Comparing Compartment and Agent-based Models

Shannon Gallagher
JSM Baltimore, MD
August 2, 2017

Thesis work with:
William F. Eddy (Chair)
Joel Greenhouse
Howard Seltman
Cosma Shalizi
Samuel L. Ventura
Goal: Combine two good models into a better one
Studying infectious disease is important
Compartment vs. Agent-based Models
Compartment models (CMs) describe how individuals evolve over time

Assumptions (Anderson and May 1992):

1. Homogeneity of individuals
Compartment models (CMs) describe how individuals evolve over time

Assumptions (Anderson and May 1992):

1. Homogeneity of individuals

2. Law of mass action
 \[l(t + 1) \propto l(t) \]
Agent-based models (AMs) simulate the spread of disease

Assumptions *(Helbing 2002):*

1. Heterogeneity of agents
Agent-based models (AMs) simulate the spread of disease

Assumptions (Helbing 2002):

1. Heterogeneity of agents
2. Model adequately reflects reality
<table>
<thead>
<tr>
<th>CMs</th>
<th>AMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>· Equation-based</td>
<td>· Simulation-based</td>
</tr>
<tr>
<td>· Computationally fast</td>
<td>· Computationally slow</td>
</tr>
<tr>
<td>· Homogeneous individuals</td>
<td>· Heterogeneous individuals</td>
</tr>
<tr>
<td>· No individual properties</td>
<td>· Individual properties</td>
</tr>
</tbody>
</table>
Combining the two together

(Bobashev 2007, Banos 2015, Wallentin 2017)

- ad hoc approaches
- perspective from non-statisticians
Combining the two together

(Bobashev 2007, Banos 2015, Wallentin 2017)

- *ad hoc* approaches
- perspective from non-statisticians

Goal: Create a statistically justified hybrid model
Current Work
There are two main avenues of improvement

1. Quantifying how similar CMs and AMs are

2. Speeding up AM run-time
The SIR model: a detailed look

(Kermack and McKendrick 1927)

\[
\begin{align*}
\frac{dS}{dt} &= -\frac{\beta SI}{N} \\
\frac{dI}{dt} &= \frac{\beta SI}{N} - \gamma I \\
\frac{dR}{dt} &= \gamma I
\end{align*}
\]

- β – rate of infection
- γ – rate of recovery
- N – total population size
The SIR model: a detailed look

(Kermack and McKendrick 1927)

\[
\begin{align*}
\Delta S/\Delta t &= -\frac{\beta SI}{N} \\
\Delta I/\Delta t &= \frac{\beta SI}{N} - \gamma I \\
\Delta R/\Delta t &= \gamma I
\end{align*}
\]

- β – rate of infection
- γ – rate of recovery
- N – total population size
Our stochastic CM approach

\[\hat{S}(t + 1) = \hat{S}(t) - s_t \]
\[\hat{R}(t + 1) = \hat{R}(t) + r_t \]
\[\hat{i}(t + 1) = N - \hat{S}(t + 1) - \hat{R}(t + 1), \]

with

\[s_{t+1} \sim \text{Binomial} \left(\hat{S}(t), \frac{\beta l(t)}{N} \right) \]
\[r_{t+1} \sim \text{Binomial} \left(\hat{i}(t), \gamma \right). \]
Our stochastic AM approach

For an agent $x_n(t)$, $n = 1, 2, \ldots, N$, the forward operator for $t > 0$ is

$$x_n(t + 1) = \begin{cases}
 x_n(t) + \text{Bernoulli} \left(\frac{\beta I(t)}{N} \right) & \text{if } x_n(t) = 1 \\
 x_n(t) + \text{Bernoulli} (\gamma) & \text{if } x_n(t) = 2 \\
 x_n(t) & \text{otherwise}
\end{cases}$$

where $x_n(t) = k$, $k \in \{1, 2, 3\}$ corresponds to state S, I, and R, respectively.

Let the aggregate total in each compartment be

$$\hat{x}_k(t) = \sum_{n=1}^{N} \mathcal{I}\{x_n(t) = k\}$$
The means overlap

Mean Proportion of Compartment Values

1000 agents; 5000 runs; $\beta = 0.10; \gamma = 0.03$

<table>
<thead>
<tr>
<th>Type</th>
<th>S−CM</th>
<th>I−CM</th>
<th>R−CM</th>
<th>S−AM</th>
<th>I−AM</th>
<th>R−AM</th>
</tr>
</thead>
</table>

1000 agents; 5000 runs; $\beta = 0.10; \gamma = 0.03$
The distributions look the same.
These approaches are equivalent

Theorem

Let the CM and AM be as previously described. Then for all $t \in \{1, 2, \ldots, T\}$,

$$\hat{S}(t) \overset{d}{=} \hat{X}_S(t) \quad (1)$$

$$\hat{I}(t) \overset{d}{=} \hat{X}_I(t)$$

$$\hat{R}(t) \overset{d}{=} \hat{X}_R(t).$$
These approaches are equivalent

Theorem

Let the CM and AM be as previously described. Then for all $t \in \{1, 2, \ldots, T\}$,

\[
\hat{S}(t) \overset{d}{=} \hat{X}_S(t) \\
\hat{I}(t) \overset{d}{=} \hat{X}_I(t) \\
\hat{R}(t) \overset{d}{=} \hat{X}_R(t).
\]
We can compare CM/AM pairs and AM/AM pairs by fitting the underlying model.
AMs are appealing because they can be run multiple times

- Simulate an epidemic en masse!

- A run - same initial parameters, different random numbers

- Runs (L) are independent of one another \implies parallelization

- Roughly, the variance of compartments \downarrow when $N, L \uparrow$
AMs are appealing because they can be run multiple times

- Simulate an epidemic en masse!
- A run - same initial parameters, different random numbers
- Runs (L) are independent of one another \implies parallelization
- Roughly, the variance of compartments \downarrow when $N, L \uparrow$

Goal: Improve computation time without sacrificing statistical details
There is a tradeoff between the number of agents and number of runs.
The calculations show that the variance scales

- Note that for a given β and γ, if $\frac{S_1(0)}{N_1} = \frac{S_2(0)}{N_2} \implies \frac{S_1(t)}{N_1} = \frac{S_2(t)}{N_2}$
The calculations show that the variance scales

- Note that for a given β and γ, if $\frac{S_1(0)}{N_1} = \frac{S_2(0)}{N_2}$ \implies $\frac{S_1(t)}{N_1} = \frac{S_2(t)}{N_2}$

- $V[\hat{S}(t+1)] = S(t)(1-p_t)p_t + (1-p_t)^2 V[\hat{S}(t)]$
The calculations show that the variance scales

- Note that for a given β and γ, if $\frac{S_1(0)}{N_1} = \frac{S_2(0)}{N_2} \implies \frac{S_1(t)}{N_1} = \frac{S_2(t)}{N_2}$

- $V[\hat{S}(t+1)] = S(t)(1 - p_t)p_t + (1 - p_t)^2 V[\hat{S}(t)]$

- $V[\hat{S}_2(t)] = \frac{N_2}{N_1} V[\hat{S}_1(t)]$
The calculations show that the variance scales

\[\text{Note that for a given } \beta \text{ and } \gamma, \text{ if } \frac{S_1(0)}{N_1} = \frac{S_2(0)}{N_2} \implies \frac{S_1(t)}{N_1} = \frac{S_2(t)}{N_2} \]

\[\text{\cdot } V\left[\hat{S}(t + 1)\right] = S(t)(1 - p_t)p_t + (1 - p_t)^2 V\left[\hat{S}(t)\right] \]

\[\text{\cdot } V[\hat{S}_2(t)] = \frac{N_2}{N_1} V[\hat{S}_1(t)] \]

\[\frac{V\left[\frac{1}{L_1} \sum_{\text{runs}} \ell \frac{\hat{S}_1(t)}{N_1} \right]}{V\left[\frac{1}{L_2} \sum_{\text{runs}} \ell \frac{\hat{S}_2(t)}{N_2} \right]} = \frac{L_2 N_2^2}{L_1 N_1^2} \cdot \frac{V[\hat{S}_1(t)]}{V[\hat{S}_2(t)]} = \frac{L_2 N_2}{L_1 N_1} \cdot \]
The calculations show that the variance scales

- Note that for a given β and γ, if $\frac{S_1(0)}{N_1} = \frac{S_2(0)}{N_2} \implies \frac{S_1(t)}{N_1} = \frac{S_2(t)}{N_2}$

- $\text{V} \left[\hat{S}(t + 1) \right] = S(t)(1 - p_t)p_t + (1 - p_t)^2 \text{V} \left[\hat{S}(t) \right]$

- $\text{V}[\hat{S}_2(t)] = N_2 N_1 \text{V}[\hat{S}_1(t)]$

\[
\frac{\text{V} \left[\frac{1}{L_1} \sum_{\text{runs}} \ell \frac{\hat{S}_1(t)}{N_1} \right]}{\text{V} \left[\frac{1}{L_2} \sum_{\text{runs}} \ell \frac{\hat{S}_2(t)}{N_2} \right]} = \frac{L_2 N_2^2}{L_1 N_1^2} \cdot \frac{\text{V}[\hat{S}_1(t)]}{\text{V}[\hat{S}_2(t)]} = \frac{L_2 N_2}{L_1 N_1}.
\]

We can replace agents with runs!
Through parallelization, we can get a speed-up without losing statistical information.

Simulation 1 (100 agents, 4 cores, 100 times): 3:30 minutes
Simulation 2 (400 agents, 1 core, 100 times): 4:05 minutes
Future work
There is more work to be done: short-term

- Implementation of current methods in FRED
 - FRED - an open source, supported, flexible AM
 - Incorporate different levels of homogeneity
 1. Independent agents
 2. Agents go to one other activity (school, work, neighborhood)
 3. Multiple activities
 - Compare CM and AM parameters empirically
- Empirically determine when different regions can be combined
Thank you!

Questions?