
Degrees of Freedom

Advanced Methods for Data Analysis (36-402/36-608)

Spring 2014

1 Degrees of freedom

1.1 Motivation

• So far we’ve seen several methods for estimating the underlying regression function r(x) =
E(Y |X = x) (linear regression, k-nearest-neighbors, kernel smoothing), and next time we’ll
consider another one (smoothing splines). Often, in a predictive setting, we want to compare
(estimates of) test error between such methods, in order choose between them

• We’ve learned how to do this: cross-validation. But in a sense, comparing cross-validation
curves between methods is not straightforward, because each curve is parametrized differently.
E.g., linear regression has no tuning parameters and so we would report just one error value;
k-nearest-neighbors would give us an error curve over k; kernel regression would give us an
error curve over the bandwidth h; smoothing splines would give us an error curve over the
smoothing parameter λ

• So what does it actually mean to choose kernel regression with h = 1.5, over say, k-nearest-
neighbors with k = 10 or smoothing slines with λ = 0.417? I.e., does the h = 1.5 model from
kernel regression correspond to a more of less complex estimate than the k = 10 model from
k-nearest-neighbors, or the λ = 0.417 model from smoothing splines?

• The notion of degrees of freedom gives us a way of precisely making this comparison. Roughly
speaking, the degrees of freedom of a fitting procedure (like kernel regression with h = 1.5,
or k-nearest-neighbors with k = 10) describes the effective number of parameters used by this
procedure, and hence provides a quantitive measure of estimator complexity

• Keeping track of degrees of freedom therefore saves us from unsuspectingly comparing a pro-
cedure that uses say, 10 effective parameters to another that uses 100

1.2 Definition

• Even though the concept it represents is quite broad, degrees of freedom has a rigorous defi-
nition. Suppose that we observe

yi = r(xi) + εi, i = 1, . . . n,

where the errors εi, i = 1, . . . n are uncorrelated with common variance σ2 > 0 (note: this is
weaker than assuming εi ∼ N(0, σ2), i.i.d. for i = 1, . . . n). Here we will treat the predictor
measurements xi, i = 1, . . . n as fixed (equivalently: consider conditioning on the values of the
random predictors). Now consider the fitted values ŷi = r̂(xi), i = 1, . . . n from a regression
estimator r̂. We define the degrees of freedom of ŷ (i.e., the degrees of freedom of r̂) as

df(ŷ) =
1

σ2

n∑
i=1

Cov(ŷi, yi). (1)

1

To reiterate: this covariance treats only yi, i = 1, . . . n as random (and not xi, i = 1, . . . n)

• The definition of degrees of freedom in (1) looks at the amount of covariance between each
point yi and its corresponding fitted values ŷi. We add these up over i = 1, . . . n, and divide
the result by σ2 (dividing by σ2 gets rid of the dependence of the sum on the marginal error
variance)

• It is going to be helpful for some purposes to rewrite the definition of degrees of freedom in
matrix notation. This is

df(ŷ) =
1

σ2
tr
(

Cov(ŷ, y)
)
, (2)

where we write y = (y1, . . . yn) ∈ Rn and ŷ = (ŷ1, . . . ŷn) ∈ Rn

1.3 Examples

• To get a sense for degrees of freedom, it helps to work through several basic examples

• Simple average estimator: consider ŷave = (ȳ, . . . ȳ), where ȳ = 1
n

∑n
i=1 yi. Then

df(ŷave) =
1

σ2

n∑
i=1

Cov(ȳ, yi) =
1

σ2

n∑
i=1

σ2

n
= 1,

i.e., the effective number of parameters used by df(ŷave) is just 1, which makes sense

• Identity estimator: consider ŷid = (y1, . . . yn). Then

df(ŷid) =
1

σ2

n∑
i=1

Cov(yi, yi) = n,

i.e., ŷid uses n effective parameters, which again makes sense

• Linear regression: consider the fitted values from linear regression of y on x,

ŷlinreg = xβ̂ = x(xTx)−1xT y.

Here x is the n× p predictor matrix (with xi along its ith row). Then, relying on the matrix
form of degrees of freedom,

df(ŷlinreg) =
1

σ2
tr
(

Cov
(
x(xTx)−1xT y, y

))
=

1

σ2
tr
(
x(xTx)−1xTCov(y, y)

)
= tr

(
x(xTx)−1xT

)
= tr

(
xTx(xTx)−1

)
= p.

So we have shown that the effective number of parameters used by ŷlinreg is p. This is highly
intuitive, since we have estimated p regression coefficients

• Linear smoothers: recall that a linear smooth has the form

r̂linsm(x) =

n∑
j=1

w(x, xj) · yj .

2

This means that

ŷlinsmi = r̂linsm(xi) =

n∑
j=1

w(xi, xj) · yj ,

i.e., we can write
ŷlinsm = Sy,

for the matrix S ∈ Rn×n defined as Sij = w(xi, xj). Calculating degrees of freedom, again in
matrix form,

df(ŷlinsm) =
1

σ2
tr
(

Cov(Sy, y)
)

=
1

σ2
tr
(
SCov(y, y)

)
= tr(S)

=

n∑
i=1

w(xi, xi).

This is a very useful formula! Recall that k-nearest-neighbors and kernel regression and both
linear smoothers, and we will see that smoothing splines are too, so we can calculate degrees
of freedom for all of these simply by summing these weights

• As a concrete example: consider k-nearest-neighbors regression with some fixed value of k ≥ 1.
Recall that here

w(x, xj) =

{
1
k if xj is one of the k closest points to x

0 else.

Therefore w(xi, xi) = 1/k, and

df(ŷknn) =

n∑
i=1

1

k
=
n

k
.

Think: what happens for small k? Large k? Does this match your intuition for the complexity
of the k-nearest-neighbors fit?

2 Estimating degrees of freedom

2.1 Naive approach: pairs bootstrap

• Degrees of freedom can’t always be calculated analytically, as we did above. In fact, at large,
it’s rather uncommon for this to be the case. As an extreme example, if the fitting procedure
r̂ is just a black box (e.g., just an R function whose mechanism is unknown), then we would
really have no way of analytically counting its degrees of freedom. However, the expression
in (1) is still well-defined for any fitting procedure r̂, and to get an estimate of its degrees of
freedom, we can estimate the covariance terms Cov(ŷi, yi) via the boostrap

• A naive first approach would be to use the bootstrap, as we learned it in the last class. That
is, for b = 1 to B (say B = 1000), we repeat the following steps:

– draw bootstrap samples

(x̃
(b)
i , ỹ

(b)
i)

i.i.d.∼ Unif
{

(x1, y1), . . . (xn, yn)
}
, i = 1, . . . n;

3

– recompute the estimator r̂(b) on the samples (x̃
(b)
i , ỹ

(b)
i), i = 1, . . . n;

– store ỹ(b) = (ỹ
(b)
1 , . . . ỹ

(b)
n), and the fitted values ŷ(b) = (r̂(b)(x̃

(b)
1), . . . r̂(b)(x̃

(b)
n)).

At the end, we approximate the covariance of ŷi and yi by the empirical covariance between
ŷ
(b)
i and ỹ

(b)
i over b = 1, . . . B, i.e.,

Cov(ŷi, yi) ≈
1

B

B∑
b=1

(
ŷ
(b)
i −

1

B

B∑
r=1

ŷ
(r)
i

)
·
(
ỹ
(b)
i −

1

B

B∑
r=1

ỹ
(r)
i

)
,

and sum this up over i = 1, . . . n to yield our bootstrap estimate for degrees of freedom

df(ŷ) ≈ 1

σ2

n∑
i=1

(
1

B

B∑
b=1

(
ŷ
(b)
i −

1

B

B∑
r=1

ŷ
(r)
i

)
·
(
ỹ
(b)
i −

1

B

B∑
r=1

ỹ
(r)
i

))
.

(For simplicity, you can assume that σ2 is known; otherwise, we’d have to estimate it too)

• We’ll refer to this sampling scheme as the pairs bootstrap, since we are bootstrapping (xi, yi)
pairs. In this particular application, it actually doesn’t yield a very good estimate of degrees
of freedom ... why? (Hint: think about what is random and what is fixed in (1))

2.2 Informed approach: residual bootstrap

• A better approach for estimating degrees of freedom is to use the residual bootstrap. Here,
after fitting ŷi = r̂(xi), i = 1, . . . n using the original samples (xi, yi), i = 1, . . . n, we record
the (empirical) residuals

êi = yi − ŷi, i = 1, . . . n.

Then for b = 1, . . . B, we repeat:

– draw bootstramp samples (xi, ỹ
(b)
i), i = 1, . . . n according to

ỹ
(b)
i = ŷi + ẽ

(b)
i , where ẽ

(b)
i

i.i.d.∼ Unif{ê1, . . . ên}, i = 1, . . . n,

i.e., instead of resampling pairs with replacement, we’re resampling residuals with re-
placement;

– proceed as before.

We use the same formula as above for estimating the covariance terms and degrees of freedom

• This ends up being more accurate in estimating degrees of freedom ... why? (Hint: again,
think about what is being treated as random, and what is being treated as fixed)

3 Using degrees of freedom for error estimation

3.1 Optimism

• Degrees of freedom is directly related to a concept called optmism; once we see the precise
relationship, we’ll see how we can use it to construct estimates of expected test error (compu-
tationally efficient alternatives to cross-validation)

4

• Remember, as described above, we’re assuming the model

yi = r(xi) + εi, i = 1, . . . n,

where ε = (ε1, . . . εn) satisfy E(ε) = 0 and Var(ε) = σ2I (this is a shorter way of writing that
εi, i = 1, . . . n have mean zero, and are uncorrelated with marginal variance σ2 > 0). Given an
estimator r̂ producing fitted values ŷi = r̂(xi), i = 1, . . . n, the expected training error of r̂ is

E
[1

n

n∑
i=1

(yi − ŷi)2
]
.

Meanwhile, if
y′i = r(xi) + ε′i, i = 1, . . . n

is an independent test sample (important: note here that the predictors measurements xi,
i = 1, . . . n are the same—i.e., we are considering these fixed) from the same distribution as
our training sample, then

E
[1

n

n∑
i=1

(y′i − ŷi)2
]

is the expected test error

• Recall that these two quantities—training and test errors—behave very differently, and it is
usually the test error that we seek for the purposes of model validation or model selection.
Interestingly, it turns out that (in this simple setup, with xi, i = 1, . . . n fixed) we have the
relationship

E
[1

n

n∑
i=1

(y′i − ŷi)2
]

= E
[1

n

n∑
i=1

(yi − ŷi)2
]

+
2σ2

n
df(ŷ).

In words, the expected test error is exactly the expected training error plus a constant factor
(2σ2/n) times the degrees of freedom

• From this decomposition, we can immediately see that with a larger degrees of freedom, i.e.,
a more complex fitting method, the test error is going to be larger than the training error.
Perhaps more evocative is to rewrite the relationship above as

E
[1

n

n∑
i=1

(y′i − ŷi)2
]
− E

[1

n

n∑
i=1

(yi − ŷi)2
]

=
2σ2

n
df(ŷ).

We will call left-hand side, the difference between expected test and training errors, the op-
timism of the estimator r̂. We can see that it is precisely equal to 2σ2/n times its degrees
of freedom; so again, the higher the degrees of freedom, i.e., the more complex the fitting
procedure, the larger the gap between testing and training errors

3.2 Error estimation

• The relationship discussed in the last section actually leads to a very natural estimate for the
expected test error. Consider

T =
1

n

n∑
i=1

(yi − ŷi)2 +
2σ2

n
df(ŷ),

5

i.e., the observed training error of ŷ plus 2σ2/n times its degrees of freedom. From the previous
section, we know that

E(T) = E
[1

n

n∑
i=1

(y′i − ŷi)2
]
,

i.e., T is an unbiased estimate for the expected test error. Hence if we knew an estimator’s
degrees of of freedom, then we could use T to approximate its test error—note that this is a
comptuationally efficient alternative to cross-validation (no extra computation really needed,
beyond the training error)

• What happens when we don’t know its degrees of freedom? If have a good estimate d̂f(ŷ) for
the degrees of freedom of ŷ, then we can simply form the error estimate

T =
1

n

n∑
i=1

(yi − ŷi)2 +
2σ2

n
d̂f(ŷ),

and by the same logic, E(T) will be close to the expected test error as long as E[d̂f(ŷ)] is close
to df(ŷ). Such an estimate d̂f(ŷ) could have come from, say, the bootstrap, as discussed in
Section 2 (but in this case, you should be aware of the fact that these bootstrap calculations
themselves may be roughly as expensive as cross-validation). But the estimate d̂f(ŷ) can also
come from other means, e.g., from an analytic form. We’ll see an example of this later in the
course (when we discuss `1 regularization, i.e., the lasso)

• Finally, what about σ2? In general, if we don’t know its true value (which is going to pretty
much going to always be the case in practice), then we will have to estimate it too. Notice
however that if we used the bootstrap to form the estimate d̂f(ŷ), then this already provides
us with an estimate of 2σ2df(ŷ), so we don’t have to estimate σ2 on its own

3.3 Model selection

• Finally, we can apply the above ideas to the model selection problem. Suppose our estimate
r̂ = r̂θ depends on a tuning parameter θ; also write ŷθ for the fitted values at θ. Then over a
grid of values, say θ ∈ {θ1, . . . θm}, we compute the error estimate

Tθ =
1

n

n∑
i=1

(
yi − (ŷθ)i

)2
+

2σ2

n
df(ŷθ)

(possibly replacing the degrees of freedom term and σ2 in the above with estimates, if needed),
and choose θ to minimize Tθ. That is, we select

θ̂ = argmin
θ∈{θ1,...θm}

1

n

n∑
i=1

(
yi − (ŷθ)i

)2
+

2σ2

n
df(ŷθ)

• This may look familiar to you if we consider the case of linear regression on any number of
predictor variables between 1 and p. Here, θ indexes the number of predictors used in a linear
regression, and simply to make things look more familiar, we will rewrite this parameter as k.
Hence k ∈ {1, . . . p}, and the above model selection criterion becomes

k̂ = argmin
k∈{1,...p}

1

n

n∑
i=1

(
yi − (ŷk)i

)2
+

2σ2

n
k.

You may recall this as the Cp criterion for model selection in linear regression (related to AIC,
and then there’s BIC, and RIC, ...)

6

