
Clustering Part II:
k-means and Related Methods

Let’s begin with a few examples.

Example 1 Figures 1 and 2 shows some synthetic examples where the clusters are meant to
be intuitively clear. In Figure 1 there are two blob-like clusters. Identifying clusters like this
is easy. Figure 2 shows four clusters: a blob, two rings and a half ring. Identifying clusters
with unusual shapes like this is not quite as easy. To the human eye, these certainly look
like clusters. But what makes them clusters? In this chapter we will make the definition of a
cluster precise.

Example 2 (Gene Clustering) In genomic studies, it is common to measure the expression
levels of d genes on n people using microarrays (or gene chips). The data (after much simpli-
fication) can be represented as an n×d matrix X where X i j is the expression level of gene j
for subject i. Typically d is much larger than n. For example, we might have d ≈ 5,000 and
n ≈ 50. Clustering can be done on genes or subjects. To find groups of similar people, regard
each row as a data vector so we have n vectors X1, . . . , Xn each of length d. Clustering can
then be used to place the subjects into similar groups.

Example 3 (Curve Clustering) Sometimes the data consist of a set of curves f1, . . . , fn and
the goal is to cluster similarly shaped clusters together. For example, Figure 3 shows a small
sample of curves a from a dataset of 472 curves from Frappart (2003). Each curve is a radar
waveform from the Topex/Poseidon satellite which used to map the surface topography of the
oceans.1 One question is whether the 472 curves can be put into groups of similar shape.

Example 4 (Supernova Clustering) Figure 4 shows another example of curve clustering.
The data are described in detail in the case studies in the chapter on linear classification.
Briefly, each data point is a light curve, essentially brightness versus time. The top two plots
show the light curves for two types of supernovae called “Type Ia” and “other.” The bottom
two plots show what happens if we throw away the labels (“Type Ia” and “other”) and apply
a clustering algorithm (k-means clustering). We see that the clustering algorithm almost
completely recovers the two types of supernovae.

1See http://topex-www.jpl.nasa.gov/overview/overview.html. The data are available at “Work-
ing Group on Functional and Operator-based Statistics” a web site run by Frederic Ferrarty
and Philippe Vieu. The address is http://www.math.univ-toulouse.fr/staph/npfda/. See also
http://podaac.jpl.nasa.gov/DATA_CATALOG/topexPoseidoninfo.html.

1

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

● ●

●

●

●

●
●

●

●

● ●●

●●

● ●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●
●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

● ●
●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

● ●
● ●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●
●●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

● ●

●

Figure 1: A synthetic example with two “blob-like” clusters.

●●●
●●●
●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●
●●●●
●●●
●●●
●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●
●●●● ●

●
●
●

●
●

●●●●●●●●●●●●●●
●

●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●

●
●
●
●
●
●

●
●●

●
●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●●
●

● ●

●

● ●●
●

● ●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●
●●●●●●●●●●●

●●●●
●●●
●●
●●

●
●●●

●
●●●●●●

●●
●
●
●

●●
●● ●●●●

Figure 2: A synthetic example with four clusters with a variety of different shapes.

0 10 20 30 40 50 60 70

0
50

10
0

15
0

20
0

Figure 3: Some curves from a dataset of 472 curves. Each curve is a radar waveform from
the Topex/Poseidon satellite.

2

0 20 40 60 80 100

Type Ia

0 20 40 60 80 100

Other

0 20 40 60 80 100

Cluster 1

0 20 40 60 80 100

Cluster 2

Figure 4: Light curves for supernovae. The top two plots show the light curves for two
types of supernovae. The bottom two plots show the results of clustering the curves into two
groups, without using knowledge of their labels.

1 k-means (Vector Quantization)

One approach to clustering is to find k representative points, called prototypes or cluster
centers, and then divide the data into groups based on which prototype they are closest to.
The set of prototypes is called a codebook. For now, we asume that k is given. Later we
discuss how to choose k.

Let X1, . . . , Xn ∼ P where X i ∈ Rd. Let C = {c1, . . . , ck} where each c j ∈ Rd. We call C a
codebook. Let ΠC[X] be the projection of X onto C:

ΠC [X]= argminc∈C||c− X ||2. (1)

Define the empirical clustering risk of a codebook C by

Rn(C)= 1
n

n∑
i=1

∣∣∣∣X i −ΠC[X i]
∣∣∣∣2 = 1

n

n∑
i=1

min
1≤ j≤k

||X i − c j||2. (2)

Let C k denote all codebooks of length k. The optimal codebook Ĉ = {ĉ1, . . . , ĉk} ∈ Ck mini-
mizes Rn(C):

Ĉ = argminC∈Ck
Rn(C). (3)

The empirical risk is an estimate of the population clustering risk defined by

R(C)= E
∣∣∣∣∣∣X −ΠC[X]

∣∣∣∣∣∣2 = E min
1≤ j≤k

||X − c j||2 (4)

where X ∼ P. The optimal population quantization C∗ = {c∗1 , . . . , c∗k} ∈ Ck minimizes R(C).
We can think of Ĉ as an estimate of C∗. This method is called k-means clustering or vector
quantization.

3

●

●

●
●

●

●

●

●

●

●

Figure 5: The Voronoi tesselation formed by 10 cluster centers c1, . . . , c10. The cluster centers
are indicated by dots. The corresponding Voronoi cells T1, . . . ,T10 are defined as follows: a
point x is in T j if x is closer to c j than ci for i 6= j.

A codebook C = {c1, . . . , ck} defines a set of cells known as a tesselation. Let

T j =
{

x : ||x− c j|| ≤ ||x− cs||, for all s 6= j
}
. (5)

The set T j is known as a Voronoi cell and consists of all points closer to c j than any other
point in the codebook. See Figure 5.

The usual algorithm to minimize Rn(C) and find Ĉ is the k-means clustering algorithm—
also known as Lloyd’s algorithm— see Figure 6. The risk Rn(C) has multiple minima. The
algorithm will only find a local minimum and the solution depends on the starting values.
A common way to choose the starting values is to select k data points at random. We will
discuss better methods for choosing starting values in Section 1.1.

Example 5 Figure 7 shows synthetic data inspired by the Mickey Mouse example from

http://en.wikipedia.org/wiki/K-means_clustering.

The data in the top left plot form three clearly defined clusters. k-means easily finds in the
clusters (top right). The bottom shows the same example except that we now make the groups
very unbalanced. The lack of balance causes k-means to produce a poor clustering.

4

1. Choose k centers c1, . . . , ck as starting values.
2. Form the clusters C1, . . . ,Ck as follows. Let g = (g1, . . . , gn) where g i = argmin j||X i−c j||. Then

C j = {X i : g i = j}.
3. For j = 1, . . . ,k, let n j denote the number of points in C j and set

c j ←− 1
n j

∑
i: X i∈C j

X i.

4. Repeat steps 2 and 3 until convergence.
5. Output: centers Ĉ = {c1, . . . , ck} and clusters C1, . . . ,Ck.

Figure 6: The k-means (Lloyd’s) clustering algorithm.

Example 6 We applied k-means clustering to the Topex data with k = 9. The data are dis-
cretized so we treated each curve as one vector of length 70. The resulting nine clusters are
shown in Figure 8.

Example 7 (Supernova Clustering) Returning to the supernova data, Figure 9 shows
what happens if we apply k-means clustering with k = 4. The type Ia supernovae get split
into two groups although the groups are very similar. The other type also gets split into two
groups which look qualitatively different.

k-means works best when clusters are at least roughly spherical. Otherwise, it can produce
very non-intuitive clusters.

Example 8 The top left plot of Figure 10 shows a dataset with two ring-shaped clusters. The
remaining plots show the clusters obtained using k-means clustering with k = 2,3,4. Clearly,
k-means does not capture the right structure in this case.

1.1 Starting Values for k-means

Since R̂n(C) has multiple minima, Lloyd’s algorithm is not guaranteed to minimize Rn(C).
The clustering one obtains will depend on the starting values. The simplest way to choose
starting values is to use k randomly chosen points. But this often leads to poor clustering.

Example 9 Figure 11 shows data from a distribution with nine clusters. The raw data are
in the top left plot. The top right plot shows the results of running the k-means algorithm with

5

●●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●
●

●
●

●

●
●

●●●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

● ●

●

●

●● ●

●

● ●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●●

●

●

●

●

●

●●●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●●

●

●

● ●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

● ●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●● ●●

●

●●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●
●

●
●

●

●
●

●●●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

● ●

●

●

●● ●

●

● ●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●

●

●

●

●

● ●

●
● ●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●●
●●●

●

●
●

●

●

●

●

●
●

●

●

●
●
●●

●●

●●
●

●
●

●

●

●

●

●●
●

● ●
●
●●

●
●

●
●●

●
●

●
●●●

●
●

●

●●●●
●●●

●
●

●

●

●
● ●

●
●●
● ●●

●

●●
●

●●

●

●

●
●

●

●

●● ●●

●●

●

●
●

●

●●●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

● ●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ● ●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

● ●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●●

●

●

●
●

●

●●

●

●

●
●

●●

●

●
●

● ●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

Figure 7: Synthetic data inspired by the “Mickey Mouse” example from wikipedia. Top
left: three balanced clusters. Top right: result from running k means with k = 3. Bottom
left: three unbalanced clusters. Bottom right: result from running k means with k = 3 on
the unbalanced clusters. k-means does not work well here because the clusters are very
unbalanced.

6

0 10 30 50 70

0
50

10
0

15
0

20
0

0 10 30 50 70

0
50

10
0

15
0

20
0

0 10 30 50 70

0
50

10
0

15
0

20
0

0 10 30 50 70

0
50

10
0

15
0

20
0

0 10 30 50 70

0
50

10
0

15
0

20
0

0 10 30 50 70

0
50

10
0

15
0

20
0

0 10 30 50 70

0
50

10
0

15
0

20
0

0 10 30 50 70

0
50

10
0

15
0

20
0

0 10 30 50 70

0
50

10
0

15
0

20
0

Figure 8: The nine clusters found in the Topex data using k-means clustering with k = 9.
Each plot show the curves in that cluster together with the mean of the curves in that
cluster.

7

0 20 40 60 80 100

Cluster 1

0 20 40 60 80 100

Cluster 2

0 20 40 60 80 100

Cluster 3

0 20 40 60 80 100

Cluster 4

Figure 9: Clustering of the supernova light curves with k = 4.

●●●●
●●●●●●

●●●
●●●

●●●●●●●●●
●●
●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●
●●●●●● ●

●●
●

●●
●
●

●●
●●

●
●●●

●●●●●
●●●●●●●●●●●●●●

●●
●

●●
●

●●●
●

●●
●●

●
●
●
●●

●●
●●
●●

●●
●
●●●

●
●●● ●

●● ●●
●

●●
● ●●●

●●
●●●

●●
●
●

●●
●●
●
●●
●

●

●●●●●●●●●
●●
●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●
●●●●●●●●●●●●●●

●●
●

●●
●

●●●
●

●●
●●

●
●
●
●●

●●
●●
●●

●●
●
●●●

●

●●●●
●●●●●●

●●●
●●●

●●●●●●●●●
●●
●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●
●●●●●●

●●●
●

●●● ●
●● ●●

●
●●

● ●●●
●●

●●●
●●

●
●

●●
●●
●

●
●●
●

●●
●
●

●●
●●

●
●●●

●

●●
●●●

●●
●
●

●●
●●
●
●●
●

●

Figure 10: Top left: a dataset with two ring-shaped clusters. Top right: k-means with k = 2.
Bottom left: k-means with k = 3. Bottom right: k-means with k = 4.

8

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

● ●
●

●
●

●

●

● ●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

● ●●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●
●

●

●
● ●

●
●

● ●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

● ●

●

●

●
●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●● ●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●●

●

● ●

●

●
●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

● ●

●

●
●

●
●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

● ●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

● ●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 11: An example with 9 clusters. Top left: data. Top right: k-means with random
starting values. Bottom left: k-means using starting values from hierarchical clustering.
Bottom right: the k-means++ algorithm.

k = 9 using random points as starting values. The clustering is quite poor. This is because
we have not found the global minimum of the empirical risk function. The two bottom plots
show better methods for selecting starting values that we will describe below.

Hierarchical Starting Values. Tseng and Wong (2005) suggest the following method for
choosing staring values for k-means. Run single-linkage hierarchical clustering (which we
describe in Section 3) to obtains p× k clusters. They suggest using p = 3 as a default. Now
take the centers of the k-largest of the p× k clusters and use these as starting values. See
the bottom left plot in Figure 11.

k-means++. Arthur and Vassilvitskii (2007) invented an algorithm called k-means++ to get
good starting values. They show that if the starting points are chosen in a certain way,
then we can get close to the minimum with high probability. In fact the starting points
themselves — which we call seed points — are already close to minimizing Rn(C). The

9

1. Input: Data X = {X1, . . . , Xn} and an integer k.

2. Choose c1 randomly from X = {X1, . . . , Xn}. Let C = {c1}.

3. For j = 2, . . . ,k:

(a) Compute D(X i)=minc∈C ||X i − c|| for each X i.

(b) Choose a point X i from X with probability

pi = D2(X i)∑n
j=1 D2(X j)

.

(c) Call this randomly chosen point c j. Update C ←− C∪ {c j}.

4. Run Lloyd’s algorithm using the seed points C = {c1, . . . , ck} as starting points and output
the result.

Figure 12: The k-means++ algorithm.

algorithm is described in Figure 12. See the bottom right plot in Figure 11 for an example.

Theorem 10 (Arthur and Vassilvitskii, 2007). Let C = {c1, . . . , ck} be the seed points from the
k-means++ algorithm. Then,

E
(
Rn(C)

)≤ 8(logk+2)
(
min

C
Rn(C)

)
(6)

where the expectation is over the randomness of the algorithm.

See Arthur and Vassilvitskii (2007) for a proof. They also show that the Euclidean distance
can be replaced with the `p norm in the algorithm. The result is the same except that the
constant 8 gets replaced by 2p+2. It is possible to improve the k-means++ algorithm. Ailon,
Jaiswal and Monteleoni (2009) showed that, by choosing 3logk points instead of one point,
at each step of the algorithm, the logk term in (6) can be replaced by a constant. They call
the algorithm, k-means#.

Global k-means. This method is due to Likas and Vlassis (2003). The idea is to run k-
means for k = 1,2, . . . ,. The cluster centers obtained from (k−1)-means, together with one
of the data points, are used as starting values for k-means. All such starting values are
considered and the best one is used. To describe this more formally, let {c(k)

1 , . . . , c(k)
k } denote

the cluster centers from running the k-means algorithm.

10

Input: maximum number of clusters K .

1. Set k = 1 and set c(1)
1 = X .

2. For k = 2 to K .

(a) Run k means using starting values {c(k−1)
1 , . . . , c(k−1)

k−1 , X i}, for i = 1, . . . ,n.
(b) From the n runs, choose the solution with lowest empirical risk. Denote the

solution by {c(k)
1 , . . . , c(k)

k }.

As described above, this method will be quite slow. See Likas and Vlassis (2003) for ways to
speed up the implementation.

1.2 Choosing k

In k-means clustering we must choose a value for k. This is still an active area of research
and there are no definitive answers. The problem is much different than choosing a tuning
parameter in regression or classification because there is no observable label to predict.
Indeed, for k-means clustering, both the true risk R and estimated risk Rn decrease to 0
as k increases. This is in contrast to classification where the true risk gets large for high
complexity classifiers even though the empirical risk decreases. Hence, minimizing risk does
not make sense. There are so many proposals for choosing tuning parameters in clustering
that we cannot possibly consider all of them here. Instead, we highlight a few methods.

Elbow Methods. One approach is to look for sharp drops in estimated risk. Let Rk denote
the minimal risk among all possible clusterings and let R̂k be the empirical risk. It is easy to
see that Rk is a nonincreasing function of k so minimizing Rk does not make sense. Instead,
we can look for the first k such that the improvement Rk −Rk+1 is small, sometimes called
an elbow. This can be done informally by looking at a plot of R̂k. We can try to make this
more formal by fixing a small number α> 0 and defining

kα =min
{

k :
Rk −Rk+1

σ2 ≤α
}

(7)

where σ2 = E(‖X −µ‖2) and µ= E(X). An estimate of kα is

k̂α =min
{

k :
R̂k − R̂k+1

σ̂2 ≤α
}

(8)

where σ̂2 = n−1 ∑n
i=1 ‖X i − X‖2.

Unfortunately, the elbow method often does not work well in practice because there may not
be a well-defined elbow.

11

Hypothesis Testing. A more formal way to choose k is by way of hypothesis testing. For each
k we test

Hk : the number of clusters is k versus Hk+1 : the number of clusters is > k.

We begin k = 1. If the test rejects, then we repeat the test for k = 2. We continue until the
first k that is not rejected. In summary, k̂ is the first k for which k is not rejected.

To implement this idea, we need to choose a specific test statistic. There are numerous
suggestions in the literature. Since k-means is designed for roughly spherical clusters, a
reasonable approach is to test if the data in each cluster are approximately Gaussian. In
one dimension, a popular test for Normality is the Shapiro-Wilk (1965) test. The test is
described in the appendix. The test results in a p-value. Small p-values suggest the data do
not look Normal. For one-dimensional data, the steps for using hypothesis testing to choose
k are as follows:

Initialize: Choose significance level α. Set k = 1.

1. Perform k means clustering. Let p j be the p-value a test for Normality for the data in
the jth cluster. Define the adjusted p-value Pk =min j{kp j,1}.

2. If Pk <α set k = k+1 and go to step 1. Otherwise stop and output k.

The adjustment Pk = min{kp j,1} is to account for the fact that we are conducting several
hypothesis tests. The hypothesis test is being used in an informal manner. The test does
not account for the fact that the groups have been determined by the data so, technically,
the test is not valid. Nonetheless, the method often yields reasonable values for k.

For multivariate data, the procedure is the same except that the one-dimensional test has
to be replaced by a multi-dimensional test. There are many ways to do this. One way is to
test several one-dimension projections.

Initialize: Choose significance level α. Choose number of projections B (default B = 10.) Set
k = 1.

1. Perform k means clustering.
2. Select U1, . . . ,UB randomly from the d-sphere.
3. Define D1, . . . ,DB where D j = {Y j1, . . . ,Y jn} and Y ji =UT

j X i.

4. Let p js be the p-value a test for Normality for the data in the jth cluster using data
Ds.

5. Define the combined p-value Pk =mins, j{kBp js,1}.
6. If Pk <α set k = k+1 and go to step 1. Otherwise stop and output k.

A similar procedure, called PG means is described in Feng and Hammerly (2007).

12

Example 11 Figure 13 shows a two-dimensional example. The top left plot shows a single
cluster. The p-values are shown as a function of k in the top right plot. The first k for which
the p-value is larger than α = .05 is k = 1. The bottom left plot shows a dataset with three
clusters. The p-values are shown as a function of k in the bottom right plot. The first k for
which the p-value is larger than α= .05 is k = 3.

Stability. Another class of methods are based on the idea of stability. The idea is to find the
largest number of clusters than can be estimated with low variability.

We start with a high level description of the idea and then we will discuss the details.
Suppose that Y = (Y1, . . . ,Yn) and Z = (Z1, . . . , Zn) are two independent samples from P. Let
Ak be any clustering algorithm that takes the data as input and outputs k clusters. Define
the stability

Ω(k)= E [s(Ak(Y), Ak(Z))] (9)

where s(·, ·) is some measure of the similarity of two clusterings. To estimate Ω we use
random subsampling. Suppose that the original data are X = (X1, . . . , X2n). Randomly split
the data into two equal sets Y and Z of size n. This process if repeated N times. Denote the
random split obtained in the jth trial by Y j, Z j. Define

Ω̂(k)= 1
N

N∑
j=1

[
s(Ak(Y j), Ak(Z j))

]
.

For large N, Ω̂(k) will approximate Ω(k). There are two ways to choose k. We can choose a
small k with high stability. Alternatively, we can choose k to maximize Ω̂(k) if we somehow
standardize Ω̂(k).

Now we discuss the details. First, we need to define the similarity between two clusterings.
We face two problems. The first is that the cluster labels are arbitrary: the clustering
(1,1,1,2,2,2) is the same as the clustering (4,4,4,8,8,8). Second, the clusterings Ak(Y) and
Ak(Z) refer to different data sets.

The first problem is easily solved. We can insist the labels take values in {1, . . . ,k} and then
we can maximize the similarity over all permutations of the labels. Another way to solve
the problem is the following. Any clustering method can be regarded as a function ψ that
takes two points x and y and outputs a 0 or a 1. The interpretation is that ψ(x, y) = 1 if x
and y are in the same cluster while ψ(x, y) = 0 if x and y are in a different cluster. Using
this representation of the clustering renders the particular choice of labels moot. This is the
approach we will take.

Let ψY and ψZ be clusterings derived from Y and Z. Let us think of Y as training data and
Z as test data. Now ψY returns a clustering for Y and ψZ returns a clustering for Z. We’d

13

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

−2 −1 0 1 2 3

−
2

−
1

0
1

2

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

p−
va

lu
e

●
●●

●

●
●

● ●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●●
●●

●

●

●

●●

●

●

●● ●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●
●

●

●
●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●
●

●

●

●
●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●
●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●● ● ●

●

●
●

●

●

●

●
●

●

●

●
●

●● ●

●

●
●●

●

● ●●

●

●
●

●

●

●

●●

●

●
●

−6 −4 −2 0 2 4 6

−
5

0
5

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

p−
va

lu
e

Figure 13: Top left: a single cluster. Top right: p-values for various k. The first k for which
the p-value is larger than .05 is k = 1. Bottom left: three clusters. Bottom right: p-values
for various k. The first k for which the p-value is larger than .05 is k = 3.

14

like to somehow apply ψY to Z. Then we would have two clusterings for Z which we could
then compare. There is no unique way to do this. A simple and fairly general approach is to
define

ψY ,Z(Z j, Zk)=ψY (Y ′
j ,Y

′
k) (10)

where Y ′
j is the closest point in Y to Z j and Y ′

k is the closest point in Y to Zk. (More generally,
we can use Y and the cluster assignment to Y as input to a classifier; see Lange et al 2004).
The notation ψY ,Z indicates that ψ is trained on Y but returns a clustering for Z. Define

s(ψY ,Z ,ψZ)= 1(
n
2

) ∑
s 6=t

I
(
ψY ,Z(Zs, Zt)=ψZ(Zs, Zt)

)
.

Thus s is the fraction of pairs of points in Z on which the two clusterings ψY ,Z and ψZ agree.
Finally, we define

Ω̂(k)= 1
N

N∑
j=1

s(ψY j ,Z j ,ψZ j).

Now we need to decide how to use Ω̂(k) to choose k. The interpretation of Ω̂(k) requires
some care. First, note that 0 ≤ Ω̂(k) ≤ 1 and Ω̂(1) = Ω̂(n) = 1. So simply maximizing Ω̂(k)
does not make sense. One possibility is to look for a small k larger than k > 1 with a high
stability. Alternatively, we could try to normalize Ω̂(k). Lange et al (2004) suggest dividing
by the value of Ω̂(k) obtained when cluster labels are assigned randomly. The theoretical
justification for this choice is not clear. Tibshirani, Walther, Botstein and Brown (2001)
suggest that we should compute the stability separately over each cluster and then take the
minimum. However, this can sometimes lead to very low stability for all k > 1.

Many authors have considered schemes of this form, including Breckenridge (1989), Lange,
Roth, Braun and Buhmann (2004), Ben-Hur, Elisseeff and Guyron (2002), Dudoit and Fridlyand
(2002), Levine and Domany (2001), Buhmann (2010), Tibshirani, Walther, Botstein and
Brown (2001) and Rinaldo and Wasserman (2009).

It is important to interpret stability correctly. These methods choose the largest number
of stable clusters. That does not mean they choose “the true k.” Indeed, Ben-David, von
Luxburg and Pál (2006), Ben-David and von Luxburg Tübingen (2008) and Rakhlin (2007)
have shown that trying to use stability to choose “the true k” — even if that is well-defined
— will not work. To explain this point further, we consider some examples from Ben-David,
von Luxburg and Pál (2006). Figure 14 shows the four examples. The first example (top left
plot) shows a case where we fit k = 2 clusters. Here, stability analysis will correctly show
that k is too small. The top right plot has k = 3. Stability analysis will correctly show that
k is too large. The bottom two plots show potential failures of stability analysis. Both cases
are stable but k = 2 is too small in the bottom left plot and k = 3 is too big in the bottom right
plot. Stability is subtle. There is much potential for this approach but more work needs to
be done.

15

● ●
●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●
●●

●

●
●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●●●
●

●
●

●

●

●

●

●
●

●●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●● ●

●
● ●

●●●
●

●●

●

●

●●

● ●

●

● ●

●

●
●

● ●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●
● ●

●

●

● ●
●

●

●

●

●●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●●

●

●

●
●

●

●

●

●
●●●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●

●

●●
● ●

●

●

●

●
● ●●

●

●

●
●

● ●

●

● ●
●

●

●
● ●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●
●●

●

●
●

●
●

●

●

●

●

● ●
●

●
●

●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

● ●●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●
●

● ●

●
●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●
●

●●

●
●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●
●

●●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●
●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●
●

●

●

●
●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●

●

●
●

● ●

●

●● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●● ●●
●

●
●

●

●
●●

●
●

●
●

●●
●
●●

●●

●
●
●●●

●
●●●●●●●
●

●●
●

●

●●
● ●●●

●

●
●

●
●

●

●
●●
●

●●
●
●●●

●
● ●● ●

● ●
●

●
●

●
●

●
●●

●●
●

● ●

●
●

● ●●
●●

●
●

●
●●
●●●●

●
●

●●
●

●
●● ●●

●
●

●●
●
●

●●
●

●

●

●
●

●●
●●
●

●●
●

●
●●

●●●

●
●

●

●

●●● ●●
●

●●
●

●●
●

●
●

●
●

●●● ●

●

●

●● ●●●

●

●
●

●● ●●
●●●

●
●

●
●

●
●●●●
●

● ●●
●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●●

●
●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●

●
●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●

● ●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●
●

Figure 14: Examples from Ben-David, von Luxburg and Pál (2006). The first example (top
left plot) shows a case where we fit k = 2 clusters. Stability analysis will correctly show that
k is too small. The top right plot has k = 3. Stability analysis will correctly show that k is
too large. The bottom two plots show potential failures of stability analysis. Both cases are
stable but k = 2 is too small in the bottom left plot and k = 3 is too big in the bottom right
plot.

16

1.3 Theoretical Properties

A theoretical property of the k-means method is given in the following result. Recall that
C∗ = {c∗1 , . . . , c∗k} minimizes R(C)= E||X −ΠC[X] ||2.

Theorem 12 Suppose that P(||X i||2 ≤ B)= 1 for some B <∞. Then

E(R(Ĉ))−R(C∗)≤ c

√
k(d+1)logn

n
(11)

for some c > 0.

Warning! The fact that R(Ĉ) is close to R(C∗) does not imply that Ĉ is close to C∗.

This proof is due to Linder, Lugosi and Zeger (1994). The proof uses techniques from a later
lecture on VC theory so you may want to return to the proof later.

Proof. Note that R(Ĉ)−R(C∗) = R(Ĉ)−Rn(Ĉ)+Rn(Ĉ)−R(C∗) ≤ R(Ĉ)−Rn(Ĉ)+Rn(C∗)−
R(C∗) ≤ 2supC∈Ck

|R(Ĉ)−Rn(Ĉ)|. For each C define a function fC by fC(x) = ||x−ΠC[x]||2.
Note that supx | fC(x)| ≤ 4B for all C. Now, using the fact that E(Y)= ∫ ∞

0 P(Y ≥ t)dt whenever
Y ≥ 0, we have

2 sup
C∈Ck

|R(Ĉ)−Rn(Ĉ)| = 2sup
C

∣∣∣∣∣ 1
n

n∑
i=1

fC(X i)−E(fC(X))

∣∣∣∣∣
= 2sup

C

∣∣∣∣∣
∫ ∞

0

(
1
n

n∑
i=1

I(fC(X i)> u)−P(fC(Z)> u)

)
du

∣∣∣∣∣
≤ 8Bsup

C,u

∣∣∣∣∣ 1
n

n∑
i=1

I(fC(X i)> u)−P(fC(Z)> u)

∣∣∣∣∣
= 8Bsup

A

∣∣∣∣∣ 1
n

n∑
i=1

I(X i ∈ A)−P(A)

∣∣∣∣∣
where A varies over all sets A of the form { fC(x) > u}. The shattering number of A is
s(A ,n) ≤ nk(d+1). This follows since each set { fC(x) > u} is a union of the complements of k
spheres. By the VC Theorem,

P(R(Ĉ)−R(C∗)> ε) ≤ P

(
8Bsup

A

∣∣∣∣∣ 1
n

n∑
i=1

I(X i ∈ A)−P(A)

∣∣∣∣∣> ε
)

= P

(
sup

A

∣∣∣∣∣ 1
n

n∑
i=1

I(X i ∈ A)−P(A)

∣∣∣∣∣> ε

8B

)
≤ 4(2n)k(d+1)e−nε2/(512B2).

17

Now conclude that E(R(Ĉ)−R(C∗))≤ C
p

k(d+1)
√

logn
n . �

A sharper result, together with a lower bound is the following.

Theorem 13 (Bartlett, Linder and Lugosi 1997) Suppose that P
(‖X‖2 ≤ 1

)= 1 and that
n ≥ k4/d,

√
dk1−2/d logn ≥ 15, kd ≥ 8, n ≥ 8d and n/ logn ≥ dk1+2/d. Then,

E(R(Ĉ))−R(C∗)≤ 32

√
dk1−2/d logn

n
=O

√
dk logn

n

 .

Also, if k ≥ 3, n ≥ 16k/(2Φ2(−2)) then, for any method Ĉ that selects k centers, there exists P
such that

E(R(Ĉ))−R(C∗)≥ c0

√
k1−4/d

n

where c0 =Φ4(−2)2−12/
p

6 and Φ is the standard Gaussian distribution function.

See Bartlett, Linder and Lugosi (1997) for a proof. It follows that k-means is risk consis-
tent in the sense that R(Ĉ)−R(C∗) P→ 0, as long as k = o(n/(d3 logn)). Moreover, the lower
bound implies that we cannot find any other method that improves much over the k-means
approach, at least with respect to this loss function.

The previous results depend on the dimension d. It is possible to get a dimension-free result
at the expense of replacing

p
k with k. In fact, the following result even applies to functions

instead of vectors. In that case, we interpret || · || to be the norm in a Hilbert space.

Theorem 14 (Biau, Devroye and Lugosi 2008). Suppose that P(||X i|| ≤ B)= 1. Then

E(R(Ĉ))−R(C∗)≤ 12B2 kp
n

.

Proof. Define W(C,P)= EP
(
min1≤ j≤k

[−2〈X , c j〉+ ||c j||2
])

. Minimizing R(C) is equivalent to
minimizing W(C,P) and minimizing Rn(C) is equivalent to minimizing W(C,Pn) where Pn
is the empirical measure that puts mass 1/n at each X i. Arguing as in the proof of Theorem
12,

E(W(Ĉ,P))−W(C∗,P)≤ 2E
(
sup

C
W(C,P)−W(C,Pn)

)
.

Let σ1, . . . ,σn be Rademacher random variables. That is, σ1, . . . ,σn are iid and P(σi =+1) =
P(σi =−1)= 1/2. Let X ′

1, . . . , X ′
n be a second independent sample. Let `c(x)=−2〈x, c〉+ ||c||2.

18

Then,

E
(
sup

C
W(C,P)−W(C,Pn)

)
≤ E

(
sup

C

1
n

n∑
i=1

σi

[
min

1≤ j≤n
`c j (X i)− min

1≤ j≤n
`c j (X

′
i)
])

≤ E

(
sup

C

1
n

n∑
i=1

σi

[
min

1≤ j≤n
`c j (X i)

])

+E
(
sup

C

1
n

n∑
i=1

(−σi)
[

min
1≤ j≤n

`c j (X i)
])

= 2E

(
sup

C

1
n

n∑
i=1

σi

[
min

1≤ j≤n
`c j (X i)

])
.

An inductive argument shows that

2E

(
sup

C

1
n

n∑
i=1

σi

[
min

1≤ j≤n
`c j (X i)

])
≤ 4k

[
E sup

c∈Rd

1
n

n∑
i=1

σi〈X i, c〉+ B2

2
p

n

]
Also,

E

(
sup
c∈Rd

1
n

n∑
i=1

σi〈X i, c〉
)

= E

(
sup
c∈Rd

1
n

〈
n∑

i=1
σi X i, c

〉)
= B

n
E

∣∣∣∣∣
∣∣∣∣∣ n∑
i=1

σi X i

∣∣∣∣∣
∣∣∣∣∣

≤ B
n

√√√√
E

∣∣∣∣∣
∣∣∣∣∣ n∑
i=1

σi X i

∣∣∣∣∣
∣∣∣∣∣
2

= B

√
E||X ||2

n
≤ B2

p
n

.

�

The k-means algorithm can be generalized in many ways. For example, if we replace the L2
norm with the L1 norm we get k-medians clustering. We will not discuss these extensions
here.

2 Geometric Graph Clustering

In geometric graph clustering we form a graph Gε with one node for each observation X i. We
put an edge between X i and X j if and only if d(X i, X j)≤ ε where ε≥ 0 is a tuning parameter.
Here, d is nay measure of similarity. We will use the Euclidean metric d(X i, X j)= ||X i−X j||.
The vertices and edges define the graph Gε. Define the clusters to be the connected com-
ponents of Gε. We shall see that this type of clustering is related to hierarchical clustering
(Section 3) and spectral clustering (Section 4).

To find the connected components of the graph, we mention two algorithms: depth-first
search and the spectral method. The latter is discussed in Section 4. The depth-first algo-
rithm is as follows:

19

1. Pick a starting node u.
2. Run traverse to find the connected component containing u.
3. Remove this component and repeat (until there are no more nodes).

traverse: In this routine, nodes are marked white (unvisited), gray (in progress) and black
(finished).

1. Mark all nodes to white.
2. Mark u as gray.
3. If there is an edge (u,v), where v is white: go to v and mark v gray.
4. Continue until you reach a node w such that there is no edge (w, x) where x is white.

Mark w as black and backtrack to parent.
5. Continue until all nodes are black.

Example 15 Figure 15 shows a simple example with two clusters. The top row corresponds
to ε= 1 and the bottom row corresponds to ε= 3. The left column shows the graph. The right
column shows a ball of radius ε/2 around each X i. In this way, the connected components
of the graph show up as connected sets. The top plot of Figure 16 shows the number of
connected components versus ε. There is a fairly large range of values of ε that yields two
connected components. The bottom plot shows the values of ε at which k(ε) changes.

Example 16 The top left plot of Figure 17 shows data with two ring-shaped clusters. The
remaining plots show geometric graph clustering with ε= .2,1 and 6. Clearly, the clustering
is quite sensitive to the choice of ε.

Example 17 Figure 18 shows data with two ring-shaped clusters. In this case, we have also
added background noise. The noise consist of points drawn from a uniform distribution.
Here we see that geometric graph clustering fails.

As the last example shows, background noise makes geometric graph clustering fail. It is
tempting to fix this by trying to remove the background noise first. But this is essentially
what density based clustering does; see Section ??.

3 Hierarchical Clustering

Hierarchical clustering methods build a set of nested clusters at different resolutions. The
are two types of hierarchical clustering: agglomerative (bottom-up) and divisive (top-down).

20

●●

●
●

●

●
●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
● ●

●

●

●

●

●●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
● ●

●

●

●

●

●●

●
●

●

●
●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
● ●

●

●

●

●

●●

●

●
●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
● ●

●

●

●

●

Figure 15: Geometric graph clustering. Top row: ε= 1. Bottom row: ε= 3. Left column: the
graphs. Right column: a ball of radius ε/2 around each X i.

21

0 2 4 6 8 10

0
10

20
30

40
50

ε

N
um

be
r

of
 c

lu
st

er
s

0 2 4 6 8 10

ε

k = 2

Figure 16: Geometric graph clustering. The top plot shows the number of connected com-
ponents k(ε) versus ε. There is a fairly large range of values of ε that yields two connected
components. The bottom plot shows the values of ε at which k(ε) changes.

●
●
●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●
●

●●
●

●●●
●●

●
●●●●

●●
●

● ●●●●

● ●●●●●
●
●●●

●●●●●●●
●●
●●

●●●●●●●
●

●
●
●●●●●●

●●
●
●

●● ●●
●●

●●●● ●
●

●
●
●

●
●●

●●●
●

●
●
●

●
●

●●●
●

●
●●●●

●
●●

●●●●
●

●

●●●
●
●

●

●

●
●

●●

●
●
●

●
●

●
●

●
●

●

●
●●

●
●

●

● ●
●

●●
● ● ●

● ●● ●● ● ●● ● ●
●

●●●

●
●●

●
●●

●

●
●
●

●●
●

●
●

●
●
●
●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●
●

●●
●

●●●
●●

●
●●●●

●●
●

● ●●●●
● ●●●●●

●
●●●

●●●●●●●
●●
●●

●●●●●●●
●

●
●
●●●●●●

●●
●
●

●● ●●
●●

●●●● ●
●

●
●
●

●
●●

●●●●

●
●
●

●
●

●●●
●

●
●●●●

●
●●

●●●●
●

●

●●●
●
●

●

●

●
●

●●

●
●
●

●
●

●
●

●
●

●

●
●●

●
●

●

● ●
●

●●
● ● ●

● ●● ●● ● ●● ● ●
●

●●●

●
●●

●
●●

●

●
●
●

●●
●

●
●

●

●
●
●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●
●

●●
●

●●●
●●

●●●●●
●●●

● ●●●●
● ●●●●●

●
●●●●●●●●●●

●●●
●

●●●●●●●
●

●
●
●●●●●●
●●
●
●

●●●●
●●

●●●● ●
●

●
●
●

●
●●

●●●●
●

●
●

●
●

●●●
●

●●●●●
●

●●
●●●●

●
●

●●●
●
●

●
●

●
●

●●

●
●
●

●
●

●
●

●
●

●

●
●●

●
●

●

● ●
●

●●
● ● ●

● ●● ●● ● ●●● ●
●

●●●
●
●●

●
●●

●
●
●
●

●●
●
●●
● ●

●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●
●●
●●●●●●●●●●●●●●

●●●●●
● ●●●●●
●
●●●●●●●●●●●●●

●
●●●●●●●
●
●●●●●●●●
●●●●

●●●●
●●
●●●● ●

●
●
●
●

●
●●

●●●
●

●
●●

●●
●●●●

●●●●●●●●
●●●●

●●
●●●

●
●

●
●

●●●●
●

●
●
●

●
●

●
●●●

●
●●

●●●
●●●

●●
●● ●● ●●●●●●●●●

●●●●
●
●●

●●
●
●

●●
●
●●

●
●●
●

Figure 17: Geometric graph clustering applied to two ring-shaped clusters. Top left: data.
Top right: ε= .2. Bottom left: ε= 1.0. Bottom right: ε= 6.

22

●●●●●
●●●●
●
●●●●●●
●●
●●●●●

●
●
●●

●
●
●
●●●●●●●●●

●

●
●●●●
●

●●●●●●●●
●
●●

●
●

●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●
●●●●●
●

●●●●●
●●●●
●
●●

●●●
●●●●

●
●●●●●●●●●●

●
●●●

●●
●
●●
●●
●

●●
●
●●●●

●
●●●●●●●●●●●●● ●●●

●●
●●●●●
●
●●●●●●●●●●●
●●●●●●
●
●
●●●●●●●●●●●●●●●●●
●
●●
●

●●

●

●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●● ●●●
●●●●●●●●●●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●
●
●●●
●●

●●●●
●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●
●●●●●

●●●
●

●
●
●●●

●
●●●
●
●●●●●●●●●

●●
●●
●●●●●●●●●
●
●●●●●●●●●●●●●●

●●●●●●●●
●●
●
●●●●●●●●●●●●●●●
●●●
●●●●●
●●●

●
●●●
●●●●●●●●●
●●●●●●

●●●●●●●●
●●●
●●● ●●

●

●
●

●●●●●
●●●●●●●●●●

●●●
●●●●
●●●
●

●●●●●●
●●●

●●●●●●
●
●●

●●
●

●●●●
●●●●●

●●●
●
●●
●●●●

●

●
●

●
●●●

●
●●●
●●● ●●●●

●●●●●●
●●●

●●●●●●●●
●●●

●
●
●

●
●
●●●●●●

●●●
●●●●●●●●●●●●●●●●

●
●●●●●●●●

●
●●
●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●
●
●●●●●

●●
●
●

●
●●●●●●●●●

●
●●
●●
●●●●●●●●●

●
●●●●●

●●
●
●●●●

●
●●

●●●●
●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●● ●
●●●●
●●●●●●
●●●●
●

●
●●●
●●●●●●●●

●
●●●●
●●●●●●●●●●●

●●
●
●
●●●
●
●
●●● ●●●

●●● ●● ●●●
●
●●● ●●●●●

●
●●●●●●●●●●●

●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●
●●●
●●●●●

●
●

●●●
●

●●●●●●●●●
●
●●
●●●●●

●●●
●●●
●●●●

●●●●●●
●

●●
●●●●
● ●●
●●●●●●●

●
●●
●●

●●●
●
●●●

●●●
●●●●

●●●
●●
●●
●

●
●
●
●●

●●●
●●●●●●●
●●●
●●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●
●●●●
●
●●●●●●
●●
●●●●●

●
●
●●●
●
●
●●●●●●●●●

●

●
●●●●
●

●●●●●●●●
●
●●

●
●

●●●
●●●●●●●●●●●●●●

●●●●●
●●●●●●●

●●●●●●
●●●●●
●

●●●●●
●●●●
●
●●

●●●
●●●●

●
●●●●●●●●●●

●
●●●

●●
●
●●
●●
●

●●
●
●●●●

●
●●●●●
●●●●●●●● ●●●

●●
●●●●●
●
●●●●●●●●●●●
●●●●●●
●
●
●●●●●●●●●●●●●●●●●
●
●●
●

●●

●

●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●● ●●●
●●●●●●●●●●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●
●
●●●
●●

●●●●
●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●
●●●●●

●●●
●

●
●
●●●

●
●●●
●
●●●●●●●●●

●●
●●
●●●●●●●●●
●
●●●●●●●●●●●●●●

●●●●●●●●
●●
●
●●●●●●●●●●●●●●●
●●●
●●●●●
●●●

●
●●●
●●●●●●●●●
●●●●●●

●●●●●●●●
●●●
●●● ●●

●

●
●

●●●●●
●●●●●
●●●●●

●●●
●●●●
●●●
●

●●●●●●
●●●

●●●●●●
●
●●

●●
●

●●●●
●●●●●

●●●
●
●●
●●●●

●
●
●

●
●●●

●●●●
●●●●●●●

●●●●●●
●●●

●●●●●●●●
●●●

●
●
●

●
●●●●●●●

●●●
●●●●●●●●●●●●●●●●

●
●●●●●●●●

●
●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●
●
●●●●●

●●
●
●

●
●●●●●●●●●

●
●●
●●
●●●●●●●●●

●
●●●●●

●●
●
●●●●

●
●●

●●●●
●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●● ●
●●●●
●●●●●●●●●●
●●
●●●
●●●●●●●●

●
●●●●
●●●●●●●●●●●●●

●
●
●●●
●
●
●●● ●●●

●●● ●● ●●●
●
●●● ●●●●●

●
●●●●●●●●●●●

●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●
●●
●●●●●

●
●

●●●
●

●●●●●●●●●
●
●●
●●●●●

●●●
●●●
●●●●

●●●●●●
●

●●
●●●●
● ●●
●●●●●●●

●
●●
●●

●●●
●
●●●

●●●
●●●●

●●●
●●
●●
●
●
●
●
●●
●●●

●●●●●●●●
●●

●●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●
●●●●
●
●●●●●●
●●
●●●●●

●
●
●●●
●
●
●●●●●●●●●

●

●
●●●●
●

●●●●●●●●●●●
●

●
●●●
●●●●●●●●●●●●●●

●●●●●
●●●●●●●

●●●●●●
●●●●●
●

●●●●●
●●●●
●
●●

●●●
●●●●

●
●●●●●●●●●●

●
●●●

●●
●●
●
●●
●

●●
●
●●●●

●
●●●●●
●●●●●●●● ●●●

●●
●●●●●
●
●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●
●
●●
●

●●

●

●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●● ●●●
●●●●●●●●●●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●
●
●●●
●●

●●●●
●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●
●●●●●

●●●
●

●
●
●●●

●
●●●
●
●●●●●●●●●

●●
●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●
●●●●●●●●●●●●●●●
●●●
●●●●●
●●●

●
●●●
●●●●●●●●●
●●●●●●

●●●●●●●●
●●●
●●● ●●

●

●
●

●●●●●
●●●●●
●●●●●

●●●
●●●●
●●●
●

●●●●●●
●●●

●●●●●●
●
●●

●●
●

●●●●
●●●●●

●●●●
●●
●●●●

●
●
●

●
●●●

●●●●
●●●●●●●

●●●●●●
●●●

●●●●●●●●●●●
●

●
●

●
●●●●●●●

●●●
●●●●●●●●●●●●●●●●

●
●●●●●●●●

●
●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●
●
●●●●●

●●
●
●

●
●●●●●●●●●

●
●●
●●
●●●●●●●●●

●
●●●●●

●●●
●●●●

●
●●

●●●●
●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●● ●
●●●●
●●●●●●●●●●
●●
●●●
●●●●●●●●

●
●●●●
●●●●●●●●●●●●●

●
●
●●●
●
●
●●● ●●●

●●● ●● ●●●
●
●●● ●●●●●

●
●●●●●●●●●●●

●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●
●●
●●●●●

●
●

●●●
●

●●●●●●●●●
●
●●
●●●●●

●●●
●●●
●●●●

●●●●●●
●

●●
●●●●
● ●●
●●●●●●●

●
●●
●●

●●●
●
●●●

●●●
●●●●

●●●
●●
●●
●
●
●
●
●●
●●●

●●●●●●●●
●●

●●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●
●●●●
●
●●●●●●
●●
●●●●●

●
●
●●●●
●
●●●●●●●●●

●
●

●●●●
●

●●●●●●●●●●●
●

●
●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●
●●●●●
●

●●●●●
●●●●
●
●●

●●●●●●●
●●●●●●●●●●●

●
●●●

●●
●●
●
●●
●

●●
●
●●●●●●●●●●
●●●●●●●● ●●●

●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●
●
●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●
●●

●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●●●●
●●●●
●

●
●●●●
●
●●●
●
●●●●●●●●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●
●●●●●●●●●●●●●●●
●●●
●●●●●
●●●
●

●●●
●●●●●●●●●
●●●●●●

●●●●●●●●
●●●
●●● ●●

●
●
●

●●●●●
●●●●●
●●●●●

●●●
●●●●
●●●
●

●●●●●●
●●●

●●●●●●
●
●●

●●
●

●●●●
●●●●●

●●●●
●●
●●●●

●
●
●

●
●●●

●●●●
●●●●●●●

●●●●●●
●●●

●●●●●●●●
●●●●●

●
●
●●●●●●●

●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●

●●●
●●
●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●●●●

●●●●
●
●●
●●●●
●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●●
●●●
●●●●●●●●

●
●●●●
●●●●●●●●●●●●●

●
●
●●●
●
●
●●● ●●●

●●● ●●●●●
●
●●● ●●●●●

●
●●●●●●●●●●●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●
●●
●●●●●●

●
●●●

●●●●●●●●●●
●
●●
●●●●●

●●●
●●●
●●●●●

●●●●●
●

●●
●●●●
● ●●
●●●●●●●

●
●●
●●

●●●
●
●●●●●●
●●●●

●●●●
●●
●
●
●
●
●●●
●●●
●●●●●●●●

●●●●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

Figure 18: Geometric graph clustering applied to two ring-shaped clusters with background
noise. Top left: data. Top right: ε= 0.40. Bottom left: ε= 0.54. Bottom right: ε= 1.46.

With agglomerative clustering we start with some distance or dissimilarity d(x, y) between
points. We then extend this distance so that we can compute the distance d(A,B) between
to sets of points A and B.

The three most common ways of extending the distance are defined in Figure 19. The algo-
rithm is given in Figure 20.

The result can be represented as a tree, called a dendogram. We can then cut the tree at
different places to yield any number of clusters ranging from 1 to n. Single linkage often
produces thin clusters while complete linkage is better at rounder clusters. Average linkage
is in between.

Example 18 Figure 21 shows agglomerative clustering applied to data generated from two
rings plus noise. The noise is large enough so that the smaller ring looks like a blob. The
data are show in the top left plot. The top right plot shows hierarchical clustering using
single linkage. (The tree is cut to obtain two clusters.) The bottom left plot shows average
linkage and the bottom right plot shows complete linkage. Single linkage works well while
average and complete linkage do poorly.

Let us now mention some theoretical properties of hierarchical clustering. Suppose that

23

Single Linkage d(A,B)= min
x∈A,y∈B

d(x, y)

Average Linkage d(A,B)= 1
NA NB

∑
x∈A,y∈B

d(x, y)

Complete Linkage d(A,B)= max
x∈A,y∈B

d(x, y)

Figure 19: Three common distances between sets of points A and B used in hierarchical
clustering. NA is the number of points in A and similarly for NB.

1. Input: data X = {X1, . . . , Xn} and metric d giving distance between clusters.

2. Let Tn = {C1,C2, . . . ,Cn} where Ci = {X i}.

3. For j = n−1 to 1:

(a) Find j,k to minimize d(C j,Ck) over all C j,Ck ∈ T j+1.

(b) Let T j be the same as T j+1 except that C j and Ck are replaced with C j ∪Ck.

4. Return the sets of clusters T1, . . . ,Tn.

Figure 20: Agglomerative Hierarchical Clustering
.

●

●●

●

●

●●
●
●

●
●

●

●
●

●●
●● ●●●● ●

●

●

●
●

●

●●
● ●

●●
●

●●●●●● ●
●

●

●
●●

●
●

●
●●

●●

●

●●
●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●●

●
●●
●

●

●
●

●
●

●

●● ●
●●●

●
● ●

●●
● ●

●
●

●

●●

●

●

●

●

●
●

● ●
●●●

●●
●●

●●

●● ●●
●

●
●

●
●

●

●
●●

● ●●
●

●

●●●

●

●
● ●

●●●

●

●

●

●●
●

●
●

●

●●
●

●

●

●
●●

● ● ●

●

●

●

●

●
● ●

●

●

●● ●

●●
●

●●
●
●

●
●

●
●

●

●
●

●●

●

●

●●
●
●

●
●

●

●
●

●●
●● ●●●● ●

●

●

●
●

●

●●
● ●

●●
●

●●●●●● ●
●

●

●
●●

●
●

●
●●

●●

●

●●
●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●●

●
●●
●

●

●
●

●
●

●

●● ●
●●●

●
●

●

●●

●

●

●●
●
●

●
●

●

●
●

●●
●● ●●●● ●

●

●

●
●

●

●●
● ●

●●
●

●●●●●● ●
●

●

●
●●

●
●

●
●●

●●

●

●●
●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●●

●
●●
●

●

●
●

●
●

●

●● ●
●●●

●
●

●●●
●●

●●

●●

●● ●●
●

●
●

●
●

●

●
●●

● ●●
●

●

●●●

●

●
● ●

●●●

●

●

●

●●
●

●
●

●

●●
●

●

●

●
●●

● ● ●

●

●

●

●

●
● ●

●

●

●●

●

●

●●
●
●

●
●

●

●
●

●●
●● ●●●● ●

●

●

●
●

●

●●
● ●

●●
●

●●●●●● ●
●

●

●
●●

●
●

●
●●

●●

●

●●
●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●●

●
●●
●

●

●
●

●
●

●

●● ●
●●●

●
●

●●●
●●

●●

●●

●● ●●
●

●
●

●
●

●

●
●●

● ●●
●

●

●●●

●

●
● ●

●●●

●

●

●

●●
●

●
●

●

Figure 21: Hierarchical clustering applied to two noisy rings. Top left: the data. Top right:
two clusters from hierarchical clustering using single linkage. Bottom left: average linkage.
Bottom right: complete linkage.

24

X1, . . . , Xn is a sample from a distribution P on Rd with density p. A high density cluster is
a maximal connected component of a set of the form {x : p(x) ≥ λ}. One might expect that
single linkage clusters would correspond to high density clusters. This turns out not quite
to be the case. See Hartigan (1981) for details. DasGupta (2010) has a modified version
of hierarchical clustering that attempts to fix this problem. His method is very similar to
density clustering.

Single linkage hierarchical clustering is the same as geometric graph clustering. Let G =
(V ,E) be a graph where V = {X1, . . . , Xn} and E i j = 1 if ||X i−X j|| ≤ ε and E i j = 0 if ||X i−X j|| >
ε. Let C1, . . . ,Ck denote the connected components of the graph. As we vary ε we get exactly
the hierarchical clustering tree.

Finally, we let us mention divisive clustering. This is a form of hierarchical clustering where
we start with one large cluster and then break the cluster recursively into smaller and
smaller pieces.

4 Spectral Clustering

Spectral clustering refers to a class of clustering methods that use ideas related to eigen-
vector. An excellent tutorial on spectral clustering is von Luxburg (2006) and some of this
section relies heavily on that paper. More detail can be found in Chung (1997).

Let G be an undirected graph with n vertices. Typically these vertices correspond to obser-
vations X1, . . . , Xn. Let W be an n× n symmetric weight matrix. Say that X i and X j are
connected if Wi j > 0. The simplest type of weight matrix has entries that are either 0 or 1.
For example, we could define

Wi j = I(||X i − X j|| ≤ ε)
as we did in Section 2. An example of a more general weight matrix is Wi j = e−||X i−X j ||2/(2h2).

The degree matrix D is the n×n diagonal matrix with D ii =∑n
j=1 Wi j. The graph Laplacian

is
L = D−W . (12)

The graph Laplacian has many interesting properties which we list in the following result.
Recall that a vector v is an eigenvector of L if there is a scalar λ such that Lv =λv in which
case we say that λ is the eigenvalue corresponding to v. Let L (v)= {cv : c ∈R, c 6= 0} be the
linear space generated by v. If v is an eigenvector with eigenvalue λ and c is any nonzero
constant, then cv is an eigenvector with eigenvalue cλ. These eigenvectors are considered
equivalent. In other words, L (v) is the set of vectors that are equivalent to v.

Theorem 19 The graph Laplacian L has the following properties:

25

1. For any vector f = (f1, . . . , fn)T ,

f TLf = 1
2

n∑
i=1

n∑
j=1

Wi j(f i − f j)2.

2. L is symmetric and positive semi-definite.

3. The smallest eigenvalue of L is 0. The corresponding eigenvector is (1,1, . . . ,1)T .

4. L has n non-negative, real-valued eigenvalues 0=λ1 ≤λ2 ≤ ·· · ≤λk.

5. The number of eigenvalues that are equal to 0 is equal to the number of connected com-
ponents of G. That is, 0 = λ1 = . . . = λk where k is the number of connected components
of G. The corresponding eigenvectors v1, . . . ,vk are orthogonal and each is constant over
one of the connected components of the graph.

Part 1 of the theorem says that L is like a derivative operator. The last part shows that we
can use the graph Laplacian to find the connected components of the graph.

Proof.

(1) This follows from direct algebra.

(2) Since W and D are symmetric, it follow that L is symmetric. The fact that L is positive
semi-definite folows from part (1).

(3) Let v = (1, . . . ,1)T . Then

Lv = Dv−Wv =

 D11
...

Dnn

−

 D11
...

Dnn

=

 0
...
0

which equals 0×v.

(4) This follows from parts (1)-(3).

(5) First suppose that k = 1 and thus that the graph is fully connected. We already know
that λ1 = 0 and v1 = (1, . . . ,1)T . Suppose there were another eigenvector v with eigenvalue
0. Then

0= vTLv =
n∑

i=1

n∑
j=1

Wi j(v(i)−v(j))2.

26

It follows that Wi j(v(i)− v(j))2 = 0 for all i and j. Since G is fully connected, all Wi j > 0.
Hence, v(i)= v(j) for all i, j and so v is constant and thus v ∈L (v1).

Now suppose that K has k components. Let n j be the number of nodes in components j.
We can reliable the vertices so that the first n1 nodes correspond to the first connected
component, the second n2 nodes correspond to the second connected component and so
on. Let v1 = (1, . . . ,1,0, . . . ,0) where the 1’s correspond to the first component. Let Let
v2 = (0, . . . ,0,1, . . . ,1,0, . . . ,0) where the 1’s correspond to the second component. Define
v3, . . . ,vk similarly. Due to the re-ordering of the vertices, L has block diagonal form:

L =

L1

L2
. . .

Lk

 .

Here, each L i corresponds to one of th connected components of the graph. It is easy to
see that LV − j = 0 for j = 1, . . . ,k. Thus, each v j, for j = 1, . . . ,k is an eigenvector with zero
eigenvalue. Suppose that v is any eigenvector with 0 eigenvalue. Arguing as before, v must
be constant over some component and 0 elsewhere. Hence, v ∈L (v j) for some 1≤ j ≤ k. �

Example 20 Consider the graph

X1 X2 X3 X4 X5

and suppose that Wi j = 1 if and only if there is an edge between X i and X j. Then

W =

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 0 1 0

 D =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 1

and the Laplacian is

L = D−W =

1 −1 0 0 0
−1 1 0 0 0
0 0 1 −1 0
0 0 −1 2 −1
0 0 0 −1 0

 .

The eigenvalues of W , from smallest to largest are 0,0,1,2,3. The eigenvectors are

v1 =

1
1
0
0
0

 v2 =

0
0
1
1
1

 v3 =

0
0

−.71
0

.71

 v4 =

−.71
.71
0
0
0

 v5 =

0
0

−.41
.82
−.41

Note that the first two eigenvectors correspond to the connected components of the graph.

27

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 22: The top shows a simple graph. The remaining plots are the eigenvectors of
the graph Laplacian. Note that the first two eigenvectors correspond to the two connected
components of the graph.

Note f TLf measures the smoothness of f relative to the graph. This means that the higher
order eigenvectors generate a basis where the first few basis elements are smooth (with
respect to the graph) and the later basis elements become more wiggly.

Example 21 Figure 22 shows a graph and the corresponding eigenvectors. The two eigen-
vectors correspond two the connected components of the graph. The other eignvectors can be
thought of as forming bases vectors within the connected components.

One approach to spectral clustering is to set

Wi j = I(||X i − X j|| ≤ ε)

for some ε> 0 and then take the clusters to be the connected components of the graph which
can be found by getting the eigenvectors of the Laplacian L. This is exactly equivalent to

28

geometric graph clustering from Section 2. In this case we have gained nothing except that
we have a new algorithm to find the connected components of the graph. However, there are
other ways to use spectral methods for clustering as we now explain.

The idea underlying the other spectral methods is to use the Laplacian to transform the
data into a new coordinate system in which clusters are easier to find. For this purpose, one
typically uses a modified form of the graph Laplacian. The most commonly used weights for
this purpose are

Wi j = e−||X i−X j ||2/(2h2).

Other kernels Kh(X i, X j) can be used as well. We define the symmetrized Laplacian L =
D−1/2WD−1/2 and the random walk Laplacian L = D−1W . (We will explain the name shortly.)
These are very similar and we will focus on the latter. Some authors define the random walk
Laplacian to be I −D−1W . We prefer to use the definition L = D−1W because, as we shall
see, it has a nice interpretation. The eigenvectors of I −D−1W and D−1W are the same so it
makes little difference which definition is used. The main difference is that the connected
components have eigenvalues 1 instead of 0.

Lemma 22 Let L be the graph Laplacian of a graph G and let L be the random walk
Laplacian.

1. λ is an eigenvalue of L with eigenvector v if and only if Lv = (1−λ)Dv.

2. 1 is an eigenvalue of L with eigenvector (1, . . . ,1)T .

3. L is positive semidefinite with n non-negative real-valued eigenvalues.

4. The number of eigenvalues of L equal to 1 equals the number of connected components
of G. Let v1, . . . ,vk denote the eigenvectors with eigenvalues equal to 1. The linear space
spanned by v1, . . . ,vk is spanned by the indicator functions of the connected components.

Proof. Homework. �

Let λ1 ≥λ2 ≥ ·· · ≥λn be the eigenvalues of L with eigenvectors v1, . . . ,vn. Define

Zi ≡ T(X i)=
r∑

j=1

√
λ j v j(i).

The mapping T : X → Z transforms the data into a new coordinate system. The numbers
h and r are tuning parameters. The hope is that clusters are easier to find in the new
parameterization.

To get some intuition for this, note that L has a nice probabilistic interpretation (Coifman,
Lafon, Lee 2006). Consider a Markov chain on X1, . . . , Xn where we jump from X i to X j with

29

probability

P(X i −→ X j)=L (i, j)= Kh(X i, X j)∑
s Kh(Xs, X j)

.

The Laplacian L (i, j) captures how easy it is to move from X i to X j. If Zi and Z j are close
in Euclidean distance, then they are connected by many high density paths through the
data. This Markov chain is a discrete version of a continuous Markov chain with transition
probability:

P(x → A)=
∫

A Kh(x, y)dP(y)∫
Kh(x, y)dP(y)

.

The corresponding averaging operator Â : f → f̃ is

(Â f)(i)=
∑

j f (j)Kh(X i, X j)∑
j Kh(X i, X j)

which is an estimate of A : f → f̃ where

A f =
∫

A f (y)Kh(x, y)dP(y)∫
Kh(x, y)dP(y)

.

The lower order eigenvectors of L are vectors that are smooth relative to P. Thus, project-
ing onto the first few eigenvectors parameterizes in terms of closeness with respect to the
underlying density.

The steps are:

Input: n×n similarity matrix W .

1. Let D be the n×n diagonal matrix with D ii =∑
j Wi j.

2. Compute the Laplacian L = D−1W .
3. Find first k eigenvectors v1, . . . ,vk of L .
4. Project each X i onto the eigenvectors to get new points X̂ i.
5. Cluster the points X̂1, . . . , X̂n using any standard clustering algorithm.

There is another way to think about spectral clustering. Spectral methods are similar to
multidimensional scaling. However, multidimensional scaling attempts to reduce dimension
while preserving all pairwise distances. Spectral methods attempt instead to preserve local
distances.

Example 23 Figure 23 shows a simple synthetic example. The top left plot shows the data.
We apply spectral clustering with Gaussian weights and bandwidth h = 3. The top middle
plot shows the first 20 eigenvalues. The top right plot shows the the first versus the second
eigenvector. The two clusters are clearly separated. (Because the clusters are so separated,

30

●●
●●●●●
●●●
●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●
●●●●●
●●●●

●●
●
●●

●
●

●
●●

●●
●●

●
●●●

●
●

●●
●●●●●●●●●●●●

●●●
●●

●
●

●●
●
●

●●

●●
●
●●●
●

●
●●
●●
●

●
●
●●

● ●
●●● ●

●●●● ● ●● ●●
●

●
●●●

●●
●
●●

●●
●

●
●●

●●
●●

●

5 10 15 20

0.
0

0.
4

0.
8

λ

●●●●●●●
●
●●●
●
●
●●●
●●●●
●●●
●●●●
●●●
●●
●●●●
●●●●●●
●
●●●●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●
●●●

●●●●●
●●●
●●
●●
●●
●
●●●
●●
●●
●
●●
●●
●●
●
●●
●
●
●●●
●●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●
●●●
●
●●●
●●
●●●●●
●●●●●●●●●

v1

v 2

v1 v2 v3

v4 v5 v6

Figure 23: Top left: data. Top middle: eigenvalues. Top right: second versus third eigenvec-
tors. Remaining plots: first six eigenvectors.

the graph is essentially disconnected and the first eigenvector is not constant. For large h,
the graph becomes fully connected and v1 is then constant.) The remaining six plots show the
first six eigenvectors. We see that they form a Fourier-like basis within each cluster. Of course,
single linkage clustering would work just as well with the original data as in the transformed
data. The real advantage would come if the original data were high dimensional.

Example 24 Figure 24 shows a spectral analysis of some zipcode data. Each datapoint is
a 16 x 16 image of a handwritten number. We restrict ourselves to the digits 1, 2 and 3. We
use Gaussian weights and the top plots correspond to h = 6 while the bottom plots correspond
to h = 4. The left plots show the first 20 eigenvalues. The right plots show a scatterplot of
the second versus the third eigenvector. The three colors correspond to the three digits. We
see that with a good choice of h, namely h = 6, we can clearly see the digits in the plot. The
original dimension of the problem is 16 x 16 =256. That is, each image can be represented by
a point in R256. However, the spectral method shows that most of the information is captured
by two eignvectors so the effective dimension is 2. This example also shows that the choice of
h is crucial.

31

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●● ●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●
●

●

● ●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

● ●
●

●

●

●
●

●

●●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●

●

●●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

v2
v 3

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

●

●
●●
●
●

●
●●

●
●
●
●

●●●
●

●

●●

●

●
●

●●
●

●●

●
●
●
●●

●●●●

●
●
●●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●●

●●

●●●
●●
●
●
●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●
●

●
●

●

●

●

●

●

●●●●●

●●

●

●
●

●

●
●●●

●

●

●●

●●
●

●
●

●●

●

●●

●●
●●

●●●●

●

●
●

●

●

●●
●

●
●

●●

●●

●

●

●

●

●●

●
●●●

●

●●

●

●●
●●●
●

●
●
●

●

●

●

●

●
●●●

●●

●

●

●

●●●
●●

●
●●

●●

●●●

●

●
●

●●

●

●●

●

●
●

●

●●

●
●

●●

●

●

●●

●

●

●

●●
●●

●●

●●●

●

●

●

●●

●●

●

●

●
●

●

●●

●

●

●●
●

●

●

●●

●

●

●

●●●

●●●
●

●

●
●
●●

●

●●

●

●

●
●●
●
●
●

●

●●●

●●

●
●

●

●●●
●

●

●
●
●
●●

●

●●

●●
●
●●

●

●●

●

●●
●

●●

●

●

●

●
●●●●●●
●

●●

●●

●

●

●●

●

●
●●●
●●
●

●
●
●
●

●

●

●

●
●

●●●

●

●●
●
●

●
●

●
●●

●

●●●
●
●●
●

●●●
●●
●
●
●

●●

●●
●

●

●

●

●●●●

●●

●

●
●
●
●
●●●●
●
●
●●

●

●●

●
●●●

●●

●●●
●

●

●●

●

●●

●●

●

●●●

●●

●
●

●

●

●

●

●

●

●
●●

●●●●

●

●
●●●

●

●
●
●
●
●
●●

●

●

●●

●

●

●

●●
●●

●
●

v2

v 3

Figure 24: Spectral analysis of some zipcode data. Top: h = 6. Bottom: h = 4. The plots on
the right show the second versus third eigenvector. The three colors correspond to the three
digits 1, 2 and 3.

32

Spectral methods are very promising. However, there are some open questions:

1. There are tuning parameters (such as h) and the results are sensitive to these param-
eters. How do we choose these tuning parameters?

2. Does spectral clustering perform better than density clustering?

5 Variable Selection

If X ∈Rd is high dimensional, then it makes sense to do variable selection before clustering.
There are a number of methods for doing this. But, frankly, none are very convincing. This
is, in my opinion, an open problem. Here are a couple of possibilities.

5.1 Marginal Selection

As in linear regression, a convenient strategy is to add variables one at a time in a greedy
way. To do so, we need a method to measure the “clusteriness” of a random variable.

If X is a random variable with density p, one measure of how the clusteriness of p is the
entropy

H(X)= H(p)=−
∫

p(x) log p(x)dx. (13)

Large values of H(X) correspond to distributions that are more uniform (less clustered).
Hence, we are interested in small values of H(X). The plugin estimator of entropy is
−∫

p̂(x) log p̂(x)dx where p̂ is a estimate of p. However, we can estimate H without hav-
ing to estimate the density. The nearest neighbor estimator of entropy (Kozachenko and
Leonenko 1987) is

Hn = 1
n

n∑
i=1

log(nRi)+ log2+C (14)

where
Ri =min

j 6=i
||X i − X j|| (15)

and C =−∫ ∞
0 e−t log(t)dt. We do not need an accurate estimate of H; we only need to rank

the clusteriness of different variables. Hence, any monotone function of Hn will suffice.
Thus we define

T(X)= 1
n

n∑
i=1

min
j 6=i

||X i − X j||. (16)

A greedy method for variable selection is to add the variables, one at a time, with the small-
est T value. The algorithm is in Figure 25.

33

1. Standardize all variables to have mean 0 and variance 1.

2. Set I =; and A = {1, . . . ,d}.

3. Compute T j = T(X j) for j = 1, . . . ,d.

4. Let j = argmins Ts. Add j to I and remove j from A.

5. Repeat until A is empty:

(a) Compute T(X I , Xs) for all s ∈ A, where X I = (X i : i ∈ I).

(b) Let j = argmins∈A T(X I , Xs).

(c) Add j to I and remove it from A.

Figure 25: Forward Variable Selection For Clustering

The algorithm adds the variables one at a time. One must still decide on a stopping rule.
The same methods for choosing the number of clusters can be used to choose the stopping
point.

5.2 Sparse k-means

Here we discuss the approach in Witten and Tibshirani (2010). Recall that in k-means
clustering we choose C = {c1, . . . , ck} to minimize

Rn(C)= 1
n

n∑
i=1

||X i −ΠC[X i]||2 = 1
n

n∑
i=1

min
1≤ j≤k

||X i − c j||2. (17)

This is equivalent to minimizing the within sums of squares
k∑

j=1

1
n j

∑
s,t∈A j

d2(Xs, X t) (18)

where A j is the jth cluster and d2(x, y) = ∑d
r=1(x(r)− y(r))2 is squared Euclidean distance.

Further, this is equivalent to maximizing the between sums of squares

B = 1
n

∑
s,t

d2(Xs, X t)−
k∑

j=1

1
n j

∑
s,t∈A j

d2(Xs, X t). (19)

Witten and Tibshirani propose replace the Euclidean norm with the weighted norm d2
w(x, y)=∑d

r=1 wr(x(r)− y(r))2. Then they propose to maximize

B = 1
n

∑
s,t

d2
w(Xs, X t)−

k∑
j=1

1
n j

∑
s,t∈A j

d2
w(Xs, X t) (20)

34

1. Input X1, . . . , Xn and k.

2. Set w = (w1, . . . ,wd) where w1 = . . .= wd = 1/
p

d.

3. Iterate until convergence:

(a) Optimize (19) over C holding w fixed. Find c1, . . . , ck from the k-means algorithm using
distance dw(X i, X j). Let A j denote the jth cluster.

(b) Optimize (19) over w holding c1, . . . , ck fixed. The solution is

wr = sr√∑d
t=1 s2

t

where
sr = (ar −∆)+,

ar =
[

1
n

∑
s,t

wr(Xs(r)− X t(r))2 −
k∑

j=1

1
n j

∑
s,t∈A j

wr(Xs(r)− X t(r))2

]
+

and ∆= 0 if ||w||1 < s otherwise ∆> 0 is chosen to that ||w||1 = s.

Figure 26: The Witten-Tibshirani Sparse k-means Method

over C and w subject to the constraints

||w||2 ≤ 1, ||w||1 ≤ s, w j ≥ 0

where w = (w1, . . . ,wd). The optimization is done iteratively by optimizing over C, optimizing
over w and repeating. See Figure ??.

The `1 norm on the weights causes some of the components of w to be 0 which results in
variable selection. It may seem odd that the procedure is applied to the between sums of
squares rather than within sums of squares but, currently, this is the only version that is
know to work.

6 Summary

The main clustering methods are:

1. density-based
2. k-means

35

3. hierarchical
4. spectral.

Each method has strengths and weaknesses. They all involve tuning parameters that must
be chosen carefully.

7 Bibliographic Remarks

k-means clustering goes back to Stuart Lloyd who apparently came up with the algorithm in
1957 although he did not publish it until 1982. See [?]. Another key reference is [?]. Similar
ideas appear in [?]. The related area of mixture models is discussed at length in McLachlan
and Basford (1988). k-means is actually related to principal components analysis; see Ding
and He (2004) and Zha, He, Ding, Simon and Gu (2001). The probabilistic behavior of
random geometric graphs is discussed in detail in [?].

36

