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Basics of Bayesian Statistics

Suppose a woman believes she may be pregnant after a single sexual encounter,
but she is unsure. So, she takes a pregnancy test that is known to be 90%
accurate—meaning it gives positive results to positive cases 90% of the time—
and the test produces a positive result.1 Ultimately, she would like to know the
probability she is pregnant, given a positive test (p(preg | test +)); however,
what she knows is the probability of obtaining a positive test result if she is
pregnant (p(test + |preg)), and she knows the result of the test.

In a similar type of problem, suppose a 30-year-old man has a positive
blood test for a prostate cancer marker (PSA). Assume this test is also ap-
proximately 90% accurate. Once again, in this situation, the individual would
like to know the probability that he has prostate cancer, given the positive
test, but the information at hand is simply the probability of testing positive
if he has prostate cancer, coupled with the knowledge that he tested positive.

Bayes’ Theorem offers a way to reverse conditional probabilities and,
hence, provides a way to answer these questions. In this chapter, I first show
how Bayes’ Theorem can be applied to answer these questions, but then I
expand the discussion to show how the theorem can be applied to probability
distributions to answer the type of questions that social scientists commonly
ask. For that, I return to the polling data described in the previous chapter.

3.1 Bayes’ Theorem for point probabilities

Bayes’ original theorem applied to point probabilities. The basic theorem
states simply:

p(B|A) =
p(A|B)p(B)

p(A)
. (3.1)

1 In fact, most pregnancy tests today have a higher accuracy rate, but the accuracy
rate depends on the proper use of the test as well as other factors.
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In English, the theorem says that a conditional probability for event B
given event A is equal to the conditional probability of event A given event
B, multiplied by the marginal probability for event B and divided by the
marginal probability for event A.

Proof: From the probability rules introduced in Chapter 2, we know that
p(A,B) = p(A|B)p(B). Similarly, we can state that p(B,A) = p(B|A)p(A).
Obviously, p(A,B) = p(B,A), so we can set the right sides of each of these
equations equal to each other to obtain:

p(B|A)p(A) = p(A|B)p(B).

Dividing both sides by p(A) leaves us with Equation 3.1.
The left side of Equation 3.1 is the conditional probability in which we

are interested, whereas the right side consists of three components. p(A|B)
is the conditional probability we are interested in reversing. p(B) is the un-
conditional (marginal) probability of the event of interest. Finally, p(A) is the
marginal probability of event A. This quantity is computed as the sum of
the conditional probability of A under all possible events Bi in the sample
space: Either the woman is pregnant or she is not. Stated mathematically for
a discrete sample space:

p(A) =
∑

Bi∈SB

p(A | Bi)p(Bi).

Returning to the pregnancy example to make the theorem more concrete,
suppose that, in addition to the 90% accuracy rate, we also know that the
test gives false-positive results 50% of the time. In other words, in cases in
which a woman is not pregnant, she will test positive 50% of the time. Thus,
there are two possible events Bi: B1 = preg and B2 = not preg. Additionally,
given the accuracy and false-positive rates, we know the conditional probabil-
ities of obtaining a positive test under these events: p(test +|preg) = .9 and
p(test +|not preg) = .5. With this information, combined with some “prior”
information concerning the probability of becoming pregnant from a single
sexual encounter, Bayes’ theorem provides a prescription for determining the
probability of interest.

The “prior” information we need, p(B) ≡ p(preg), is the marginal probabil-
ity of being pregnant, not knowing anything beyond the fact that the woman
has had a single sexual encounter. This information is considered prior infor-
mation, because it is relevant information that exists prior to the test. We may
know from previous research that, without any additional information (e.g.,
concerning date of last menstrual cycle), the probability of conception for any
single sexual encounter is approximately 15%. (In a similar fashion, concerning
the prostate cancer scenario, we may know that the prostate cancer incidence
rate for 30-year-olds is .00001—see Exercises). With this information, we can
determine p(B | A) ≡ p(preg|test +) as:
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p(preg | test +) =
p(test + | preg)p(preg)

p(test + | preg)p(preg) + p(test + | not preg)p(not preg)
.

Filling in the known information yields:

p(preg | test +) =
(.90)(.15)

(.90)(.15) + (.50)(.85)
=

.135

.135 + .425
= .241.

Thus, the probability the woman is pregnant, given the positive test, is only
.241. Using Bayesian terminology, this probability is called a “posterior prob-
ability,” because it is the estimated probability of being pregnant obtained
after observing the data (the positive test). The posterior probability is quite
small, which is surprising, given a test with so-called 90% “accuracy.” How-
ever, a few things affect this probability. First is the relatively low probability
of becoming pregnant from a single sexual encounter (.15). Second is the ex-
tremely high probability of a false-positive test (.50), especially given the high
probability of not becoming pregnant from a single sexual encounter (p = .85)
(see Exercises).

If the woman is aware of the test’s limitations, she may choose to repeat the
test. Now, she can use the “updated” probability of being pregnant (p = .241)
as the new p(B); that is, the prior probability for being pregnant has now been
updated to reflect the results of the first test. If she repeats the test and again
observes a positive result, her new “posterior probability” of being pregnant
is:

p(preg | test +) =
(.90)(.241)

(.90)(.241) + (.50)(.759)
=

.135

.135 + .425
= .364.

This result is still not very convincing evidence that she is pregnant, but if she
repeats the test again and finds a positive result, her probability increases to
.507 (for general interest, subsequent positive tests yield the following prob-
abilities: test 4 = .649, test 5 = .769, test 6 = .857, test 7 = .915, test 8 =
.951, test 9 = .972, test 10 = .984).

This process of repeating the test and recomputing the probability of in-
terest is the basic process of concern in Bayesian statistics. From a Bayesian
perspective, we begin with some prior probability for some event, and we up-
date this prior probability with new information to obtain a posterior prob-
ability. The posterior probability can then be used as a prior probability in
a subsequent analysis. From a Bayesian point of view, this is an appropriate
strategy for conducting scientific research: We continue to gather data to eval-
uate a particular scientific hypothesis; we do not begin anew (ignorant) each
time we attempt to answer a hypothesis, because previous research provides
us with a priori information concerning the merit of the hypothesis.



50 3 Basics of Bayesian Statistics

3.2 Bayes’ Theorem applied to probability distributions

Bayes’ theorem, and indeed, its repeated application in cases such as the ex-
ample above, is beyond mathematical dispute. However, Bayesian statistics
typically involves using probability distributions rather than point probabili-
ties for the quantities in the theorem. In the pregnancy example, we assumed
the prior probability for pregnancy was a known quantity of exactly .15. How-
ever, it is unreasonable to believe that this probability of .15 is in fact this
precise. A cursory glance at various websites, for example, reveals a wide range
for this probability, depending on a woman’s age, the date of her last men-
strual cycle, her use of contraception, etc. Perhaps even more importantly,
even if these factors were not relevant in determining the prior probability
for being pregnant, our knowledge of this prior probability is not likely to be
perfect because it is simply derived from previous samples and is not a known
and fixed population quantity (which is precisely why different sources may
give different estimates of this prior probability!). From a Bayesian perspec-
tive, then, we may replace this value of .15 with a distribution for the prior
pregnancy probability that captures our prior uncertainty about its true value.
The inclusion of a prior probability distribution ultimately produces a poste-
rior probability that is also no longer a single quantity; instead, the posterior
becomes a probability distribution as well. This distribution combines the
information from the positive test with the prior probability distribution to
provide an updated distribution concerning our knowledge of the probability
the woman is pregnant.

Put generally, the goal of Bayesian statistics is to represent prior uncer-
tainty about model parameters with a probability distribution and to update
this prior uncertainty with current data to produce a posterior probability dis-
tribution for the parameter that contains less uncertainty. This perspective
implies a subjective view of probability—probability represents uncertainty—
and it contrasts with the classical perspective. From the Bayesian perspective,
any quantity for which the true value is uncertain, including model param-
eters, can be represented with probability distributions. From the classical
perspective, however, it is unacceptable to place probability distributions on
parameters, because parameters are assumed to be fixed quantities: Only the
data are random, and thus, probability distributions can only be used to rep-
resent the data.

Bayes’ Theorem, expressed in terms of probability distributions, appears
as:

f(θ|data) =
f(data|θ)f(θ)

f(data)
, (3.2)

where f(θ|data) is the posterior distribution for the parameter θ, f(data|θ)
is the sampling density for the data—which is proportional to the Likeli-
hood function, only differing by a constant that makes it a proper density
function—f(θ) is the prior distribution for the parameter, and f(data) is the
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marginal probability of the data. For a continuous sample space, this marginal
probability is computed as:

f(data) =

∫

f(data|θ)f(θ)dθ,

the integral of the sampling density multiplied by the prior over the sample
space for θ. This quantity is sometimes called the “marginal likelihood” for the
data and acts as a normalizing constant to make the posterior density proper
(but see Raftery 1995 for an important use of this marginal likelihood). Be-
cause this denominator simply scales the posterior density to make it a proper
density, and because the sampling density is proportional to the likelihood
function, Bayes’ Theorem for probability distributions is often stated as:

Posterior ∝ Likelihood× Prior, (3.3)

where the symbol “∝” means “is proportional to.”

3.2.1 Proportionality

As Equation 3.3 shows, the posterior density is proportional to the likelihood
function for the data (given the model parameters) multiplied by the prior for
the parameters. The prior distribution is often—but not always—normalized
so that it is a true density function for the parameter. The likelihood function,
however, as we saw in the previous chapter, is not itself a density; instead, it is
a product of densities and thus lacks a normalizing constant to make it a true
density function. Consider, for example, the Bernoulli versus binomial speci-
fications of the likelihood function for the dichotomous voting data. First, the
Bernoulli specification lacked the combinatorial expression to make the like-
lihood function a true density function for either the data or the parameter.
Second, although the binomial representation for the likelihood function con-
stituted a true density function, it only constituted a true density for the data

and not for the parameter p. Thus, when the prior distribution for a parameter
is multiplied by the likelihood function, the result is also not a proper density
function. Indeed, Equation 3.3 will be “off” by the denominator on the right
side of Equation 3.2, in addition to whatever normalizing constant is needed
to equalize the likelihood function and the sampling density p(data | θ).

Fortunately, the fact that the posterior density is only proportional to the
product of the likelihood function and prior is not generally a problem in
Bayesian analysis, as the remainder of the book will demonstrate. However,
a note is in order regarding what proportionality actually means. In brief, if
a is proportional to b, then a and b only differ by a multiplicative constant.
How does this translate to probability distributions? First, we need to keep in
mind that, in a Bayesian analysis, model parameters are considered random
quantities, whereas the data, having been already observed, are considered
fixed quantities. This view is completely opposite that assumed under the
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classical approach. Second, we need to recall from Chapter 2 that potential
density functions often need to have a normalizing constant included to make
them proper density functions, but we also need to recall that this normalzing
constant only has the effect of scaling the density—it does not fundamentally
change the relative frequencies of different values of the random variable.
As we saw in Chapter 2, the normalizing constant is sometimes simply a
true constant—a number—but sometimes the constant involves the random
variable(s) themselves.

As a general rule, when considering a univariate density, any term, say
Q (no matter how complicated), that can be factored away from the random
variable in the density—so that all the term(s) involving the random variable
are simply multiples of Q—can be considered an irrelevant proportionality
constant and can be eliminated from the density without affecting the results.

In theory, this rule is fairly straightforward, but it is often difficult to apply
for two key reasons. First, it is sometimes difficult to see whether a term can
be factored out. For example, consider the following function for θ:

f(θ) = e−θ+Q.

It may not be immediately clear that Q here is an arbitrary constant with
respect to θ, but it is. This function can be rewritten as:

f(θ) = e−θ × eQ,

using the algebraic rule that ea+b = eaeb. Thus, if we are considering f(θ)
as a density function for θ, eQ would be an arbitrary constant and could be
removed without affecting inference about θ. Thus, we could state without
loss of information that:

f(θ) ∝ e−θ.

In fact, this particular function, without Q, is an exponential density for θ
with parameter β = 1 (see the end of this chapter). With Q, it is proportional
to an exponential density; it simply needs a normalizing constant of e−Q so
that the function integrates to 1 over the sample space S = {θ : θ > 0}:

∫

∞

0

e−θ+Q dθ = − 1

e∞−Q
+ eQ = eQ.

Thus, given that this function integrates to eQ, e−Q renormalizes the integral
to 1.

A second difficulty with this rule is that multivariate densities sometimes
make it difficult to determine what is an irrelevant constant and what is not.
With Gibbs sampling, as we will discuss in the next chapter and throughout
the remainder of the book, we generally break down multivariate densities into
univariate conditional densities. When we do this, we can consider all terms
not involving the random variable to which the conditional density applies to
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be proportionality constants. I will show this shortly in the last example in
this chapter.

3.3 Bayes’ Theorem with distributions: A voting

example

To make the notion of Bayes’ Theorem applied to probability distributions
concrete, consider the polling data from the previous chapter. In the previous
chapter, we attempted to determine whether John F. Kerry would win the
popular vote in Ohio, using the most recent CNN/USAToday/Gallup polling
data. When we have a sample of data, such as potential votes for and against a
candidate, and we assume they arise from a particular probability distribution,
the construction of a likelihood function gives us the joint probability of the
events, conditional on the parameter of interest: p(data|parameter). In the
election polling example, we maximized this likelihood function to obtain a
value for the parameter of interest—the proportion of Kerry voters in Ohio—
that maximized the probability of obtaining the polling data we did. That
estimated proportion (let’s call it K to minimize confusion) was .521. We
then determined how uncertain we were about our finding that K = .521.
To be more precise, we determined under some assumptions how far K may
reasonably be from .521 and still produce the polling data we observed.

This process of maximizing the likelihood function ultimately simply tells
us how probable the data are under different values for K—indeed, that is
precisely what a likelihood function is —but our ultimate question is really
whether Kerry will win, given the polling data. Thus, our question of interest
is “what is p(K > .5),” but the likelihood function gives us p(poll data |K)—
that is, the probability of the data given different values of K.

In order to answer the question of interest, we need to apply Bayes’ The-
orem in order to obtain a posterior distribution for K and then evaluate
p(K > .5) using this distribution. Bayes’ Theorem says:

f(K|poll data) ∝ f(poll data|K)f(K),

or verbally: The posterior distribution for K, given the sample data, is propor-
tional to the probability of the sample data, given K, multiplied by the prior
probability for K. f(poll data|K) is the likelihood function (or sampling den-
sity for the data). As we discussed in the previous chapter, it can be viewed
as a binomial distribution with x = 556 “successes” (votes for Kerry) and
n − x = 511 “failures” (votes for Bush), with n = 1, 067 total votes between
the two candidates. Thus,

f(poll data|K) ∝ K556(1−K)511.

What remains to be specified to complete the Bayesian development of the
model is a prior probability distribution for K. The important question is:
How do we do construct a prior?
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3.3.1 Specification of a prior: The beta distribution

Specification of an appropriate prior distribution for a parameter is the most
substantial aspect of a Bayesian analysis that differentiates it from a classi-
cal analysis. In the pregnancy example, the prior probability for pregnancy
was said to be a point estimate of .15. However, as we discussed earlier, that
specification did not consider that that prior probability is not known with
complete certainty. Thus, if we wanted to be more realistic in our estimate of
the posterior probability of pregnancy, we could compute the posterior prob-
ability under different values for the prior probability to obtain a collection
of possible posterior probabilities that we could then consider and compare
to determine which estimated posterior probability we thought was more rea-
sonable. More efficiently, we could replace the point estimate of .15 with a
probability distribution that represented (1) the plausible values of the prior
probability of pregnancy and (2) their relative merit. For example, we may
give considerable prior weight to the value .15 with diminishing weight to
values of the prior probability that are far from .15.

Similarly, in the polling data example, we can use a distribution to repre-
sent our prior knowledge and uncertainty regarding K. An appropriate prior
distribution for an unknown proportion such as K is a beta distribution. The
pdf of the beta distribution is:

f(K | α, β) =
Γ (α+ β)

Γ (α)Γ (β)
Kα−1(1−K)β−1,

where Γ (a) is the gamma function applied to a and 0 < K < 1.2 The param-
eters α and β can be thought of as prior “successes” and “failures,” respec-
tively. The mean and variance of a beta distribution are determined by these
parameters:

E(K | α, β) =
α

α+ β

and

Var(K | α, β) =
αβ

(α+ β)2(α+ β + 1)
.

This distribution looks similar to the binomial distribution we have already
discussed. The key difference is that, whereas the random variable is x and the
key parameter is K in the binomial distribution, the random variable is K and
the parameters are α and β in the beta distribution. Keep in mind, however,
from a Bayesian perspective, all unknown quantities can be considered random
variables.

2 The gamma function is the generalization of the factorial to nonintegers. For
integers, Γ (a) = (a − 1)!. For nonintegers, Γ (a) =

R

∞

0
xa−1 e−x dx. Most soft-

ware packages will compute this function, but it is often unnecessary in practice,
because it tends to be part of the normalizing constant in most problems.



3.3 Bayes’ Theorem with distributions: A voting example 55

How do we choose α and β for our prior distribution? The answer to this
question depends on at least two factors. First, how much information prior
to this poll do we have about the parameter K? Second, how much stock
do we want to put into this prior information? These are questions that all
Bayesian analyses must face, but contrary to the view that this is a limitation
of Bayesian statistics, the incorporation of prior information can actually be
an advantage and provides us considerable flexibility. If we have little or no
prior information, or we want to put very little stock in the information we
have, we can choose values for α and β that reduce the distribution to a
uniform distribution. For example, if we let α = 1 and β = 1, we get

f(p|α = 1, β = 1) ∝ K1−1=0(1−K)1−1=0 = 1,

which is proportional to a uniform distribution on the allowable interval for
K ([0,1]). That is, the prior distribution is flat, not producing greater a priori

weight for any value of K over another. Thus, the prior distribution will have
little effect on the posterior distribution. For this reason, this type of prior is
called “noninformative.”3

At the opposite extreme, if we have considerable prior information and we
want it to weigh heavily relative to the current data, we can use large values of
α and β. A little algebraic manipulation of the formula for the variance reveals
that, as α and β increase, the variance decreases, which makes sense, because
adding additional prior information ought to reduce our uncertainty about the
parameter. Thus, adding more prior successes and failures (increasing both
parameters) reduces prior uncertainty about the parameter of interest (K).
Finally, if we have considerable prior information but we do not wish for it to
weigh heavily in the posterior distribution, we can choose moderate values of
the parameters that yield a mean that is consistent with the previous research
but that also produce a variance around that mean that is broad.

Figure 3.1 displays some beta distributions with different values of α and
β in order to clarify these ideas. All three displayed beta distributions have
a mean of .5, but they each have different variances as a result of having α
and β parameters of different magnitude. The most-peaked beta distribution
has parameters α = β = 50. The least-peaked distribution is actually flat—
uniform—with parameters α = β = 1. As with the binomial distribution, the
beta distribution becomes skewed if α and β are unequal, but the basic idea
is the same: the larger the parameters, the more prior information and the
narrower the density.

Returning to the voting example, CNN/USAToday/Gallup had conducted
three previous polls, the results of which could be treated as prior information.

3 Virtually all priors, despite sometimes being called “noninformative,” impart
some information to the posterior distribution. Another way to say this is that
claiming ignorance is, in fact, providing some information! However, flat priors
generally have little weight in affecting posterior inference, and so they are called
noninformative. See Box and Tiao 1973; Gelman et al. 1995; and Lee 1989.
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Fig. 3.1. Three beta distributions with mean α/(α+ β) = .5.

These additional polling data are shown in Table 3.1.4 If we consider these
previous polls to provide us prior knowledge about the election, then our prior
information consists of 1,008 (339 + 325 + 344) votes for Bush and 942 votes
for Kerry (346 + 312 + 284) out of a total of 1,950 votes.

This prior information can be included by using a beta distribution with
parameters α = 942 and β = 1008:

f(K | α, β) ∝ K942−1(1−K)1008−1.

4 The data appear to show some trending, in the sense that the proportion stating
that they would vote for Bush declined across time, whereas the proportion stating
that they would vote for Kerry increased. This fact may suggest consideration
of a more complex model than discussed here. Nonetheless, given a margin of
error of ±4% for each of these additional polls, it is unclear whether the trend
is meaningful. In other words, we could simply consider these polls as repeated
samples from the same, unchanging population. Indeed, the website shows the
results of 22 polls taken by various organizations, and no trending is apparent in
the proportions from late September on.
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Table 3.1. CNN/USAToday/Gallup 2004 presidential election polls.

Date n % for Bush ≈ n % for Kerry ≈ n

Oct 17-20 706 48% 339 49% 346
Sep 25-28 664 49% 325 47% 312
Sep 4-7 661 52% 344 43% 284
TOTAL 2,031 1,008 942

Note: Proportions and candidate-specific sample sizes may not add to 100% of total
sample n, because proportions opting for third-party candidates have been excluded.

After combining this prior with the binomial likelihood for the current sample,
we obtain the following posterior density for K:

p(K | α, β, x) ∝ K556(1−K)511K941(1−K)1007 = K1497(1−K)1518.

This posterior density is also a beta density, with parameters α = 1498 and
β = 1519, and highlights the important concept of “conjugacy” in Bayesian
statistics. When the prior and likelihood are of such a form that the poste-
rior distribution follows the same form as the prior, the prior and likelihood
are said to be conjugate. Historically, conjugacy has been very important to
Bayesians, because, prior to the development of the methods discussed in this
book, using conjugate priors/likelihoods with known forms ensured that the
posterior would be a known distribution that could be easily evaluated to
answer the scientific question of interest.

Figure 3.2 shows the prior, likelihood, and posterior densities. The likeli-
hood function has been normalized as a proper density for K, rather than x.
The figure shows that the posterior density is a compromise between the prior
distribution and the likelihood (current data). The prior is on the left side of
the figure; the likelihood is on the right side; and the posterior is between,
but closer to the prior. The reason the posterior is closer to the prior is that
the prior contained more information than the likelihood: There were 1,950
previously sampled persons and only 1,067 in the current sample.5

With the posterior density determined, we now can summarize our up-
dated knowledge about K, the proportion of voters in Ohio who will vote for
Kerry, and answer our question of interest: What is the probability that Kerry
would win Ohio? A number of summaries are possible, given that we have a
posterior distribution with a known form (a beta density). First, the mean
of K is 1498/(1498 + 1519) = .497, and the median is also .497 (found using
the qbeta function in R). The variance of this beta distribution is .00008283
(standard deviation=.0091). If we are willing to assume that this beta distri-
bution is approximately normal, then we could construct a 95% interval based
on a normal approximation and conclude that the proportion of Ohio voters

5 This movement of the posterior distribution away from the prior and toward the
likelihood is sometimes called “Bayesian shrinkage” (see Gelman et al. 1995).
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Fig. 3.2. Prior, likelihood, and posterior for polling data example: The likelihood
function has been normalized as a density for the parameter K.

who would vote for Kerry falls between .479 and .515 (.497±1.96×.0091). This
interval is called a “credible interval,” a “posterior probability interval,” or a
“probability interval,” and it has a simpler interpretation than the classical
confidence interval. Using this interval, we can say simply that the proportion
K falls in this interval with probability .95.

If, on the other hand, we are not willing to assume that this posterior
density is approximately normal, we can directly compute a 95% probability
interval by selecting the lower and upper values of this beta density that
produce the desired interval. That is, we can determine the values of this beta
density below which 2.5% of the distribution falls and above which 2.5% of
the distribution falls. These values are .479 and .514, which are quite close to
those under the normal approximation.

These results suggest that, even with the prior information, the election
may have been too close to call, given that the interval estimate for K captures
.5. However, the substantive question—what is the probability that Kerry
would win—can also be answered within the Bayesian framework. This prob-
ability is the probability that Kerry will get more than half of the votes, which



3.3 Bayes’ Theorem with distributions: A voting example 59

is simply the probability that K > .5. This probability can be directly com-
puted from the beta distribution as the integral of this density from .5 to 1
(the mass of the curve to the right of .5; see Figure 3.3). The result is .351,
which means that Kerry did not have a favorable chance to win Ohio, given
the complete polling data.
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Fig. 3.3. Posterior for polling data example: A vertical line at K = .5 is included to
show the area needed to be computed to estimate the probability that Kerry would
win Ohio.

In fact, Kerry did not win Ohio; he obtained 48.9% of the votes cast for
either Kerry or Bush. The classical analysis did not yield this conclusion: It
simply suggested that the results were too close to call. The Bayesian anal-
ysis, on the other hand, while recognizing that the election would be close,
suggested that there was not a very high probability that Kerry would win.
The price that had to be paid for reaching this conclusion, however, was (1)
we had to be willing to specify a prior probability for K, and (2) we had to
be willing to treat the parameter of interest as a random, and not a fixed,
quantity.



60 3 Basics of Bayesian Statistics

3.3.2 An alternative model for the polling data: A gamma prior/
Poisson likelihood approach

In this section, I repeat the analysis from the previous section. However, in-
stead of considering the problem as a binomial problem with the proportion
parameter p, I consider the problem as a Poisson distribution problem with
rate parameter λ. As we discussed in the previous chapter, the Poisson dis-
tribution is a distribution for count variables; we can consider an individual’s
potential vote for Kerry as a discrete count that takes values of either 0 or 1.
From that perspective, the likelihood function for the 1,067 sample members
in the most recent survey prior to the election is:

L(λ|Y ) =
1067
∏

i=1

λyie−λ

yi!
=
λ

P

1067

i=1
yie−1067λ

∏1067
i=1 yi!

,

where yi is the 0 (Bush) or 1 (Kerry) vote of the ith individual.
As in the binomial example, we would probably like to include the previ-

ous survey data in our prior distribution. A conjugate prior for the Poisson
distribution is a gamma distribution. The pdf of the gamma distribution is as
follows. If x ∼ gamma(α, β), then:

f(x) =
βα

Γ (α)
xα−1e−βx.

The parameters α and β in the gamma distribution are shape and inverse-
scale parameters, respectively. The mean of a gamma distribution is α/β, and
the variance is α/β2. Figure 3.4 shows four different gamma distributions. As
the plot shows, the distribution is very flexible: Slight changes in the α and
β parameters—which can take any non-negative value—yield highly variable
shapes and scales for the density.

For the moment, we will leave α and β unspecified in our voting model so
that we can see how they enter into the posterior distribution. If we combine
this gamma prior with the likelihood function, we obtain:

p(λ | Y ) ∝
(

βα

Γ (α)

)

λα−1e−βλ

(

1
∏1067

i=1 yi!

)

λ
P

1067

i=1
yie−1067λ.

This expression can be simplified by combining like terms and excluding the
arbitrary proportionality constants (the terms in parentheses, which do not
include λ) to obtain:

p(λ | y) ∝ λ
P

1067

i=1
yi+α−1e−(1067+β)λ.

Given that each yi is either a 0 (vote for Bush) or 1 (vote for Kerry),
∑1067

i=1 yi

is simply the count of votes for Kerry in the current sample (=556). Thus,
just as in the binomial example, the parameters α and β—at least in this
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Fig. 3.4. Some examples of the gamma distribution.

particular model—appear to capture prior “successes” and “failures.” Specif-
ically, α is the count of prior “successes,” and β is the total number of prior
observations. The mean of the gamma distribution (α/β) also supports this
conclusion. Thus, as in the beta prior/binomial likelihood example, if we want
to incorporate the data from previous survey into the prior distribution, we
can set α = 942 and β = 942 + 1008 = 1950 to obtain the following posterior:

p(λ | Y ) ∝ λ556+942−1e−(1067+1950)λ = λ1497e−3017λ.

Thus, the posterior density is also a gamma density with parameters α =
1498 and β = 3017. Because the gamma density is a known density, we can
immediately compute the posterior mean and standard deviation for λ: λ̄ =
.497; σ̂λ = .0128. If we wish to construct a 95% probability/credible interval
for λ, and we are willing to make a normal approximation given the large
sample size, we can construct the interval as .497± 1.96× .0128. This result
gives us an interval estimate of [.472, .522] for λ. On the other hand, if we
wish to compute the interval directly using integration of the gamma density
(i.e., the cdf for the gamma distribution), we obtain an interval of [.472, .522].
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In this case, the normal-theory interval and the analytically derived interval
are the same when rounded to three decimal places.

How does this posterior inference compare with that obtained using the
beta prior/binomial likelihood approach? The means forK in the beta/binomial
approach and for λ in the gamma/Poisson approach are identical. The inter-
vals are also quite comparable, but the interval in this latter approach is
wider—about 42% wider. If we wish to determine the probability that Kerry
would win Ohio, we simply need to compute p(λ > .5), which equals .390.
Thus, under this model, Kerry had a probability of winning of .390, which is
still an unfavorable result, although it is a slightly greater probability than
the beta/binomial result of .351.

Which model is to be preferred? In this case, the substantive conclusion
we reached was comparable for the two models: Kerry was unlikely to win
Ohio. So, it does not matter which model we choose. The fact that the two
models produced comparable results is reassuring, because the conclusion does
not appear to be very sensitive to choice of model. Ultimately, however, we
should probably place greater emphasis on the beta/binomial model, because
the Poisson distribution is a distribution for counts, and our data, which
consisted of dichotomous outcomes, really does not fit the bill. Consider the
parameter λ: There is no guarantee with the gamma/Poisson setup that λ will
be less than 1. This lack of limit could certainly be problematic if we had less
data, or if the underlying proportion favoring Kerry were closer to 1. In such
a case, the upper bound on the interval for λ may have exceeded 1, and our
results would therefore be suspect. In this particular case, however, we had
enough data and prior information that ultimately made the interval width
very narrow, and so the bounding problem was not an issue. Nonetheless, the
beta/binomial setup is a more natural model for the voting data.

3.4 A normal prior–normal likelihood example with σ
2

known

The normal distribution is one of the most common distributions used in
statistics by social scientists, in part because many social phenomena in fact
follow a normal distribution. Thus, it is not uncommon for a social scientist
to use a normal distribution as the basis for a likelihood function for a set of
data. Here, I develop a normal distribution problem, but for the sake of keeping
this example general for use in later chapters, I used a contrived scenario and
keep the mathematics fairly general. The purpose at this point is simply to
illustrate a Bayesian approach with a multivariate posterior distribution.6

6 The normal distribution involves two parameters: the mean (µ) and variance (σ2).
When considered as a density for x, it is univariate, but when a normal likelihood
and some prior for the parameters are combined, the result is a joint posterior
distribution for µ and σ2, which makes the posterior a multivariate density.
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Suppose that we have a class of 30 students who have recently taken a
midterm exam, and the mean grade was x̄ = 75 with a standard deviation of
σ = 10. Note that for now we have assumed that the variance is known, hence,
the use of σ rather than s. We have taught the course repeatedly, semester
after semester, and past test means have given us an overall mean µ of 70, but
the class means have varied from class to class, giving us a standard deviation
for the class means of τ = 5. That is, τ reflects how much our class means have
varied and does not directly reflect the variability of individual test scores.
We will discuss this more in depth momentarily.

Our goal is ultimately to update our knowledge of µ, the unobservable
population mean test score with the new test grade data. In other words, we
wish to find f(µ|x). Bayes’ Theorem tells us that:

f(µ|X) ∝ f(X|µ)f(µ),

where f(X|µ) is the likelihood function for the current data, and f(µ) is the
prior for the test mean. (At the moment, I am omitting σ2 from the notation).
If we assume the current test scores are normally distributed with a mean
equal to µ and variance σ2, then our likelihood function for X is:

f(X|µ) ∝ L(µ|X) =
n
∏

i=1

1√
2πσ2

exp

{

− (xi − µ)2

2σ2

}

.

Furthermore, our previous test results have provided us with an overall mean
of 70, but we are uncertain about µ’s actual value, given that class means
vary semester by semester (giving us τ = 5). So our prior distribution for µ
is:

f(µ) =
1√

2πτ2
exp

{

− (µ−M)2

2τ2

}

,

where in this expression, µ is the random variable, with M as the prior mean
(=70), and τ2 (=25) reflects the variation of µ around M .

Our posterior is the product of the likelihood and prior, which gives us:

f(µ|X) ∝ 1√
τ2σ2

exp

{−(µ−M)2

2τ2
+
−
∑n

i=1(xi − µ)2

2σ2

}

.

This posterior can be reexpressed as a normal distribution for µ, but it takes
some algebra in order to see this. First, since the terms outside the exponential
are simply normalizing constants with respect to µ, we can drop them and
work with the terms inside the exponential function. Second, let’s expand
the quadratic components and the summations. For the sake of simplicty, I
temporarily drop the exponential function in this expression:

(−1/2)

[

µ2 − 2µM +M2

τ2
+

∑

x2 − 2nx̄µ+ nµ2

σ2

]

.
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Using this expression, any term that does not include µ can be viewed as
a proportionality constant, can be factored out of the exponent, and can be
dropped (recall that ea+b = eaeb). After obtaining common denominators for
the remaining terms by cross-multiplying by each of the individual denomi-
nators and dropping proportionality constants, we are left with:

(−1/2)

[

σ2µ2 − 2σ2µM − 2τ2nx̄µ+ τ2nµ2

σ2τ2

]

.

From here, we need to combine terms involving µ2 and those involving µ:

(−1/2)

[

(nτ2 + σ2)µ2 − 2(σ2M + τ2nx̄)µ

σ2τ2

]

.

Dividing the numerator and denominator of this fraction by the (nτ2 + σ2)
in front of µ2 yields:

(−1/2)





µ2 − 2µ (σ2M+nτ2x̄)
(nτ2+σ2)

σ2τ2

(nτ2+σ2)



 .

Finally, all we need to do is to complete the square in µ and discard any
remaining constants to obtain:

(−1/2)







(

µ− (σ2M+nτ2x̄)
(nτ2+σ2)

)2

σ2τ2

(nτ2+σ2)






.

This result shows that our updated µ is normally distributed with mean
(σ2M + τ2nx̄)/(nτ2 + σ2) and variance (σ2τ2)/(nτ2 + σ2). Notice how the
posterior mean is a weighted combination of the prior mean and the sample
mean. The prior mean is multiplied by the known variance of test scores in the
sample, σ2, whereas the sample mean x̄ is multiplied by n and by the prior
variance τ2. This shows first that the sample mean will tend to have more
weight than the prior mean (because of the n multiple), but also that the
prior and sample variances affect the weighting of the means. If the sample
variance is large, then the prior mean has considerable weight in the poste-
rior; if the prior variance is large, the sample mean has considerable weight in
the posterior. If the two quantities are equal (σ2 = τ2), then the calculation
reduces to (M +nx̄)/(n+1), which means that the prior mean will only have
a weight of 1/(n+ 1) in the posterior.

In this particular example, our posterior mean would be:

(100× 70) + (25× 30× 75)/(30× 25 + 100) = 74.4.

Thus, our result is clearly more heavily influenced by the sample data than
by the prior. One thing that must be kept in mind but is easily forgotten is
that our updated variance parameter (which is 20—the standard deviation is
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therefore 4.47) reflects our uncertainty about µ. This estimate is smaller than
both the prior variance and the sample variance, and it is much closer to τ2

than to σ2. Why? Again, this quantity reflects how much µ varies (or, put
another way, how much uncertainty we have in knowing M , the true value
of µ) and not how much we know about any particular sample. Thus, the
fact that our sample standard deviation was 10 does not play a large role in
changing our minds about uncertainty in µ, especially given that the sample
mean was not that different from the prior mean. In other words, our sample
mean is sufficiently close to our prior mean µ so that we are unconvinced that
the variance of µ around M should be larger than it was. Indeed, the data
convince us that our prior variance should actually be smaller, because the
current sample mean is well within the range around M implied by our prior
value for τ .

3.4.1 Extending the normal distribution example

The natural extension of the previous example in which the variance σ2 was
considered known is to consider the more realistic case in which the variance is
not known. Recall that, ultimately in the previous example, we were interested
in the quantity µ—the overall mean test score. Previous data had given us an
estimate of µ, but we were still uncertain about its value, and thus, we used
τ to represent our uncertainty in µ. We considered σ2 to be a known quantity
(10). In reality, we typically do not know σ2 any more than we know µ, and
thus we have two quantities of interest that we should be updating with new
information. A full probability model for µ and σ2 would look like:

f(µ, σ2|x) ∝ f(x|µ, σ2)f(µ, σ2).

This model is similar to the one in the example above, but we have now
explicitly noted that σ2 is also an unknown quantity, by including it in the
prior distribution. Therefore, we now need to specify a joint prior for both µ
and σ2, and not just a prior for µ. If we assume µ and σ2 are independent—
and this is a reasonable assumption as we mentioned in the previous chapter;
there’s no reason the two parameters need be related—then we can consider
p(µ, σ2) = p(µ)p(σ2) and establish separate priors for each.

In the example above, we established the prior for µ to be µ ∼ N(M, τ2),
where M was the prior mean (70) and τ2 was the measure of uncertainty
we had in µ. We did not, however, specify a prior for σ2, but we used σ2 to
update our knowledge of τ .7

How do we specify a prior distribution for µ and σ2 in a more general case?
Unlike in the previous example, we often do not have prior information about
these parameters, and so we often wish to develop noninformative priors for

7 Recall from the CLT that x̄ ∼ N(µ, σ2/n); thus σ2 and τ2 are related: σ2/n
should be an estimate for τ2, and so treating σ2 as fixed yields an updated τ2

that depends heavily on the new sample data.
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them. There are several ways to do this in the normal distribution problem,
but two of the most common approaches lead to the same prior. One approach
is to assign a uniform prior over the real line for µ and the same uniform prior
for log(σ2). We assign a uniform prior on log(σ2) because σ2 is a nonega-
tive quantity, and the transformation to log(σ2) stretches this new parameter
across the real line. If we transform the uniform prior on log(σ2) into a density
for σ2, we obtain p(σ2) ∝ 1/σ2.8 Thus, our joint prior is: p(µ, σ2) ∝ 1/σ2.

A second way to obtain this prior is to give µ and σ2 proper prior distribu-
tions (not uniform over the real line, which is improper). If we continue with
the assumption that µ ∼ N(M, τ2), we can choose values of M and τ2 that
yield a flat distribution. For example, if we let µ ∼ N(0, 10000), we have a
very flat prior for µ. We can also choose a relatively noninformative prior for
σ2 by first noting that variance parameters follow an inverse gamma distri-
bution (see the next section) and then choosing values for the inverse gamma
distribution that produce a noninformative prior. If σ2 ∼ IG(a, b), the pdf
appears as:

f(σ2|a, b) ∝ (σ2)−(a+1)e−β/(σ2).

In the limit, if we let the parameters a and b approach 0, a noninformative
prior is obtained as 1/σ2. Strictly speaking, however, if a and b are 0, the
distribution is improper, but we can let both parameters approach 0. We can
then use this as our prior for σ2 (that is, σ2 ∼ IG(0, 0); p(σ2) ∝ 1/σ2). There
are other ways to arrive at this choice for the prior distribution for µ and σ,
but I will not address them here (see Gelman et al. 1995).

The resulting posterior for µ and σ2, if we assume a joint prior of 1/σ2 for
these parameters, is:

f(µ, σ2|X) ∝ 1

σ2

n
∏

i=1

1√
2πσ2

exp

{

− (xi − µ)2

2σ2

}

. (3.4)

Unlike in the previous example, however, this is a joint posterior density
for two parameters rather than one. Yet we can determine the conditional

posterior distributions for both parameters, using the rule discussed in the
previous chapter that, generally, f(x|y) ∝ f(x, y).

Determining the form for the posterior density for µ follows the same logic
as in the previous section. First, we carry out the product over all observations.
Next, we expand the quadratic, eliminate terms that are constant with respect
to µ and rearrange the terms with the µ2 term first. Doing so yields:

8 This transformation of variables involves a Jacobian, as discussed in the previous
chapter. Let m = log(σ2), and let p(m) ∝ constant. Then p(σ2) ∝ constant× J ,
where J is the Jacobian of the transformation from m to σ2. The Jacobian is then
dm/dσ2 = 1/σ2. See DeGroot (1986) for a fuller exposition of this process, and
see any introductory calculus book for a general discussion of transformations of
variables. See Gelman et al. 1995 for further discussion of this prior.
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f(µ|X,σ2) ∝ exp

{

−nµ
2 − 2nx̄µ

2σ2

}

.

Next, to isolate µ2, we can divide the numerator and denominator by n.
Finally, we can complete the square in µ to find:

f(µ|X,σ2) ∝ exp

{

− (µ− x̄)2

2σ2/n

}

.

This result shows us that the conditional distribution for µ|X,σ2 ∼ N(x̄, σ2

n ),
which should look familiar. That is, this is a similar result to what the Central
Limit Theorem in classical statistics claims regarding the sampling distribu-
tion for x̄.

What about the posterior distribution for σ2? There are at least two ways
to approach this derivation. First, we could consider the conditional distribu-
tion for σ2|µ,X. If we take this approach, then we again begin with the full
posterior density, but we now must consider all terms that involve σ2. If we
carry out the multiplication in the posterior density and combine like terms,
we obtain:

f(µ, σ2) ∝ 1

(σ2)n/2+1
exp

{

−
∑

(xi − µ)2

2σ2

}

.

Referring back to the above description of the inverse gamma distribution, it
is clear that, if µ is considered fixed, the conditional posterior density for σ2

is inverse gamma with parameters a = n/2 and b =
∑

(xi − µ)2/2.
A second way to approach this problem is to consider that the joint pos-

terior density for µ and σ2 can be factored using the conditional probability
rule as:

f(µ, σ2|X) = f(µ|σ2, X)f(σ2|X).

The first term on the right-hand side we have already considered in the pre-
vious example with σ2 considered to be a known, fixed quantity. The latter
term, however, is the marginal posterior density for σ2. Technically, an exact
expression for it can be found by integrating the joint posterior density over
µ (i.e.,

∫

f(µ, σ2)dµ.) (see Gelman et al. 1995). Alternatively, we can find an
expression proportional to it by factoring Equation 3.4. We know that the
distribution for µ|σ2, X is proportional to a normal density with mean x̄ and
variance σ2/n. Thus, if we factor this term out of the posterior, what is left
is proportional to the marginal density for σ2.

In order to factor the posterior, first, expand the quadratic again to obtain:

1

(σ2)n/2+1
exp

{

−
∑

x2
i − 2nx̄µ+ nµ2

2σ2

}

.

Next, rearrange terms to put µ2 first, and divide the numerator and denomi-
nator by n. Once again, complete the square to obtain:
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1

(σ2)n/2+1
exp

{

− (µ− x̄)2 +
∑

x2
i /n− x̄2

2σ2/n

}

.

We can now separate the two parts of the exponential to obtain:

1

σ
exp

{

− (µ− x̄)2

2σ2/n

}

× 1

(σ2)n/2
exp

{∑

x2
i − nx̄2

2σ2

}

.

The first term is the conditional posterior for µ. The latter term is proportional
to the marginal posterior density for σ2. The numerator in the exponential is
the numerator for the computational version of the sample variance,

∑

(xi −
x̄)2, and so, the result is recognizable as an inverse gamma distribution with
parameters a = (n− 1)/2 and b = (n− 1)var(x)/2.

3.5 Some useful prior distributions

Thus far, we have discussed the use of a beta prior for proportion parameter
p combined with a binomial likelihood function, a gamma prior for a Poisson
rate parameter λ, a normal prior for a mean parameter combined with a
normal likelihood function for the case in which the variance parameter σ2

was assumed to be known, and a reference prior of 1/σ2—a special case of an
inverse gamma distribution—for a normal likelihood function for the case in
which neither µ nor σ2 were assumed to be known. In this section, I discuss a
few additional distributions that are commonly used as priors for parameters
in social science models. These distributions are commonly used as priors,
because they are conjugate for certain sampling densities/likelihood functions.
Specifically, I discuss the Dirichlet, the inverse gamma (in some more depth),
and the Wishart and inverse Wishart distributions.

One thing that must be kept in mind when considering distributions as
priors and/or sampling densities is what symbols in the density are parameters

versus what symbols are the random variables. For example, take the binomial
distribution discussed in Chapter 2. In the binomial mass function, the ran-
dom variable is represented by x, whereas the parameter is represented by
p. However, in the beta distribution, the random variable is represented by
p and the parameters are α and β. From a Bayesian perspective, parameters
are random variables or at least can be treated as such. Thus, what is im-
portant to realize is that we may need to change notation in the pdf so that
we maintain the appropriate notation for representing the prior distribution
for the parameter(s). For example, if we used θ to represent the parameter p
in the binomial likelihood function, while p is used as the random variable in
the beta distribution, the two distributions, when multiplied together, would
contain p, θ, and x, and it would be unclear how θ and p were related. In fact,
in the beta-binomial setup, θ = p, but we need to make sure our notation is
clear so that that can be immediately seen.
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3.5.1 The Dirichlet distribution

Just as the multinomial distribution is a multivariate extension of the bi-
nomial distribution, the Dirichlet distribution is a multivariate generaliza-
tion of the beta distribution. If X is a k-dimensional vector and X ∼
Dirichlet(α1, α2, . . . , αk), then:

f(X) =
Γ (α1 + . . .+ αk)

Γ (α1) . . . Γ (αk)
xα1−1

1 . . . xαk−1
k .

Just as the beta distribution is a conjugate prior for the binomial distribution,
the Dirichlet is a conjugate prior for the multinomial distribution. We can see
this result clearly, if we combine a Dirichlet distribution as a prior with a
multinomial distribution likelihood:

f(p1 . . . pk|X) ∝ f(X|p1 . . . pk)f(p1 . . . pk)

∝ Multinomial(X|p1 . . . pk)Dirichlet(p1 . . . pk|α1 . . . αk)

∝ Dirichlet(p1 . . . pk|α1 + x1, α2 + x2, . . . , αk + xk)

∝ pα1+x1−1
1 pα2+x2−1

2 . . . pαk+xk−1
k .

Notice how here, as we discussed at the beginning of the section, the vector X
in the original specification of the Dirichlet pdf has been changed to a vector
p. In this specification, p is the random variable in the Dirichlet distribution,
whereas α1 . . . αk are the parameters representing prior counts of outcomes in
each of the k possible outcome categories.

Also observe how the resulting Dirichlet posterior distribution looks just
like the resulting beta posterior distribution, only with more possible out-
comes.

3.5.2 The inverse gamma distribution

We have already discussed the gamma distribution in the Poisson/gamma
example, and we have briefly discussed the inverse gamma distribution. If
1/x ∼ gamma(α, β), then x ∼ IG(α, β). The density function for the inverse
gamma distribution is:

f(x) =
βα

Γ (α)
x−(α+1)e−β/x,

with x > 0. Just as in the gamma distribution, the parameters α and β affect
the shape and scale of the curve (respectively), and both must be greater than
0 to make the density proper.

As discussed earlier, the inverse gamma distribution is used as a conju-
gate prior for the variance in a normal model. If the normal distribution is
parameterized with a precision parameter rather than with a variance param-
eter, where the precision parameter is simply the inverse of the variance, the
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gamma distribution is appropriate as a conjugate prior distribution for the
precision parameter. In a normal model, if an inverse gamma distribution is
used as the prior for the variance, the marginal distribution for the mean is a
t distribution.

The gamma and inverse gamma distributions are general distributions;
other distributions arise by fixing the parameters to specific values. For ex-
ample, if α is set to 1, the exponential distribution results:

f(x) = (1/β)e−x/β ,

or, more commonly f(x) = βe−βx, where β is an inverse scale parameter.
Under this parameterization, βinverse scale = 1/βscale.

If α is set to v/2, where v is the degrees of freedom, and β is set to 1/2, the
chi-square distribution results. Setting the parameters equal to the same value
in the inverse-gamma distribution yields an inverse-chi-square distribution.

3.5.3 Wishart and inverse Wishart distributions

The Wishart and inverse Wishart distributions are complex in appearance;
they are multivariate generalizations of the gamma and inverse gamma dis-
tributions, respectively. Thus, just as the inverse gamma is a conjugate prior
density for the variance in a univariate normal model, the inverse Wishart
is a conjugate prior density for the variance-covariance matrix in a multi-
variate normal model. With an inverse Wishart distribution for the variance-
covariance matrix in a multivariate normal model, the marginal distribution
for the mean vector is multivariate t.

If X ∼Wishart(S), where S is a scale matrix of dimension d, then

f(X) ∝| X |(v−d−1)/2 exp

{

−1

2
tr(S−1X)

}

,

where v is the degrees of freedom.
If X ∼ inverse Wishart(S−1), then:

f(X) ∝| X |−(v+d+1)/2 exp

{

−1

2
tr(SX−1)

}

.

The assumption for both the Wishart and inverse Wishart distributions is
that X and S are both positive definite; that is, zTXz > 0 and zTSz > 0 for
any non-zero vector z of length d.

3.6 Criticism against Bayesian statistics

As we have seen in the examples, the development of a Bayesian model re-
quires the inclusion of a prior distribution for the parameters in the model.
The notion of using prior research or other information to inform a current
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analysis and to produce an updated prior for subsequent use seems quite rea-
sonable, if not very appropriate, for the advancement of research toward a
more refined knowledge of the parameters that govern social processes. How-
ever, the Bayesian approach to updating knowledge of parameters has been
criticized on philosophical grounds for more than a century, providing one
reason its adoption has been relatively limited in mainstream social science
research.

What is in philosophical dispute between Bayesians and classical statisti-
cians includes: (1) whether data and hypotheses (which are simply statements
about parameters of distributions9) can hold the same status as random vari-
ables, and (2) whether the use of a prior probability injects too much subjec-
tivity into the modeling process.

The first standard argument presented against the Bayesian approach is
that, because parameters are fixed, it is unreasonable to place a probability
distribution on them (they simply are what they are). More formally, pa-
rameters and data cannot share the same sample space. However, recall that
the Bayesian perspective on probability is that probability is a subjective ap-
proach to uncertainty. Whether a parameter is indeed fixed, to a Bayesian, is
irrelevant, because we are still uncertain about its true value. Thus, impos-
ing a probability distribution over a parameter space is reasonable, because
it provides a method to reflect our uncertainty about the parameter’s true
value.

Bayesians argue that doing so has some significant advantages. First, as
we have seen, Bayesian interval estimates have a clearer and more direct inter-
pretation than classical confidence intervals. That is, we can directly conclude
that a parameter falls in some interval with some probability. This is a com-
mon but incorrect interpretation of classical confidence intervals, which simply
reflect the probability of obtaining an interval estimate that contains the pa-
rameter of interest under repeated sampling. Second, the Bayesian approach
can naturally incorporate the findings of previous research with the prior,
whereas the classical approach to statistics really has no coherent means of
using previous results in current analyses beyond assisting with the specifica-
tion of a hypothesis. That is, the Bayesian approach formalizes the process of
hypothesis construction by incorporating it as part of the model. Third, the
Bayesian approach more easily allows more detailed summaries concerning
parameters. Instead of simply obtaining a maximum likelihood estimate and
standard error, we have an entire distribution that can be summarized using
various measures (e.g., mean, median, mode, and interquartile range).

9 An alternative representation of Bayes’ Theorem is p(Hypothesis | data) ∝
p(data | Hypothesis) × p(Hypothesis), which shows that, from a Bayesian per-
spective, we can place a probability (distribution) on a scientific hypothesis. See
Jeffreys 1961 for a detailed discussion of the theory of “inverse probability,” which
describes the Bayesian approach in these terms.
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The second general argument that has been advanced against Bayesian
analysis is that incorporating a prior injects too much subjectivity into statis-
tical modeling. The Bayesian response to this argument is multifaceted. First,
all statistics is subjective. The choice of sampling density (likelihood) to use
in a specific project is a subjective determination. For example, when faced
with an ordinal outcome, some choose to use a normal likelihood function,
leading to the ordinary least squares (OLS) regression model. Others choose a
binomial likelihood with a link function, leading to an ordinal logit or probit
regression model. These are subjective choices.

Second, the choice of cut-point (α) at which to declare a result “statisti-
cally significant” in a classical sense is a purely subjective determination. Also,
similarly, the decision to declare a statistically significant result substantively
meaningful is a subjective decision.

A third response to the subjectivity criticism is that priors tend to be
overwhelmed by data, especially in social science research. The prior distribu-
tion generally contributes to the posterior once, whereas data enter into the
likelihood function multiple times. As n → ∞, the prior’s influence on the
posterior often becomes negligible.

Fourth, priors can be quite noninformative, obviating the need for large
quantities of data to “outweigh” them. In other words, a prior can be made
to contribute little information to the posterior. That is, given that the pos-
terior density is simply a weighted likelihood function, where the weighting
is imposed by the prior, we can simply choose a prior distribution for the
parameters that assigns approximately equal weight to all possible values of
the parameters. The simplest noninformative prior that is often used is thus a
uniform prior. Use of this prior yields a posterior density that is proportional
to the likelihood function. In that case, the mode of the likelihood function
(the maximum likelihood estimate) is the same as the Bayesian maximum a

posteriori (MAP) estimate, and the substantive conclusions reached by both
approaches may be similar, only differing in interpretation.

In defense of the classical criticism, although uniform densities for param-
eters are often used as priors, transformation from one parameterization of
a parameter to another may yield an informative prior. However, alternative
approaches have been developed for generating noninformative priors, includ-
ing the development of Jeffreys priors and other priors. These noninformative
priors tend to be based on the information matrix and are invariant under pa-
rameter transformation. An in-depth discussion of such priors is beyond the
scope of this book, given the goal of a general introduction to estimation. For
more details, see Gelman et al. (1995) or see Gill (2002) for a more in-depth
discussion of the history of the use and construction of noninformative priors.

A fourth response is that the influence of priors can be evaluated after
modeling the data to determine whether posterior inference is reasonable. Ul-
timately, the results of any statistical analysis, whether Bayesian or classical,
must be subjectively evaluated to determine whether they are reasonable, and
so, the use of informative priors cannot introduce any more subjectivity than
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could be included via other means in any analysis. Another response along
these lines is that we can use priors to our advantage to examine how pow-
erful the data are at invalidating the prior. For example, we may establish
a conservative prior for a regression coefficient that claims that the a priori

probability for a regression coefficient is heavily concentrated around 0 (i.e.,
the covariate has no effect on the outcome). We can then examine the strength
of the data in rejecting this prior, providing a conservative test of a covariate’s
effect.

In general, the historical criticisms of Bayesian statistics are philosophical
in nature and cannot be conclusively adjudicated. Instead, the rise in the
use of Bayesian statistics over the last few decades has largely occurred for
pragmatic reasons, including (1) that many contemporary research questions
readily lend themselves to a Bayesian approach, and (2) that the development
of sampling methods used to estimate model parameters has increased their
ease of use. The remaining chapters attempt to demonstrate these points.

3.7 Conclusions

In this chapter, we have developed the basics of the Bayesian approach to
statistical inference. First, we derived Bayes’ Theorem from the probability
rules developed in the previous chapter, and we applied Bayes’ Theorem to
problems requiring point estimates for probabilities. We then extended the
Bayesian approach to handle prior distributions for parameters rather than
simply point estimates for prior probabilties. The result was that our posterior
probability became a distribution, rather than a point estimate. Next, we dis-
cussed how to summarize posterior probability distributions, and we demon-
strated how to do so using several common examples. Finally, we discussed
some common criticisms of the Bayesian approach that have been advanced
over the last century, and we reviewed some common Bayesian responses to
them. Although the material presented in this chapter is sufficient for gaining
a basic understanding of the Bayesian approach to statistics, I recommend
several additional sources for more in-depth coverage. I recommend Lee 1989
for an extremely thorough but accessible exposition of the Bayesian paradigm,
and I recommend Box and Tiao (1973) for a more advanced exposition.

In the next chapter, we will continue exploring the Bayesian approach
to posterior summarization and inference, but we will ultimately focus on
multivariate posterior distributions—the most common type of posterior dis-
tribution found in social science research—where the multivariate posterior
distribution may not be as easy to summarize directly as the univariate pos-
terior densities shown in this chapter.
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3.8 Exercises

1. In your own words, state what Bayes’ Theorem for point probabilities ac-
tually does. For example, refer to Chapter 2 where I defined conditional
probability, and use the same sort of discussion to describe how the the-
orem works.

2. The pregnancy example was completely contrived. In fact, most pregnancy
tests today do not have such high rates of false positives. The “accuracy
rate” is usually determined by computing the percent of correct answers
the test gives; that is, the combined percent of positive results for positive
cases and negative results for negative cases (versus false positives and
false negatives). Recompute the posterior probability for being pregnant
based on an accuracy rate of 90% defined in this manner. Assume that
false positives and false negatives occur equally frequently under this 90%
rate. What changes in the calculation?

3. Determine the posterior probability that a 30-year-old male has prostate
cancer, given (1) a positive PSA test result; (2) a 90% accuracy rate (as
defined in the pregnancy example), coupled with a 90% false positive rate;
and (3) a prior probability of .00001 for a 30-year-old male having prostate
cancer. Based on the result, why might a physician consider not testing a
30-year-old male using the PSA test?

4. Find and plot the posterior distribution for a binomial likelihood with
x = 5 successes out of n = 10 trials using at least three different beta prior
distributions. Does the prior make a large difference in the outcome—
when?

5. Find and plot the posterior distribution for a normal distribution likeli-
hood with a sample mean x̄ = 100 and variance var(x) = 144 (assume
n = 169) using at least three different normal priors for the mean. When
does the prior make the largest difference in the outcome—when the prior
mean varies substantially from the sample mean, or when the prior vari-
ance is small or large?

6. Reconsider the pregnancy example from the beginning of the chapter. I
showed the posterior probabilities for the second through the tenth sub-
sequent tests. Reproduce these results, using the posterior obtained from

the kth test as the prior for the (k + 1)st test. Next, assume the original
prior (p = .15) and assume the 10 tests were taken simultaneously and
all yielded a positive result. What is the posterior probability for preg-
nancy? Finally, reconduct the pregnancy example with the 10 positive
tests treated simultaneously as the current data, and use a beta prior
distribution. Interpret the results.

7. In the 2004 U.S. presidential election, surveys throughout the fall con-
stantly reversed the projected victor. As each survey was conducted, would
it have been appropriate to incorporate the results of previous surveys as
priors and treat the current survey as new data to update the prior in
a Bayesian fashion? If so, do you think a more consistent picture of the
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winner would have emerged before the election? If a Bayesian approach
would not have been appropriate, why not?

8. Give two simple examples showing a case in which a prior distribution
would not be overwhelmed by data, regardless of the sample size.

9. Show how the multinomial likelihood and Dirichlet prior are simply a
multivariate generalization of the binomial likelihood and beta prior.

10. Show how the Wishart distribution reduces to the gamma distribution
when the number of dimensions of the random variable is 1.

11. I said throughout the chapter that the inverse gamma distribution was the
appropriate distribution for a variance parameter. It could be said that
variance parameter could be considered to be distributed as an inverse
chi-square random variable. Both of these statements are true. How?

12. Why can a prior distribution that equals a constant be considered pro-
portional to a uniform distribution?


