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1 Nonparametric smoothing in multiple dimensions

1.1 Nonparametric review in one dimension

• Assume for know that X ∈ R. A model of the form

Y = r(X) + ε,

where we don’t make any assumptions about the form of the true underlying regression func-
tion r(x) = E(Y |X = x), is called a nonparametric regression model. Contrast this with a
parametric regression model, e.g., linear regression, in which we assume that r(X) = β0 +βX,
so that the model becomes

Y = β0 + βX + ε.

In this case, we can simply employ linear regression to estimate β0, β; but in the first case, when
we don’t assume a particular (i.e., parametric form) for r, we turn to regression smoothers that
are much more flexible to adapt to unknown trends, like k-nearest-neighbors, kernel regression,
or smoothing splines

• When thinking about parametric versus nonparametric, it’s important to remember the bias-
variance tradeoff. Generally speaking, a parametric estimator (e.g., linear regression) will
have a lower variance than a nonparametric one (e.g., k-nearest-neighbors, kernel regression,
or smoothing splines), because it is more restrictive. Meanwhile, the bias depends on the true
underlying model. Nonparametric estimators are generally flexible enough that they will have
a low bias for a wide range of underlying regression functions, but a parametric estimator (such
as linear regression) will only have a low bias if the parametric assumption is approximately
correct (i.e., the true model is approximately linear), and can otherwise suffer from high bias

• As we know, expected test error is composed of bias and variance, so both of these quantities
are important for predictive performance. In univariate smoothing, i.e., when X ∈ R, it can
often be the case that our considerations for the bias dominate those for the variance, and so
we favor nonparametric methods for fitting1

1.2 Multiple dimensions and the curse of dimensionality

• When X ∈ Rp, i.e., we have p predictors instead of 1, extending the linear model is straight-
forward; as you well know, writing X = (X1, . . . Xp), the multi-dimensional linear model is

Y = β0 + β1X1 + . . .+ βpXp + ε, (1)

1Note: this is a very rough reflection of a general trend, and should not be interpreted as universal in any sense!
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and estimation proceeds by linear regression, just as in the univariate case. But, given the
multi-dimensional nonparametric model

Y = r(X1, . . . Xp) + ε, (2)

how do we construct fully nonparametric estimates for r? Actually, this is possible for each
of the methods we discussed: k-nearest-neighbors, kernel regression, and smoothing splines.
The k-nearest-neighbors and kernel estimates are really just local averaging procedures, and
naturally extend to the setting of p-dimensional predictor variables, as we discussed in the
lecture notes. Smoothing splines do as well, but their extension is not nearly as obvious, and
is called thin-plate splines, something that we will not cover

• In multiple dimensions, the variance of nonparametric estimators becomes a real problem.
Nonparametric methods typically suffer from variance that scales exponentially with the num-
ber of predictors p; remember, this means that the test error for such methods also scales
exponentially with p, which is an awful trend! This is called the curse of dimensionality2

• On the other hand, parametric methods like linear regression typically have a variance that
grows merely linearly with p; but their bias can degrade quickly with increasing p, too. This
begs the question: is there some middle ground?

2 Additive models

2.1 The additive compromise

• Enter additive models, a framework that lies somewhere in between the fully parametric and
nonparametric settings, (1) and (2). Starting with the linear model in (1), we could simply
replace each linear term Xiβi with a general, nonlinear one ri(Xi), yielding the additive model

Y = β0 + r1(X1) + . . .+ rp(Xp) + ε. (3)

This is in a sense simpler than the fully nonparametric model (2), because of the restriction
that r decompose into a sum of univariate regression functions over the variables

• Without any restrictions on the functions r1, . . . rp, the model in (3) is not identifiable, so we
usually assume without a loss of generality that

E(Y ) = β0, E
(
rj(Xj)

)
= 0, j = 1, . . . p.

• Estimation in an additive model is actually very simple: the beauty of it is that we can just
rely on univariate smoothing, which we already know a lot of about! More on this in the next
section

• Additive estimates tend to balance the strengths of the fully nonparametric and parametric
estimates. I.e., additive estimates tend have a lower variance than fully nonparametric ones,
and can have a lower bias than parametric ones

• The main downside: by restricting the estimate to be additive, we miss potential interactions
between variables. However, like in linear regression, we can manually add interactions terms
like rij(Xi, Xj) and rijk(Xi, Xj , Xk), etc. to the model if we desire or deem it appropriate

2Strictly speaking, the curse of dimensionality describes a slightly different point on a fundamental lower bound
for estimation in fully nonparametric settings, for growing p, but this is highly related nonetheless
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2.2 Backfitting

• Given pairs (xi, yi) ∈ Rp×R, i = 1, . . . n, with each xi = (xi1, . . . xip) ∈ Rp, the additive model
becomes

yi = β0 + r1(xi1) + . . .+ rp(xip) + εi, i = 1, . . . n, (4)

subject to the same identifiability assumptions E(yi) = β0, and E(rj(xij)) = 0 for j = 1, . . . p.

• Computing an additive estimate from the model (4) is now done by a simple procedure called
backfitting. We first let β̂0 = ȳ = 1

n

∑n
i=1 yi. The idea is for the rest is just to cycle through

estimating each of r1, . . . rp one at a time, by univariate smoothing, and repeat this until
convergence

To be more concrete: write S(z, y) to denote a univariate smoother constructed from inputs
z = (z1, . . . zn) and outputs y = (y1 . . . yn). This could be, e.g., a linear regression estimate
from the pairs (zi, yi) ∈ R × R, i = 1, . . . n, or it could be a kernel regression or a smoothing
spline estimate. Whatever the choice of smoother, it returns an estimated regression function
(this is a function of the input variable). Then backfitting repeats the following loop until
convergence:

– For j = 1, . . . p:

∗ Build the jth partial residual,

y(j) = y − β̂0 −
∑
` 6=j

r̂`(x·`).

∗ Update r̂j by smoothing the jth partial residual on the jth variable,

r̂j = S
(
x·j , y

(j)
)
.

∗ Center r̂j ,

r̂j = r̂j −
1

n

n∑
i=1

r̂j(xij).

In the above, x·j = (x1j , . . . xnj) ∈ Rn denotes the n measurements of the jth input variable.
We stop repeating this loop when the estimated functions r̂j , j = 1, . . . p don’t change much
from one cycle to the next

• The intuition for backfitting just comes from rearranging (4). Supposing that we fixed all of
the underlying regression functions except the jth one (and the intercept) at the estimates r̂`,
` 6= j (and β̂0), the model becomes

yi − β̂0 −
∑
6̀=j

r̂j(xij) = rj(xij) + εi, i = 1, . . . n.

To estimate rj , therefore, we can just treated the left-hand side above as the outcome, and
regress this outcome on x·j , which is exactly what we do in each iteration of backfitting. (The
post-centering step is just done to preserve the zero mean condition for model identifiability)

• Note: there’s no reason to use the same univariate smoother in every iteration of backfitting;
we can, if we think it is appropriate, use different types of smoothers for different variables.
The default is probably to use smoothing splines for each variable, where we either specify the
degrees of freedom of the fit ahead of time, or choose it by (generalized) cross-validation in
each regression

3


