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1 Recap on Simple Linear Regression in Matrix
Form

Let’s start with a brief summary of re-doing simple linear regression with matri-
ces. We collect all our observations of the response variable into a vector, which
we write as an n×1 matrix y, one row per data point. We group the two coeffi-
cients into a 2×1 matrix β. We create an n×2 matrix x, where the first column
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2

consists entirely of 1s, and the second column contains all our observations of
the predictor variable, again, one row per data point. Our point predictions are
then given by xβ, and the mean squared error by n−1(y − xβ)T (y − xβ).

The derivative of the MSE with respect to β is

2

n
(−xTy + xTxβ) (1)

Setting this to zero at the optimum coefficient vector β̂ gives the (matrix) esti-
mating equation

− xTy + xTxβ̂ = 0 (2)

whose solution is of course

β̂ = (xTx)−1xTy (3)

We verified last time that β̂ does, in fact, coincide with what we already
know the least squares solutions to be. Before, we had two estimating equations
for two unknowns (β̂0 and β̂1), and we had to keep track of how they related to
each other and how to solve either one. The matrix inversion and multiplication
in Eq. 3 encapsulates all of that book-keeping.

We also saw that the fitted values at the data points used to estimate the
model are linear combinations of the observed responses, with weights given by
the hat or influence matrix:

m̂ = x(xTx)−1xTy = Hy (4)

Geometrically, this means that we find the fitted values by taking the vector of
observed responses y and projecting it on to a certain plane, which is entirely
defined by the values in x.

2 Multiple Linear Regression

We are now ready to go from the simple linear regression model, with one
predictor variable, to em multiple linear regression models, with more than one
predictor variable1. Let’s start by presenting the statistical model, and get to
estimating it in just a moment.

2.1 The Statistical Model, without Assuming Gaussian
Noise

In the basic form of the multiple linear regression model,

1You might wonder why the jargon here contrasts “simple” with “multiple”, rather than
with “complex”. The reason is that the older sense of “simple” is “having only one part” or
“made from just one ingredient”.
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3 2.2 The Statistical Model, Assuming Gaussian Noise

1. There are p quantitative predictor variables, X1, X2, . . . Xp. We make no
assumptions about their distribution; in particular, they may or may not
be dependent. X without a subscript will refer to the vector of all of these
taken together.

2. There is a single response variable Y .

3. Y = β0 +
∑p
i=1 βiXi + ε, for some constants (coefficients) β0, β1, . . . βp.

4. The noise variable ε has E [ε|X = x] = 0 (mean zero), Var [ε|X = x] = σ2

(constant variance), and is uncorrelated across observations.

In matrix form, when we have n observations,

Y = Xβ + ε (5)

where X is a n×(p+1) matrix of random variables (including an all-and-always
1 first column), and ε is an n × 1 matrix of noise variables. By the modeling
assumptions, E [ε|X] = 0 while Var [ε|X] = σ2I.

2.2 The Statistical Model, Assuming Gaussian Noise

In the multiple linear regression model with Gaussian noise,

1. There are p quantitative predictor variables, X1, X2, . . . Xp. We make no
assumptions about their distribution; in particular, they may or may not
be dependent. X without a subscript will refer to the vector of all of these
taken together.

2. There is a single response variable Y .

3. The variables are related through

Y = β0 +

p∑
i=1

βiXi + ε , (6)

for some constants (coefficients) β0, β1, . . . βp.

4. The noise variables ε have a jointly-Gaussian MVN(0, σ2I) distribution,
independent of X.

From these assumptions, it follows that, conditional on X, Y has a multi-
variate Gaussian distribution,

Y|X ∼MVN(Xβ, σ2I) (7)
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4 2.3 Parameter Interpretation

2.3 Parameter Interpretation

β0 is the expected value of Y are the origin:

β0 = E [Y |X1 = 0, X2 = 0, . . . Xp = 0] (8)

The multiple linear regression model assumes that each predictor variable
makes a separate contribution to the expected response, that these contributions
add up without any interaction, and that each predictor’s contribution is linear2.
Thus βi is the rate at which E [Y ] changes asXi, and onlyXi, changes, regardless
of where Xi starts (linearity in Xi), and regardless of what any of the other
variables might be (additivity across variables).

3 Derivation of the Least Squares Estimator

We now wish to estimate the model by least squares. Fortunately, we did
essentially all of the necessary work last time.

This is because the formula we derived for the mean squared error,

1

n
(y − xβ)T (y − xβ) (9)

did not actually care whether x was n × 2 or n × (p + 1) for any larger p, so
long as β was (p + 1)× 1. Neither did any of the matrix calculus we did, so it
remains true that

∇βMSE(β) =
2

n

(
−xTy + xTxβ

)
; (10)

that the estimating equation is

− xTy + xTxβ̂ = 0 (11)

and that the solution, the ordinary least squares (OLS) estimator, is

β̂ = (xTx)−1xTy (12)

Eq. 12 is going to keep coming up again and again; whether you memorize
it deliberately or through sheer exposure is up to you.

(We didn’t have to use matrix notation to arrive at this point. In principle,
we could have written out the MSE as an explicit sum over data points, and
then taken p+ 1 partial derivatives with respect to the p+ 1 coefficients. This
would have led to a system of p+ 1 linear equations in p+ 1 unknowns, which
we could then try to solve. But all of this machinery is conveniently assembled
into the linear algebra, which makes it much easier to handle.)

2We will see some ways of allowing predictor variables to interact later in this class. The
topic will be explored more fully in 402, along with additive but nonlinear models.
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5 3.1 Slightly Alternate Derivation

3.1 Slightly Alternate Derivation

To appreciate what’s going on in Eq. 12, it may help to look at a slightly different
derivation, which explicitly separates the intercept from the other coefficients.
So, in this subsection, and this sub-section only, β0 will be the scalar intercept,
β will be a p× 1 vector of slope coefficients (not (p+ 1)× 1!), and x will be an
n× p matrix of observations of the predictors (i.e., no column of 1s).

The mean squared error will be

1

n
(y − β01− xβ)T (y − β01− xβ) (13)

where 1 is the n× 1 matrix of all 1s. The relevant derivatives are

∂MSE

∂β0
= − 2

n
1T (y − β01− xβ) (14)

and

∇βMSE =
2

n
(β0x

T1− xTy + xTxβ) (15)

Setting both derivatives to zero at the optimum, we get

β̂0 =
1

n
1Ty − 1

n
1Txβ̂ (16)

Notice that n−11Ty is just our old friend y. Similarly, 1
n1Tx is the 1×p matrix

giving the sample means for each coordinate of x; lets call this x. Thus

β̂0 = y − xβ̂ (17)

and the intercept will make sure the regression surface goes through the mean
of the data.

Turning to the equation for β̂,

0 = β̂0
1

n
xT1− 1

n
xTy +

1

n
xTxβ̂ (18)

At this point, let’s make two moves which will simplify things later. First, notice
that β̂0 is a scalar, so we can move it all the way to the right of the first term
we’re adding, getting

0 =
1

n
xT1β̂0 −

1

n
xTy +

1

n
xTxβ̂ (19)

Second, notice that n−1xT1 = xT . Thus

0 = xT β̂0 −
1

n
xTy +

1

n
xTxβ̂ (20)
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6 3.1 Slightly Alternate Derivation

Now substitute in Eq. 17 for β̂0:

0 = xT (y − xβ̂)− 1

n
xTy +

1

n
xTxβ̂ (21)

0 = xT y − xTxβ̂ − 1

n
xTy +

1

n
xTxβ̂ (22)

1

n
xTxβ̂ − xTxβ̂ = −xT y + +

1

n
xTy (23)(

1

n
xTx− xTx

)
β̂ =

1

n
xTy − xT y (24)

It is straight-forward to check that (Exercise 1)

1

n
xTy − xT y (25)

is the p× 1 matrix whose ith entry is the sample covariance between Xi and Y .
Similarly (Exercise 2),

1

n
xTx− xTx (26)

is the p × p sample variance-covariance matrix of the Xi’s. (This is why I left
in the seeming-redundant factors of 1/n.)

Let us call these two matrices, respectively, cX,Y and vX . Then our equation
for the vector of slopes is

vX β̂ = cX,Y (27)

which of course has the solution

β̂ = v−1
X cX,Y (28)

In words: we find the slopes by first finding the covariance between each
predictor and the response, and then multiplying by the inverse of the predic-
tor’s covariance matrices. The intercept is just a fudge-factor to make sure the
regression surface goes through the mean of the data.

Taking the n→∞ limit As the sample size grows, the law of large numbers
tells us vX → Var [X], the true p×p variance-covariance matrix of the predictors.
Similarly, cX,Y → Cov [X,Y ], the p × 1 matrix of covariances between the
predictors and the response. Hence (by continuity)

β̂ → Var [X]
−1

Cov [X,Y ] (29)

I leave it as an exercise (3) to show that, first, under the model assumptions,

the true vector of slopes β is indeed equal to Var [X]
−1

Cov [X,Y ], and, second,
that this vector of slopes would minimize the expected squared error (not the
in-sample mean squared error).
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7 3.2 Why Multiple Regression Isn’t Just a Bunch of Simple Regressions

3.2 Why Multiple Regression Isn’t Just a Bunch of Simple
Regressions

When we do multiple regression, the slopes we get for each variable aren’t the
same as the ones we’d get if we just did p separate simple regressions. Why
not?

The book-keeping answer In §3.1, we saw that the slopes are determined
by v−1

X cX,Y . If v−1
X is diagonal, then our multiple regression will give the same

slopes as many simple regressions. In turn, v−1
X is diagonal if and only if vX

is diagonal, which means that none of the predictor variables can have any
(sample) correlation with any of the others. Otherwise, minimizing the mean
squared error means shifting the slopes away from what they’d be in simple
regressions.

(Since x is called the design matrix, a data set where vX is diagonal is
said to have an orthogonal design. As the word suggests, this is much more
common in deliberately planned experiments than in observational studies.)

The predictive answer Suppose the real model is Y = β0+β1X1+β2X2+ε.
(Nothing turns on p = 2, it just keeps things short.) What would happen if we
did a simple regression of Y on just X1? We know (Lecture 1) that the optimal
(population) slope on X1 should be

Cov [X1, Y ]

Var [X1]
(30)

Let’s substitute in the model equation for Y :

Cov [X1, Y ]

Var [X1]
=

Cov [X1, β0 + β1X1 + β2X2 + ε]

Var [X1]
(31)

=
β1Var [X1] + β2Cov [X1, X2] + Cov [X1, ε]

Var [X1]
(32)

= β1 +
β2Cov [X1, X2] + 0

Var [X1]
(33)

= β1 + β2
Cov [X1, X2]

Var [X1]
(34)

The total covariance between X1 and Y includes X1’s direct contribution to Y ,
plus the indirect contribution through correlation with X2, and X2’s contribu-
tion to Y . (All of this applies, with subscripts swapped, to regressing Y on X2

as well.)
Said slightly differently, when there’s correlation between X1 and X2, we can

predict (a bit of) X2 from X1 and vice versa. When we do simple regression,
we don’t care — adding up the direct and indirect relationships of Y and X1

is fine. When we do multiple regression, we don’t want to “double count” that
contribution to Y , so the slopes should just reflect the relationship the response
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8 3.3 Point Predictions and Fitted Values

and the part of each predictor variable we couldn’t have already guessed from
knowing the others.

(If you’re wondering, “Wait, what if there’s really an X3 but we only re-
gressed on X1 and X2, wouldn’t we have the same sort of problem?”, congrat-
ulations — you’ve just discovered omitted variable bias.)

The geometric answer Refer again to §3.1. The optimal slopes are given
by

Var [X]
−1

Cov [X,Y ] (35)

which means that the optimal predictions are given by

XTVar [X]
−1

Cov [X,Y ] (36)

(The transpose on X is because I chose to write vectors as column matrices,
and we need to make this come out a scalar.)

Now, Var [X] is a square, symmetric p × p matrix, so it makes sense to

talk about its square root3, i.e., a symmetric p× p matrix Var [X]
1/2

such that

Var [X] = Var [X]
1/2

Var [X]
1/2

. It follows that Var [X]
−1

also has a square

root, Var [X]
−1/2

, given by
(

Var [X]
1/2
)−1

. Thus we can say that the optimal

predictions are given by

XTVar [X]
−1

Cov [X,Y ] = XTVar [X]
−1/2

Var [X]
−1/2

Cov [X,Y ] (37)

= (Var [X]
−1/2

X)TCov
[
Var [X]

−1/2
X,Y

]
(38)

By the rules for algebra with variances,

Var
[
Var [X]

−1/2
X
]

= Var [X]
−1/2

Var [X] Var [X]
−1/2

(39)

= Var [X]
−1/2

Var [X]
1/2

Var [X]
1/2

Var [X]
−1/2

= I(40)

Multiplying a vector by a matrix rotates and stretches the coordinate system for

the vector. Multiplying X by Var [X]
−1/2

rotates and stretches the coordinates
so that all the components of X are uncorrelated with each other, and they all
have variance 1. The point of the Var [X]

−1
in the formula for the regression

slopes is that it, implicitly, finds the new coordinate system where the predictors
are uncorrelated, and then does a bunch of simple regressions.

3.3 Point Predictions and Fitted Values

Just as with simple regression, the vector of fitted values m̂ is linear in y, and
given by the hat matrix:

3For instance, we know from the “spectral” or “eigendecomposition” theorem in linear
algebra that such a matrix can be written as UΛUT , where U is the p × p matrix whose
columns are the eigenvectors, and Λ is the diagonal matrix of eigenvalues.
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m̂ = xβ̂ (41)

= x(xTx)−1xTy (42)

= Hy (43)

All of the interpretations given of the hat matrix in the previous lecture still
apply.

4 Properties of the Estimates

We will only look at the most basic properties of bias and variance here, deferring
the full sampling distribution, and confidence sets, to next time.

The fundamental observation is the following. Let’s hold x fixed, and let Y
vary randomly. Since

β̂ = (xTx)−1xTY (44)

and
Y = xβ + ε (45)

we have
β̂ = (xTx)−1xTxβ + (xTx)−1xT ε = β + (xTx)−1xT ε (46)

4.1 Bias

This is straight-forward:

E
[
β̂|x
]

= E
[
β + (xTx)−1xT ε|x

]
(47)

= β + (xTx)−1xTE [ε|x] (48)

= β (49)

Thus, the least squares estimate of the general linear model’s coefficients is
conditionally unbiased, no matter what p is.

Notice that we needed to use one of the modeling assumptions to get this:
if the true regression function wasn’t linear, we couldn’t say E [ε|x] = 0.

4.2 Variance and Standard Errors

This needs a little more work.

Var
[
β̂|x
]

= Var
[
β + (xTx)−1xT ε|x

]
(50)

= Var
[
(xTx)−1xT ε|x

]
(51)

= (xTx)−1xTVar [ε|x] x(xTx)−1 (52)

= (xTx)−1xTσ2Ix(xTx)−1 (53)

= σ2(xTx)−1xTx(xTx)−1 (54)

= σ2(xTx)−1 (55)
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Again, this is true whatever p might be.
To understand this a little better, let’s re-write it slightly:

Var
[
β̂|x
]

=
σ2

n
(n−1xTx)−1 (56)

The first term, σ2/n, is what we’re familiar with from the simple linear model.
As n grows, we expect the entries in xTx to be increasing in magnitude, since
they’re sums over all n data points; dividing all entries in the matrix by n com-
pensates for this. If the sample covariances between all the predictor variables
were 0, when we took the inverse we’d get 1/s2Xi

down the diagonal (except for
the top of the diagonal), just as we got 1/s2X in the simple linear model.

5 Collinearity

I have been silently assuming that (xTx)−1 exists, that xTx is “invertible” or
“non-singular”. There are a number of equivalent conditions for a matrix to be
invertible:

1. Its determinant is non-zero.

2. It is of “full column rank”, meaning all of its columns are linearly inde-
pendent4.

3. It is of “full row rank”, meaning all of its rows are linearly independent.

The equivalence of these conditions are mathematical facts, proved in linear
algebra; I will not re-prove them here.

What does this amount to in terms of our data? It means (Exercise 5) that
the variables must be linearly independent in our sample. That is, there must
not be any set of constants a0, a1, . . . ap where, for all rows i,

a0 +

p∑
j=1

ajxij = 0 (57)

This, in other words, means that x must be of full column rank.
To understand why linearly dependence among variables is a problem, take

an easy case, where two predictors, say X1 and X2, are exactly equal to each
other. It’s then not surprising that we don’t have any way of estimating their
coefficients. If we get one set of predictions with coefficients β1, β2, we’d get
exactly the same predictions from β1 + γ, β2 − γ, no matter what γ might be.
If there are other exact linear relations among two variables, we can similarly
trade off their coefficients against each other, without any change in anything
we can observe. If there are exact linear relationships among more than two
variables, all of their coefficients become ill-defined.

4Recall that a set of vectors is linearly independent if no linear combination of them is
exactly zero.
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We will come back in a few lectures to what to do when faced with collinear-
ity. For now, we’ll just mention a few clear situations:

• If n < p+ 1, the data are collinear.

• If one of the predictor variables is constant, the data are collinear.

• If two of the predictor variables are proportional to each other, the data
are collinear.

• If two of the predictor variables are otherwise linearly related, the data
are collinear.

While it’s important to double-check for these, especially
for right now, we’ll hope it doesn’t happen. That does mean, however, that

we need to look and see whether it is happening.

6 R Practicalities

6.1 lm

lm works in almost the same way as for simple linear models. Let’s look at the
model from the last data analysis project:

mobility <- read.csv("http://www.stat.cmu.edu/~cshalizi/mreg/15/dap/1/mobility.csv")

The only real change is that we need to tell lm, through the formula, what
all the predictor variables are; we do this with + signs:

# Fit a model with three predictors

mob.lm <- lm( Mobility ~ Commute + Latitude + Longitude, data=mobility)

The order of the predictor variables only matters for the order in which the
coefficients will be listed. All of the utility functions we already know still work,
in exactly the same way:

# Basic print-out:

print(mob.lm)

##

## Call:

## lm(formula = Mobility ~ Commute + Latitude + Longitude, data = mobility)

##

## Coefficients:

## (Intercept) Commute Latitude Longitude

## -3.136e-02 2.010e-01 9.383e-04 -4.305e-05

# Coefficients:

coefficients(mob.lm)
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12 6.1 lm

## (Intercept) Commute Latitude Longitude

## -3.136000e-02 2.009679e-01 9.383055e-04 -4.304546e-05

# Confidence intervals for parameters:

confint(mob.lm)

## 2.5 % 97.5 %

## (Intercept) -0.0563094963 -0.0064104992

## Commute 0.1738437953 0.2280920687

## Latitude 0.0003580771 0.0015185339

## Longitude -0.0002827799 0.0001966889

# Fitted values:

head(fitted(mob.lm))

## 1 2 3 4 5 6

## 0.07172344 0.06156703 0.07867982 0.06006085 0.06464329 0.06943562

# Residuals:

head(residuals(mob.lm))

## 1 2 3 4 5

## -0.009524631 -0.007915094 -0.006044680 -0.003779634 -0.019842494

## 6

## -0.017599771

summary is also basically the same, but slightly more elaborate.

summary(mob.lm)

##

## Call:

## lm(formula = Mobility ~ Commute + Latitude + Longitude, data = mobility)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.17583 -0.02222 -0.00586 0.01758 0.32290

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -3.136e-02 1.271e-02 -2.468 0.01383 *

## Commute 2.010e-01 1.382e-02 14.546 < 2e-16 ***

## Latitude 9.383e-04 2.956e-04 3.175 0.00156 **

## Longitude -4.305e-05 1.221e-04 -0.353 0.72456

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.04227 on 725 degrees of freedom

## Multiple R-squared: 0.3583,Adjusted R-squared: 0.3557

## F-statistic: 134.9 on 3 and 725 DF, p-value: < 2.2e-16
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13 6.2 predict

This lists t-tests for every coefficient; we will go exactly how to interpret
those next time.

As usual, it is much better to use a formula with just column names and a
data argument than to hard-code in particular vectors.

6.2 predict

predict also works in exactly the same way, only we need to give a data frame
with columns for each of the predictor variables:

predict(mob.lm,

newdata=data.frame(Commute=0.5,

Latitude=40.35,

Longitude=-79.92)) # Where is that?

## 1

## 0.1104248

Confidence intervals for conditional means, and prediction intervals, work in
just the same way as before.

6.3 Exploratory Plots

While we will go over the diagnostic plots next time, some exploratory plots
are needed at this point. The simplest thing to do is a bivariate scatter-plot for
every pair of variables. You could do this by writing plot umpteen times, but
this is such a common task that there’s a useful R function to make all possible
scatterplots, called pairs (Figure 1).
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14 6.3 Exploratory Plots

Mobility
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pairs(~ Mobility + Commute + Latitude + Longitude, data=mobility)

Figure 1: Example of using pairs: the formula has an empty left-hand side (because
there isn’t really a distinguished response variable), and all the variables we want to
plot on the right-hand side. If we left out the formula, we’d get plots of all variables
against all others: why isn’t that sensible here? What would happen if we used the
formula Mobility ∼ Commute + Latitude + Longitude?
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7 Exercises

To think through or practice on, not to hand in.

1. Show that
1

n
xTy − xT y (58)

is the p × 1 matrix whose ith entry is the sample covariance between Xi

and Y .

2. Show that
1

n
xTx− xTx (59)

is the p × p matrix whose i, j entry is the sample covariance between Xi

and Xj .

3. ) Show the following:

(a) That in the multiple-regression model, the true vector of slopes β

equals Var [X]
−1

Cov [X,Y ].

(b) That this vector of slopes minimizes the expected squared error.

4. Assume p = 2. Work out n−1xTx and (n−1xTx)−1 in terms of x1, x2,

x1x2, x21 and x22.

5. (a) Show if x is of full column rank, than xTx is also of full rank.

(b) Show that if xTx is not of full rank, then x must be of less than full
column rank.
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