et al., 2000a; Rasmussen, 2001; Christian et al., 2003b).The methods in this paper are motivated by a double-blind randomized ommunity trial in ruralNepal (Christian et al., 2003a). The investigators administered an intervention program to evaluatebene�ts of the following mironutrient supplementations: foli aid, and vitamin A; foli aid, iron,and vitamin A; foli aid, iron, zin, and vitamin A; multiple nutrients and vitamin A. The ontrolwas vitamin A alone. Eah mironutrient supplement was administered weekly to 1000 pregnantwomen, who ultimately delivered approximately 800 live born infants. Details on the study designsare in Christian et al. (2003a). The team measured the birth weight within 72 hours of deliveryand then followed the infants for one year to determine whether or not they survived. In additionthey measured several harateristis of the mother (maternal age, parity, maternal height, armirumferene) and of the infant (weight, length, head and hest irumferene).To develop the methodology, we will fous our data analysis on two novel treatment groups,the foli aid, iron, and vitamin A (denoted as F+I+A) and the multiple nutrient and vitamin A(denoted as M+A), in omparison to the standard ontrol (vitamin A only). The data analysis ishallenged by measurement error and informative missing data. In ommunity-based interventionsin developing ountries, a large proportion of births our in the home without assistane fromtrained birth attendants. For example for in the F+I+A group, 88% of the babies were measuredwithin 72 hours of the delivery. The remaining 12% were measured between the 72 and the 2644hours. Hene, the observed weights are impreise measures of the \birth weight" whih we de�nehere as the value at 72 hours.In addition, a non-negligible proportion of infants die in the �rst few hours of birth. If there isa delay in reahing the mother and infant, then many of these infants annot be weighed beausethey have already died. In the F+I+A group, approximately 7% of the birth weight measurementsare missing and among this 7%, 34% of the babies have died right after the delivery. These babiesare likely to have been of lower birth weight than those who survived to be weighed, and therefore,these missing birth weights are likely to be informative of birth weight. Table 1 provides summarystatistis for all treatment groups. Gestational age, number of igarettes smoked, height, weightand age of the mother are all good preditors of birth weight and will be used to impute missingweights.An interesting aspet of this study is that the investigators antiipate that some of these mi-ronutrient supplementations may a�et birth weight and ultimately survival di�erently among thesmaller and larger babies. The top panel of Figure 1 shows the di�erene between the empirial3



quantile funtions of the birth weights for the two novel interventions, eah versus the ontrol( bQ1(p)� bQ0(p)) plotted against the perentiles p. The red dots denote quantile di�erenes of birthweights inluding the ones measured after the 72 hours. The blak dots denote quantile di�erenesobtained from a \working data set" where the birth weight measurements taken after the 72 hourswhere replaed by their predited values at time zero (details on this predition model are providedin Setion 2). The dotted horizontal line is plaed at the average di�erene of the birth weightsbetween the two groups. Note that although the average treatment e�ets for the two treatmentgroups are similar and equal to 67 and 81 grams for the F+I+A and M+A groups respetively,these plots suggest that there ould be an interation between the treatment e�et and the birthweight perentiles: the F+I+A inreases birth weight mainly among the smaller babies, where theM+A inreases birth weight aross the entire birth weight distribution.To explore the assoiation between birth weight and mortality, we �t a logisti regression modelexpressing the log odds of infant death as a separate smooth funtion of the birth weight for theontrol and intervention groups. The bottom panel of Figure 1 shows the estimated smooth urveswith 95% on�dene bands aross the ranges of the measured birth weights in the two groups.These plots suggest that the probability of death dereases as the birth weight inreases and tendsto rise again for the heaviest babies in the ontrol group.This exploratory analysis suggest that: 1) the treatment e�et on birth weight might varywith respet to the perentiles of the birth weight distribution for F+I+A but not for M+A; 2)the inrease in birth weights among the largest babies for M+A ould have a negative impat onsurvival; 3) it is neessary to properly aount for the measurement error in the time of the birthweight measurements.In this paper, we develop a Bayesian measurement error model to address the following sienti�questions:1. Is there an overall e�et of the treatments on birth weight? Does this e�et vary with respetto the perentiles of the birth weight distribution, in partiular, is it largest among the LBWinfants?2. Is there an overall e�et of the treatments on survival? Does this e�et vary with respet tothe perentiles of the birth weight distribution, in partiular, is it largest among the LBWinfants?3. Do these perentile-spei� e�ets on birth weight and survival di�er by mironutrients?The broad objetives of this paper are to address these sienti� questions by developing andapplying a Bayesian model with ounterfatual variables (Rubin, 1978; Holland, 1986) for thisbirth weight-mortality study. Our approah integrates Bayesian methods and data augmentation(Tanner and Wong, 1987; Tanner, 1991; Albert and Chib, 1993; Chib and Greenberg, 1998) witha ounterfatual model with prinipal strati�ation (Rubin, 1978; Holland, 1986; Frangakis andRubin, 2002). We de�ne parameters that measure the e�ets of an intervention on a linial outome(infant mortality) that are allowed to vary with the perentiles of the post-treatment variable (birthweight). A Bayesian approah to ounterfatual modelling is very attrative beause we an: 1)alulate the posterior distributions of perentile-spei� e�ets aounting for the unertaintyabout the missing ounterfatuals, measurement error, and missing data; and 2) investigate the4



sensitivity of ausal inferenes to key assumptions for whih there are no diret observations in thedata set.In our previous work (Dominii et al., 2005b) we have estimated perentile-spei� e�ets forthis ase study by omparing F+I+A versus A and by using a \working data set" where: a) themissing birth weight measurements were imputed by use of a regression model having as preditorsthe mother's ovariates; and b) the birth weight measurements made after the 72 hours wherereplaed by their predited values at time zero. We did not aount for the unertainty in theimputation and predition, and we relied upon this working data set to make inferenes on theparameters of interest.In this manusript we extend our previous approah and build a Bayesian measurement errormodel that: 1) imputes the missing birth weights aounting for the mother's ovariates and death;2) aounts for the unertainty in the imputation of the missing birth weights and in the preditionof the \weights at birth" for the babies that have been weighted after the 72 hours; 3) omparesour Bayesian inferenes with our previous work (Dominii et al., 2005b) that does not onsiderthe mother's ovariates and the unertainty in the imputation of the birth weights; 4) omparesour Bayesian inferenes with a non-parametri approah whih is based upon smoothing arossperentiles di�erenes between the empirial quantile funtions of the two groups and whih \�llsin" the missing data by multiple imputation (Rubin, 1987); and �nally 5) ontrast results betweenthe two treatment groups.2 Details on the ommunity intervention trialThe randomized trial design, methods and results have been desribed previously (Christian et al.,2003b; Katz et al., 2005). Briey, 426 ommunities in the Sarlahi distrit, Nepal, were randomizedto reeive one of �ve di�erent maternal supplements. From Deember 1998 through April 2001, allmarried women of hildbearing age who were not already pregnant or breastfeeding an infant lessthan nine months of age and who agreed to partiipate, were visited every �ve weeks and asked ifthey had experiened menses in the past �ve weeks. If they had not, they were given a urine-basedpregnany test. If found to be pregnant, they were enrolled in the trial and supplemented witheither vitamin A alone as the ontrol group (1000 �g), vitamin A plus foli aid (400 �g), vitaminA plus foli aid plus iron (60 mg ferrous fumarate), vitamin A plus foli aid plus iron plus zin(30 mg zin sulphate), or a multiple mironutrient supplement that inluded the same quantitiesof vitamin A, iron foli aid and zin, along with vitamin D (10 �g), vitamin E (10 mg) vitaminB-1 (1.6 mg), vitamin B-2 (1.8 mg), niain (20 mg), vitamin B-6 (2.2 mg), vitamin B-12 (2.6 �g),vitamin C (100 mg), vitamin K (65 �g), opper (2.0 mg), and magnesium (100 mg).Pregnant women were interviewed at the time of enrollment when maternal height, weight, age,date of last menstrual period, parity, smoking history, and other harateristis were reorded. Themain outomes of the study were birth weight and infant survival. Sine 95% of births ourredin the home, attended primarily by relatives or untrained traditional birth attendants, a femalesta� member who lived in the village reported the birth to a supervisor who dispathed an an-thropometrist to the home to obtain \birth weight" using a balane sale aurate at � 0.5 sothat pure measurement error is negligible. The aim was to weigh the infant as soon after birth as5



possible. The inability to obtain weights at the exat time of birth leads to a set of methodologialissues, some of whih an be addressed by altering data olletion proedures and some of whihan be addressed at the time of data analysis. The question is how to use the observed weights andovariates preditive of birth weight to estimate what the birth weight would have been if it hadbeen measured at the time of delivery.The seond issue is that a high proportion of deaths of young infants our in the �rst fewhours after birth. If there is a delay in reahing the mother and infant, then many of these infantsannot be weighed beause they have already died. It is also more likely that these early deathsinvolve premature and small for gestational age babies. Hene, these missing birth weights dueto death are likely to be lower than those of infants who survive long enough for a weight to beobtained. Again, it may be possible to predit the birth weight of these infants through the use ofmaternal ovariates and weights of infants who died soon after birth, but for whom birth weightwas obtained.In this paper we will fous on two treatments only: 1) foli aid plus iron plus vitamin A (whihwe will denote by F+I+A); and 2) the multiple mironutrient supplement plus vitamin A (whihwe will denote by M+A). Table 1 summarizes the sample sizes, the perentages of the birth weightmeasurements made after the 72 hours, the perentage of missing birth weights, and the perentagesof deaths among the babies with missing birth weight measurements.3 A Non-parametri approah with multiple imputationWe start the analysis using a simple non-parametri approah with multiple imputation to estimateperentile-spei� treatment e�ets on birth weight. In the results setion (Setion 5), we willompare results from the approah desribed here versus a Bayesian model with measurementerror and ounterfatual variables desribed in Setion 4.Notation: To establish notation, let W obsiti be the weight of the infant i measured at time ti, letY obsi be the observed mortality indiator within one year, let Zi be the treatment indiator, andlet xi be the vetor of mother's ovariates. Let I = fi : i = 1; : : : ; Ng be the entire population ofbabies. We denote by n0 and n1 the number of live births for the ontrol and the treatment groupsrespetively and let N = n0+n1 be the total number of live births. The data analysis is hallengedby two fats: 1) for i 2 Imis; W obsiti are missing values; 2) for i 2M; W obsiti are measured for ti > 72hours. Table 1 summarizes the perentages of missing data and of measurements made after the72 hours for eah treatment group.Multiple imputation of missing birth weights and predition of \weights at birth": Toimpute the missing birth weights and predit the birth weights for the babies that have been mea-sured after the 72 hours, we �tted the following regression model separately for the two treatmentsgroups ompared to the ontrol (that is for F+I+A versus A, and for M+A versus A):
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W obsiti j ti; Zi; Y obsi ;xi � N(�i; �2); where�i = �0 + �1Zi + �2Y obsi + �3num.igi + �4gest.agei + �5mom.weighti++�6mom.heighti + �7mom.agei; i 2 I � Imis: (1)Missing birth weights were multiply imputed by using multiple imputation (Rubin, 1987). Speif-ially, let Witi be the predited birth weight at time ti from model (1). Let b�2 be the estimatedresidual variane of the regression model. For i 2 Imis; we reated �fty imputed data sets by sam-plingW (j)iti=0 from a normal distribution with meanWiti=0 and standard deviation b� for j = 1; : : : ; J .For i 2 I, we predit the\birth weights" by taking Witi=0+(W obsiti �Witi). Note that this approahaounts for the unertainty in the imputation of the missing data but not for the unertainty inthe predition of the birth weights for the infants measured after the 72 hours.Estimating perentile-spei� e�ets: The seond omponent of this analysis approah isto estimate the treatment e�et on birth weight as a smooth funtion of the perentiles of thebirth weight distribution. In this approah e do not make any distributional assumption on thebirth weights. We de�ne the perentile-spei� treatment e�et �Wp as the di�erene between thequantile funtions of the birth weights for the treatment and the ontrol, and we assume that suhdi�erene is a smooth funtion of the perentiles of the birth weight distribution. That is:�Wp = Q1(p)�Q0(p) = s(p; �) (2)where is s a natural ubi spline of the perentile p with � degrees of freedom (we set � = 5).To estimate �Wp for 0 < p < 1, we:1. alulate the perentiles pi = i=(n0+1) with n0 = 766 (the smallest number of infants arosstreatment groups);2. alulate the di�erenes between the empirial quantiles of the birth weights bQ1(pi)� bQ0(pi);3. smooth these di�erenes aross the perentiles pi.Note that for p = 0:5, estimating �Wp=0:5 redues to the usual method of estimating a treatmente�et by omparing medians between the treatment and ontrol groups.To aount for the unertainty in the imputation of the missing values, we repeated steps 1-3separately for 50 the imputed data sets. We then alulate the perentile-spei� treatment e�etand its orresponding total statistial variane by using standard multiple imputation methods(Rubin, 1987). Let b�W (j)p and V (j)(p) be the point estimate and the bootstrap variane of �Wp forthe j-th imputed data set, respetively. For eah j, we obtain the overall estimate of the treatmente�et and its total variane, denoted by b�Wp and dTV p, as follows:
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b�Wp = 1J PJj=1 b�W (j)pdTV p = Ap + (1 + 1J )Bp; whereAp = 1J PJj=1 V (j)pBp = 1J�1PJj=1(b�W (j)p � b�Wp )2: (3)Permutation test: Finally, to test whether the treatment e�et is onstant aross the perentilesof the birth weight distribution, we perform a permutation test. Spei�ally, for h = 1; : : : ; 500, werandomly re-assign the birth weights to the two treatment groups and alulate the test statistisT h = Pn0i=1(bsh(pi; �) � �sh)2 where �sh = P50h=1 bsh(pi; �). We alulate the one-sided p-value asthe probability that T h exeed the observed test statistis Tobs = Pni=1(bs(pi; �) � �s)2 where �s =Pni=1 bs(pi; �) .The modelling approah illustrated in this setion has been desribed elsewhere (Katz et al.,2005). The idea of smoothing quantile di�erenes aross perentiles to improve estimation of theaverage di�erene between two outomes has reently been disussed by Dominii et al. (2005a) forestimating the di�erene in means for skewed distributions. This approah was then implementedfor estimating average medial expenditures between diseased and non-diseased patients (Dominiiand Zeger, 2005). In this paper we have tailored this idea for the ultimate goal of estimatingperentile-spei� treatment e�ets.4 A Bayesian Model with Measurement ErrorIn this setion, we de�ne a Bayesian approah for approximating the marginal posterior distributionsof all parameters of sienti� interest aounting for 1) measurement error in the birth weights, 2)unertainty in the imputation of the missing values; and 3) unertainty in the imputation of themissing ounterfatuals.Adopting a ounterfatual model (Rubin, 1978; Holland, 1986), let Zi be the treatment assign-ment, and Wi(Zi) be the birth weight of baby i given the treatment assignment Zi. We de�neYi(Zi) to be the mortality indiator for baby i orresponding to treatment assignment Zi. We referto Yi(Zi) andWi(Zi) as potential outomes. Note that Yi(0) andWi(0) are de�ned for all N babies,but only observed for the n0 babies in the ontrol group of the study. Similarly, Yi(1) and Wi(1)are de�ned for all N babies, but only observed for the n1 babies in the intervention group. ThusY obsi = fYi(z); if z = Zig and W obsi = fWi(z); if z = Zig, respetively. Finally, let ti be the time atwhih birth weight is measured for baby i. Sine weights are stable in the �rst 72 hours, we de�neti = 0 for the interval 0-72. Let Witi(Zi) be the potential weight at time ti.We de�ne the likelihood funtion for the omplete data as a funtion of three vetors of unknownparameters:L(�1;�2;�3) = QNi=1 Pr(Yi(1); Yi(0) jWi(1);Wi(0);�1)� f1(Wi(1);Wi(0) j xi;�2)�� Qi2M f2(Witi(0);Witi(1) jWi(0);Wi(1); ti;�3): (4)8



In the next three subsetions we speify: 1) an odds-ratio assoiation model for bivariate mor-tality indiators given the birth weights P (Yi(1); Yi(0) j Wi(1);Wi(0);�1) (Liang et al., 1992); 2)the joint distribution of f1(Wi(1);Wi(0) j xi;�2) as a bivariate normal given the mother's ovari-ates; and 3) the measurement error model for the babies weighted after the 72 hours f2(W obsiti jW obsi ; ti;�3).4.1 Statistial model for infant mortality given birth weightFollowing Liang et al. (1992), we parametrize the 2�2 joint distribution [Yi(0); Yi(1) jWi(0);Wi(1);�1℄in terms of the two margins and the odds ratio. Spei�ally, we assume that:PfYi(0) = yi(0); Yi(1) = yi(1) j Wi(0);Wi(1);�1g =�i(0)yi(0)(1� �i(0))1�yi(0) � �i(1)yi(1)(1� �i(1))1�yi(1)+(�1)yi(0)�yi(1)f�i(11) � �i(0)�i(1)g (5)where �i(1) = Pr(Yi(Zi) = 1 j Zi;Wi(Zi)) is assumed to follow the logisti model:logitPrfYi(Zi) = 1 j Zi;Wi(Zi)g = �0 + �1Zi + s(Wi(Zi); 3); Zi = 0; 1; (6)and s() denotes a natural ubi splines with 3 knots. The parameter �i(11) = Pr(Yi(0) = Yi(1) =1 j Wi(0);Wi(1)) is a known funtion of the marginal probabilities �i(1); �i(0) and of the pre-spei�ed odds ratio  . Thus �1 = (�;  ) where � also inludes the regression oeÆients of thespline basis.Within Gibbs sampling we will sample the missing ounterfatuals from the onditional distri-butions [Yi(0) j Yi(1);Wi(1);Wi(0);�1℄ for i = 1; : : : ; n1 and from [Yi(1) j Yi(0);Wi(1);Wi(0);�1℄for i = 1; : : : ; n0. Note that this imputation depends upon unveri�able assumptions about theassoiation between the ounterfatual pairs of variables fYi(0); Yi(1)g denoted by the parameter . We assume that  is known and we will perform sensitivity analyses with respet to di�erentvalues for  . The rationale behind the range of values onsidered is provided in setion 4.4.4.2 Statistial model for birth weightWe speify the joint distribution f1(Wi(1);Wi(0) j xi;�2) as follows:� Wi(0)Wi(1) � � N2� �00 +�0(xi � �x)�01 +�1(xi � �x) ; � �20 �0�1��0�1� �21 �� ; i = 1; : : : ; N (7)where �0z +�z(xi � �x) = �0z + �1znum.igi + �2zgest.agei + �3zmom.weighti++�4zmom.heighti + �5zmom.agei; z = 0; 1: (8)Thus �2 = (�0z;�z; z = 0; 1; �0; �1; �):Under model (7) and within the Gibbs sampling, we will arry out two types of imputation.The �rst imputation borrows strength aross babies and use the mother's ovariates to impute the9



missing birth weights. Let n0mis and n1mis be the number of missing birth weight measurementsfor the ontrol and treated groups where Imis = I0misS I1mis and nmis = n0mis + n1mis. At theeah iteration of the Gibbs sampling, we will sample: 1) the missing birth weights for the ontrolgroup from the full onditional distribution [Wi(0) j Yi(0);xi;�2℄ for i 2 I0mis and 2) the missingbirth weights for the treatment group from the full onditional distribution [Wi(1) j Yi(1);xi;�2℄for i 2 I1mis:The seond imputation relies on the orrelation � between Wi(0) and Wi(1) for the same babyto impute the missing ounterfatuals. That is we will impute the missing ounterfatuals bysampling from the full onditional distribution [Wi(0) jWi(1); Yi(0); Yi(1);�2℄ for i = 1; : : : ; n1 andfrom [Wi(1) j Wi(0); Yi(0); Yi(1);�2℄ for i = 1; : : : ; n0. Note that this seond imputation dependsupon unveri�able assumptions about �. Like for  , we assume that � is known but we performsensitivity analyses of our results with respet to di�erent values for �.4.3 Measurement Error ModelIn this setion we speify a measurement error model that allows us to sample the \birth weights"for the infants that have been measured after the 72 hours. Let I0 and I1 be the subsets of m0 andm1 infants that have been measured after the 72 hours under the ontrol and the treatment groupsrespetively. We assume that:Yi2I f2(Witi(0);Witi (1) j Wi(0);Wi(1); ti;�3) = Yi2I0 f2(Witi(0) j Wi(0); ti;�3)�Yi2I1 f2(Witi(1) j Wi(1); ti;�3):That is we assume that:1. the measurements made after the 72 hours are independent aross treatment groups ondi-tionally on the birth weights:[Witi(0);Witi (1) j Wi(0);Wi(1); ti;�3℄ = [Witi(0) jWi(0);Wi(1); ti;�3℄�[Witi(1) jWi(0);Wi(1); ti;�3℄;2. the measurements made after the 72 hours depend only on the birth weights for the sametreatment group, that is:[Witi(Zi) jWi(Zi);Wi(1� Zi); ti;�3℄ = [Witi(Zi) jWi(Zi); ti;�3℄:We then speify the following measurement error model:Witi(z) j Wi(z); ti � N �0i + 1ti; �2� ; i 2 Iz; z = 0; 1: (9)Ideally we would like to allow eah baby to have his/her own random interept. However, beause wehave only one birth weight measurement for eah baby, a random interept model is not identi�able.We then assume that the parameter 0i is equal to 0+ Æi where Æi is known and equal to Witi(z)�Witi(z), where Witi(z) denotes the predited birth weight at time ti and is obtained by �tting alinear regression model to the data (Witi(z); ti) for i 2 I.10



Within the Gibbs sampling, we will sample the birth weights from the full onditional distri-butions [Wi(1) j Witi(1); ti; Yi(1);�3℄ for i 2 M0 and from [Wi(0) j Witi(0); ti; Yi(0);�3℄ for i 2 M1where M0SM1 =M respetively.4.4 Parameters of Sienti� InterestSome parameters of interest are de�ned in Table 2. The �rst row of Table 2 de�nes the averageounterfatual treatment e�et on birth weight. The seond row de�nes the perentile-spei�treatment e�ets on birth weight. Note that the parameter �Wp is de�ned as a funtion of themarginal distributions of Wi(1) and Wi(0) and therefore it does not depend on the parameter �. Inaddition, the distributional assumption (7) allows the parameter �Wp to vary exibly but smoothlyas a funtion of the perentiles (p) of the birth weight distribution.If we do not aount for the mother's ovariate and we assume� Wi(0)Wi(1) � � N2� �0�1 ; � s20 s0s1�s0s1� s21 �� ; i = 1; : : : ; N (10)then �Wp = Q1(p)�Q0(p) = (�1 ��0) +��1(s1� s0), and if we further assume that s1 = s0, then�Wp is not allowed to vary with p.Throughout the paper we will ompare our posterior inferenes on �Wp under model (7), whihaount for the mother's ovariate and the unertainty in the imputation of the missing birthweights (denoted as model A), with the simpler model (10) �t to the \working data set" whihignores unertainty in the imputation of missing birth weights and predition of birth weights mea-sured after the 72 hours (denoted as model B) and with the non-parametri model with multipleimputation disussed in Setion 3 (denoted model C). In addition we will estimate the tail probabil-ities of the distribution log(s21=s20) under (10) to provide evidene to assess whether the treatmente�et varies as a funtion on birth weight perentiles. We will ompare these posterior probabilitieswith the p-values obtained from the permutation test desribed in Setion 3.The rest of Table 2 summarizes the parameters of sienti� interest for the treatment e�ets oninfant mortality. The third row indiates the average \ounterfatual" treatment e�et on survival.The fourth row introdues the perentile-spei� e�ets of treatment on survival de�ned as thedi�erene in the probability of death between treated and non-treated infants who are at the sameperentiles of their respetive birth weight distribution. Note that this parameter is de�ned as afuntion of the marginal distributions of Yi(0) j Wi(0) and Yi(1) j Wi(1) and therefore does notdepend on  .In the last four rows of Table 2, we implement the idea of prinipal strati�ation by Frangakisand Rubin (2002) for de�ning ausal parameters of the e�ets of treatment on infant mortalitythat are \adjusted" and \mediated" by post-treatment hanges in birth weight. More spei�ally,�Y1 and �Y2 are the e�ets of treatment on mortality in the two sub-populations of LBW babiesfor whom the treatment e�et on birth weight was smaller and larger than 50 grams, respetively.Thus a omparison between �Y1 and �Y2 measures the degree to whih a ausal e�et of treatmenton mortality ours together with a ausal e�et of treatment on the birth weight among the LBW.11



The parameters �Y3 and �Y4 are the analogues of �Y1 and �Y2 for the not-LBW infants, that is forthe infants with birth weight larger than 2500 grams.The average e�ets obtained under the ounterfatual model may depend upon unveri�ableassumptions about the joint distribution of the ounterfatual pairs of variables fWi(0) andWi(1)g,and fYi(0) and Yi(1)g. As antiipated in the previous setion, in order to estimate these parameters,we make the following key but unveri�able assumptions about the orrelation between the observedoutomes and their ounterfatuals. First, we assume that the orrelation between Wi(Zi) andWi(1�Zi), denoted by � is known and equal 0.9. We will perform sensitivity analyses for � = 0:5.Seond, we assume that the odds ratio between the observed and ounterfatual mortality givenbirth weight, denoted by  ,is equal to 25. We will perform sensitivity analyses for  = 1:5. Thesehoies have been guided by exploratory analyses of data from this randomized trial and fromother data soures (Rahmathullah et al., 2003; Katz et al., 2000b, 2001) whih have been used toestimate the orrelations of birth weights for two suessive hildren born to the same mother andbirth weights for twins.5 ComputationTo investigate the posterior distributions of all parameter of interest we implement a Monte CarloMarkov Chain method with data augmentation for imputing the missing data (Tanner, 1991; Gel-man et al., 1995). We implemented a Metropolis-within-Gibbs (Tierney, 1994) approah, in whihboth the parameters and the ounterfatual variables are sampled using a random walk proposal.Computational details and full onditionals are summarized in the Appendix. We speify at priordistributions on all the unknown parameters, exept for the parameters � and  whih are equalto pre-spei�ed �xed values.For eah posterior sample of the unknown parameters and ounterfatuals, we obtain a posteriorsample of the perentile-spei� parameters as follows. To obtain a posterior sample of �Wp , we sortWi(0) and Wi0 (1) within the two groups of treated and untreated babies separately, and then wetake their di�erene. Under model (10) we obtain a posterior sample of �Wp by using the posteriorsamples of the parameters of the joint normal distributions and plotting the theoretial funtion�1 � �0 +��1(p)(s1 � s0).To alulate a posterior sample of �Yp , we �rst sort sample values of Yi(0) with respet to Wi(0)and Yi0 (1) with respet to Wi0 (1) within eah of the two groups separately, and then we take thedi�erene. We smoothed the posterior samples of these perentile-spei� parameters to redueMonte Carlo variability in the posterior probability bounds.6 ResultsFigure 2 shows birth weights plotted versus times of measurement. Red dots denote birth weightsmeasured under the treatment and green dots denotes birth weights measured under the ontrol.The segments onnet a random subset of the observed measurements W obsiti to the Bayesian pos-terior means of the predited measurements at time zero W obsi for i 2M .12



Figure 3 shows the marginal posterior distributions of the average treatment e�et TEW =E[Wi(1)�Wi(0)℄ under two model spei�ations: 1) Model A de�ned in Equation (7): a Bayesianmodel that aounts for the unertainty in the imputation of the missing data, the estimation of thebirth weights at time zero, and the mother's ovariates (red urve); 2) Model B de�ned in Equation(10): a Bayesian model that uses one imputed data set only and that it does not aount for themother's ovariates (green urve). Overall we found that both supplementations are e�etive andinrease birth weight. Under Model A we obtain a smaller estimate of the average ausal treatmente�et than under Model B. As expeted, posterior inferenes under Model A lead to an estimatewith larger posterior intervals than Model B beause Model A aounts for the unertainty in theimputation of the missing birth weights and in the predition of the measurements after the 72hours.Figure 4 shows the marginal posterior distributions of the perentile-spei� treatment e�etson birth weight (�Wp ) under Models A and B (red and green urves) desribed above and underModel C (blue urve), a non-parametri model for the birth weights with multiple imputationfor the missing data (see Setion 2). The grey polygon denotes the orresponding 95% posterioron�dene bands under Model A. The green urve is obtained by taking the point-wise posteriormeans of the theoretial funtion �Wp = �1 � �0 +��1(s1 � s0).At the far right are shown the point estimates and 95% unertainty bands of the average treat-ment e�et E[Wi(1)℄ �E[Wi(0)℄ under the three models. Inferenes are similar aross models.In previous work (Dominii et al., 2005b), we have also modeled the joint distribution of the birthweights in a more exible way, by assuming that the margins follows a mixture of three normaldistributions and by introduing a orrelation parameter � between the standardized variables��1[F0(Wi(0))℄ and ��1[F1(Wi(1))℄, where � is the df of a standard normal distribution andF0; F1 are the df of a mixture of three normal distributions of Wi(0) and Wi(1) respetively. Wefound that results under this mixture model were very similar to the simpler ones shown here.Although the two mironutrient supplementation have similar average ausal e�ets, their perentile-spei� treatment e�ets di�er substantially. In Panel (a), for the F+I+A group, the estimated �Wpare dereasing funtions of p indiating that the estimated treatment e�ets derease from morethan 100 grams in the left tail to 0 grams in the right tail. In Panel (b), for the M+A group, theseparameters are almost a onstant funtion of p. Under Model B, the posterior probability thatlog s21 � log s20 is less than zero is 97% in Panel (a) and 70% in Panel (b). We have strong evideneof an interation between the treatment e�et and the perentiles of the birth weight distributionfor the F+I+A but not for the M+A. Under Model C, we found that the one-sided p-values fromthe permutation test desribed in Setion 2 were equal to 0.10 for F+I+A and equal to 0.96 forM+A.Figure 5 shows the posterior means and 95% posterior regions of the perentile-spei� di�erenein infant mortality rates between the treatment and ontrol populations (�Yp ) plotted with respetto the perentiles of the birth weight distributions. For a spei� p, �Yp is the di�erene in theprobability of death between two babies with birth weightsWi(1);Wi0 (0), eah at the p-perentile oftheir respetive birth weight distributions. The vertial dotted line is plaed at the 0:42 perentilesorresponding to 2500 grams in the ontrol sample. For the F+I+A, there is suggestive evidenethat the treatment redues mortality among the smallest babies but has no bene�t for the babiesabove the median birth weight. For the M+A, these posterior inferenes suggest that the treatment13



does not a�et mortality and that might atually slightly inrease the risk among the largest babies.Figure 6 shows posterior distributions of the average treatment e�ets on mortality separately for�ve sub-populations of infants. These boxplots also show the sensitivity of our posterior inferenesto spei�ation of the values for the parameters � and  . The �rst set of boxplots (posteriordistributions of �Y1 ) indiate that, among the LBW babies with little hange in birth weight afterthe supplementation, there is only weak evidene that both supplementations a�et survival. Forthe F+I+A (Panel a), the seond set of four boxplots (posterior distributions of �Y2 ) suggest that,among the LBW babies with absolute hanges in birth weight after the supplementation largerthan 50 grams, there is strong evidene that this intervention is bene�ial. For M+A, this evideneis muh weaker. The third set of boxplots (posterior distributions of the �Y3 ) indiate that, amongthe no-LBW babies with little hange in birth weight after the supplementation, we found noevidene that neither supplementations are assoiated with survival. The fourth set of boxplots(posterior distributions of �Y4 ) indiates that among the no-LBW with absolute hanges in birthweight after the supplementation larger than 50 grams. For M+A (Panel b) we found evidene thatthis intervention might atually inrease the risk of death. For F+I+A we found no suh evidene.Finally, overall for the entire population if babies (last set of boxplots), we found evidene thatF+I+A improves survival. Whereas no assoiation between treatment and survival was observedfor M+A.In summary, these results indiate that F+I+A has an e�et where is mostly needed by inreasingthe birth weight among the LBW and inreasing their hanes of survival. Instead the M+Aintervention, beause it inreases the birth weight among the not-LBW, is a less ideal interventionthan the F+I+A and might harm the largest babies. Inferenes were not sensitive to the hoie of(�;  ).7 DisussionA mironutrient supplementation trial is onsidered e�etive if the treatment redues the risk ofinfant mortality either diretly or through inreases in birth weight. Beause infant mortality isgreatest among low birth weight infants (LBW), an intervention to inrease fetal growth mustinrease birth weight mainly among the smallest babies. A ommunity-based trial in Nepal hasshown that a multiple mironutrient supplementation inreases birth weight but the limitation inthe study size have to date prevented us from unambiguously establishing that this translates intoa mortality bene�t (Christian et al., 2003b).Our analysis demonstrates that the standard approah of estimating a mean di�erene in aontinuous outome between a treatment and ontrol group may not adequately apture the impatof nutritional supplementation on birth weight. The ability to assess whether the treatment e�etvaries aross the distribution of the outome may provide insights into the mehanism by whihthe treatment a�ets the outome, and ideas as to why a surrogate outome (suh as birth weight)may not reet the e�et of treatment on the real outome of interest (mortality).In this paper, we develop a ounterfatual model to evaluate the eÆay of mironutrient supple-mentation trials in developing ountries. We fous on whether the supplementation inreases birthweight and ultimately survival di�erently among the smaller and the larger babies, and whether the14



supplementation improves survival largely through its positive e�et on birth weight or it improvessurvival even without a�eting the birth weight. This analysis demonstrates that inferene aboutounterfatual treatment e�ets in the middle of the birth weight distribution are relatively robustto unveri�able assumptions about the joint distribution of the ounterfatuals. However, in ourprevious work (Dominii et al., 2005b), we have provided evidene that inferene about ounter-fatual treatment e�ets on birth weights at the tails of the birth weight distribution are sensitiveto these unveri�able assumptions.The posterior distributions of all the parameters are evaluated by using Bayesian infereneswith data-augmentation methods (Tanner and Wong, 1987; Tanner, 1991; Albert and Chib, 1993;Chib and Greenberg, 1998). A nie feature of this approah is that we an evaluate the posteriordistributions of the quantities of interest taking into aount unertainty in the imputation of thethe missing ounterfatuals, missing data and measurement error. In addition, we an explorethe sensitivity of the posterior inferenes to unveri�able assumptions about the joint distributionbetween the observed and the ounterfatual variables.For estimating perentile-spei� e�ets of the treatment on birth weights we developed andompared three modelling approahes for the di�erene in quantile funtions: 1) model A assumesthat (Wi(0);Wi(1)) is jointly normal with marginal means that depend on the mother's ovariatepro�le and we �t this model aounting for the unertainty in the imputation of the missing birthweights and in the predition of the birth weights for the infants that were measured after the 72hours; 2) Model B assumes that Wi(0);Wi(1) is jointly normal but with marginal means (�0; �1)that do not depend on the mother's ovariates and we �t this model by relying on one \working"data set where the missing data and the measurements made after 72 hours where replaed bypredited values from a regression model (9); and 3) Model C whih simply assumes that thequantile funtion di�erene is a smooth funtion of the perentiles. Missing data were imputedby use of multiple imputation. These three models provided very similar results on the averagetreatment e�ets.In summary, we have provided an inferential framework for estimating treatment e�ets inounterfatual models in a randomized trial with a ontinuous post-treatment variable. By om-paring population with ounterfatual parameter estimates, arrying out sensitivity analyses, andimplementing prinipal strati�ation, we have haraterized the amount of evidene supporting thesienti� questions of interest and their soures of unertainty.We found that the treatment e�ets varied aross the birth weight distribution for F+I+Abut not for M+A. In fat, there was a onstant treatment e�et of the M+A of about 90 grams.For F+I+A, the average treatment e�et was 100 grams at the lower end of the distribution. Inenvironments like rural Nepal, it may be more important to seletively a�et the lower than theupper part of the birth weight distribution. In fat, impating the upper part of the distributionmay be harmful to the mother and infant.We found the multiple mironutrient supplement to be assoiated with a slightly elevated riskof early infant mortality, espeially among the no-LBW infants, although with large statistialunertainty. This was despite the signi�ant inrease in birth weight. The risk of birth asphyxiaas a ause of neonatal mortality also appeared to be higher in the group reeiving the multiplemironutrient supplement. On the other hand, foli aid plus iron was assoiated with an overallredution of infant mortality among LBW-infants. Given an improvement in birth weight at the15



lower end of the distribution, this intervention may have produed improved survival overall, whilethe multiple mironutrient appeared to have no impat on survival beause deaths averted in thesmaller infants were negated by higher mortality at the upper end of the distribution.The estimation of treatment e�ets by perentile of the birth weight distribution has publihealth signi�ane. From a publi health perspetive, this approah an also help identify whethera targeted, rather than universal supplementation program would be more e�etive and eÆient inahieving a nutritional goal for a population.We an use ovariate information to predit those mothers who are likely to have larger infantsand to exlude them from intervention programs. However, while maternal pre-pregnany variablesa�et birth weight, the preditive power is moderate at best. Further work is needed to determinethe feasibility of targeted interventions.Currently reommendations exist for supplementing women with iron-foli aid during pregnanyin developing ountries. The Nepal study (Christian et al., 2003a) demonstrates that beyondreduing anemia, iron an result in an improvement in birth weight primarily through moving thelower tail of the birth weight distribution to the right. Presumably, this e�et is mediated throughimproving the iron status of those pregnant women who are the most iron de�ient. These datafrom Nepal reveal that when evaluating publi health interventions it is important to be, at the veryleast, ognizant of the di�erential bene�ial e�ets of an intervention depending on where in thedistribution the program partiipants fall and that an overall e�et size may: 1) under-estimate themaximum likely bene�t in the most malnourished individuals; and 2) inorretly assume bene�tswhere none exist and potentially mask harm in the more well-nourished individuals.
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8 AppendixList of full onditionals in the Gibbs sampling� missing birth weights: [Wi(0) j Yi(0);xi;�2℄ for i 2 I0mis and [Wi(1) j Yi(1);xi;�2℄ fori 2 I1mis. These are not available in losed form and we implement a metropolis step;� birth weights for the measurements made after the 72 hours:[Wi(1) j Witi(1); ti; Yi(1);�3℄ for i 2 M1 and from [Wi(0) j Witi(0); ti; Yi(0);�3℄ for i 2 M0respetively. These are not available in losed form and we implement a metropolis step;� missing ounterfatuals for the birth weights: [Wi(0) j Wi(1); Yi(0); Yi(1);�2℄ for i = 1; : : : ; n1and from [Wi(1) j Wi(0); Yi(0); Yi(1);�2℄ for i = 1; : : : ; n0. These are not available in losedform and we implement a metropolis step;� missing ounterfatuals for the mortality indiators:[Yi(0) j Yi(1);Wi(1);Wi(0);�1℄ for i = 1; : : : ; n1 and from [Yi(1) j Yi(0);Wi(1);Wi(0);�1℄ fori = 1; : : : ; n0. These are not available in losed form and we implement a metropolis step;� we generate 0 from the full onditional distribution:N  1N � (Xi ti(Witi(Zi)� 1t1); 1N � �2! ;� we generate 1 from the full onditional distribution:N  1Pi t2i � (Xi ti(Witi(Zi)� 0); 1Pi t2i � �2! ;� we generate �2 from the full onditional distribution:IG N=2 � 1; 12Xi (Witi(Zi)� 0 � 1ti)2! ;� we generate �0 from the full onditionalNp [Xi x0ixi℄�1 �Xi x0iWi(0);V0! ; where V0 = " 1�20 Xi x0ixi#�1 ;� we generate �1 from the full onditionalNp [Xi x0ixi℄�1 �Xi x0iW ?i (1);V1! ; where V1 = " 1�21 Xi x0ixi#�1 ;17
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Table 1: Desriptive statistis: type of mironutrient supplementation, sample size (N), averagebirth weight; perent deaths, perent missing birth weights, perent weights measured after the 72hours. The average birth weights are alulated based upon one imputed data set. The averagebirth weights obtained by exluding the babies with missing data and measured after the 72 hoursare within parentheses.Treatment N average bw (grams) % missing % deaths among the missing % bw after 72 hoursIron + Folate + vit A 766 2640 (2750) 7.0 34 10Multiple + vit A 870 2654 (2784) 6.7 39 12.1vit A 866 2573 (2714) 8.0 39 12.7

Table 2: De�nition of parameters of sienti� interest for estimating the e�ets of mironutrientsupplementation on birth weight and on infant mortality as a funtion of birth weight perentiles.The subsripts i and i0 indiate two di�erent infants.Perentile-spei� E�ets on Birth WeightAverage TEW = E[Wi(1)�Wi(0)℄p-spei� �Wp = Q1(p)�Q0(p)Perentile-spei� E�ets on Infant MortalityAverage TEY = E[Yi(1)� Yi(0)℄p-spei� �Yp = E[Yi(1) j F1(Wi(1)) = p℄�E[Yi(0) j F1(Wi(0)) = p℄P-Strati�ation 8>><>>: �Y1 = E[Yi(1)� Yi(0) given Wi(0) � 2500 & j Wi(1)�Wi(0) j� 50℄�Y2 = E[Yi(1)� Yi(0) given Wi(0) � 2500 & j Wi(1)�Wi(0) j> 50℄�Y3 = E[Yi(1)� Yi(0) given Wi(0) > 2500 & j Wi(1)�Wi(0) j� 50℄�Y4 = E[Yi(1)� Yi(0) given Wi(0) > 2500 & j Wi(1)�Wi(0) j> 50℄
21
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Figure 1: Top: Di�erenes between empirial quantile funtions of the birth weights for the treatedand ontrol groups. Panel (a) shows the quantile di�erenes for the groups F+I+A versus A. Panel(b) shows the quantile di�erenes for the groups M+A versus A. The red dots denote quantiledi�erenes of birth weights inluding the ones measured after the 72 hours. The blak dots denotequantile di�erenes obtained from a \working data set" where the birth weight measurements takenafter the 72 hours where replaed by their predited values at time zero (details on this preditionmodel are provided in Setion 2). The dotted horizontal line is plaed at the average di�erene ofthe birth weights between the two groups. Bottom: estimated log-odds of death as smooth funtionof the birth weight with 95% on�dene bands and plotted in orrespondene to the observed rangeof birth weights in the two groups. 22
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Figure 6: Posterior distributions of the average e�ets of treatment on mortality under ModelA. Results are shown for di�erent values of � and  . The four boxplots witin eah the �vesub-populations denote the posterior distribution for the following four senarios of (�;  ) :(0:9; 1:5); (0:9; 25); (0:5; 1:5); (0:9; 25). The posterior distributions are shown separately for �ve sub-populations of infants: 1) LBW infants for whom there is an e�et of treatment on birth weightsmaller than 50 grams; 2) LBW infants for whom there is an e�et of treatment on birth weightlarger than 50 grams; 3) not-LBW for whom there is an e�et of treatment on birth weight smallerthan 50 grams; 4) not-LBW for whom there is an e�et of treatment on birth weight larger than50 grams; and 5) all infants. 27


