
Multi-Course Treatment Strategies

for Clinical Trials of Rapidly Fatal Diseases

Peter F. Thall,1 Hsi{Guang Sung2 and Elihu H. Estey3

1;2 Department of Biostatistics, Box 447

3 Department of Leukemia, Box 428

M.D. Anderson Cancer Center

1515 Holcombe Boulevard

Houston, Texas 77030, U.S.A.

1E{mail rex@mdanderson.org

May 4, 2001



SUMMARY

Therapy of rapidly fatal diseases often requires multiple courses of treatment. In each course,

the treatment may achieve the desired clinical goal, \response," the patient may survive

without response, \failure," or the patient may die. When treatment fails in a given course,

it is common medical practice to switch to a di�erent treatment for the next course. Most

statistical approaches to such settings simply ignore the multi-course structure. They char-

acterize patient outcome as a single binary variable, combine death and failure, and identify

only one treatment for each patient. Such approaches waste important information. We

provide a statistical framework, based on a family of generalized logistic regression models,

that incorporates historical data while accommodating multiple treatment courses, a trinary

outcome in each course, and patient prognostic covariates. The framework serves as a basis

for both data analysis and outcome{adaptive clinical trial conduct. Rather than focusing

on individual treatments, we evaluate multi{course treatment strategies that specify which

treatment to give in each course within each prognostic subgroup. We describe a general

approach for constructing clinical trial designs that may be tailored to di�erent multi{course

settings. For each prognostic subgroup, based on a real-valued function of the covariate-

adjusted probabilities of response and death, the design drops inferior treatment strategies

during the trial and selects the best strategy at the end. The methodology is illustrated

in the context of a randomized two{course, three{treatment acute leukemia trial with two

prognostic covariates. The model is �rst �t to an historical data set to obtain a reasonably

informative prior on non-treatment related parameters for use in trial design and conduct.

We describe a simulation study of the design under several clinical scenarios. The simula-

tions show that the method can reliably identify treatment{subgroup interactions based on

moderate sample sizes. Extensions of the leukemia trial design to more complex multi-course

settings are discussed.



1. Introduction

Therapy of rapidly fatal diseases often requires multiple courses of treatment. The clinical

goal is to achieve a \response," such as remission of leukemia, 50% shrinkage of a solid tumor,

or resolution of infection. Such responses are presumed to predict longer survival. The other

therapeutic outcomes are death during treatment and \failure," in which case the patient

survives therapy but does not respond. Death during therapy is an unavoidable risk in on-

cology trials involving acute or advanced disease where only very aggressive, life{threatening

treatments have any substantive anti{disease e�ect. Thus, in general, each treatment course

results in one of three possible outcomes: response, death, or failure. When treatment fails

after a given course, it is common medical practice to switch to a di�erent treatment for

the next course. We consider settings where it is reasonable to de�ne outcome as a discrete

variable observed within a time period su�ciently short that interim monitoring is feasible.

Most statistical approaches to this or similar settings characterize patient outcome as a sin-

gle binary variable by collapsing the multi{course structure and combining death and failure,

and moreover they typically evaluate only one treatment for each patient. Such approaches

waste important information, since each patient may receive several di�erent treatments over

successive courses, these treatments may have interactive e�ects, and the distinction between

death and treatment failure is very important clinically.

In this paper, we provide a statistical framework for clinical trial design and conduct in

multi-course settings. In contrast with the usual approach of evaluating individual treat-

ments, we propose an outcome{adaptive, multi{course treatment design that speci�es which

treatment to give in each course in each of several prognostic subgroups. We take a Bayesian

approach, which provides a natural basis for incorporating historical data and making infer-

ences sequentially during the trial and upon its completion. The methodology is presented

in the context of the following chemotherapy trial, which motivated this research.

The trial involves acute myelogenous leukemia (AML) patients who previously achieved

a complete remission (CR), the criteria for which are normal blood counts and a normal-

appearing bone marrow, but who subsequently relapsed in less than 24 months. For these
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patients, the principal covariates predicting success are the duration of the �rst CR, denoted

DCR; and age at diagnosis. Patients with initialDCR less than one year are unlikely to achieve

a second CR with standard therapy and thus are candidates for investigational regimens. In

contrast, controversy exists among physicians regarding management of patients with longer

DCR. While some physicians believe that their prognoses are su�ciently poor that only

investigational therapies should be tried, others believe that these same prognoses justify

initial use of standard therapy. This controversy motivates this trial.

Each patient receives either one or two courses of chemotherapy. The three possible out-

comes for each course, determined within one month from initiation of that course's treat-

ment, are CR, death, or failure, the event that the patient is alive but has not achieved a CR.

The occurrence of either death or CR, or the completion of two courses that are both failures,

marks the end of the patient's therapy. Patients who fail two courses are given palliative care

subsequently. This de�nition of therapeutic outcome is motivated by the necessity of CR for

long-term survival in AML and the very low probability of a subsequent CR once failure has

occurred in each of two courses. The trial includes the standard chemotherapy combination

idarubicin + high{dose cytosine arabinoside (IDA), and two experimental treatments, IDA

+ mylotarg (M) and IDA + topotecan (T). For the �rst course, all patients are random-

ized fairly among the three treatments. A patient for whom IDA fails in the �rst course is

randomized between IDA+M and IDA+T for the second course. A patient for whom either

IDA+M or IDA+T fails in the �rst course must receive IDA in the second course, however,

because it was considered unacceptable to give a patient experimental treatments in both

courses. Figure 1 illustrates this treatment assignment algorithm.

[Figure 1 about here]

The primary scienti�c goal of the trial is to select the best two{course treatment strategy

within each prognostic subgroup based on the probabilities of CR and death. Trial con-

duct is outcome-adaptive in that, if interim data show a particular treatment strategy to

be substantially inferior to at least one other strategy within a subgroup, then the inferior

strategy is dropped within that subgroup. The design consists of an algorithm for assigning
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a treatment to each patient in each course, the above interim safety monitoring rules and, at

the end of the trial, treatment strategy selection within prognostic subgroups. The method

requires a real{valued objective function of the probabilities of CR and death that quanti�es

the clinically acceptable trade{o� between these two outcomes. This function is used as a

basis for interim decision{making and inferences at the conclusion of the trial. In practice,

the trade{o� function is elicited from the physicians planning the trial, and we illustrate how

this may be done using contour plots as a graphical aid.

We employ a generalized logistic regression model to characterize the probabilities of CR

and death in each course as functions of the patient's treatments and prognostic covari-

ates. The model also allows pairwise interactions between treatment strategy, course, and

covariates. Because the probabilities of CR and death vary greatly with patient prognosis,

di�erent prognostic subgroups may have di�erent optimal treatment strategies. In addition

to its application in the context of trial design and conduct, the regression model is also a

useful analytic tool for evaluating covariate and treatment strategy e�ects on the probabil-

ities of response and death based on existing data. While the overall trial sample size is 96

patients, the numbers of patients in the subgroups determined by the various combinations

of treatment strategies and patient covariates may be quite small. Consequently, the ability

of the model to borrow strength across these subgroups is essential, and we will show that a

non-model based approach with this sample size is simply not feasible.

As the �rst step in developing a design, we �t the model to historical data arising from

714 AML patients treated at M.D. Anderson Cancer Center between 1990 and 1999. This

analysis served to validate the model, obtain informative distributions for model parameters

unrelated to treatment, and also obtain reasonable numerical values of parameters for use in

a simulation study of the design. Like the patients in the trial being planned, each historical

patient previously achieved CR but later relapsed and then received one or two courses

of salvage therapy in an attempt to re{induce remission. The salvage treatments were an

allogeneic bone marrow transplant, combination chemotherapy containing high dose cytosine

arabinoside (\ara{C"), or chemotherapy not including ara{C. The data for each patient
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consisted of prognostic covariates and the treatment and outcome in each of one or two

courses. A summary of the empirical outcome probabilities in each course, ignoring prognostic

covariates, is given in Table 1.

[Table 1 about here]

The remainder of the paper is organized as follows. In Section 2, we explain current

medical practice for diagnosis and treatment of patients with AML, as well as the type of

clinical trial designs currently used in most medical centers. Section 3 describes a general

Bayesian strategy for using historical data in constructing a clinical trial design, and how

we will apply this strategy in designing the AML trial. In Sections 4 and 5 we present the

probability model and numerical methods that will serve as the basis for treatment evaluation

and trial design. Section 6 describes the objective function that we used to combine the

probabilities of CR and death. Section 7 summarizes our analysis of the historical data. The

AML trial design is described in Section 8. In Section 9 we summarize a simulation study of

the design's operating characteristics (OCs), and we present some graphical methods that may

be used to evaluate and compare the e�ects of various combinations of treatment, course,

and covariates on the outcome probabilities. We close in Section 10 with descriptions of

extensions that deal with other multi-course settings.

2. Developmental Therapeutics in Acute Leukemia

AML is a disorder of blood cell formation, \hematopoiesis." This process occurs in the bone

marrow, with the cells subsequently released into the blood. The cells of interest are red

cells, white cells, and platelets. Red cells carry oxygen, white cells prevent or ameliorate

infection, and platelets prevent or minimize bleeding. Normally, the bone marrow's rate

of production of each type of blood cell equals its rate of loss from the blood. Each type

of cell arises from an immature cell, a \stem cell" or \blast," with these immature cells

maturing in the marrow prior to entry into the blood. AML is characterized by the presence

of abnormal immature hematopoietic cells. A hallmark of this abnormality is the inability
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to mature. A second feature is the capacity to inhibit normal hematopoiesis. The result is

a decrease in the numbers of normal blood cells. Such \bone marrow failure" leads to death

just as would failure of other vital organs such as the heart or lungs. The diagnosis of AML is

straightforward. Examination of the bone marrow, generally performed because of symptoms

such as fatigue together with the �nding of low blood counts, shows an increased proportion

of immature cells. Reecting the failure of maturation, this increase is prima facie evidence

of the abnormal nature of the blasts. In a variable percentage of cases, the blasts demonstrate

chromosomal abnormalities that provide further support for the diagnosis.

Prior to the mid 1960s, treatment for AML essentially consisted of transfusions of red cells

and platelets and the use of antibiotics for infections. The median survival was approximately

six months, with survival beyond one year very unlikely. Since about 1970, the great majority

of patients have been given drugs, \chemotherapy," intended to kill AML cells but not normal

blasts. During the past 30 years, there have been well-documented improvements in both

transfusion practices and in antibiotics. Thus, it is di�cult to determine whether the progno-

sis of patients not given chemotherapy has changed since the 1960s. Clearly, however, there

are AML patients who can live as long as two years with untreated disease. Such patients are

discovered when a bone marrow sample not considered to show AML when initially examined

is subsequently re-examined several years later and found to indeed be diagnostic of AML.

Given the risk of early death inherent in the administration of anti-AML chemotherapy, it

would be highly desirable to identify patients with such prognoses in the absence of speci�c

treatment. The number of untreated patients is insu�cient for this purpose, and of course

it not ethically possible to randomize patients between chemotherapy and no-treatment in

order to obtain an unbiased estimator of the e�ect of chemotherapy. It is clear, however, that

patients who present with high white blood cell counts are very unlikely to have extended

survival without treatment.

There is great prognostic heterogeneity in patients given current anti-AML chemotherapy.

This usually consists of two drugs: idarubicin (or equivalently daunorubicin) and ara-C. We

will refer to such therapy as \standard." The �rst objective of therapy is to produce and
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maintain a CR. While the probability of CR varies substantially as a function of prognostic

covariates, patients who achieve a CR live longer than patients who do not, with the survival

di�erence between the two groups almost entirely due to the time spent in remission. Fur-

thermore, only patients in whom CR occurs are potentially cured, with this term applicable

to patients whose disease remains in CR for approximately three years from CR date, after

which time the risk of relapse declines sharply.

Response to standard chemotherapy for newly-diagnosed AML is so variable that to speak

of an average outcome is potentially quite misleading. Rather, we should speak of a series

of outcomes whose likelihoods are dictated by a set of well-described prognostic variables.

Failure of chemotherapy can result either because the therapy leads to death or because the

therapy is ine�ective. Therapy-induced death is a direct consequence of the lack of selectivity

of current chemotherapy. Simply put, normal cells, in particular normal bone marrow blasts,

are only slightly less vulnerable to chemotherapy than are AML blasts. The life-threatening

toxicity of standard chemotherapy is bone marrow failure, with death resulting from infection

and hemorrhage as in untreated AML. Rates of therapy-induced mortality increase with

increasing age, abnormal organ function and, particularly, poor performance status (PS).

Table 2 summarizes the induction chemotherapy mortality rate for AML patients treated at

M.D. Anderson during the period 1991 - 1999. For example, an ambulatory (PS�2) adult

aged under 50 would be expected to have a 28-day mortality rate of about 5%, while this rate

jumps to about 39% if the patient has the same age but is bedridden (PS�3). Table 2 also

shows the important e�ect of age, as both the 28-day and the 56-day death rates increase

monotonically with age within each performance status group. Comparison of the 28-day

and 56-day death rates shows the speed with which AML patients die during the �rst eight

weeks of therapy.

[Table 2 about here]

Except in bedridden patients over age 50, the primary cause of failure with standard

treatment has been resistant AML. This can be manifested as failure to achieve initial CR

despite a survival time of 4-8 weeks, the usual time required to observe CR. More usually,
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resistance presents as relapse after an initial CR, which may last anywhere from one month

to two years, with a median of approximately one year. Once resistance is demonstrated

subsequent success is unlikely; the probability of a second CR increases with DCR; and

patients with DCR less than one year have very poor prognosis.

In previously untreated patients, the principal predictor of resistance to standard therapy

is the particular abnormal chromosomal composition of the AML cells, or \cytogenetics."

Three cytogenetic groups can be distinguished. A good prognosis group, characterized by an

inversion of the 16th chromosome or a translocation of chromosomes 8 and 21, constitutes

about 10 % of patients. Typically, such patients are aged under 60. A poor prognosis group,

characterized by the loss of portions of chromosomes 5 or 7, comprises about 30 to 40 % of all

patients. These patients are on average older and are more likely to have either a history of

abnormal blood counts prior to the diagnosis of AML, known as an \antecedent hematologic

disorder" (AHD), or have received previous chemotherapy for another condition, frequently

lymphoma, breast, or ovarian cancer. The remaining 50 to 60 % of patients comprise a �nal,

intermediate prognosis cytogenetic group, although their prognosis is closer to that of the

poor than to the good group. Less than 10% of patients in the best prognostic group fail to

achieve a CR with standard therapy, with median CR duration close to 2 years, and about

50% of such patients are cured, as de�ned above. In stark contrast, resistance to initial

therapy occurs in 30 to 40% of patients in the poor prognosis group, with median remission

duration is four months and a cure expected in less than 5 to 10% of these cases, depending

on other covariates. Potential cure rates in the intermediate group range from less than 10

% to 30 % with a median remission duration of 6 - 24 months, again depending on other

prognostic variables. In any case, once resistance has been established DCR prognostically

supersedes the patient's initial cytogenetic abnormality.

While cytogenetic information is highly prognostic of patient outcome, within each cyto-

genetic group this is still highly variable, particularly in the intermediate cytogenetic group

described above. Inclusion of other covariates reduces this variability. Chief among these is

an AHD, often preceding the diagnosis of AML by months or occasionally years. An AHD is
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seen in about one-third of patients. The longer the AHD the less the likelihood of cure, with

the cure rate only about 10% in patients with an AHD and a normal karyotype.

Physicians treating patients with AML must make management decisions based on analy-

sis of the prognostic factors described above. Broadly speaking, there are three options: pal-

liative care without chemotherapy, standard chemotherapy, and investigational chemotherapy

preferably within the context of a clinical trial. While by de�nition little is known about the

e�cacy or toxicity of a particular investigational treatment, the data described above indicate

that the option of standard therapy would be satisfactory only for a minority of patients.

Candidates for standard therapy certainly include patients in the best prognosis cytogenetic

group. Another group in whom standard therapy could be considered appropriate are ambu-

latory patients in the intermediate cytogenetic group under age 60-70 and without an AHD.

In the remaining patients, expectations with standard therapy are so low that its use can be

readily questioned. Such patients have a substantial probability of either (a) death during

remission induction, especially if bed-ridden and aged > 50, or aged over 80 regardless of per-

formance status, or (b) resistance to therapy, especially if in the worse prognosis cytogenetic

group, or in the intermediate prognosis cytogenetic group but with an AHD. Given these

expectations, such patients, who constitute approximately 60% to 75% of all AML patients,

optimally should be referred to academic centers for investigational approaches. However,

such referral seldom occurs in the United States, where less than 10% of patients with AML

are registered on clinical trials testing new therapies.

Numerous new therapies are now becoming available for clinical trials in patients with

AML. These include not only new chemotherapeutic agents but also therapies believed to

target speci�c abnormalities in AML blasts. For example, the AML blasts of some patients

contain tumor suppressor genes that are "hypermethylated" relative to similar genes in nor-

mal blasts. Hypermethylation prevents normal functioning of the gene. Drugs that induce

hypomethylation have been developed, with the hypothesis that use of these drugs will permit

normal functioning of the tumor suppressor genes with resultant bene�cial e�ects. Another

example is a gene for a protein called RAS that is thought to stop AML blasts from dying
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in the same manner as normal blasts. This motivates the use of treatments aimed at de-

activating this gene and thus inhibiting RAS, in order to increase the death rate in the AML

blasts and thus improve patient outcome.

Given the heterogeneity of AML described above, it is unlikely that all patients will

have hypermethylated tumor suppressor genes, abnormally active RAS, or any other speci�c

abnormality. It follows that any given \targeted" therapy may be appropriate for some

patients but not for others. It is already known that increases in the dose of ara-C bene�ts

patients in the better, but not in the worse, cytogenetic group. Nonetheless, nearly all

currently used statistical designs do not account for prognostic covariates but rather proceed

on the unlikely assumption that the e�ect of a given therapy is homogeneous across all AML

patient subgroups.

Adding to this complexity is the likelihood that the sequence in which therapies are deliv-

ered may be important. Treatment of elderly patients in the intermediate cytogenetic group

provides a simple example. It is highly probable that targeted therapies such as hypomethy-

lating agents or RAS inhibitors are less toxic than usual chemotherapy. However, at least in

their initial stages of development, they also may be less e�ective. This raises questions such

as whether an elderly patient would live longer if a RAS inhibitor were given �rst, in order to

lower the chance of therapy-induced death, with chemotherapy given subsequently only if the

�rst treatment fails. It also may be argued that it is preferable to treat with chemotherapy in

the �rst course, and then use the RAS inhibitor only if the chemotherapy fails. The rationale

for treating more aggressively in the �rst course of therapy is the high death rate if this �rst

course fails to achieve a CR. On a more fundamental level, it is possible that a given new

therapy may a�ect various biologic parameters so as to inuence the likelihood of success with

a subsequent agent. This reects the ability of the prior drug to sensitize leukemia cells to the

actions of the subsequently administered drug. An obvious example is the use of lymphocyte

infusions from normal donors. Such infusions have some e�cacy in AML only if patients have

previously received chemotherapy which induces su�cient suppression of the immune system

to allow the donated lymphocytes to survive and exert a graft-vs-leukemia e�ect. Statistical
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designs in current use ignore the issue of how to sequence treatments, instead regarding each

therapy as a distinct entity.

response to one regimen depends on which treatment was previously given motivated the

design described herein. As noted above, standard phase II designs pay little attention to

these issues. In particular, these designs focus on an average result and ignore treatment

history. In contrast, our design's explicit purpose is to determine which sequence of therapies

is best for each patient subgroup (young, long �rst remission vs young, short �rst remission

vs old, long �rst remission vs old, short �rst remission).

3. A Bayesian Strategy for Constructing Designs

The �rst step in designing a clinical trial, regardless of the particular statistical methodology

used, is to determine its essential elements. These are (1) the disease and speci�c patient

group to be studied, that is, the trial's \entry criteria," (2) the treatments to be studied, (3)

the therapeutic paradigm, including speci�cation of multiple courses of therapy, (4) patient

outcomes to be recorded after each course, as well as any long-term outcomes such as sur-

vival time, (5) the therapeutic and scienti�c objectives, (6) logistical constraints, including

the anticipated accrual rate and upper limits on �nancial resources, trial duration, or drug

availability, (7) patient covariates or subgroups, (8) the institutions that will participate, and

(9) historical data from previous trials in the same or similar patient groups.

Once this basic information is in hand, one may apply the following statistical strategy to

construct a trial design. The main idea is to utilize available historical data to �rst estimate

non-treatment related parameters, such as patient covariate e�ects and baseline outcome

rates. Assuming that these parameters will follow the same distribution in the planned trial

as they did historically, the historical data may be combined with the trial data to improve

the reliability of the treatment e�ect estimates. Essentially, this is just Bayesian covariate

adjustment that is informed by historical data.

We begin the formal modeling process by specifying the patient outcomes and covariates

of interest and formulating a Bayesian model describing both the historical data, XH ; and

the data, X ; that is anticipated from the trial being planned. The key step is to partition the
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model parameter vector ��� into two subvectors: the baseline parameters ���B that do not pertain

to treatments and the parameters involving treatment e�ects. We denote the historical

treatment-related parameters by ���T (H) and those for the upcoming trial by ���T ; since typically

these are not the same. Our main focus is evaluating ���T ; and the values of ���T (H) are not

relevant to inferences about either ���T or the treatment strategies in the trial. Specifying

reasonably uninformative priors on ���B; ���T (H); and ���T ; the historical data are �t to obtain the

marginal posterior of the baseline parameters,

f(���B j XH) =
Z
���T (H)

f(���B; ���T (H) j XH) d���T (H):

At the start of the trial, we assume that ��� = (���B; ���T ) follows the prior f(���B j XH) f(���T ): The

posterior used at each interim analysis during the trial or in a �nal analysis is then

f(���T j X ; XH) =
Z
���B

f(���T ; ���B j X ;XH) d���B;

where X now denotes the most recent trial data at the time of the analysis. The historical data

thus provide initial information about baseline parameters while the data X accumulating

during the trial provide new information about the parameter of primary interest, ���T ; as well

as additional information about ���B:

If one were to assume that ���T = ���T (H) then the appropriate prior at the start of the trial

would be f(���T ; ���B j XH): The resulting inferences based on X and XH would then constitute

a meta-analysis, and the issue would arise of accounting for trial e�ects. Our aim here is not

to pool treatment e�ect information from di�erent trials, however, since ���T 6= ���T (H): Rather,

we wish to do a reasonable job of accounting for covariate e�ects while evaluating ���T :

The next step is to specify the trial design, which of course may be done in numerous ways

depending on the particular setting at hand. In general, we determine numerical values of

design parameters by �rst specifying several clinical scenarios in terms of �xed values of the

parameters (���B; ���T ) and simulating the trial under each scenario. Frequentist properties of

the design obtained in this way may be used to calibrate design parameters and explain the

design's properties to the physicians involved. This is analogous to the widespread practice

of determining an experiment's sample size to achieve a given power under a conventional
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test of hypothesis. In our experience, however, frequentist tests often greatly oversimply both

the data structure and the actual decisions made during a clinical trial.

Denoting a given J{course treatment strategy by ��� = (t1; : : : ; tJ) and the vector of proba-

bilities of the possible outcomes with ��� over J courses by ���(��� ); we base comparison of di�erent

multi{course treatment strategies on a real{valued objective function �(���(���)) elicited from

the physician(s) planning the trial. Interim decisions to drop comparatively inferior strategies

and selection of a best strategy at the end of the trial may be based on posterior probabilities

such as Pr[�(���(��� 1)) < �(���(��� 2)) j X ], posterior means, or predictive probabilities. Inferences

may be made for prognostic subgroups so that, for example, strategy ��� 1 may be best for one

subgroup while strategy ��� 2 is best for another.

4. Probability Models

4.1 A Two{Course Model for the AML Trial

We now develop a probability model and design for the AML trial. Denote by (s; t) the

two{course treatment strategy wherein the patient receives treatment Ts in the �rst course

and, if the �rst course results in failure, receives Tt in the second course. Denoting IDA,

IDA+M, and IDA+T by T0, T1; and T2 for brevity, the AML trial design allows the four

two-course strategies S = f(1; 0); (2; 0); (0; 1); (0; 2)g. While strategies (1, 2) and (2, 1) are

not permitted in the AML trial, in general the methodology allows S to contain any two{

course combination, including strategies of the form (s, s) that give the same treatment in

both courses. Each two{course strategy (s; t) has �ve possible outcomes. Therapy may end

in the �rst course with either response or death with Ts, or Ts may fail in the �rst course,

followed by response, death, or failure with Tt in the second course.

For each patient baseline prognostic covariate vector Z = (Z1; : : : ; Zq), the goal is to select

the best two{course treatment strategy (s; t) from S based on the probabilities �R(s; t;Z) of

achieving CR and �D(s; t;Z) of death. For course c = 1 or 2, let �c denote the treatment

index 0, 1, or 2, and let YRc and YDc denote the indicators of response and death, so that YFc

= 1�YRc�YDc indicates failure. Since there is no second course if YF1 = 0, for completeness
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we de�ne YR2 = YD2 = 0 and �2 = 0 in this case. Denote the probability of outcome k = R;D;

or F with Ts in course 1 by

�k1(s;Z) = Pr[Yk1 = 1 jZ; �1 = s]; (1)

and the probability of outcome k with Tt in course 2 after a failure with Ts in course 1 by

�k2(s; t;Z) = Pr[Yk2 = 1 jZ; �1 = s; YF1 = 1; �2 = t]: (2)

Aside from covariates, �k1 is a function of �1 alone while �k2 is a function of both �1 and �2:

Since one of R;D; or F must occur in each course and the occurrence of either R or D, or

two treatment failures, marks the end of the patient's therapy, for any strategy (s; t)

�R1(s;Z) + �D1(s;Z) + �F1(s;Z)
X

k=R;D;F

�k2(s; t;Z) = 1: (3)

The likelihood function of the ith patient thus takes the form

Li =
Y

k=R;D;F

�
�k1(�i1;Zi)

�Yi;k1 � Y
r=R;D;F

�
�r2(�i1; �i2;Zi)

�Yi;r2 �Yi;F1

; (4)

with L =
Qn
i=1 Li the likelihood of a sample of n patients.

4.2 A Generalized Logistic Model

The following generalized logistic model (cf. Agresti, 1990, Chapter 9.2) accounts for tri-

nary outcomes, the two{course treatment structure, and prognostic covariates. The formula-

tion also accommodates an arbitrary number of treatments and any collection of two{course

treatment sequences formed from them. In addition to its use as a basis for clinical trial

design and conduct, this regression model is also very useful per se when the primary goal is

to analyze existing data consisting of trinary outcomes with covariates.

For outcome k = R or D, treatment strategy (s; t); and covariates Z, denote the linear

components corresponding to courses 1 and 2 by

�k1(s;Z) = �k + �k(s) +
qX

j=1

�
kj + �kj(s)

�
Zj ; (5)

and

�k2(s; t;Z) = �k + �k(t) + �k(s; t) +
qX

j=1

�
kj + �kj(t) + �kj

�
Zj ; (6)
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respectively, subject to the 2(q + 1) constraints

X
s

�R(s) =
X
s

�D(s) = 0 and
X
s

�Rj(s) =
X
s

�Dj(s) = 0; j = 1; : : : ; q: (7)

Our application includes q = 2 covariates, hence 6 constraints, so we set �k(0) = 0 and �kj(0)

= 0 for k = R;D and j = 1; 2: That is, we use s = 0 as the baseline treatment group.

We characterize the regression of the outcomes Y1 = (YR1; YD1) and Y2 = (YR2; YD2) on

treatment strategy (s; t) and covariates Z by the probability functions

�k1(s;Z) =
expf�k1(s;Z)g

1 + f�R1(s;Z)g+ expf�D1(s;Z)g
(8)

and

�k2(s; t;Z) =
expf�k2(s; t;Z)g

1 + expf�R2(s; t;Z)g+ expf�D2(s; t;Z)g
; (9)

where k = R or D, with each �Fc = 1� (�Rc+�Dc) = 1=[1+exp(�Rc)+exp(�Dc)]: Under this

generalized logistic model, for each k = R or D; the intercept of �kc is decomposed into the

baseline mean �k, the main e�ect �k(s) of treatment s and, for course 2, the additional e�ect

�k(s; t) of t as a salvage treatment following failure with s: Similarly, the coe�cient of Zj for

outcome Yk is decomposed into the baseline parameter kj, the treatment e�ect �kj(s), and

the course 2 e�ect �kj. Viewing (�k1; �k2) as a function of treatment, course, and covariates,

if we write �k(s; t) = �k+ ��k(s; t) with
P

(s;t) �
�
k(s; t) = 0 for each k, then ���, ���; and  are the

treatment, course, and covariate main e�ects, while ����, ���; and ��� are the [treatment � course],

[treatment � covariate], and [covariate � course] interactions. Thus, the treatment-related

parameters are ���T = (���;����; ���) and the baseline parameters are ���B = (���;; ���; ���):

If there are m treatments and rm two{course strategies then, subject to the constraints,

dim(�T ) = 2f(m� 1)(q + 1) + rm � 1g; dim(�B) = 4(q + 1) and the overall model dimension

is p = 2 (q +m + q m + rm): Alternatively, it is also useful to decompose �T in terms of the

vector (���;���;���;����) of intercept parameters, which has dimension 2(m + rm); and the vector

(; ���; ���) of covariate e�ect parameters, which has dimension 2q(m+ 1): For the AML trial p

= 30, since q = 2, m = 3, and rm = 4.

5. Computational Methods
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We employ the following computational approximation to facilitate simulation study of the

trial during the design stage. Assume a priori that ��� is multivariate normal, denoted ��� �

N(����; 
): Under the usual frequentist large sample theory, the maximum likelihood estimate

(MLE) b��� of ��� is approximately multivariate normal, denoted b��� j ��� _� N(���; �): It follows from

Bayes' Theorem that, a posteriori, ��� j b��� _� N(B b; B); where B = (��1 + 
�1)�1 and b =

��1b��� + 
�1���� (Lindley and Smith, 1972). This approach has been used by many authors,

including Dixon and Simon (1991) in the context of Bayesian subset selection, by Faraggi

and Simon (1997) in proportional hazards regression and by Thall, Simon and Shen (2000)

in evaluating multidimensional treatment e�ects. The method is straightforward, since it

relies on multivariate normal distributions. The necessary computations include deriving the

MLE, computing an estimator b� of the covariance matrix, and generating multivariate normal

posterior samples using a Cholesky decomposition. It may be implemented with standard

statistical software and provides a practical alternative to more computationally intensive

Markov chain Monte Carlo (MCMC) methods.

6. An Objective Function

The overall probability of outcome k = R or D in either one or two courses with the treatment

strategy (s; t) for a patient with covariates Z is

�k(s; t;Z) = �k1(s;Z) + �F1(s;Z) �k2(s; t;Z): (10)

We will use the overall probabilities ���(s; t;Z) = (�R(s; t;Z); �D(s; t;Z)) of response and death

as the basis for both interim safety monitoring and treatment strategy selection, since these

are what matter clinically. Because ���(s; t;Z) is two{dimensional, the use of this criterion

to compare treatment strategies is problematic. We thus de�ne an objective function to

reduce ���(s; t;Z) to a single real number by quantifying the trade{o� between the likelihood

of response and the risk of death. We we will use it as a basis for both interim monitoring

and treatment selection. Temporarily suppress the argument (s; t;Z): The function � is

constructed so that all pairs (�R; �D) for which �(�R; �D) equals a given constant are equally

desirable. The process of eliciting � from the physicians planning the trial may be facilitated
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by interactively modifying �(�R; �D) while viewing its contours on a computer screen.

For the AML trial, we began with the family of linear objective functions � = a �R+b �D in

the triangular two{dimensional domain of (�R; �D) over a range of (a; b) values with a > 0 > b.

We determined � by specifying two equations and solving for a and b: The null value (�R; �D)

= (.40,.40) corresponding to all patients in the historical data was assigned � = 0, and the

desirable goal (�R; �D) = (.50,.15) was assigned � = 1. The values 0 and 1 for � in these two

cases were chosen purely for numerical convenience. After examining plots of the resulting

linear contours, it was decided that � should increase more rapidly in �R for smaller values

of �D, especially for �D near 0. We thus considered functions of the more general form

�(�R; �D) = a �R + b �D
c (11)

with a > 0 > b and c > 0: Given the above two constraints, a third equation to determine

c was given by the value of �R that would be required to still have � = 1 if there were no

fatalities, that is, the value of �R such that �(�R; 0) = �(:50; :15) = 1. After examining contour

plots corresponding to several di�erent values of �R using the three{parameter version of �;

this was speci�ed to be �R = .30. A contour plot of the resulting �; which is characterized

by a = 3.333, b = {2.548 and c = .707, is given in Figure 2.

[Figure 2 about here]

Other functional forms for � could be used, provided that � increases in �R and decreases

in �D: The shape of its contours should provide a reasonably exible graphical representation

of the trade{o� between �R and �D that reects the physicians' goals and opinions. The

particular shape of our trade{o� function contours is one of several geometries in the two{

dimensional parameter plane that have been proposed to characterize the trade{o� between

safety and e�cacy. To de�ne hypotheses for tests based on bivariate outcomes, Willan and

Pater (1985) use two parallel lines that partition the plane into three hypotheses, Jennison

and Turnbull (1993) and Bryant and Day (1995) utilize various rectangular regions, while

Thall and Cheng (1999) propose polygonal regions.

The probability model, probabilities of response and death in each course, overall proba-
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bilities of response and death, and objective function comprise a parametric hierarchy. The

mapping � �! ���(s; t;Z) = (�R1(s;Z); �D1(s;Z); �R2(s; t;Z); �D2(s; t;Z)) reduces the param-

eter vector to the probabilities of response and death in each course using the strategy (s; t)

in prognostic group Z. Next mapping ���(s; t;Z) �! ���(s; t;Z) into the two{dimensional tri-

angular region illustrated in Figure 2 limits attention to the overall two{course probabilities

of response and death. The �nal real{valued mapping ���(s; t;Z) �! �(���(s; t;Z)) induces an

ordering among the strategies, thus providing a basis for comparison and selection.

7. Analysis of the Historical Data

For all model �ts reported here, both in analysis of the historical data and in �tting models

to simulated data sets, a priori all parameters in each model were assumed to be iid normal

random variables with mean 0 and variance 10.

The prognostic covariates used in the model{based analysis of the historical data were

the binary indicators of whether the patient's age was < 50 years and whether the patient's

initial remission duration prior to entering the trial was at least one year. Thus, q=2 and there

were four prognostic subgroups. For example, the group having worst prognosis consisted of

the older patients with short initial CR duration, while the best prognostic group had the

younger patients with long initial CR duration. There were m=3 treatment groups, and the

treatment e�ects in the model correspond to allogeneic bone marrow transplant (s=1) and

chemotherapy not including ara{C (s = 2) relative to the baseline treatment group consisting

of chemotherapy containing high dose ara{C (s = 0). Because there were rm = 9 di�erent

two{course treatment combinations, the full model has a total of p = 40 parameters.

Starting with the full model and including ���B throughout, we obtained a more parsimo-

nious model by successively eliminating entries from the parameter vector ���T (H) pertaining to

treatments in the historical data. We considered only hierarchical models. Because the two

elements of each pair ���j(s) = (�R;j(s); �D;j(s)) act together, we either included both entries

or deleted the pair. As criteria for model comparison, we used the maximized log likelihood,
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variability of posterior parameter means, and the Bayes information criterion

BIC(M) = logL(b���M) �
1

2
pM log(n); (12)

where pM is the number of parameters in modelM. In particular, the BIC penalizes the log

likelihood for larger pM. A discussion of the BIC is given by Kass and Raftery (1995).

The �tted models that we considered are summarized in Table 3. We �rst eliminated the

vector ���� of treatment-course interactions because this increased the BIC greatly (Model 3),

much more than the increase obtained by eliminating ��� (Model 2). Moreover, under the full

model the absolute value of the posterior mean of each entry of ���� was small compared to

its standard deviation. Next focusing on the four pairs of treatment-covariate interactions,

f���j(s); j = AGE, DUR, s = 1,2g, we successively eliminated pairs in a stepdown manner.

We stopped with Model 6, our �nal model because Prf�D;DUR(1) > 0 j datag = .95, hence it

was appropriate to retain the pair ���DUR(1):

[Table 3 about here]

To check the approximate Bayesian method, we also computed the posteriors under several

models in Table 3 using MCMC (Gilks, et al. 1996). Each MCMC computation was based

on 100,000 runs with a burn-in sample of 10,000. The two methods gave similar posteriors,

with a few large di�erences for parameters with a posterior mean very small relative to its

standard deviation, that is, with marginal posterior centered around 0 and very disperse. Un-

der Model 6, the posterior approximate mean(std) of �R;DUR(1) was �0:277(:713) compared

to �0:162(:719) using MCMC; the approximate mean(std) of D;DUR was �0:007(:312) com-

pared to �0:018(:286) using MCMC; the approximate mean(std) of �R;AGE was 0:081(:636)

compared to 0:095(:481) using MCMC. The posterior means of the remaining 15 parameters

di�ered by < 8%, with each di�erence well within the posterior standard deviation.

Table 4 gives posterior means of the parameters in the �nal model computed using the

approximate method and MCMC and corresponding MLEs. The signs of the estimates

f�̂j(s); j = 1; 2; s = 1; 2g of the main treatment e�ects show that, relative to high dose

ara-C, transplant had higher rates of both CR and death while non-ara-C chemo had lower
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rates of both events. The well-known fact that the CR rate decreases and the death rate

increases in a second course of treatment following failure in a previous course is borne out

by the relationship �̂R < 0 < �̂D:

[Table 4 about here]

The signs of the remaining parameter estimates in Table 4 should be interpreted in the

context of the generalized logistic model's algebraic structure, which di�ers from that of the

usual logistic model. For example, although the fact that bD;DUR > 0 considered per se

might seem to imply the model predicts a higher probability of death for patients with a

longer initial CR duration, this is not the case. The e�ect of a given covariate on �Dc is

determined by all of that covariate's coe�cients, including those indexed by both R and D.

The numerical values of bR;DUR, bD;DUR, b�R;DUR(1) and b�D;DUR(1) act together so that b�D1

decreases and b�R1 increases with longer initial CR duration, as should be the case on medical

grounds. This illustrates the fact that these four parameters act together algebraically for

each treatment to determine the course 1 probabilities. Similarly, these parameters and

(�R;2; �D;2) act together to determine the e�ect of Z2 on the course 2 probabilities. Table

5, which gives the predicted and empirical overall CR and death probabilities within each

prognostic group for patients who received only high dose ara-C in either course, shows that

the �tted model gives predictions that make sense for the four prognostic subgroups. In

particular, Table 5 illustrates the importance of accounting for prognostic group, since b�R
increases and b�D decreases with increasing CR duration and with younger age, and these

changes are quite large. Moreover, the good agreement between the model{based estimates

and the corresponding empirical values provide a further validation of the model.

[Table 5 about here]

8. Trial Conduct

Aside from technical details related to accounting for two courses, the trinary outcome,

and four prognostic subgroups, in principle conduct of the AML trial is straightforward.
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Patients are randomized fairly among the acceptable treatments at each of two stages, using

the Pocock{Simon dynamic allocation procedure to balance on the two covariates. Halfway

through the trial, a safety monitoring rule is applied within each prognostic subgroup to drop

any treatment strategies that are comparatively inferior. The stage 2 randomization thus

accounts for any strategies that are dropped in any prognostic subgroups after stage 1. At

the end of the trial, the best strategy for each prognostic subgroup is selected. Formally, the

AML trial is conducted as follows:

Stage 1. Randomize n/2 patients fairly among the three treatments for their �rst course of

therapy, using the Pocock{Simon algorithm to balance on Z1 and Z2: Patients who fail with

T0 in course 1 are randomized between T1 and T2 for their second course. All patients who

fail with either T1 or T2 in course 1 are treated with T0 in course 2. If

Pr [ �(s; t;Z) > �(u; v;Z) j data ] > :95 (13)

for distinct strategies (s; t) and (u; v), then drop strategy (u; v) in patient subgroup Z:

Stage 2. Randomize n/2 additional patients among the treatments in each course as in Stage

1, subject to the constraints imposed by dropping any treatment strategies. Once n patients

have been treated and evaluated, for each Z select the two{course strategy, among those not

dropped in that subgroup, for which the posterior mean of �(s; t;Z) is largest.

9. Simulation Study

The simulations were designed to provide a reasonable reection of actual trial conduct. As

explained earlier, the scienti�c purpose of the trial is to learn about the treatment{related

parameters ���T = (���;����; ���); and we use the historical data to obtain preliminary knowledge

about the non{treatment{related parameters ���B = (���;; ���; ���): Thus, in �tting each simulated

data set, we applied the approximate Bayesian method using the posterior f(���B j XH) from

the �tted historical data, under the model summarized in Table 4, as the the prior of the non{

treatment{related parameters ���B, and iid N(0; 10) priors for the treatment e�ect parameters

in ���T :
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9.1 Clinical Scenarios

Because the two{course, trinary outcome setting considered here is more complex than a

single{course selection trial based on a univariate outcome, necessarily our design and criteria

for evaluating its performance also are more complex. To provide a conceptual framework

for what follows, we �rst briey review the analogous single{course setting with a univariate

outcome where the goal is to select the best among k treatments based on estimates of

their means ��� = (�1; : : : ; �k): Without loss of generality assume that �1 � : : : � �k: For a

randomized trial to select a single best treatment, let �0 be a null value and �0+� a desirable

target, where � is a clinically signi�cant improvement over �0. The null con�guration ���0

is the k{vector having all �j = �0, while the least favorable con�guration (LFC) ���� has

�1 = : : : = �k�1 = �0 and �k = �0+� (cf. Gibbons, Olkin and Sobel, 1977, 1.3). It can easily

be shown that, among the set of ��� having no entries between �0 and �0 + � and at least one

entry � �0 + �, the LFC minimizes the probability of correct selection (PCS) of treatment

k: Since the PCS under ���� increases with sample size, n, given ���0 and � one may determine

n to achieve a given PCS. In the present setting, one may regard the two contours on which

�(�R; �D) = 0 and 1, respectively, as two{dimensional generalizations of the points �0 and

�0 + � in the one{dimensional case.

The clinical scenarios given in Table 6 may be regarded as multi{dimensional generaliza-

tions of the null vector and LFC in the one{dimensional case. We will use these scenarios,

and one more complex scenario that is not tabled, as a basis for evaluating the selection

design, and for determining sample size. Because we account for trinary outcomes, two treat-

ment courses and four patient prognostic groups, our parametric characterizations of clinical

settings are necessarily more complex than those in the univariate single{course case. Conse-

quently, there are more qualitatively di�erent cases than the two, noted above, that typically

are considered in the one{dimensional case. The �ve scenarios under which we evaluate the

design's OCs were chosen to cover a reasonable range of cases that may actually obtain in

practice, and should illustrate the design's essential properties.

[Table 6 about here]
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We determined each scenario in Table 6 by �rst specifying values for the 14 probabilities

f�k1(s; 0); �k2(s; t; 0)g corresponding to Z = 0 and then using these values to determine the

14 parameters (���;���;���) via a one{to{one transformation. These parameters in turn determine

the linear components �k1(s; 0) and �k2(s; t; 0): The probabilities f�k1(s;Z); �k2(s; t;Z)g for

Z 6= 0 were obtained by adding the covariate adjustment terms ( + ��� I[c = 2]) 0Z to the

�k1(s; 0)'s and �k2(s; t; 0)'s using the posterior means of  and ��� from the historical data. To

obtain covariate-adjusted probabilities in the simulations, the value of Z for each simulated

patient was chosen randomly using the historical frequencies of the four prognostic groups,

which were .42 for (CR duration, Age) = (Short, Old), .35 for (Short, Young), .11 for (Long,

Old), and .12 for (Long, Young).

Because the probabilities for each scenario vary with Z, to conserve space we present nu-

merical values corresponding to the prognostic group having short CR duration and younger

age, Z = (0,1), since this is a reasonably representative subgroup. The scenarios are given in

Table 6 and the simulation results in Table 7. For each scenario in Table 6, the correspond-

ing probabilities and values of � for the other three prognostic subgroups vary in a manner

analogous to the estimates in Table 5. Suppressing the argument Z = (0,1) in �kc for brevity,

the null scenario corresponds to (�R1; �D1) = (.16,.22) and (�R2; �D2) = (.09,.17) regardless of

treatments, using the historical probabilities in this prognostic group. Scenario A is obtained

by changing the course 2 probabilities (�R2(0; 1); �D2(0; 1)); corresponding to salvage with T1

following a course 1 failure with T0; from the null values (.09,.17) to (.47,.06). The result is

that, in terms of the objective function �; strategy (0,1) is greatly superior to the other three

strategies. Scenario A is analogous to the LFC in the one{dimensional setting, although cases

with �(0; 1) > �(0; 2) = �(1; 0) = �(2; 0) may be obtained in a variety of di�erent ways. Sce-

nario B is obtained from the null scenario by increasing �R1(1) from .16 to .51 and �R2(0; 1)

from .09 to .26. That is, T1 improves the response rates in both courses without a�ecting the

death rates. In this case, �(1; 0) > �(0; 1) > �(0; 2) = �(2; 0): Scenario C is obtained from the

null scenario by changing (�R1(1); �D1(1)) from (.16,.22) to (.52,.27) and (�R2(0; 1); �D2(0; 1))

from (.09,.17) to (.30,.46). That is, under scenario C, T1 increases the probabilities of both
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response and death in both courses, which is a phenomenon commonly encountered in testing

experimental treatments for AML. In this case, �(1; 0) > �(0; 2) = �(2; 0) > �(0; 1); so that

strategy (0,1) is worst and (1,0) is best. Scenario D includes a treatment{covariate interaction

in which T1 is a superior salvage treatment overall, but also increases the death rate among

older patients. The probabilities characterizing this scenario were obtained by parameterizing

the model using the indicator Z�
AGE of older age, so that larger values of ��D;AGE(1) correspond

to higher death rates among older patients treated with T1 in either course. We obtained the

probabilities for this scenario by starting with Scenario A and increasing ��D;AGE(1) from 0

to 3. For example, among older patients with short CR duration treated with strategy (0,1),

this has the e�ect of changing the two{course response and death rates from �R(0; 1) = .35

and �D(0; 1) = .37 under scenario A to �R(0; 1) = .17 and �D(0; 1) = .70 under scenario D.

[Table 7 about here]

9.2 Simulation Results

The trial was simulated 4000 times under each clinical scenario. The values in Tables 7

and 8 and reported in the text are the means over these repetitions. Each simulated data

set was �t via maximum likelihood using the full 30{parameter model speci�ed by equations

(5) { (9) for s = 0, 1 or 2 and the four strategies (s; t) = (0,1), (0,2), (1,0), (2,0). The

Bayesian decision criteria used in each simulated trial were computed using the approximate

method described in Section 2.3. The sample size of 96 patients used throughout was chosen

to obtain a correct selection probability � :75 in the (Short CR duration, Younger age)

prognostic subgroup under Scenario A.

The OCs in Table 7 indicate that, under each of a reasonable set of possible clinical sce-

narios, the design has a good probability of correctly selecting the best two{course treatment

strategy. The tabled correct selection probabilities are substantial improvements over the

probability .25 of guessing the best strategy in the absence of empirical evidence. Unfortu-

nately, this practice is quite common in clinical settings where several treatment strategies

are available and one must be selected. The numerical results should be interpreted in terms

23



of the numerical values of the probabilities that characterize each scenario and the fact that,

of the 96 patients in the trial, on average the sample sizes in the subgroups are only 39.2 in

(Short,Old), 34.4 in (Short,Young), 11.2 in (Long,Old), and 11.2 in (Long,Old).

The variation in the selection probabilities of the three inferior strategies under scenario

A, from .04 to .11, is due to the facts that the course 2 sample sizes are not �xed. Rather,

they depend on the number of failures in each course 1 treatment group and the imbalance

in the course 2 randomization. In the (Short,Young) subgroup, on average (1/3)�34.4 =

11.5 patients are randomized to each of the three treatments in course 1. Since all three

treatments have the same course 1 failure rate �F1(s; (0; 1)) = .6185 in the (Short,Young)

subgroup under Scenario A, this yields about �F1(0; (0; 1)) 11.5 = 7.1 patients who fail in

course 1 with T0 and are randomized equally between T1 and T2 in course 2, hence about

3.6 patients receive each of strategies (0,1) and (0,2). In contrast, on average 7.1 patients

receive strategy (1,0) and 7.1 receive strategy (2,0). This also explains why on average fewer

patients receive the best strategy (0,1) than receive either (1,0) or (2,0) under scenario A,

which otherwise may seem counterintuitive.

Table 8 summarizes the results under scenario D, which illustrate the design's ability to

select the best strategy within each prognostic subgroup. Since treatment 1 has a higher

death rate among older patients under this scenario, it is desirable for the design to have

a relatively low probability of selecting either strategy (0,1) or (1,0) in either of the two

prognostic groups having older patients. Equivalently, it is desirable to select either (2,0) or

(0,2) for older patients. The probabilities of correctly selecting either strategy (0,2) or (2,0)

are .87 in the (Short,Old) subgroup and .76 in the (Long,Old) subgroup, and on average only

39.3 and 11.0 patients, respectively, are treated in these two subgroups. These subgroup{

speci�c selection probabilities should be compared to the value .50 that would be obtained

by guessing. The much smaller correct selection probability .42 for the optimal strategy

(0,1) in the (Long,Young) subgroup is due to its much smaller sample size of 11.3, although

this probability is still much larger than the value .25 obtained by guessing. The fact that

the design performs well under scenario D may be attributed to the adaptive nature of the
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two-course treatment strategy and borrowing of strength by the parametric model across the

various treatment strategy and prognostic subgroup combinations.

[Table 8 about here]

The interim decision rule that drops inferior treatments has a very small e�ect on the

selection probabilities, but yields a design that on average treats more patients with the

superior strategies. For example, under scenario A, if the interim rule is not used then the

total number of patients in all prognostic groups treated with the best strategy (0,1) drops

from 21.1 to 15.4, so that about six more patients among the 96 receive the best treatment

strategy due to interim monitoring. The e�ect of interim monitoring under scenario D is

greater, with on average 41.4 - 32.7 = 8.7 more patients among the 96 receiving one of the

best strategies in their prognostic group due to the interim monitoring rule. Since dropping

the interim monitoring rule (13) corresponds to using an upper probability cuto� of 1, the

question arises of whether this cuto� may be calibrated to improve the design's OCs. We thus

repeated the simulations summarized in Tables 5 and 6 using cuto�s .90 and .99. As the cuto�

is increased over this range the design's overall safety drops, but there is no clear pattern

in its e�ect on the selection probabilities. It appears that the design's safety and selection

probabilities may depend in a complex way on both the cuto� and the parameterization of

each scenario.

The underlying probability model includes parameters characterizing not only treatments,

courses, and covariate e�ects, but also all pairwise interactions between these three factors.

A much simpler version of the model containing only main e�ects is given by �k1(s;Z) =

�k + �k(s) +
Pq

j=1 kj Zj and �k2(s; t;Z) = �k1(t;Z) + �k: While this model's comparative

simplicity may seem appealing, its use results in greatly degraded OCs. For example, the

probability of correctly selecting the optimal strategy (0,1) for (Short,Young) patients under

scenario A decreases from .76 under the full model to .24 under the simpler model, while the

respective probabilities of dropping the three inferior strategies decrease from .32, .34 and .29

(Table 7) to .12, .05 and .18. A similar question is what may result from basing the design on

the empirical probabilities of response and death, rather than using model{based estimates.
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This empirical approach reduces the correct selection probability by about .10 under each of

the four scenarios. This is as expected, since the regression model borrows strength across

prognostic subgroups and courses while the purely empirical approach does not.

Recall that, in developing a trial design as described in Section 3, the historical data are

used only to provide the marginal posterior f(���B j XH) of the baseline, non-treatment-related

parameters. Repeating the simulations under models other than Model 6 in Table 3 showed

that the operating characteristics of the AML trial design were relatively insensitive to which

model was chosen, apparently because f(���B j ���H) changed very little between these models.

For example, under Scenario A, using either Model 1 or Model 3 yielded selection probabilities

all within .019 and early dropping probabilities all within .024 of the corresponding values

for Model 6 given in Table 7, with most of the probabilities identical to two decimal places

and no systematic variation. Similarly, the numbers of patients treated in each course were

all within 0.16 of the corresponding values for Model 6. These di�erences appear to be due

mainly to simulation variability.

9.3 Some Graphical Methods

Because the design accounts for multiple factors, graphical methods are especially useful

for evaluating their e�ects. Figure 3 compares the posterior distributions of the overall

response and death rates, �R and �D; and of the utility function, �; corresponding to treatment

strategies (0,1) and (0,2) in the patient subgroup with short initial CR duration (< one year)

and younger age (< 50). The posteriors were obtained from a single representative simulated

data set under Scenario A. The left column gives the posteriors after a total of 48 patients,

when the interim decision rules are applied, and the right column shows what these posteriors

become once the entire trial is completed with 96 patients. The �rst two rows illustrate how

the posterior learns that, with high probability, �R(0; 1) > �R(0; 2) and �D(0; 1) < �D(0; 2):

It also shows that the posterior of �D(0; 2) is still comparatively disperse even at the end of

the trial. The third row illustrates the manner in which � combines �R and �D; and that

this is a useful device for combining these two probability criteria to make overall treatment

comparisons.
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[Figure 3 about here]

Figure 4 provides a similar illustration, but this time using only the utility function and

based on a representative simulated data set under Scenario D. This �gure compares the four

treatment strategies within each of the four patient prognostic subgroups. Referring to the

numerical values of � in Table 8, the upper left graph illustrates the comparative inferiority of

strategy (1,0) in the (short, old) subgroup; the upper right graph illustrates the comparative

superiority of strategy (0,1) in the (short, young) subgroup; the lower left graph illustrates

the comparative inferiority of strategy (1, 0) in the (long, old) subgroup; and the lower right

graph illustrates the comparative superiority of strategy (0, 1) in the (long, old) subgroup.

The bottom row shows that there is more variability between the four strategies in patients

with a longer initial CR duration. Overall, the �gure shows the great advantages of younger

age and of longer initial CR duration.

[Figure 4 about here]

Figure 5 has the same structure as that of Figure 4, but with the roles of the four treatment

strategies and the four patient subgroups reversed. This �gure shows the great variability of

the outcome criterion function � across the the four prognostic groups within each treatment

strategy.

[Figure 5 about here]

10. Generalizations

Numerous extensions and modi�cations of the design described here are possible. For exam-

ple, Lavori and Dawson (2000) propose a biased-coin within{subject adaptive randomization

method to compare multi-course treatment strategies. A simple generalization of the AML

trial design is to allow more than two courses. This would arise, for example, in a trial

of multiple treatments for a life{threatening infection, with the trinary outcome falive and

not infected, alive and infected, deadg in each course. In such settings, a patient may be
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treated until either the infection is resolved, the patient dies, or death is nearly certain regard-

less of additional treatment. This motivates the following generalization of the two{course

model given by (1) { (4) to accommodate an arbitrary number of courses. Denote Yj =

(YRj; YDj; YFj) and �j as before, but now for j = 1; : : : ; J , where J is the maximum number

of treatment courses. Since the patient's therapy continues beyond the jth course only if it

results in a failure, for notational consistency if YFj = 0 we de�ne Yr = (0,0,0) for all r > j:

De�ne �k1(s;Z) as before. For each j > 1; denoting tj = (t1; :::; tj) and ��� j = (�1; :::; �j); we

de�ne

�kj(tj;Z) = Pr[Ykj = 1 j Z; YF1 = ::: = YF;j�1 = 1 and �r = tr; r = 1; :::; j]

=
expf�kj(tj;Z)g

1 + expf�Rj(tj;Z) + expf�Dj(tj;Z)g
; (14)

for k = R, D or F , where

�kj(tj;Z) = �(tj;Z) + kZ + �k(tj) (15)

with all �F (tj) = 0. The probability of overall outcome k = R or D under J{course treatment

strategy tJ is

�k(tJ ;Z) =
JX
j=1

� jY
r=0

�F;r(tr;Z)
�
�k;j(tj;Z); (16)

where �F;0 = 1. The likelihood (4) may now be extended to the general form

Li =
JY
j=1

� Y
rj=R;D;F

�
�i;rj ;j(��� i;j;Zi)

�Yi;rj ;j �Yi;F;j�1

; (17)

denoting Yi;F;0 � 1. Assuming a reasonably small number of possible covariate vectors Z; the

likelihood for n patients is the product multinomial

L =
Y
Z

JY
j=1

Y
ftj :tj2Sj(Z)g

Y
kj=R;D;F

�
�kj ;j(tj;Z)

�Xkj;j
(tj ;Z)

; (18)

where Xk;j(tj;Z) is the number of patients in subgroup Z who have outcome k with treatment

tj following j � 1 consecutive failures with tj�1, and Sj(Z) is the set of admissible treatment

sequences in that subgroup through j courses. Since

X
ftj :tj2Sj(Z)g

X
k

Xk;j (tj;Z) = XF;j�1(tj�1;Z);
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in practice even for three or four courses a reasonably parsimonious parameterization of the

�k;j(tj;Z)'s will be needed.

A more complicated extension in the context of AML therapy would be to give patients

who achieve CR with the treatment Ts a second course of Ts; so-called \consolidation" therapy.

This is similar to the de�nition of patient success used in the prostate cancer trial described

by Thall et al. (2000) where death during therapy is very unlikely. In this case, patient

success is de�ned as two consecutive successful courses with the same treatment. The set of

possible outcomes would be more complex since each initial CR is now partitioned into three

sub-events. Given the realistic constraint that a patient may receive at most three treatment

courses, each patient's therapy ends with two failures, death, or patient success as de�ned.

The treatment assignment algorithm is illustrated by Figure 6. As before, each patient may

receive either one or two di�erent treatments. Denote the probability of outcome k with Ts

in course 1 by �k(s;Z); of outcomes k1 with Ts in course 1 and k2 with Tt in course 2 by

�k1;k2(s; t;Z); and of outcomes k1 with Ts in the �rst course followed by k2 and k3 with Tt

in courses 2 and 3 by �k1;k2;k3(s; t; t;Z): Because the course 1 treatment is changed in course

2 if YF1 = 1 and repeated in course 2 if YR1 = 1; all of the course 2 probabilities are of the

form �F;k(s; t;Z) or �R;k(s; s;Z); for k = R;D; F: Similarly, a patient receives a third course

only if the �rst two courses have outcomes F and R with two di�erent treatments. Thus, all

three-course probabilities are of the form �F;R;k(s; t; t;Z):

[Figure 6 about here]

To extend the two-course model to accommodate the above three-course structure, we �rst

note that the course 1 probabilities are unchanged. Now, recall that the course 2 outcome

probability given by (2) is de�ned conditionally. Thus, we express the above course 2 and

course 3 joint outcome probabilities as the following products of conditional probabilities:

�k1;k2(s; t;Z) = �k2 j k1(s; t;Z) �k1(s;Z)

and

�k1;k2;k3(s; t; t;Z) = �k3 j k1;k2(s; t; t;Z) �k2 j k1(s; t;Z) �k1(s;Z):
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The linear components corresponding to each of the above conditional probabilities may

be parameterized as before, but now generalizing �k(s; t) and the coe�cient �kj of Zj in

(6). These terms become �kjF (s; t) and �kjF;j in �kjF (s; t;Z); and �kjR(s; t) and �kjR;j in

�kjR(s; t;Z); for k = R;D; F: Similarly, for the linear terms characterizing �k3 j k1;k2(s; t; t;Z);

these parameters are �kjF;R(s; t; t) and �kjF;R;j: In practice, sample size limitations likely will

necessitate much more parsimonious versions of this parameterization.

A very di�erent type of extension would utilize the times to the events, rather than dis-

cretizing them. This would require a multivariate event time model in place of the generalized

logistic model, treating the times to response and failure as non-fatal competing risks, with

the distribution of subsequent survival time depending on whether response or failure has

occurred. The multivariate event time models proposed by Shen and Thall (1998) or Chang

and Wang (1999) might be useful for this type of design. Utilizing event times could poten-

tially provide a more informed evaluation of treatment strategies, especially since the time

to achieve response has a profound e�ect on subsequent survival time in AML. Such a de-

sign also could account for relapse after response and the salvage therapy administered at

relapse. Practical implementation would require addressing the issues of model complexity,

the logistics of continuously monitoring multiple event times, and sample size.

An important question is whether Bayesian decision theory may yield a design with better

properties. Such an approach could be based on the use of � as a utility function, or possibly

a more complex utility that also accounts for costs, as in Stallard et al. (1999). Because such

an approach is very di�erent from that taken here, it is a topic for future research.
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Table 1. Outcome counts for each course and treatment combination in the historical

AML data. Row probabilities are given in parentheses. 0 = high dose ara{C, 1 =

allogeneic bone marrow transplant, and 2 = chemotherapy without ara{C

Course 1 Outcome

Treatment t1 CR Death Failure Total

0 84 (.27) 66 (.21) 166 (.52) 316

1 50 (.56) 18 (.20) 21 (.24) 89

2 13 (.04) 41 (.13) 255 (.82) 309

Treatments Course 2 Outcome

t1 t2 CR Death Failure Total

0 0 14 (.17) 24 (.29) 44 (.54) 82

0 1 5 (.36) 5 (.36) 4 (.29) 14

0 2 0 (.00) 5 (.22) 18 (.78) 23

1 0 1 (.14) 5 (.71) 1 (.14) 7

1 1 1 (.50) 0 (.00) 1 (.50) 2

1 2 0 (.00) 0 (.00) 3 (1.00) 3

2 0 4 (.11) 12 (.34) 19 (.54) 35

2 1 3 (.33) 3 (.33) 3 (.33) 9

2 2 4 (.02) 26 (.16) 129 (.81) 159
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Table 2. Induction mortality rates in AML at M.D. Anderson, 1991-1999

Number of Deaths (%)

Performance Status Age No. Patients by Day 28 by Day 56

0, 1, or 2 < 50 372 19 (5) 30 (8)

50 - 59 235 16 (7) 26 (11)

60 - 69 313 31 (10) 53 (17)

70 - 79 260 34 (13) 55 (21)

> 79 43 13 (30) 17 (40)

3 or 4 < 50 41 16 (39) 18 (44)

50 - 69 76 35 (46) 42 (55)

> 69 54 31 (57) 36 (67)

34



Table 3. Summary of models �t to the historical data

Model Description p log L(�̂��) BIC

1 Full 40 {795.96 {927.38

2 ��� = 0 32 {800.98 {906.12

3 ���� = 0 24 {801.19 {880.94

4 Model 3 { ���AGE(1) 22 {801.48 {873.76

5 Model 4 { ���AGE(2) 20 {801.91 {867.62

6 Model 5 { ���DUR(2) 18 {803.22 {862.36

7 ��� = 0, ���� = 0 16 {806.55 -859.12
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Table 4. Maximum likelihood estimates and posterior means under generalized logistic

model 6 for the historical data. Standard deviations are given in parentheses.

Bayesian Estimates

Parameter ML Estimate Approximate MCMC

�R {1.350 (.249) {1.338 (.244) {1.352 (.207)

�R(1) 1.740 (.304) 1.723 (.301) 1.744 (.303)

�R(2) {2.143 (.281) {2.132 (.280) {2.166 (.282)

�D {0.685 (.197) {0.682 (.195) {.685 (.165)

�D(1) 0.563 (.355) 0.562 (.349) 0.560 (.338)

�D(2) {1.061 (.189) {1.058 (.188) {1.067 (.178)

�R {0.458 (.601) {0.474 (.576) {0.507 (.428)

�D 0.467 (.280) 0.456 (.276) 0.458 (.240)

R;DUR 1.570 (.270) 1.545 (.266) 1.562 (.253)

R;AGE 0.223 (.279) 0.222 (.273) 0.225 (.231)

D;DUR 0.004 (.317) {0.007 (.312) {0.018 (.286)

D;AGE {0.440 (.253) {0.439 (.250) {0.447 (.220)

�R;DUR(1) {0.263 (.746) {0.277 (.713) {0.162 (.719)

�D;DUR(1) 1.365 (.850) 1.307 (.809) 1.421 (.794)

�R;DUR {0.639 (.564) {0.599 (.549) {0.618 (.502)

�R;AGE 0.078 (.661) 0.081 (.636) 0.095 (.481)

�D;DUR {0.989 (.543) {0.949 (.532) {0.990 (.508)

�D;AGE 0.140 (.400) 0.141 (.394) 0.144 (.346)
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Table 5. Estimated two{course probabilities of response and death, and objective

function values, by prognostic group, for historical patients treated with high{dose

ara{C in both courses. Standard deviations are given in parentheses.

Model Based Empirical

(CR Duration, Age) b�R b�D b� b�R b�D b� n

(Short, Old) .19 (.05) .52 (.07) {.95 (.31) .16 (.04) .44 (.05) {.90 (.17) 29

(Short, Young) .27 (.10) .40 (.10) {.42 (.54) .31 (.05) .40 (.06) {.31 (.22) 30

(Long, Old) .54 (.12) .25 (.09) .85 (.60) .63 (.07) .27 (.06) 1.10 (.26) 11

(Long, Young) .65 (.13) .16 (.08) 1.48 (.65) .62 (.06) .16 (.05) 1.40 (.25) 12

Average .33 (.04) .38 (.04) {.16 (.24) .35 (.03) .36 (.03) {.08 (.11) 82

37



Table 6. The �rst four clinical scenarios. Tabled values correspond to the patient

prognostic group with short CR duration and younger age

Null Scenario Scenario A

Strategy �R �D � Strategy �R �D �

(0,1) .22 .32 {.39 (0,1) .46 .25 .55

(0,2) .22 .32 {.39 (0,2) .22 .32 {.39

(1,0) .22 .32 {.39 (1,0) .22 .32 {.39

(2,0) .22 .32 {.39 (2,0) .22 .32 {.39

Scenario B Scenario C

Strategy �R �D � Strategy �R �D �

(0,1) .33 .32 {.04 (0,1) .35 .50 {.40

(0,2) .22 .32 {.39 (0,2) .22 .32 {.39

(1,0) .54 .25 .83 (1,0) .54 .30 .72

(2,0) .22 .32 {.39 (2,0) .22 .32 {.39
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Table 7. Operating characteristics of the design under scenarios A, B and C for the

prognostic subgroup with short CR duration and younger age. Correct decision prob-

abilities are enclosed in boxes.

Treatment Decision Probabilities # Patients Treated

Scenario Strategy � Selected Dropped Early Course 1 Only Two Courses

A (0,1) .55 .76 .03 3.0 4.7

(0,2) {.39 .04 .32 2.0 3.3

(1,0) {.39 .08 .34 3.9 6.5

(2,0) {.39 .11 .29 4.2 6.7

B (0,1) {.04 .12 .27 2.1 3.4

(0,2) {.39 .04 .37 1.9 3.0

(1,0) .83 .78 .04 9.8 4.0

(2,0) {.39 .06 .34 3.8 6.3

C (0,1) {.40 .09 .36 2.0 3.2

(0,2) {.39 .06 .31 2.0 3.2

(1,0) .72 .77 .04 10.8 2.8

(2,0) {.39 .08 .30 4.0 6.4
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Table 8. Operating characteristics of the design under scenario D, where strategy (0, 1)

is superior overall but but T1 in either course greatly increases the death rate in older

patients. Correct decision probabilities are enclosed in boxes.

Prognostic Group Treatment Decision Probabilities # Patients Treated

(CR Dur, Age) Strategy � Selected Dropped Early Course 1 Only Two Courses

(Short,Old) (0,1) {1.33 .13 .38 2.8 3.8

(0,2) {.91 .44 .07 4.0 5.1

(1,0) {2.32 .00 .89 7.0 0.6

(2,0) {.91 .43 .16 6.9 9.2

(Short, Young) (0,1) .55 .73 .06 2.8 4.6

(0,2) {.39 .06 .30 2.0 3.3

(1,0) {.39 .10 .28 4.2 6.8

(2,0) {.39 .12 .30 4.0 6.6

(Long,Old) (0,1) {.17 .24 .30 1.4 0.8

(0,2) {.03 .35 .17 1.6 0.9

(1,0) {2.21 .00 .86 2.1 0.1

(2,0) {.03 .42 .27 2.7 1.5

(Long, Young) (0,1) 1.48 .42 .19 1.3 0.7

(0,2) .73 .10 .36 1.1 0.6

(1,0) .73 .24 .28 2.4 1.4

(2,0) .73 .24 .27 2.4 1.3
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Treatment Assignment Algorithm

Course 1 Course 2

T0

T1 

T2 

T1 

T2 

T0 

T0 

1/3

1/3

1/3

1/2

1/2

1

1

R

R
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R

R

D

D

D

D

D

F

F

F

F

F

R

D

F

R

D

F

R = Response D = Death             F = Failure to respond but alive  

T0 = Idarubicin + ara-C (IDA) T1 = IDA + mylotarg T2 = IDA + topotecan

Figure 1: Treatment assignment algorithm for the AML trial
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Figure 3: Comparisons of treatment strategies (0,1) and (0,2) in terms of �R; �D; and � in

the patient subgroup with short initial CR duration and younger age under scenario A
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Figure 4: Comparisons of the four treatment strategies in terms of � in each patient subgroup

under scenario D
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of � under scenario D
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Three-Course Treatment Assignment Algorithm
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Figure 6: Treatment assignment algorithm for an extended design de�ning patient success as

two consecutive CRs
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