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Abstract. With the completion of genomes of many species and the advances of microarray

technologies, we begin to possess a tremendous amount of valuable biological data | but these

\raw products" are still far from usable. One of the most challenging problems of this century

is to decipher this huge amount of biological information and turn the data into knowledge.

The past decade has witnessed a number of successful applications of sophisticated statistical

models in computational biology. This article focuses on one of these success stories: using

statistical methods to �nd short repetitive patterns in a set of DNA or protein sequences, a

task often referred to as motif discovery. In particular, we review a few probabilistic models

that have recently been shown useful for motif discovery and provide a novel framework based

on a Bayesian segmentation model to unify these approaches. We show how to combine the

dictionary model with the Gibbs sampler and how a segmentation-based motif sampler can be

implemented. A few interesting open problems are also discussed.

1 Introduction

The human genome and many other genome sequencing projects have resulted in rapidly growing

and publicly available databases of DNA and protein sequences (e.g., the GeneBank). The data

in these databases are sequences of letters using d-letter (d = 4 for DNA or d = 20 for proteins)

alphabets without punctuation or space characters. Recent advances in microarray technologies

futher enable and \entice" biologists to generate a hugh amount of gene expression data. These

data are real numbers and measure the relative changes of the mRNA products of many genes

(sometimes all the genes in a genome, e.g., yeast or E. Coli). These real numbers are often

presented as a g�c matrix, where g is the number of genes being monitored and c is the number
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of experimental conditions under investigation. One of the most interesting questions scientists

are concerned with is how to get any useful biological information from \looking" at the sequence

databases or the microarray data matrices. This task is often termed \data mining" for other

types of data. The recent announcement of the near-completion of the human genome makes

this interesting question more an urgent task for all interested scientists. However, \mining"

a biopolymer database is noticeably di�erent from mining other types of databases because

(i) many sophisticated structures have been built in well-organized biopolymer databases, (ii)

there is an enormous amount of biological knowledge, and (iii) fundamental laws in physics and

chemistry can be applied. Consequently, more sophisticated mathematical/statistical models

are often critical in developing a \mining" strategy.

Our focus here is is to �nd repetitive short sequence segments (called the motif elements) in

a set of biological sequences. The main motivation for this task is that repetitive patterns in

biopolymer sequences often correspond to functionally or structurally important parts of these

molecules. For example, a common pattern shared by multiple proteins can often shed light on

their functionalities. In Figure 1(b), one can see that a helical part of protein 3CRO is inside the

major groove of a DNA double-helix structure. This helical part of the protein, often referred to

as the helix-turn-helix motif, plays an important role in the binding of 3CRO to a DNA segment

and turns out to be a rather conserved part in a large family of proteins responsible for gene

regulation. Repetitive patterns in noncoding regions of DNA sequences also have important

biological implications: They often correspond to a \regulatory binding site" to which a certain

protein (such as 3CRO) binds to control the gene's expression. In Figure 1(b), the segment of

DNA (double-helix structure) that are interacting with protein 3CRO is a binding site whose

pattern is conserved among the 50 untranslated regions of a number of genes regulated by the

CRO protein. It has been shown that the gene expression data from microarray experiments

can furhter assist the discovery of biologically relevant regulatory motifs [11, 6, 9].

The multiple occurrences of a motif pattern in a set of sequences R is thus analogous to the

multiple occurrences of a common word in an article. What makes things complicated is that

although the word (or words) is known to have occurred multiple times in the text, each of its

occurrence is not identical to another. In other words, there are often \typos" (sometimes very

serious ones) in each occurrence of the word. It is therefore rather natural for us to employ a

probabilistic model to describe what a \motif pattern" is (e.g., it is a stochastic word) and let

basic statistical principles (i.e., the Bayesian methodology) to guide us in the discovery of these

patterns.
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(a) (b)

Figure 1: (a) A ball-and-stick plot of the interaction between a regulatory protein, 3CRO, and

the DNA segment to which it binds. (b) The same structure as in (a), but expressed by a ribbon

representation widely used in the protein structure modeling community.

This article reviews two general statistical approaches: one is based on the product multi-

nomial model (also called the weight matrix) for the motif pattern (Sections 2 and 3) and

another based on a segmentation model (Section 4). It is shown that these two models are very

much related to each other. A segmentation-based Gibbs sampler is implemented and shown to

outperform the original Gibbs motif sampler [8].

2 First-generation Block-Motif model

This model, as depicted in Figure 2, gives rise to the �rst Gibbs sampling-based motif �nding

algorithm proposed in [4]. The algorithm will be referred to as the \site sampler" in the later

context. In this model, we assume that there are K DNA (or protein) sequences of lengths

ak

Sequence k
Motif

width=w

Figure 2: A schematic plot of the block-motif model used for our pattern �nding.

n1; : : : ; nK , respectively, in consideration. Each sequence is assumed to be generated by i.i.d.

draws from the alphabet fA;C;G; Tg with the frequency vector �0 = (�0a; : : : ; �0t), except for
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a segment, as illustrated by the blackened region in Figure 2, which is a motif element of length

w. The motif is a frequency matrix � = (�1; : : : ;�w), where each �Tj is a probability vector

of length 4 representing the preference of the nucleotide types at position j of a motif element.

Thus, position j of a motif element (or an occurrence of the motif) is a draw from the alphabet

with frequency vector �j . We know neither the motif matrix � nor the positions of the motif

elements, but we are interested in �nding them out.

2.1 Site sampler

An intuitive solution (for a statistician) to the motif discovery problem just described is to use

a missing-data formulation: One can view the position of the motif element, aj in particular,

as missing data. Then one can design an EM algorithm [5] or a data augmentation (DA)

algorithm [13]. A slight modi�cation [7] of the DA algorithm gives rise to the so-called motif

site sampler [4].

In the site sampler, the motif locations (sites) are initialized at random; that is, position a
(0)
k

(for k = 1; : : : ;K) is a randomly chosen position of the kth sequence. For t = 1; : : : ;m, the

algorithm iterates the following steps:

� Select a sequence, say the kth sequence, either deterministically or at random.

� Draw a new motif location ak according to the predictive distribution

P (ak j a(t)1 ; : : : ; a
(t)
k�1; a

(t)
k+1; : : : ; a

(t)
K ) (1)

and update the current motif location a
(t)
k to a

(t+1)
k = ak.

� Let a
(t+1)
j = a

(t)
j for j 6= k.

Although there are many choices of the predictive distribution function used for updating the

alignment [e.g., one can let P (ak j : : :) be proportional to certain �tness measure of the segment

indexed by ak to the current multinomial pro�le resulting from the a
(t)
j , j 6= k], those that

make the foregoing iteration consistent have to be the ones derived from a complete Bayesian

statistical model.

2.2 Some theoretical calculation

To understand the nature of the problem, we consider an analogous problem. Consider K

sequences of coins of length n each. For each sequence Sk, we assume that starting from an
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unknown position ak there is a segment of w special coins, each has probability � to show head.

The remaining coins has a known probability �0 to show head. Our questions are two: (a) Can

we estimate � consistently? (b) How accurate can we predict the location of these special coins?

To answer these questions, we start with the basic likelihood analysis. Let Y = (S1; : : : ; SK) be

the sequence data. Then

P (Y j �) =
KY
k=1

 
n�w+1X
i=1

�
�

�0

�Nk;i
�
1� �
1� �0

�w�Nk;i

!
;

where Nk;i is the number of heads in segment (sk;i; : : : ; sk;i+w�1). Taking the �rst derivative of

the log-likelihood with respect to �, we obtain an estimating equation

A

B
�

KX
k=1

2
6664
n�w+1P
i=1

�
Nk;i

�
� w�Nk;i

1��

��
�
�0

�Nk;i
�

1��
1��0

�w�Nk;i

n�w+1P
i=1

�
�
�0

�Nk;i
�

1��
1��0

�w�Nk;i

3
7775 = 0: (2)

Let us consider the simplest case with w = 1. Then

@

@�
logP (Y j �) =

kX
i=1

Nk

�0
� n�Nk

1��0
Nk

�0
+ �n�Nk

1��0
(1� �)

Taking the second derivative, we have the observed Fisher information

Iobs =
KX
k=1

 Nk

�0
� n�Nk

1��0
Nk

�0
� + n�Nk

1��0
(1� �)

!2

:

If we assume that both K and n goes to in�nity, we have

Iexp � k

n�0(1� �0) :

This implies that k=n needs to go to in�nity for the estimation of � to be consistent.

Now consider the case w > 1 where we have a more complex expression. In particular, for a

single sequence Sk,

Ik =

n�w+1P
i=1

h
Nk;i(Nk;i�1)

�2
� 2

Nk;i(w�Nk;i)
�(1��) +

(w�Nk;i)(w�Nk;i�1)
(1��)2

i �
�
�0

�Nk;i
�

1��
1��0

�w�Nk;i

n�w+1P
i=1

�
�
�0

�Nk;i
�

1��
1��0

�w�Nk;i

�
�
A

B

�2

where A andB are de�ned as in (2). This formula is not easy to simplify although not impossible.

But for the general site-sampler model, this type of information analysis is still lacking.
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3 Repetitive Block-Motif Model

There is no loss of generality here in that any biological sequence dataset can be viewed as a

long sequence S of letters in an alphabet A. Our focus is to �nd repetitive motif elements in

the sequence.

A simple model that conveys the basic idea of a motif that repeats itself with random vari-

ations is the block-motif model as shown in Figure 3. It was �rst developed in [8]. and has

been employed to �nd subtle repetitive patterns, such as helix-turn-helix structural motifs [10].

or gene regulation motifs [11], in both protein and DNA sequences. The repetitive patterns as

represented by the dark solid rectangle occur irregularly in the dataset. The total number of

occurrences of the motif is unknown. A simple �rst model is to assume that at any sequence

position i, there is a small probability p0 that a motif pattern starts from i. It is of interest to

�nd the motif pattern and where it occurs.

a aa1 2 k

w

Figure 3: A graphical illustration of the repetitive motif model.

This model says that at unknown locations A = (a1; : : : ; aK) there are repeated occurrences

of a motif. So the sequence segments at these locations should look similar to each other. In

other part of the sequence, called the background, the residues follow an independent multinomial

model. Suppose the motif's width is w, we need w+ 1 probability vectors to describe the motif

and the background: �0 = (�0a; : : : ; �0t) describe the base frequencies in the background; and

each �k describes the base frequency at position k of the motif. The matrix � = [�1; : : : ;�w]

is called the pro�le matrix for the motif. We again use the generic notation � to denote the

collection of all parameters, (�0;�).

3.1 Scoring the motif candidates

A Bayesian solution to the foregoing alignment problem was derived in [8]. With a Dirichlet

prior Dirichlet(�), for all the �i, we can obtain the Bayes estimates of the �i very easily if

we know the positions of the motif. To facilitate analysis, we introduce an indicator vector

I = (I1; : : : ; In) and treat it as missing data. An Ii = 1 means that position i is the start of a

motif pattern, and Ii = 0 means otherwise. We assume a priori each Ii has a small probability
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p0 to be equal to 1. With this setup, we can write down the joint posterior distribution:

p(�; I j R) / p(R j I ;�)p(I j �)f0(�) (3)

Suppose that the alphabet size is k0 (=4 for DNA sequences), motif length is w, and the

motif pattern can be described by a k0�w weight matrix �. Assume also that the background

of non-motif regions can be described by a multinomial vector �0, which is assumed known in

advance. Let A = (a1; : : : ; ak) be the location vector of the k occurrences of the motif. Then,

log p(S; A) = log

Z
p(S j A;�;�0)p(�)p(A)d�

� log p(A) + log p(S j �0) + jAj
wX
j=1

h�̂j ; log �̂j
�0
i;

where jAj = k is the number of sites. Since P (S j �0) is constant for all A, the Gibbs motif

sampler developed in [8] optimizes the score function

 (S) = jAj
2
4log p0 + wX

j=1

Ient(�̂jk�0)
3
5 ;

where the entropy distance Ient between two discrete distributions p = (p1; : : : ; pk0) and q =

(q1; : : : ; qk0), is de�ned as

I(pkq) = hp; log p
q
i �

k0X
i=1

pi log(pi=qi):

If we also assume that p0 is unknown and given a prior distribution f(p0) (say, a Beta(a0; b0)

distribution), then

p(A) �
Z
p
jAj
0 (1� p0)N�wjAjf(p0)dp0

=
�(a0 + b0)

�(a0)�(b0)

Z
p
jAj+a0�1
0 (1� p0)N�wjAj+b0�1dp0

=
�(a0 + b0)�(jAj+ a0)�(N � wjAj+ b0)

�(a0)�(b0)�(N � (w � 1)jAj+ a0 + b0)

Then the new score function becomes

 0(S) = log p(A) +
wX
j=1

Ient(�̂jk�0):

It is of interest to see the behavior of such a scoring function under the null distribution. That

is, suppose all the data are from the background, how the scoring function fairs. For example,

an alternative score is

�(S) = log(jAj)
wX
j=1

Ient(�̂jk�0):
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This scoring function allows the total number of sites jAj to play a role when jAj is relatively
small, but its role decreases as jAj increases. In other words, the new potential site is added to

the collection only if it can increase the total information.

3.2 Searching strategy

The popular searching strategies include the progressive comparison method employed by CON-

SENSUS [12], expectation-maximization based deterministic search in MEME [5, 2], and the

iterative stochastic search in Gibbs Motif Sampler ([8], renamed as AlignAce in [11]). Other

word frequency based approaches do not seem to achieve a comparable success rate to CONSEN-

SUS, MEME, and the Gibbs Motif Sampler (or AlignAce). The predictive updating approach

used in GMS is of particular interest. More precisely, at each iteration, one uses the current

\weight matrix" for the motif pattern to score every segment of width w of all the sequences

in the whole dataset and select those \signi�cant" candidates to form a collection of possible

motif sites. Then a new weight matrix is computed based on these candidate motif sites. In

order to avoid being trapped in a local mode, GMS uses a probabilistic rule to decide whether

a sequence segment being examined should be included as a potential motif site or not.

A central question, then, is how to judge \signi�cance" and how to incorporate additional

information revealed by, say, cross-species comparisons, gene expression clusterings, or data from

the chromatin-immunoprecipitation and microarray hybridization (ChIP-array, see Section 5).

A natural route is to build an appropriate statistical model to reect these knowledges and to

construct the search algorithms accordingly. For example, if a sequence segment is located in a

region where a cross-species comparison shows that it is highly conserved, then it is highly likely

that the segment corresponds to a protein binding site. Otherwise, such a prior probability

would be small. In the IP experiment, the few 5' UTRs with the highest enrichment level and

gene expression levels [1] clearly are most likely to contain the targeted binding sites, and maybe

multiple of them. Hence, it is essential to direct the GMS to search these few sequences more

thoroughly before it wanders o� to other less likely sequences.

A new search strategy as implemented by BIOPROSPECTOR, called the \threshold sam-

pler," is as follows: for each sequence, we give it a high threshold and a low threshold. When we

use the current motif pattern matrix to scan the sequence, all segments whose score are above

the high threshold are automatically called a motif site and all those that are below the high

threshold but above the low threshold are given a chance to be sampled into the set of motif

sites. The low-threshold is started as 0 and increase gradually to a suitable level.
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Another search strategy is similar to the one used in CONSENSUS: for each candidate k-

mers appeared in each sequence, we search the whole dataset to count the number of length-k

segments in the data set that have at least c base pairs that match with the seed kmer and such

segments are called the c-matches. Here c is determined by a p-value computation as follows.

For a pair of randomly generated base pairs, the probability that they match each other is

pm = p2a + p2c + p2g + p2t :

For the yeast intergentic regions, pm � :2644. Hence, the number L of matched positions

between two randomly generated k-mers is a binomial random variable, i.e.,

P (L = l) =

 
k

l

!
plm(1� pm)l:

The cuto� value c is chosen so that P (L � c) � pc is suÆciently small. More precisely, for

any given seed k-mer, the number of c-matches to this k-mer in a sequence of length N is

approximately distributed as Poisson(Npc). Hence, by rough approximation, the chance that

any given seed k-mer can �nd at least j0 c-matches in the dataset is

P (Nc � j0) = 1�
j0�1X
j=1

(Npc)
j

j!
e�Npc :

If let Npc � 1, then the chance of having more than 5 c-matches for a given k-mer is about 1

out of 2,000.

Empirically, we would choose pc � 0:002. For k = 7; : : : ; 20, we have

7 8 9 10 11 12 13 14 15 16 17 18 19 20

6 7 7 8 8 9 9 10 10 11 11 12 12 12

Of course, the use of this table is only for a guidance. For k > 20, one can use the normal

approximation, i.e., c = kpm + 3
p
kpm(1� pm). For the yeast genome, this formula is c =

0:26k + 1:32
p
k + 1.

4 Motif, Dictionary, and Segmentation

From Figure 3, it is also possible to view it as a segmentation model. That is, we can think of

segmenting the sequences into two types of contiguous pieces, one described by the motif model,

and the other by an iid model. In fact, this view can be further generalized into a dictionary

model [3]. In this model, one assumes that a list of d words fM1;M2; : : : ;Mdg are �rst given.
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Then, with the observed sequence data S, one can estimate the frequencies of these words. More

precisely, under this model, we can write down the likelihood of the data:

P (S j �) =
X
�

N(�)Y
i=1

�(S[Pi]) =
X
�

dY
j=1

�
Nj(�)
j ; (4)

where � = (P1; : : : ; Pk) is a partition of the sequence so that each part Pi corresponds to a

word in the dictionary, N(�) is the total number of partitions in �, and Nj(�) is the number

of occurrences of word type Mj in the partition. Clearly, this can be viewed as a missing data

problem where the partition � is missing. The summation over all � can be achieved recursively.

Let Li�1(�) be the sum of all legitimate partitions for partial sequence S[1:(i�1)]. Then

Li(�) =
WX
j=1

�(S[(i�j):i])Li�j; (5)

where W is the length of the longest word in the dictionary. In other words, we check whether

the last segment of length is a word from the dictionary for all possible word length j. To avoid

minor complications, we assume that single letters are always contained in the dictionary (if

not, the above recursion needs to be modi�ed slightly).

Clearly, estimating � from this model is conceptually simple. There are a few approaches:

One can directly optimize (4) via a Newton-type algorithm [3]. Alternatively, one can employ an

EM algorithm or a Gibbs sampler. The Gibbs sampler is conceptually simplest, but is perhaps

slow in comparison with the Newton-type method. In particular, we can derive an estimating

equation from (4) by taking derivative with respect to �(M) as

�(M) = E�[NM (�)=N(�)]:

This is also derived in [3] from a physics viewpoint.

4.1 Connection with the motif model

Let us assume that our dictionary consists of only �ve words, D = fA;C;G; T;M1g, where M1

is a motif sequence of length L. For example, M1 can be TGACA. Then the above dictionary

model is to estimate in the dataset the frequency of this word M1, with the consideration of its

chance-occurrence. In other words, even if the dataset is generated as iid from the four basepairs

with frequencies pA; pT ; pG; and pC , the chance of observing M1 is still p
2
ApTpGpC . Due to this

ambiguity, the frequency estimation of M1 is not as straightforward as counting.
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Now let us assume that M1 is a fuzzy word in which each position is not a letter, but a

probability distribution on the four letters (e.g., the second position has 85% chance to be T,

10% to be A, 5% chance to be C and 0% chance to be G). Then the computation of segmentation

becomes a motif scanning algorithm. That is, it is equivalent to scan the whole dataset to see

whether there are matches to the postulated pattern represented by M1. What di�ers from

the usual pattern scanning is that the \threshold" for considering a candidate segment as the

occurrence of M1 is not given in advance, but determined by the dataset.

Let us further relax the model by assuming that the pattern of the motif (word) M1 is

in fact unknown. Then the model is equivalent to the block-motif model subject to minor

tweaking. However, a serious statistical question is whether in such a model the parameters

can be estimated consistently. Since the motif pattern is assumed unknown, the only source of

information for its inference is its over-abundance in comparison with those \motif-like" patterns

occurred by chance under the \null" model.

4.2 Finding the Unknown word via Gibbs sampling

As with the previous subsection, we let D = fA; T;G;C;M1g, where M1 a fuzzy word of length

w. Let the usage frequencies of these words be p = fp�; � 2 Dg and let the stochastic word

matrix for M1 be � = [�1; : : : ;�w]. If the missing partition � were known, according to (4), we

have

N = (Na; : : : ; Nt; N1 j �) � Multinom(N;p)

where N =
P

�2DN�. For M1, we would have a product multinomial model, consisting of

independent multinomial models over each column counts rj= (raj ; : : : rtj)
T , (j = 1; : : : w) of

the stochastic word matrix. We take advantage of this missing data formulation to set up a

Gibbs sampling algorithm under a Bayesian framework. We use a conjugate product Dirichlet

prior PD(B) for �, where B = (�1;�2; : : :�w) is a 4� w matrix with �j = (�aj ; : : : �tj)
T , and

put a corresponding conjugate Dirichlet prior on p, p � Dir();  = (a; : : : ; t). Under these

assumptions the posterior distribution of � would be product Dirichlet PD(B+ r), i.e. the

pseudo-counts B updated by the counts r = (r1; : : : ; rw), and the posterior distribution of p is

Dir(N + ).We again use the generic notation � to denote the collection of parameters (p, �),

and R to denote (N, r).

Under this framework, with � = (P1; : : : ; Pk) representing the missing data relating to the
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correct partitioning of the sequences, we can write the joint posterior distribution as

P (�;� j R) = P (� j �;R)P (� j R)

Now the Bayes estimate of � can be approximated by the Gibbs sampler using the full conditional

distributions P (� j �;R) and P (� j R;�). The initial step samples for \words" or segmentations
given the current value of the stochastic word matrix, and word probabilities. Then it updates

the \word" stochastic matrix � given the current partition, by sampling for � from its posterior

distribution.

Sampling for partitions given a value of the stochastic word matrix can be done eÆciently

using techniques of dynamic programming. This initially involves recursive summation of proba-

bilities as given in (5) over all legitimate partitions of all sequences. This is followed by \backward

sampling" for words, starting from the end of the sequence and progressing backwards. Let Ai
denote the set of words (sampled partitions) from position i onward to position n, where n is the

length of the current sequence. At position i, we sample for a word �j of size j, (j = 1; : : : w)

according to the conditional probability (given words occurring positions i+ 1 and beyond),

Pi(�j j Ai+1) =
�(S[(i�j):i])Li�jPw
j=1 �(S[(i�j):i])Li�j

=
�(S[(i�j):i])Li�j

Li(�)
; j = 1; : : : w

After the step of sampling partitions it is easy to sample for the stochastic word matrix from

its posterior Dirichlet distribution (with prior parameters updated by nucleotide counts at each

position of sampled occurrences of M1).

It is not diÆcult to generalize this idea for the case of more than one \word", with di�er-

ing lengths. It would mean expanding the dictionary to include fM2; : : : ;Mdg with associated

stochastic word matrices f�i : 2 � i � dg. The statistical question here is whether the parame-

ters remain distinguishable and whether there are suÆcient conditions that guarantee that two

words do not overlap, and remain unconfounded.

Another phenomenon from the biological viewpoint that is a hurdle to many motif-�nding

techniques is the presence of numerous short repeats of nucleotides (of lengths 2 or 3 etc.)

and also long runs of a single nucleotide. These are often biologically insigni�cant but tend

to trap motif-searching algorithms looking for pattern repeats. An attempt to get around this

problem is by using a Markovian background structure instead of a random background. In

the dictionary model, a comparable background structure may be included by including over-

represented dimers or trimers as a part of the alphabet, to account for �rst and second order

dependence. An interesting point to note here is that we are using short polymers to \discount"
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from the motif signal, whereas in the original dictionary model [3], the dictionary is built up by

successive concatenating over-represented short oligomers, hoping to lead to the correct motifs

this way.

It is useful to note here the that the segmentation model here is equivalent to the block motif

model used in the Gibbs Motif Sampler (Section 3). The motif sampler progressively looks at

the sequences and decides whether the segment focused on is more likely to come from the motif

model or the background. In this sense its inference is based on the conditional probability

P (Ii j I[�i];M) where Ii is the indicator variable for the start of a motif pattern at i, and

I[�i] refers to the other motif sites sampled under the motif modelM. The segmentation model

focuses on the joint likelihood of all motif sites in order to update its knowledge of motif site and

composition, i.e. P (I j M). It would be an interesting statistical question to analyze whether

the segmentation-based Gibbs sampler gives a more accurate results in the presence of faint

motif signals, or vice-versa.

4.3 Fine tuning through Metropolis adjustment

The above can be viewed as a multivariate alignment problem which attempts to line up similar

fragments in multiple sequences that are realizations from a common word matrix �. One of the

characteristic features of such an alignment is the possibility of the algorithm getting trapped

in a local mode . For example, let z = (z1; : : : ; zK) be the set of start points of a motif of length

w in the K sequences. Then z+ Æ , for a small integral Æ, are local modes of the distribution,

di�ering from the true mode by a common shift, since w�Æ positions are still correctly aligned. In
order to encourage global shifting, we insert a Metropolis step, after a certain degree of stability

has been reached in the Gibbs algorithm. A global shift essentially means checking columns

on either side of the alignment for a higher degree of nucleotide conservation, which would be

reected in the increased sequence likelihood after the shift. Here we make use of a collapsing

technique [7] to marginalise out the nuisance parameter � and get the unconditional likelihood

for the current set of motif start positions P (z j p;R) =
R
P (z j �;p;R)P (� j p;R)d�. The

Metropolis adjustment is carried out in the following steps:

� choose Æ = �1 with probability 1=2 each.

� update current set of motif start positions z  z+ Æ with probability min(1; �), where

� = P (z+Æ)
P (z)
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If ni;l denotes the number of occurrences of nucleotide i in position l of the motif (l =

1; : : : ; w; l = 0 and l = w+1 denoting the position beyond each end), the ratio of probabilities,

�, can be calculated by integrating out the nuisance parameter �, and expressed conveniently

as a ratio of products of gamma functions,

� =

8>><
>>:

Qk0
i=1

�(ni;w+1)Qk0
i=1

�(ni;1)
if Æ = 1Qk0

i=1
�(ni;0)Qk0

i=1
�(ni;w)

if Æ = �1

4.4 Inuence of the prior information

In a Bayesian analysis, another point of concern is what would be an ideal choice of prior

distribution that would not unduly inuence our results yet not fail to use potentially important

knowledge we have regarding the data. The prior information in the segmentation model is

incorporated in the form of pseudo-counts for the Dirichlet prior over the word probabilities in

the starting dictionary. To see the e�ect of prior parameters on our results, our algorithm was

applied on a set of DNA fragments that was previously experimentally veri�ed to contain cyclic

AMP receptor protein (CRP) binding sites and also analyzed using the EM algorithm [5], and

Gibbs Motif Sampler. The degree of correct detection of binding sites, (total number of true

sites is 24) under di�ering degrees of prior strength for presence of motif, can be seen in the

table below (TP and FP denote true and false positives occurring more than 20% of the time,

PC denotes pseudo-counts of motif as a fraction of base pseudo-counts):

Motif PC(%) 0.25 1.25 2.5 5 10

Average TP : mean (s.e.) 17 (0.99) 17.3 (1.21) 17.8 (0.35) 18 (0.45) 18.8 (0.37)

Average FP 1.3 2 4.3 7.2 11.2

(%) of correct sites 70.83 71.88 73.96 75.00 78.33

It appears that there is a trade-o� between the percentage of correct sites sampled and

minimizing the degree of false detection. It is interesting to note that taking the motif pseudo-

count around 1:27% of base pseudo-counts lead to an expected frequency of 24 for the motif in

this data set, which is the true frequency.

4.5 Finding gapped motifs through segmentation

Another interesting twist to this problem is the question of how to track motifs that may have one

or more insertions of nucleotides, gaps, within them. The segmentation model can be extended
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to allow for this new possibility. A mathematical question of interest is, how far these gaps can

extend, beyond which the original pattern becomes indiscernible.

The problem of searching for gapped motifs can be thought of as trying to align a k0 � w
word stochastic matrix with a segment of length (w+g) where g is the total length of the gap(s)

occurring in a motif. Our probability model for segmentations now is:

P (�;G j �;R) = P (� j �;R)P (G j �;�;R)

where G denotes the collective set of gap positions within all motifs.

Here we need to additionally sample from the full conditional distribution of gaps G, given the
current set of sampled partitions � and �. At this stage, we introduce additional probability

parameters, pm, probability of a match between a nucleotide of the segment with the stochastic

word matrix, pgo, gap-opening penalty, pge, gap-extension penalty (typically lower than gap-

opening penalty, as a motif is more likely to have few but longer gaps within it than a series of

numerous small gaps). At this stage we assume there are no deletions in the motif, hence no

gaps in the stochastic word matrix, an assumption which may be later relaxed.

Now we need to deal with the alignment problem, basically sampling for gaps within a segment

x = (x1; : : : ;xw+g)
T of length (w + g). This may also be done recursively. Let us assume the

motif is aligned exactly with the word stochastic matrix at the end, i.e. the last position is

not part of a gap. Let Mj denote the number of matches before position j. Let P�0(x) denote

probability of nucleotide x if it lies in a gap (i.e., under the background model), and P�(x; i)

denote the probability of x being realized from the i-th column of the motif model. Denote

the probabilities of the j-th position being the i-th match, or belonging to a gap after the i-th

match, as, respectively,

Fi;j(M) = P (xj 2 Gc jMj = i� 1); and Fi;j(H) = P (xj 2 G jMj = i)

Then we can calculate the above quantities recursively, (with initial conditions F0;0(H) =

1; F1;1(M) = pmP�(x1; 1)),

F0;k(H) = F0;k�1(H)P�0(xk); 2 � k � g
Fj;k(H) = [Fj;k�1(H)pge + Fj;k�1(M)pgo]P�0(xk) j + 1 � k � g + j; 1 � j � w � 1

Fj;k(M) = [Fj;k�1(H) + Fj;k�1(M)]pmP�(xk; j) j � k � g + j; 1 � j � w � 1

Then, for the segment x,

P (x) = Fw;w+g(M) = [Fw�1;w+g�1(H) + Fw�1;w+g�1(M)]pmP�(xw+g; w)
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Sampling for gaps can now be accomplished by sampling a two-dimensional pathway from the

aligned ends of the segment x and word matrix �, up to the starting point of the segment.

In summary, it appears that using the segmentation model provides an elegant Bayesian tool

for motif-�nding that can be modi�ed without excessive complications to suit di�erent biological

contingencies. It makes use of minimal assumptions about the composition and profusion of the

motif and updates its information based only on the information contained in the sequence

data. A potential drawback is the possibility that it might fail to yield signi�cant results in

situations where the motif signal is comparatively faint, as the only source of information it

uses in inference is over-abundance of patterns in comparison to chance occurrences under the

background (null) model, but this requires further study before conclusions can be made.

5 Microarray Expression and DNA Motif Discovery

Although every cell of a multicellular organism contains the identical genetic materials (the

whole genome), cells from di�erent parts of the organism di�er greatly. Cells make this di�eren-

tiation possible by adjusting the amount of its gene product (i.e., proteins) via various kinds of

regulations, among which the transcriptional regulation is the most popular one. Similarly, the

single-cell organism responds to di�erent environmental changes (e.g., starvation, heat-shock,

etc.) also by regulating its gene product, mostly through transcriptional regulation.

The advances of the DNA microarray technology has made it possible for the scientist to

observe the transcriptional changes of all the genes in a cell simultaneously. On the other hand,

the availability of the complete genome of many species (e.g., E. coli, yeast, C. Elegans, etc.)

allows one to extract the regulatory regions (upstream noncoding regions) of the target genes.

When one combines these two sources of information (i.e., microarray and sequence data) and

applies the motif search algorithm such as the Gibbs motif sampler, one can discover novel

regulatory binding sites in silico [11]. Briey, one �rst identi�es a set of genes that are co-

regulated (under certain environment) via microarray observations. Then one searches, using

the Gibbs motif sampler or a similar algorithm, for repetitive patterns (7 to 20 bps) among the

upstream untranslated regions of these genes. The patterns found in this way often correspond

to the binding sites of certain transcription factors.

Clearly, the motif analysis and the microarray analysis should be applied jointly since they

tend to enhance each other in a biologically meaningful way: The gene clusters inferred from

the microarray analysis often reveal genes involved in related biological pathway or genes that

16



are regulated by the same TF. If the motif analysis can indeed reveal some signi�cant motifs

for these genes, it not only con�rms the clustering result, but also suggests future experimental

directions. For example, it is observed in [6] that the logarithm of the \motif-score" for each

segment in the dataset (i.e., how likely the segment contains certain motif) is strongly correlated

with the median percentile rank of the expression levels in a microarray experiment, con�rming

that the motif found is perhaps authentic.

More recently, a new protocol called the chromatin-immunoprecipitation followed by microar-

ray hybridization (ChIP-array) has been developed for discovering protein-DNA interaction loci

in vivo. In these experiments, DNA is crosslinked in vivo to proteins at sites of DNA-protein

interaction, and sheared to 1-2kb fragments. The DNA-protein complexes are precipitated by

antibodies speci�c to the protein of interest. The precipitated protein-bound DNA fragments are

ampli�ed, labeled uorescently, and hybridized to microarrays containing every ORF and inter-

genic region of the yeast genome. DNA fragments that are consistently enriched by ChIP-array

over repeated experiments are identi�ed as containing the protein-DNA interacting loci.

The DNA fragments selected by the ChIP-array experiments have an average size of 1-2kb,

which is determined by the shearing process. It is therefore still rather diÆcult to pinpoint the

exact binding sites by these experiments alone. Additional tedious experimental approaches can

be used to further localize the binding sites (restriction cleavage, footprinting, etc.). Fortunately,

it is also possible to conduct computational analysis as suggested in the previous sections at this

stage to further localize the protein-DNA interaction site and discover the precise binding motif.

A new method for dealing with this type of data is under development [9].
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