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Chapter 7

Concentration of Measure

Often we want to show that some random quantity is close to its mean with high
probability. Results of this kind are known as concentration inequalities. In
this chapter we consider some important concentration results such as Hoeffd-
ing’s inequality, Bernstein’s inequality and McDiarmid’s inequality. Then we
consider uniform bounds that guarantee that a set of random quantities are
simultaneously close to their means with high probabilty.

7.1 Introduction

Often we need to show that a random quantity is close to its mean. For example, later we
will prove Hoeffding’s inequality which implies that, if Z

1

, . . . , Zn are Bernoulli random
variables with mean µ then

P(|Z � µ| > ✏)  2e�2n✏2

where Z =

1

n

Pn
i=1

Zi.
More generally, we want a result of the form

P
✓

�

�f(Z
1

, . . . , Zn)� µn(f)
�

� > ✏

◆

< �n (7.1)

where µn(f) = E(f(Z
1

, . . . , Zn)) and �n ! 0 as n ! 1. Such results are known
as concentration inequalities and the phenomenon that many random quantities are close
to their mean with high probability is called concentration of measure. These results are
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98 Chapter 7. Concentration of Measure

fundamental for establishing performance guarantees of many algorithms. For statistical
learning theory, we will need uniform bounds of the form

P
✓

sup

f2F

�

�

�

�

f(Z
1

, . . . , Zn)� µn(f)

�

�

�

�

> ✏

◆

< �n (7.2)

over a class of functions F .

7.3 Example. To motivate the need for such results, consider empirical risk minimization
in classification. Suppose we have data (X

1

, Y
1

), . . ., (Xn, Yn) where Yi 2 {0, 1} and
Xi 2 Rd. Let h : Rd ! {0, 1} be a classifier. The training error is

bRn(h) =
1

n

n
X

i=1

I(Yi 6= h(Xi))

and the true classification error is

R(h) = P(Y 6= h(X)).

We would like to know if bR(h) is close to R(h) with high probability. This is precisely of
the form (7.1) with Zi = (Xi, Yi) and f(Z

1

, . . . , Zn) =
1

n

Pn
i=1

I(Yi 6= h(Xi)).

Now let H be a set of classifiers. Let bh minimize the training error bR(h) over H and
let h⇤ minimize the true error R(h) over H. Can we guarantee that the risk R(

bh) of the
selected classifier is close to the risk R(h⇤) of the best classifier? Let E denote the event
that suph2H | bRn(h)�R(h)|  ✏. When the event E holds, we have that

R(h⇤)  R(

bh)  bRn(
bh) + ✏  bRn(h⇤) + ✏  R(h⇤) + 2✏

where we used the following facts: h⇤ minimizes R, E holds, bh minimizes bRn, E holds and
h⇤ minimizes R. It follows that, when E holds, |R(

bh) � R(h⇤)|  2✏. Concentration of
measure is used to prove that E holds with high probability. 2

Besides classification, concentration inequalities are used for studying many other meth-
ods such as clustering, random projections and density estimation.
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Notation

If P is a probability measure and f is a function then we write

Pf = P (f) =

Z

f(z)dP (z) = E(f(Z)).

Given Z
1

, . . . , Zn, let Pn denote the empirical measure that puts mass 1/n at each
data point:

Pn(A) =

1

n

n
X

i=1

I(Zi 2 A)

where I(Zi 2 A) = 1 if Zi 2 A and I(Zi 2 A) = 0 otherwise. Then we write

Pnf = Pn(f) =

Z

f(z)dPn(z) =
1

n

n
X

i=1

f(Zi).

7.2 Basic Inequalities

7.2.1 Hoeffding’s Inequality

Suppose that Z has a finite mean and that P(Z � 0) = 1. Then, for any ✏ > 0,

E(Z) =

Z 1

0

z dP (z) �
Z 1

✏
z dP (z) � ✏

Z 1

✏
dP (z) = ✏P(Z > ✏) (7.4)

which yields Markov’s inequality:

P(Z > ✏)  E(Z)

✏
. (7.5)

An immediate consequence of Markov’s inequality is Chebyshev’s inequality

P(|Z � µ| > ✏) = P(|Z � µ|2 > ✏2)  E(Z � µ)2

✏2
=

�2

✏2
(7.6)

where µ = E(Z) and �2

= Var(Z). If Z
1

, . . . , Zn are iid with mean µ and variance �2

then, since Var(Zn) = �2/n, Chebyshev’s inequality yields

P(|Zn � µ| > ✏)  �2

n✏2
. (7.7)

While this inequality is useful, it does not decay exponentially fast as n increases. To
improve the inequality, we use Chernoff’s method: for any t > 0,

P(Z > ✏) = P(eZ > e✏) = P(etZ > et✏)  e�t✏E(etZ). (7.8)

We then minimize over t and conclude that:
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P(Z > ✏)  inf

t�0

e�t✏ E(etZ). (7.9)

To use the above result we need to bound the moment generating function E(etZ).

7.10 Lemma. Let Z be a mean µ random variable such that a  Z  b. Then, for any t,

E(etZ)  etµ+t2(b�a)2/8. (7.11)

Proof. For simplicity, assume that µ = 0. Since a  Z  b, we can write Z as a convex
combination of a and b, namely, Z = ↵b+ (1� ↵)a where ↵ = (Z � a)/(b� a). By the
convexity of the function y ! ety we have

etZ  ↵etb + (1� ↵)eta =

Z � a

b� a
etb +

b� Z

b� a
eta.

Take expectations of both sides and use the fact that E(Z) = 0 to get

EetZ  � a

b� a
etb +

b

b� a
eta = eg(u) (7.12)

where u = t(b � a), g(u) = ��u + log(1 � � + �eu) and � = �a/(b � a). Note that
g(0) = g0(0) = 0. Also, g00

(u)  1/4 for all u > 0. By Taylor’s theorem, there is a
⇠ 2 (0, u) such that

g(u) = g(0) + ug
0
(0) +

u2

2

g
00
(⇠) =

u2

2

g
00
(⇠)  u2

8

=

t2(b� a)2

8

.

Hence, EetZ  eg(u)  et
2
(b�a)2/8.

7.13 Theorem (Hoeffding). If Z
1

, Z
2

, . . . , Zn are independent with P(a  Zi 
b) = 1 and common mean µ then for any t > 0

P(|Zn � µ| > ✏)  2e�2n✏2/(b�a)2 (7.14)

where Zn =

1

n

Pn
i=1

Zi.
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Proof. For simplicity assume that E(Zi) = 0. Now we use the Chernoff method. For any
t > 0, we have, from Markov’s inequality, that

P

 

1

n

n
X

i=1

Zi � ✏

!

= P

 

t

n

n
X

i=1

Zi � t✏

!

= P
⇣

e(t/n)
P

n

i=1 Zi � et✏
⌘

 e�t✏E
⇣

e(t/n)
P

n

i=1 Zi

⌘

= e�t✏
Y

i

E(e(t/n)Zi

) (7.15)

 e�t✏e(t
2/n2

)

P

n

i=1(bi�a
i

)

2/8 (7.16)

where the last inequality follows from Lemma 7.10. Now we minimize the right hand side
over t. In particular, we set t = 4✏n2/

Pn
i=1

(bi � ai)2 and get P
�

Zn � ✏
�  e�2n✏2/c. By

a similar argument, P
�

Zn  �✏
�  e�2n✏2/c and the result follows.

7.17 Corollary. If Z
1

, Z
2

, . . . , Zn are independent with P(ai  Zi  bi) = 1 and common
mean µ, then, with probability at least 1� �,

|Zn � µ| 
s

c

2n
log

✓

2

�

◆

(7.18)

where c = 1

n

Pn
i=1

(bi � ai)2.

7.19 Corollary. If Z
1

, Z
2

, . . . , Zn are independent Bernoulli random variables with P(Zi =

1) = p then, for any ✏ > 0, P(|Zn � p| > ✏)  2e�2n✏2 . Hence, with probability at least

1� � we have that |Zn � p| 
q

1

2n log

�

2

�

�

.

7.20 Example (Classification). Returning to the classification problem, let h be a classifier
and let f(z) = I(y 6= h(x) where z = (x, y). Then Hoeffding’s inequality implies that
|R(h)� bRn(h)| 

q

1

2n log

�

2

�

�

with probability at least 1� �. 2

The following result extends Hoeffding’s inequality to more general functions f(z
1

, . . . , zn).
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7.21 Theorem (McDiarmid). Let Z
1

, . . . , Zn be independent random variables.
Suppose that

sup

z1,...,zn,z0
i

�

�

�

�

�

f(z
1

, . . . , zi�1

, zi, zi+1

, . . . , zn)� f(z
1

, . . . , zi�1

, z0i, zi+1

, . . . , zn)

�

�

�

�

�

 ci

(7.22)

for i = 1, . . . , n. Then

P

 

�

�

�

f(Z
1

, . . . , Zn)� E(f(Z
1

, . . . , Zn))

�

�

�

� ✏

!

 2 exp

✓

� 2✏2
Pn

i=1

c2i

◆

. (7.23)

Proof. Let Y = f(Z
1

, . . . , Zn) and µ = E(f(Z
1

, . . . , Zn)). Then

P

 

|Y � µ| � ✏

!

= P

 

Y � µ � ✏

!

+ P

 

Y � µ  �✏

!

.

We will bound the first quantity. The second follows similarly. Let Vi = E(Y |Z
1

, . . . , Zi)�
E(Y |Z

1

, . . . , Zi�1

). Then

f(Z
1

, . . . , Zn)� E(f(Z
1

, . . . , Zn)) =

n
X

i=1

Vi

and E(Vi|Z1

, . . . , Zi�1

) = 0. Using a similar argument as in Lemma 7.10, we have

E(etVi |Z
1

, . . . , Zi�1

)  et
2c2

i

/8. (7.24)

Now, for any t > 0,

P (Y � µ � ✏) = P

 

n
X

i=1

Vi � ✏

!

= P
⇣

et
P

n

i=1 Vi � et✏
⌘

 e�t✏E
⇣

et
P

n

i=1 Vi

⌘

= e�t✏E

 

et
P

n�1
i=1 V

iE

 

etVn

�

�

�

�

�

Z
1

, . . . , Zn�1

!!

 e�t✏et
2c2

n

/8E
⇣

et
P

n�1
i=1 V

i

⌘

· · ·  e�t✏et
2 Pn

i=1 c
2
i .

The result follows by taking t = 4✏/
Pn

i=1

c2i .

Remark: If f(z
1

, . . . , zn) =
1

n

Pn
i=1

zi then we get back Hoeffding’s inequality.

7.25 Example. Let X
1

, . . . , Xn ⇠ P and let Pn(A) =

1

n

Pn
i=1

I(Xi 2 A). Define �n ⌘
f(X

1

, . . . , Xn) = supA |Pn(A)� P (A)|. Changing one observation changes f by at most
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1/n. Hence,

P

 

|�n � E(�n)| > ✏

!

 2e�2n✏2 .

2

7.2.2 Sharper Inequalities

Hoeffding’s inequality does not use any information about the random variables except
the fact that they are bounded. If the variance of Xi is small, then we can get a sharper
inequality from Bernstein’s inequality. We begin with a preliminary result.

7.26 Lemma. Suppose that |X|  c and E(X) = 0. For any t > 0,

E(etX)  exp

⇢

t2�2

✓

etc � 1� tc

(tc)2

◆�

(7.27)

where �2

= Var(X).

Proof. Let F =

P1
r=2

tr�2E(Xr

)

r!�2 . Then,

E(etX) = E

 

1 + tx+

1
X

r=2

trXr

r!

!

= 1 + t2�2F  et
2�2F . (7.28)

For r � 2, E(Xr
) = E(Xr�2X2

)  cr�2�2 and so

F 
1
X

r=2

tr�2cr�2�2

r!�2

=

1

(tc)2

1
X

i=2

(tc)r

r!
=

etc � 1� tc

(tc)2
. (7.29)

Hence, E(etX)  exp

n

t2�2

etc�1�tc
(tc)2

o

.

7.30 Theorem (Bernstein). If P(|Xi|  c) = 1 and E(Xi) = µ then, for any ✏ > 0,

P(|Xn � µ| > ✏)  2 exp

⇢

� n✏2

2�2

+ 2c✏/3

�

(7.31)

where �2

=

1

n

Pn
i=1

Var(Xi).

Proof. For simplicity, assume that µ = 0. From Lemma 7.26,

E(etXi

)  exp

⇢

t2�2

i
etc � 1� tc

(tc)2

�

(7.32)
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where �2

i = E(X2

i ). Now,

P
�

Xn > ✏
�

= P

 

n
X

i=1

Xi > n✏

!

= P
⇣

et
P

n

i=1 Xi > etn✏
⌘

(7.33)

 e�tn✏E(et
P

n

i=1 Xi

) = e�tn✏
n
Y

i=1

E(etXi

) (7.34)

 e�tn✏
exp

⇢

nt2�2

etc � 1� tc

(tc)2

�

. (7.35)

Take t = (1/c) log(1 + ✏c/�2

) to get

P(Xn > ✏)  exp

⇢

�n�2

c2
h
⇣ c✏

�2

⌘

�

(7.36)

where h(u) = (1 + u) log(1 + u)� u. The results follows by noting that h(u) � u2/(2 +
2u/3) for u � 0.

A useful corollary is the following.

7.37 Lemma. Let X
1

, . . . , Xn be iid and suppose that |Xi|  c and E(Xi) = µ. With
probability at least 1� �,

|Xn � µ| 
r

2�2

log(1/�)

n
+

2c log(1/�)

3n
. (7.38)

In particular, if � p2c2 log(1/�)/(9n), then with probability at least 1� �,

|Xn � µ|  C

n
(7.39)

where C = 4c log
�

1

�

�

/3.

We also get a very specific inequality in the special case that X is Gaussian.

7.40 Theorem. Suppose that X
1

, . . . , Xn ⇠ N(µ,�2

).

P(|Xn � µ| > ✏)  exp

✓

�n✏2

2�2

◆

. (7.41)

Proof. Let X ⇠ N(0, 1) with density �(x) = (2⇡)�1/2e�x2/2 and distribution function
�(x) =

R x
�1 �(s)ds. For any ✏ > 0,

P(X > ✏) =

Z 1

✏
�(s)ds  1

✏

Z 1

✏
s�(s)ds = �1

✏

Z 1

✏
�0
(s)ds =

�(✏)

✏
 1

✏
e�✏2/2.

(7.42)
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By symmetry we have that

P(|X| > ✏)  2

✏
e�✏2/2.

Now suppose that X
1

, . . . , Xn ⇠ N(µ,�2

). Then Xn = n�1

Pn
i=1

Xi ⇠ N(µ,�2/n).
Let Z ⇠ N(0, 1). Then,

P(|Xn � µ| > ✏) = P
⇣p

n|Xn � µ|/� >
p
n✏/�

⌘

= P
⇣

|Z| > p
n✏/�

⌘

(7.43)

 2�

✏
p
n
e�n✏2/(2�2

)  e�n✏2/(2�2
) (7.44)

for all large n.

7.2.3 Bounds on Expected Values

Suppose we have an exponential bound on P(Xn > ✏). In that case we can bound E(Xn)

as follows.

7.45 Theorem. Suppose that Xn � 0 and that for every ✏ > 0,

P(Xn > ✏)  c
1

e�c2n✏2 (7.46)

for some c
2

> 0 and c
1

> 1/e. Then, E(Xn) 
q

C
n where C = (1 + log(c

1

))/c
2

.

Proof. Recall that for any nonnegative random variable Y , E(Y ) =

R1
0

P(Y � t)dt.
Hence, for any a > 0,

E(X2

n) =

Z 1

0

P(X2

n � t)dt =

Z a

0

P(X2

n � t)dt+

Z 1

a
P(X2

n � t)dt  a+

Z 1

a
P(X2

n � t)dt.

Equation (7.46) implies that P(Xn >
p
t)  c

1

e�c2nt. Hence,

E(X2

n)  a+

Z 1

a
P(X2

n � t)dt = a+

Z 1

a
P(Xn � p

t)dt  a+ c
1

Z 1

a
e�c2ntdt = a+

c
1

e�c2na

c
2

n
.

Set a = log(c
1

)/(nc
2

) and conclude that

E(X2

n) 
log(c

1

)

nc
2

+

1

nc
2

=

1 + log(c
1

)

nc
2

.

Finally, we have E(Xn) 
p

E(X2

n) 
q

1+log(c1)
nc2

.
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Now we consider bounding the maximum of a set of random variables.

7.47 Theorem. Let X
1

, . . . , Xn be random variables. Suppose there exists � > 0 such that
E(etXi

)  et�
2/2 for all t > 0. Then

E
✓

max

1in
Xi

◆

 �
p

2 log n. (7.48)

Proof. By Jensen’s inequality,

exp

⇢

tE
✓

max

1in
Xi

◆�

 E
✓

exp

⇢

t max

1in
Xi

�◆

= E
✓

max

1in
exp {tXi}

◆


n
X

i=1

E (exp {tXi})  net
2�2/2.

Thus, E (max

1inXi)  logn
t +

t�2

2

. The result follows by setting t =
p
2 log n/�.

7.3 Uniform Bounds

7.3.1 Binary Functions

A binary function on a space Z is a function f : Z ! {0, 1}. Let F be a class of binary
functions on Z . For any z

1

, . . . , zn define

Fz1,...,zn =

n

(f(z
1

), . . . , f(zn)) : f 2 F
o

. (7.49)

Fz1,...,zn is a finite collection of binary vectors and |Fz1,...,zn |  2

n. The set Fz1,...,zn is
called the projection of F onto z

1

, . . . , zn.

7.50 Example. Let F = {ft : t 2 R} where ft(z) = 1 if z > t and ft(z) = 0 of z  t.
Consider three real numbers z

1

< z
2

< z
3

. Then

Fz1,z2,z3 =

n

(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)
o

.

2

Define the growth function or shattering number by

s(F , n) = sup

z1,...,zn

�

�Fz1,...,zn

�

�. (7.51)
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A binary function f can be thought of as an indicator function for a set, namely, A =

{z : f(x) = 1}. Conversely, any set can be thought of as a binary function, namely, its
indicator function IA(z). We can therefore re-express the growth function in terms of sets.
If A is a class of subsets of Rd then s(A, n) is defined to be s(F , n) where F = |{IA :

A 2 A}| is the set of indicator functions and then s(A, n) is again called the shattering
number. It follows that

s(A, n) = max

F
s(A, F )

where the maximum is over all finite sets of size n and s(A, F ) = |{A \ F : A 2 A|
denotes the number of subsets of F picked out by A. We say that a finite set F of size n is
shattered by A if s(A, F ) = 2

n.

7.52 Theorem. Let A and B be classes of subsets of Rd.

1. s(A, n+m)  s(A, n)s(A,m).
2. If C = ASB then s(C, n)  s(A, n) + s(B, n)
3. If C = {ASB : A 2 A, B 2 B} then s(C, n)  s(A, n)s(B, n).
4. If C = {ATB : A 2 A, B 2 B} then s(C, n)  s(A, n)s(B, n).

Proof. See exercise 10.

VC Dimension. Recall that a finite set F of size n is shattered by A if s(A, F ) = 2

n. The
VC dimension (named after Vapnik and Chervonenkis) of A is the size of the largest set
that can be shattered by A.

The VC dimension of a class of set A is

VC(A) = sup

n

n : s(A, n) = 2

n
o

. (7.53)

The VC dimension of a class of binary functions F is

VC(F) = sup

n

n : s(F , n) = 2

n
o

. (7.54)

If the VC dimension is finite, then the growth function cannot grow too quickly. In
fact, there is a phase transition: s(F , n) = 2

n for n < d and then the growth switches to
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polynomial.

7.55 Theorem (Sauer’s Theorem). Suppose that F has finite VC dimension d. Then,

s(F , n) 
d
X

i=0

✓

n

i

◆

(7.56)

and for all n � d,

s(F , n) 
⇣en

d

⌘d
. (7.57)

Proof. When n = d = 1, (7.56) clearly holds. We proceed by induction. Suppose that
(7.56) holds for n � 1 and d � 1 and also that it holds for n � 1 and d. We will show
that it holds for n and d. Let h(n, d) =

Pd
i=0

�n
i

�

. We need to show that VC(F)  d
implies that s(F , n)  h(n, d). Let F

1

= {z
1

, . . . , zn} and F
2

= {z
2

, . . . , zn}. Let
F
1

= {(f(z
1

), . . . , f(zn) : f 2 F} and F
2

= {(f(z
2

), . . . , f(zn) : f 2 F}. For
f, g 2 F , write f ⇠ g if g(z

1

) = 1� f(z
1

) and g(zj) = f(zj) for j = 2, . . . , n. Let

G =

n

f 2 F : there exists g 2 F such that g ⇠ f
o

.

Define F
3

= {(f(z
2

), . . . , f(zn)) : f 2 G}. Then |F
1

| = |F
2

| + |F
3

|. Note that
VC(F

2

)  d and VC(F
3

)  d � 1. The latter follows since, if F
3

shatters a set, then we
can add z

1

to create a set that is shattered by F
1

. By assumption |F
2

|  h(n � 1, d) and
|F

3

|  h(n� 1, d� 1). Hence,

|F
1

|  h(n� 1, d) + h(n� 1, d� 1) = h(n, d).

Thus, s(F , n)  h(n, d) which proves (7.56).
To prove (7.57), we use the fact that n � d and so:

d
X

i=0

✓

n

i

◆


⇣n

d

⌘d
d
X

i=0

✓

n

i

◆✓

d

n

◆i


⇣n

d

⌘d
n
X

i=0

✓

n

i

◆✓

d

n

◆i


⇣n

d

⌘d
✓

1 +

d

n

◆n


⇣n

d

⌘d
ed.

The VC dimensions of some common examples are summarized in Table 7.1.
Now we can extend the concentration inequalities to hold uniformly over sets of binary

functions. We start with finite collections.

7.58 Theorem. Suppose that F = {f
1

, . . . , fN} is a finite set of binary functions. Then,
with probability at least 1� �,

sup

f2F
|Pn(f)� P (f)| 

s

2

n
log

✓

2N

�

◆

. (7.59)
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Class A VC dimension VA
A = {A

1

, . . . , AN} log

2

N
Intervals [a, b] on the real line 2
Discs in R2 3
Closed balls in Rd d+ 2

Rectangles in Rd
2d

Half-spaces in Rd d+ 1

Convex polygons in R2 1

Table 7.1. The VC dimension of some classes A.

Proof. It follows from Hoeffding’s inequality that, for each f 2 F , P (|Pn(f)� P (f)| > ✏) 
2e�n✏2/2. Hence,

P
✓

max

f2F
|Pn(f)� P (f)| > ✏

◆

= P (|Pn(f)� P (f)| > ✏ for some f 2 F)


N
X

j=1

P (|Pn(fj)� P (fj)| > ✏)  2Ne�n✏2/2.

The conclusion follows.

Now we consider results for the case where F is infinite. We begin with an important
result due to Vapnik and Chervonenkis.

7.60 Theorem (Vapnik and Chervonenkis). Let F be a class of binary functions.
For any t >

p

2/n,

P

 

sup

f2F
|(Pn � P )f | > t

!

 4 s(F , 2n)e�nt2/8 (7.61)

and hence, with probability at least 1� �,

sup

f2F
|Pn(f)� P (f)| 

s

8

n
log

✓

4 s(F , 2n)

�

◆

. (7.62)

Before proving the theorem, we need the symmetrization lemma. Let Z 0
1

, . . . , Z 0
n denote

a second independent sample from P . Let P 0
n denote the empirical distribution of this
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second sample. The variables Z 0
1

, . . . , Z 0
n are called a ghost sample.

7.63 Lemma (Symmetrization). For all t >
p

2/n,

P

 

sup

f2F
|(Pn � P )f | > t

!

 2P

 

sup

f2F
|(Pn � P 0

n)f | > t/2

!

. (7.64)

Proof. Let fn 2 F maximize |(Pn �P )f |. Note that fn is a random function as it depends
on Z

1

, . . . , Zn. We claim that if |(Pn � P )fn| > t and |(P � P 0
n)fn|  t/2 then |(P 0

n �
Pn)fn| > t/2. This follows since

t < |(Pn � P )fn| = |(Pn � P 0
n + P 0

n � P )fn|  |(Pn � P 0
n)fn|+ |(P 0

n � P )fn|
 |(Pn � P 0

n)fn|+
t

2

and hence |(P 0
n � Pn)fn| > t/2. So

I(|(Pn � P )fn| > t) I(|(P � P 0
n)fn|  t/2) = I(|(Pn � P )fn| > t, |(P � P 0

n)fn|  t/2)

 I(|(P 0
n � Pn)fn| > t/2).

Now take the expected value over Z 0
1

, . . . , Z 0
n and conclude that

I(|(Pn � P )fn| > t)P0
(|(P � P 0

n)fn|  t/2)  P0
(|(P 0

n � Pn)fn| > t/2). (7.65)

By Chebyshev’s inequality,

P0
(|(P � P 0

n)fn|  t/2) � 1� 4Var

0
(fn)

nt2
� 1� 1

nt2
� 1

2

.

(Here we used the fact that W 2 [0, 1] implies that Var(W )  1/4.) Inserting this into
(7.65) we have that

I(|(Pn � P )fn| > t)  2P0
(|(P 0

n � Pn)fn| > t/2).

Thus,
I
⇣

sup

f2F
|(Pn � P )f | > t

⌘

 2P0
⇣

sup

f2F
|(P 0

n � Pn)f | > t/2
⌘

.

Now take the expectation over Z
1

, . . . , Zn to conclude that

P
⇣

sup

f2F
|(Pn � P )f | > t

⌘

 2P
⇣

sup

f2F
|(P 0

n � Pn)f | > t/2
⌘

.

The importance of symmetrization is that we have replaced (Pn �P )f , which can take
any real value, with (Pn � P 0

n)f , which can take only finitely many values. Now we prove
the Vapnik-Chervonenkis theorem.
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Proof. Let V = FZ0
1,...,Z

0
n

,Z1,...,Zn

. For any v 2 V write (P 0
n�Pn)v to mean (1/n)(

Pn
i=1

vi�
P

2n
i=n+1

vi). Using the symmetrization lemma and Hoeffding’s inequality,

P(sup
f2F

|(Pn � P )f | > t)  2P(sup
f2F

|(P 0
n � Pn)f | > t/2)

= 2P(max

v2V
|(P 0

n � Pn)v| > t/2)

 2

X

v2V
P(|(P 0

n � Pn)v| > t/2)

 2

X

v2V
2e�nt2/8  4 s(F , 2n)e�nt2/8.

Recall that, for a class with finite VC dimension d, s(F , n)  (en/d)d. hence we have:

7.66 Corollary. If F has finite VC dimension d, then, with probability at least 1� �,

sup

f2F
|Pn(f)� P (f)| 

s

8

n

✓

log

✓

4

�

◆

+ d log
⇣ne

d

⌘

◆

. (7.67)

7.3.2 Radamacher Complexity

A more general way to develop uniform bounds is to use a quantity called Rademacher
complexity. In this section we assume that F is a class of functions f such that 0  f(z) 
1.

Random variables �
1

, . . . ,�n are called Rademacher random variables if they are
independent, identically distributed and P(�i = 1) = P(�i = �1) = 1/2. Define
the Rademacher complexity of F by

Radn(F) = E

 

sup

f2F

�

�

�

�

�

1

n

n
X

i=1

�if(Zi)

�

�

�

�

�

!

. (7.68)

Define the empirical Rademacher complexity of F by

Radn(F , Zn
) = E�

 

sup

f2F

�

�

�

�

�

1

n

n
X

i=1

�if(Zi)

�

�

�

�

�

!

(7.69)

where Zn
= (Z

1

, . . . , Zn) and the expectation is over � only.
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Intuitively, Radn(F) is large if we can find functions f 2 F that “look like” random
noise, that is, they are highly correlated with �

1

, . . . ,�n. Here are some properties of the
Rademacher complexity.

7.70 Lemma.

1. If F ⇢ G then Radn(F , Zn
)  Radn(G, Zn

).

2. Let conv(F) denote the convex hull of F . Then Radn(F , Zn
) = Radn(conv(F), Zn

).

3. For any c 2 R, Radn(cF , Zn
) = |c|Radn(F , Zn

).

4. Let g : R ! R be such that g(0) = 0 and, |g(y) � g(x)|  L|x � y| for all x, y.
Then Radn(g � F , Zn

)  2LRadn(F , Zn
).

Proof. See Exercise 8.

7.71 Theorem. With probability at least 1� �,

sup

f2F
|Pn(f)� P (f)|  2Radn(F) +

s

1

2n
log

✓

2

�

◆

(7.72)

and

sup

f2F
|Pn(f)� P (f)|  2Radn(F , Zn

) +

s

4

n
log

✓

2

�

◆

. (7.73)

Proof. The proof has two steps. First we show that supf2F |Pn(f) � P (f)| is close to its
mean. Then we bound the mean.
Step 1: Let g(Z

1

, . . . , Zn) = supf2F |Pn(f)�P (f)|. If we change Zi to some other value
Z 0
i then |g(Z

1

, . . . , Zn)� g(Z
1

, . . . , Z 0
i, . . . , Zn)|  1

n . By McDiarmid’s inequality,

P (|g(Z
1

, . . . , Zn)� E[g(Z
1

, . . . , Zn)]| > ✏)  2 e�2n✏2 .

Hence, with probability at least 1� �,

g(Z
1

, . . . , Zn)  E[g(Z
1

, . . . , Zn)] +

s

1

2n
log

✓

2

�

◆

. (7.74)
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Step 2: Now we bound E[g(Z
1

, . . . , Zn)]. Once again we introduce a ghost sample Z 0
1

, . . . , Z 0
n

and Rademacher variables �
1

, . . . ,�n, Note that P (f) = E0P 0
n(f). Also note that

1

n

n
X

i=1

(f(Z 0
i)� f(Zi))

d
=

1

n

n
X

i=1

�i(f(Z
0
i)� f(Zi))

where d
= means “equal in distribution.” Hence,

E[g(Z
1

, . . . , Zn)] = E

"

sup

f2F
|P (f)� Pn(f)|

#

= E

"

sup

f2F
|E0

(P 0
n(f)� Pn(f))|

#

 EE0
"

sup

f2F
|P 0

n(f)� Pn(f)|
#

= EE0
"

sup

f2F

�

�

�

�

�

1

n

n
X

i=1

(f(Z 0
i)� f(Zi))

�

�

�

�

�

#

= EE0
"

sup

f2F

�

�

�

�

�

1

n

n
X

i=1

�i(f(Z
0
i)� f(Zi))

�

�

�

�

�

#

 E0
"

sup

f2F

�

�

�

�

�

1

n

n
X

i=1

�i f(Z
0
i)

�

�

�

�

�

#

+ E

"

sup

f2F

�

�

�

�

�

1

n

n
X

i=1

�i f(Zi)

�

�

�

�

�

#

= 2Radn(F).

Combining this bound with (7.74) proves the first result.
To prove the second result, let a(Z

1

, . . . , Zn) = Radn(F , Zn
) and note that a(Z

1

, . . . , Zn)

changes by at most 1/n if we change one observation. McDiarmid’s inequality implies that
|Radn(F , Zn

)�Radn(F)| 
q

1

2n log

�

2

�

�

with probability at least 1� �. Combining this
with the first result yields the second result.

In the special case where F is a class of binary functions, we can relate Radn(F) to
shattering numbers.

7.75 Theorem. Let F be a set of binary functions. Then, for all n,

Radn(F) 
r

2 log s(F , n)

n
. (7.76)

Proof. Let D = {Z
1

, . . . , Zn}. Define S(f,�) = |n�1

Pn
i=1

�if(Zi)| and S(v,�) =

|n�1

Pn
i=1

�ivi|. Now, �1  �if(Zi)  1. Note that

Radn(F) = E

 

sup

f2F
S(f,�)

!

= E

 

E

 

sup

f2F
S(f,�)

�

�

�

�

�

D
!!

= E

 

E

 

max

v2F
Z1,...,Zn

S(v,�)

�

�

�

�

�

D
!!

.

Now, �ivi/n has mean 0 and �1/n  �ivi  1/n so, by Lemma 7.10, E(et�i

v
i

) 
et

2/(2n2
) for any t > 0. From Theorem 7.47,

E

 

max

v2F
Z1,...,Zn

S(v,�)

�

�

�

�

�

D
!


r

2 log |Vn|
n

=

r

2 log s(F , n)

n
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and the result follows.

In fact, there is a sharper relationship between Radn(F) and VC dimension.

7.77 Theorem. Suppose that F has finite VC dimension d. There exists a universal constant
C > 0 such that Radn(F)  C

p

d/n.

For a proof, see, for example, Devroye and Lugosi (2001).
Combining these results with Theorem 7.75 and Theorem 7.77 we get the following

result.

7.78 Corollary. With probability at least 1� �,

sup

f2F
|Pn(f)� P (f)| 

r

8 log s(F , n)

n
+

s

1

2n
log

✓

2

�

◆

. (7.79)

If F has finite VC dimension d then, with probability at least 1� �,

sup

f2F
|Pn(f)� P (f)|  2C

r

d

n
+

s

1

2n
log

✓

2

�

◆

. (7.80)

7.3.3 Bounds For Classes of Real Valued Functions

Suppose now that F is a class of real-valued functions. There are various methods to
obtain uniform bounds. We consider two such methods: covering numbers and bracketing
numbers.

If Q is a measure and p � 1, define

kfkL
p

(Q)

=

✓

Z

|f(x)|pdQ(x)

◆

1/p

.

When Q is Lebesgue measure we simply write kfkp. We also define

kfk1 = sup

x
|f(x)|.

A set C = {f
1

, . . . , fN} is an ✏-cover of F (or an ✏-net) if, for every f 2 F there exists a
fj 2 C such that kf � fjkL

p

(Q)

< ✏.
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7.81 Definition. The size of the smallest ✏-cover is called the covering number and
is denoted by Np(✏,F , Q). The uniform covering number is defined by

Np(✏,F) = sup

Q
Np(✏,F , Q)

where the supremum is over all probability measures Q.

Now we show how covering numbers can be used to obtain bounds.

7.82 Theorem. Suppose that kfk1  B for all f 2 F . Then,

P
⇣

sup

f2F
|Pn(f)� P (f)| > ✏

⌘

 2N(✏/3,F , L1)e�n✏2/(18B2
).

Proof. Let N = N(✏/3,F , L1) and let C = {f
1

, . . . , fN} be an ✏/3 cover. For any f 2 F
there is an fj 2 C such that kf � fjk1  ✏/3. So

|Pn(f)� P (f)|  |Pn(f)� Pn(fj)|+ |Pn(fj)� P (fj)|+ |P (fj)� P (f)|
 |Pn(fj)� P (fj)|+ 2✏

3

.

Hence,

P

 

sup

f2F
|Pn(f)� P (f)| > ✏

!

 P
✓

max

f
j

2C
|Pn(fj)� P (fj)|+ 2✏

3

> ✏

◆

= P
✓

max

f
j

2C
|Pn(fj)� P (fj)| > ✏

3

◆


N
X

j=1

P
⇣

|Pn(fj)� P (fj)| > ✏

3

⌘

 2N(✏/3,F , L1)e�n✏2/(18B2
)

from the union bound and Hoeffding’s inequality.

The VC dimension can be used to bound covering numbers.

7.83 Theorem. Let F be a class of functions f : Rd ! [0, B] with V C dimension d such
that 2  d < 1. Let p � 1 and 0 < ✏ < B/4. Then

Np(✏,F)  3

✓

2eBp

✏p
log

✓

3eBp

ep

◆◆d

.

(For a proof, see Devroye, Gyorfi and Lugosi (1996).) However, there are cases where
the covering numbers are finite and yet the VC dimension is infinite.
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Bracketing Numbers. Another measure of complexity is the bracketing number. Given a
pair of functions ` and u with `  u, we define the bracket

[`, u] =
n

h : `(x)  h(x)  u(x) for all x
o

.

A collection of pairs of functions (`
1

, u
1

), . . . , (`N , uN ) is a bracketing of F if,

F ⇢
B
[

j=1

[`j , uj ].

The collection is an ✏-Lq(P )-bracketing if it is a bracketing and if

 

Z

|uj(x)� `j(x)|qdP (x)

!

1
q

 ✏

for j = 1, . . . , N . The bracketing number N
[ ]

(✏,F , Lq(P )) is the size of the smallest ✏
bracketing. Bracketing number are a little larger than covering numbers but provide stronger
control of the class F .

7.84 Theorem.

1. Np(✏,F , P )  N
[ ]

(2✏,F , Lp(P )).

2. Let X
1

, . . . , Xn ⇠ P . If Suppose that N
[ ]

(✏,F , L
1

(P )) < 1 for all ✏ > 0. Then,
for every � > 0,

P

 

sup

f2F
|Pn(f)� P (f)| > �

!

! 0 (7.85)

as n ! 1.

Proof. See exercise 11.

7.86 Theorem. Let A = supf

R |f |dP and B = supf kfk1. Then

Pn

 

sup

f2F
|Pn(f)� P (f)| > ✏

!

 2N
[ ]

(✏/8,F , L
1

(P )) exp

✓

� 3n✏2

4B[6A+ ✏]

◆

+2N
[ ]

(✏/8,F , L
1

(P )) exp

✓

� 3n✏

40B

◆

.

Hence, if ✏  2A/3,

Pn

 

sup

f2F
|Pn(f)� P (f)| > ✏

!

 4N
[ ]

(✏/8,F , L
1

(P )) exp

✓

� 96n✏2

76AB

◆

. (7.87)
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Proof. (This proof follows Yukich (1985).) For notational simplicity in the proof, let us
write, N(✏) ⌘ N

[ ]

(✏,F , L
1

(P )). Define zn(f) =
R

f(dPn�dP ). Let [`
1

, u
1

], . . . , [`N , uN ]

be a minimal ✏/8 bracketing. We may assume that for each j, kujk  B and k`jk  B.
(Otherwise, we simply truncate the brackets.) For each j, choose some fj 2 [`j , uj ].

Consider any f 2 F and let [`j , uj ] denote a bracket containing f . Then

|zn(f)|  |zn(fj)|+ |zn(f � fj)|.
Furthermore,

|zn(f � fj)| = |
Z

(f � fj)(dPn � dP )| 
Z

|f � fj | (dPn + dP ) 
Z

|uj � `j | (dPn + dP )

=

Z

|uj � `j | (dPn � dP ) + 2

Z

|uj � `j |dP

=

Z

|uj � `j | (dPn � dP ) + 2

⇣ ✏

8

⌘

= zn(|uj � `j |) + ✏

4

.

Hence,
|zn(f)|  |zn(fj)|+

h

[zn(|uj � `j |) + ✏

4

i

.

Thus,

Pn
(sup

f2F
|zn(f)| > ✏)  Pn

(max

j
|zn(fj)| > ✏/2) + Pn

(max

j
|zn(|uj � `j |)|+ ✏/4 > ✏/2)

 Pn
(max

j
|zn(fj)| > ✏/2) + Pn

(max

j
|zn(|uj � `j |)| > ✏/4).

Now
Var(fj) 

Z

f2

j dP =

Z

|fj | |fj |dP  kfjk1
Z

|fj |dP  AB.

Hence, by Bernstein’s inequality,

Pn
⇣

max

j
|zn(fj)| > ✏/2

⌘

 2

N
X

j=1

exp

✓

�1

2

n(✏/2)2

AB +B✏/6

◆

 2N(✏/8) exp

✓

� 3

4B

n✏2

6A+ ✏

◆

.

Similarly,

Var(|uj � `j |) 
Z

(uj � `j)
2dP 

Z

|uj � `j | |uj � `j |dP

 kuj � `jk1
Z

|uj � `j |dP  2B
✏

8

=

B✏

4

.

Also, kuj � `jk1  2B. Hence, by Bernstein’s inequality,

Pn
⇣

max

j
zn(|uj � `j |) > ✏/4

⌘

 2

N
X

j=1

exp

✓

�1

2

n(✏/4)2

2B ✏
4

+ 2B(✏/4)/3

◆

 2N(✏/8) exp

✓

� 3n✏

40B

◆

.
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The following result is from Example 19.7 from van der Vaart (1998).

7.88 Lemma. Let F = {f✓ : ✓ 2 ⇥} where ⇥ is a bounded subset of Rd. Suppose there
exists a function m such that, for every ✓

1

, ✓
2

,

|f✓1(x)� f✓2(x)|  m(x) k✓
1

� ✓
2

k.

Then,

N
[ ]

(✏,F , Lq(P )) 
 

4

p
d diam(⇥)

R |m(x)|qdP (x)

✏

!d

.

Proof. Let
� =

✏

4

p
d
R |m(x)|qdP (x)

.

We can cover ⇥ with (at most) N = (diam(⇥)/�)d cubes C
1

, . . . , CN of size �. Let
c
1

, . . . , cN denote the centers of the cubes. Note that Cj ⇢ B(xj ,
p
d�) where B(x, r)

denotes a ball of radius r centered at x. Hence,
S

j B(cj ,
p
d�) covers ⇥. Let ✓j be the

projection of cj onto ⇥. Then
S

j B(✓j , 2�
p
d) covers ⇥. In summary, for every ✓ 2 ⇥

there is a ✓j 2 {✓
1

, . . . , ✓N} such that

k✓ � ✓jk  2�
p
d  ✏

2

R |m(x)|qdP (x)
.

Define `j = f✓
j

� ✏m(x)/2 and uj = f✓
j

+ ✏m(x)/2. We claim that the brackets
[`
1

, u
1

], . . . , [`N , uN ] cover F . To see this, choose any f✓ 2 F . Let ✓j be the closest
element {✓

1

, . . . , ✓N} to ✓. Then

f✓(x) = f✓
j

(x) + f✓(x)� f✓
j

(x)  f✓
j

(x) + |f✓(x)� f✓
j

(x)|

 f✓
j

(x) +m(x)k✓ � ✓jk  f✓
j

(x) +
m(x)✏

2

R |m(x)|qdP (x)
= uj(x).

By a similar argument, f✓(x) � `j(x). Also,
R

(uj � `j)qdP  ✏q. Finally, note that the
number of brackets is

N = (diam(⇥)/�)d =

 

4

p
d diam(⇥)

R |m(x)|qdP (x)

✏

!d

.
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7.89 Example (Density Estimation). Let X
1

, . . . , Xn ⇠ P where P has support on a
compact set X ⇢ Rd. Consider the kernel density estimator bph(x) =

1

hd

P

iK(kx �
Xik/h) where K is a smooth symmetric function and h > 0 is a bandwidth. We study bph
in detail in the chapter on nonparametric density estimation. Here we bound the sup norm
distance between bph(x) and is mean ph(x) = E(bph(x)).

7.90 Theorem. Suppose that K(x)  K(0) for all x and that

|K(y)�K(x)|  Lkx� yk

for all x, y. Then

Pn
⇣

sup

x
|bp(x)�ph(x)| > ✏

⌘

 2

 

32L
p
d diam(X )

hd+1✏

!d


exp

✓

� 3n✏2hd

4K(0)(6 + ✏)

◆

+ exp

✓

� 3n✏hd

40K(0)

◆�

.

Hence, if ✏  2/3 then

Pn
⇣

sup

x
|bp(x)� ph(x)| > ✏

⌘

 4

 

32L
p
d diam(X )

hd+1✏

!d

exp

✓

� 3n✏2hd

28K(0)

◆

.

Proof. Let F = {fx : x 2 X} where fx(u) = h�dK(kx�uk/h). We apply Theorem 7.86
with A = 1 and B = K(0)/hd. We need to bound N

[ ]

(✏,F , L
1

(P ). Now

|fx(u)� fy(u)| =

1

hd

�

�

�

�

K

✓kx� uk
h

◆

�K

✓ky � uk
h

◆

�

�

�

�

 L

hd+1

�

�

�

�

�

kx� uk � ky � uk
�

�

�

�

�

 L

hd+1

kx� yk.

Apply Lemma 7.88 with m(x) = L/hd+1. Thus implies that

N
[ ]

(✏,F , L
1

(P )) 
 

4L
p
d diamX
hd+1✏

!d

.

Hence, Theorem 7.86 yields,

Pn
⇣

sup

x
|bp(x)�ph(x)| > ✏

⌘

 2

 

32L
p
d diam(X )

hd+1✏

!d


exp

✓

� 3n✏2hd

4K(0)(6 + ✏)

◆

+ exp

✓

� 3n✏hd

40K(0)

◆�

.
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7.91 Corollary. Suppose that h = hn = (Cn/n)⇠ where ⇠ � 1/d and Cn = (log n)a for
some a � 0. Then

Pn
⇣

sup

x
|bp(x)�ph(x)| > ✏

⌘

 4

 

32L
p
d diam(X )

✏

!d
✓

n

Cn

◆⇠(d+1)

exp

 

�3✏2C⇠d
n n1�d⇠

28K(0)

!

.

Hence, for sufficiently large n,

Pn
(sup

x
|bp(x)� ph(x)| > ✏)  c

1

exp

⇣

�c
2

✏2C⇠d
n n1�d⇠

⌘

.

Note that the proofs of the last two results did not depend on P . Hence, if P is the set
of distribution with support on X , we have that

sup

P2P
Pn
⇣

sup

x
|bp(x)� ph(x)| > ✏

⌘

 c
1

exp

⇣

�c
2

✏2C⇠d
n n1�d⇠

⌘

.

2

7.92 Example. Here are some further examples. In exercise 12 you are asked to prove
these results.

1. Let F be the set of cdf’s on R. Then N
[ ]

(✏,F , L
2

(P ))  2/✏2.
2. (Sobolev Spaces.) Let F be the functions f on [0, 1] such that kfk1  1, the (k�1)

derivative is absolutely continuous and
R

(f (k)
(x))2dx  1. Then, there is a constant

C > 0 such that

N
[ ]

(✏,F , L1(P ))  exp

"

C

✓

1

✏

◆

1
k

#

.

3. Let F be the set of monotone functions f on R such that kfk1  1. Then, there is a
constant C > 0 such that

N
[ ]

(✏,F , L1(P ))  exp



C

✓

1

✏

◆�

.

2

7.4 Additional results

7.4.1 Talagrand’s Inequality

One of the most important developments in concentration of measure is Talagrand’s in-
equality (Talagrand 1994, 1996) which can be thought of as a uniform version of Bernstein’s
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inequality. Let F be a class of functions and define Zn = supf2F |Pn(f)|.

7.93 Theorem. Let v � E supf2F
1

n

Pn
i=1

f2

(Xi) and U � supf2F kfk1. There exists a
universal constant K such that

P

 

�

�

�

�

�

sup

f2F
|Pn(f)|� E(sup

f2F
|Pn(f)|)

�

�

�

�

�

> t

!

 K exp

⇢

� nt

KU
log

✓

1 +

tU

v

◆�

. (7.94)

To make use of Talagrand’s inequality, we need to estimate E(supf2F |Pn(f)|).

7.95 Theorem (Giné and Guillou, 2001). Suppose that there exist A and d such that

sup

P
N(✏, L

2

(P ), ✏a)  (A/✏)d

where a = kFkL2(P )

and F (x) = supf2F |f(x)|. Then

E(sup
f2F

|Pn(f)|)  C

 

dU log

✓

AU

�

◆

+

p
dn�

s

log

✓

AU

�

◆

!

for some C > 0.

Combining these results gives Giné and Guillou’s version of Talagrand’s inequality:

7.96 Theorem. Let v � E supf2F
1

n

Pn
i=1

f2

(Xi) and U � supf2F kfk1. There exists a
universal constant K such that

P

 

sup

f2F
|Pn(f)� P (f)| > t

!

 K exp

(

� nt

KU
log

 

1 +

tU

K(

p
n� + U

p

log(AU/�))2

!)

(7.97)

whenever

t � C

n

 

U log

✓

AU

�

◆

+

p
n�

s

log

✓

AU

�

◆

!

.

7.98 Example. Density Estimation. Gine and Guillou (2002) apply Talagrand’s inequality
to get bounds on density estimators. Let X

1

, . . . , Xn ⇠ P where Xi 2 Rd and suppose that
P has density p. The kernel density estimator of p with bandwidth h is

bph(x) =
1

n

n
X

i=1

K

✓kx�Xik
h

◆

.

Applying the results above to bph(x) we see that (under very weak conditions on K) for all
small ✏ and large n,

P( sup
x2Rd

|bph(x)� ph(x)| > ✏)  c
2

e�c2nhd✏2 (7.99)
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where ph(x) = E(bph(x)) and c
1

, c
2

are positive constants. This agrees with the earlier
result Theorem 7.90. 2

7.4.2 A Bound on Expected Values

Now we consider bounding the expected value of the maximum of an infinite set of random
variables. Let {Xf : f 2 F} be a collection of mean 0 random variables indexed by f 2 F
and let d be a metric on F . Let N(F , r) be the covering number of F , that is, the smallest
number of balls of radius r required to cover F . Say that {Xf : f 2 F} is sub-Gaussian
if, for every t > 0 and every f, g 2 F ,

E(et(Xf

�X
g

)

)  et
2d2(f,g)/2.

We say that {Xf : f 2 F} is sample continuous if, for every sequence f
1

, f
2

, . . . ,2 F such
that d(fi, f) ! 0 for some f 2 F , we have that Xf

i

! Xf a.s. The following theorem is
from Cesa-Bianchi and Lugosi (2006) and is a variation of a theorem due to Dudley (1978).

7.100 Theorem. Suppose that {Xf : f 2 F} is sub-Gaussian and sample continuous.
Then

E

 

sup

f2F
Xf

!

 12

Z D/2

0

p

logN(F , ✏)d✏ (7.101)

where D = supf,g2F d(f, g).

Proof. The proof uses Dudley’s chaining technique. We follow the version in Theorem
8.3 of Cesa-Bianchi and Lugosi (2006). Let Fk be a minimal cover of F of radius D2

�k.
Thus |Fk| = N(F , D2

�k
). Let f

0

denote the unique element in F
0

. Each Xf is a random
variable and hence is a mapping from some sample space S to the reals. Fix s 2 S and let
f⇤ be such that supF2F Xf (s) = Xf⇤

(s). (If an exact maximizer does not exist, we can
choose an approximate maximizer but we shall assume an exact maximizer.) Let fk 2 Fk

minimize the distance to f⇤. Hence,

d(fk�1

, fk)  d(f⇤, fk) + d(f⇤, fk�1

)  3D2

�k.

Now limk!1 fk = f⇤ and by sample continuity

sup

f
Xf (s) = Xf⇤(s) = Xf0(s) +

1
X

k=1

(Xf
k

(s)�Xf
k�1

(s)).

Recall that E(Xf0) = 0. Therefore,

E

 

sup

f
Xf

!


1
X

k=1

E
✓

max

f,g
(Xf �Xg)

◆
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where the max is over all f 2 Fk and g 2 Fk�1

such that d(f, g)  3D2

�k. There are at
most N(F , D2

�k
)

2 such pairs. By Theorem 7.47,

E
✓

max

f,g
(Xf �Xg)

◆

 3D2

�k
q

2 logN(F , D2

�k
)

2.

By summing over k we have

E

 

sup

f
Xf

!


1
X

k=1

3D2

�k
q

2 logN(F , D2

�k
)

2

= 12

1
X

k=1

D2

�(k+1)

q

logN(F , D2

�k
)

 12

Z D/2

0

p

N(F , ✏)d✏.

7.102 Example. Let Y
1

, . . . , Yn be a sample from a continuous cdf F on [0, 1] with bounded
density. Let Xs =

p
n(Fn(s)�F (s)) where Fn is the empirical distribution function. The

collection {Xs : s 2 [0, 1]} can be shown to be sub-Gaussian an sample continuous
with respect to the Euclidean metric on [0, 1]. The covering number is N([0, 1], r) = 1/r.
Hence,

E
✓

sup

0s1

p
n(Fn(s)� F (s)

◆

 12

Z

1/2

0

p

log(1/✏)d✏  C

for some C > 0. Hence,

E
✓

sup

0s1

(Fn(s)� F (s)

◆

 Cp
n
.

2

7.5 Summary

The most important results in this chapter are Hoeffding’s inequality:

P(|Xn � µ| > ✏)  2e�2n✏2/c,

Bernstein’s inequality

P(|Xn| > ✏)  2 exp

⇢

� n✏2

2�2

+ 2c✏/3

�

the Vapnik-Chervonenkis bound,

P

 

sup

f2F
|(Pn � P )f | > t

!

 4 s(F , 2n)e�nt2/8
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and the Rademacher bound: with probability at least 1� �,

sup

f2F
|Pn(f)� P (f)|  2Radn(F) +

s

1

2n
log

✓

2

�

◆

.

These, and similar results, provide the theoretical basis for many statistical machine learn-
ing methods. The literature cantains many refinements and extensions of these results.
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Vaart (1998), Dubhashi and Panconesi (2009), and Ledoux (2005).

Exercises

7.1 Suppose that X � 0 and E(X) < 1. Show that E(X) =

R1
0

P (X � t)dt.

7.2 Show that h(u) � u2/(2 + 2u/3) for u � 0 where h(u) = (1 + u) log(1 + u)� u.

7.3 In the proof of McDiarmid’s inequality, verify that E(Vi|X1

, . . . , Xi�1

) = 0.

7.4 Prove Lemma 7.37.

7.5 Prove equation (7.24).

7.6 Prove the results in Table 7.1.

7.7 Derive Hoeffding’s inequality from McDiarmid’s inequality.

7.8 Prove lemma 7.70.

7.9 Consider Example 7.102. Show that {Xs : s 2 [0, 1]} is sub-Gaussian. Show that
R

1/2
0

p

log(1/✏)d✏  C for some C > 0.

7.10 Prove Theorem 7.52. .

7.11 Prove Theorem 7.84.

7.12 Prove the results in Example 7.92.


