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Abstract

A network may have weak signals and severe degree heterogeneity, and may
be very sparse in one occurrence but very dense in another. SCORE (Ann.
Statist. 43, 57–89, 2015) is a recent approach to network community detec-
tion. It accommodates severe degree heterogeneity and is adaptive to dif-
ferent levels of sparsity, but its performance for networks with weak signals
is unclear. In this paper, we show that in a broad class of network settings
where we allow for weak signals, severe degree heterogeneity, and a wide
range of network sparsity, SCORE achieves prefect clustering and has the
so-called “exponential rate” in Hamming clustering errors. The proof uses
the most recent advancement on entry-wise bounds for the leading eigen-
vectors of the network adjacency matrix. The theoretical analysis assures
us that SCORE continues to work well in the weak signal settings, but it
does not rule out the possibility that SCORE may be further improved to
have better performance in real applications, especially for networks with
weak signals. As a second contribution of the paper, we propose SCORE+
as an improved version of SCORE. We investigate SCORE+ with 8 network
data sets and found that it outperforms several representative approaches.
In particular, for the 6 data sets with relatively strong signals, SCORE+ has
similar performance as that of SCORE, but for the 2 data sets (Simmons,
Caltech) with possibly weak signals, SCORE+ has much lower error rates.
SCORE+ proposes several changes to SCORE. We carefully explain the ra-
tionale underlying each of these changes, using a mixture of theoretical and
numerical study.

AMS (2000) subject classification. Primary: 62H30, 91C20; Secondary: 62P25.

1 Introduction

Community detection is a problem that has received considerable atten-
tion (Karrer and Newman, 2011; Zhang et al., 2020; Bickel and Chen, 2009).

http://crossmark.crossref.org/dialog/?doi=10.1007/s13171-020-00240-1&domain=pdf
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Consider an undirected network N and let A be its adjacency matrix:

A(i, j) =

{
1, if there is an edge connecting node i and j,
0, otherwise.

Since the network is undirected, A is symmetrical. Also, as a convention,
we do not consider self edges, so all diagonal entries of A are 0. We as-
sume the network is connected, consisting of K perceivable non-overlapping
communities

C1, C2, . . . , CK .

Following the convention in many recent works on community detection (e.g.,
Bickel and Chen 2009; Zhang et al. 2020), we assume K as known and the
nodes do not have mixed-memberships, so each node belongs to exactly one
of the K communities. The community labels are unknown, and the goal is
to use (A,K) to predict them. In statistics, this is known as the clustering
problem.

See Jin et al. (2020) and reference therein for discussions on how to esti-
mate K, and Jin et al. (2017) for the generalization of SCORE for network
analysis in the presence of mixed memberships.

Similar to “cluster”, “community” is a concept that is scientifically mean-
ingful but mathematically hard to define. Intuitively, communities are clus-
ters of nodes that have more edges “within” than “across” (Jin, 2015; Zhao
et al., 2012). Note that “communities” and “components” are different con-
cepts: two communities may be connected, while two components are always
disconnected.

Table 1 presents 8 network data sets which we analyze in this paper.
Data sets 2-3 are from Traud et al. (2011, 2012) (see also Chen et al.
2018; Ma et al. 2020), and the other 6 datasets are downloaded from http://
www-personal.umich.edu/∼mejn/netdata/. For all these data sets, the true
labels are suggested by the original authors or data curators, and we use the
labels as the “ground truth.”

Conceivably, for some of the data sets, some nodes may have mixed
memberships (Airoldi et al., 2008; Jin et al., 2017; Zhang et al., 2020). To
alleviate the effect, we did some data pre-processing as follows. For the
Polbooks data set, we removed all the books that are labeled as “neutral.”
For the football data set, we removed the 5 “independent” teams. For the
UKfaculty data set, we removed the smallest group which only contains 2
nodes. After the pre-processing, our assumption of “no mixed-memberships”
is reasonable.

Natural networks have some noteworthy features.

http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
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Table 1: The 8 network data sets we analyze in this paper. Note that
dmax/dmin can be as large as a few hundreds, suggesting a severe degree
heterogeneity (dmin, dmax and d̄ stand for the minimum degree, maximum
degree, and average degree, respectively)
Dataset Source #Nodes K #Edges dmin dmax d̄

Weblogs Adamic and Glance (2005) 1222 2 16714 1 351 27.35
(2005)

Simmons Traud et al. (2011) 1137 4 24257 1 293 42.67
Caltech Traud et al. (2011) 590 8 12822 1 179 43.36
Football Girvan and Newman (2002) 110 11 570 7 13 10.36
Karate Zachary (1977) 34 2 78 1 17 4.59
Dolphins Lusseau et al. (2003) 62 2 159 1 12 5.12
Polbooks Krebs (unpublished) 92 2 374 1 24 8.13
UKfaculty Nepusz et al. (2008) 79 3 552 2 39 13.97

• Node sparsity and severe degree heterogeneity. Take Table 1 for ex-
ample, even for networks with only 1222 nodes, the degrees for some
nodes can be as large as 351 times higher than those of the others. If
we measure the sparsity of a node by its degree, then the sparsity level
may range significantly from one node to another.

• Overall network sparsity. Some networks are much sparser than oth-
ers, and the overall network sparsity may range significantly from one
network to another.

• Weak signal. In many cases, the community structures are subtle and
masked by strong noise, where the signal-to-noise ratio (SNR) is rela-
tively low.

It is desirable to have a model that is flexible enough to capture all these
features. This is where the DCBM comes in.

1.1. The Degree-Corrected Block Model (DCBM) DCBM is one of the
most popular models in network analysis (see for example Karrer and New-
man 2011). For each node i, we encode the community label by a K-
dimensional vector πi, such that for all 1 ≤ i ≤ n and 1 ≤ k ≤ K,

i ∈ Ck if and only if all entries of πi are 0 except that the kth entry is 1.
(1.1)
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In DCBM, for a matrix P ∈ R
K,K and parameters θ1, θ2, . . . , θn, we assume

the upper triangle of the adjacency matrix A contains independent Bernoulli
random variables satisfying

P(A(i, j) = 1) = θi · θj︸ ︷︷ ︸
node specific

× π′
iPπj︸ ︷︷ ︸

community specific

. (1.2)

Here, P is a symmetrical and (entry-wise) non-negative matrix that mod-
els the community structure and θ1, θ2, . . . , θn are positive parameters that
model the degree heterogeneity. For identifiability, we assume

all diagonal entries of P equal to 1. (1.3)

Writing θ = (θ1, θ2, . . . , θn)
′, Θ = diag(θ1, θ2, . . . , θn), and Π = [π1, π2, . . . ,

πn]
′, we define

Ω = ΘΠPΠ′Θ. (1.4)

Note that when i �= j, Ω(i, j) denotes the probability P(A(i, j) = 1). Let
W ∈ R

n,n be the centered Bernoulli noise matrix such that W (i, j) =
A(i, j)− Ω(i, j) when i �= j and W (i, j) = 0 if i = j. We have1

A = Ω−diag(Ω)+W = “main signal”+“secondary signal”+“noise”, (1.5)

where diag(Ω) stands for the diagonal matrix diag(Ω(1, 1),Ω(2, 2), . . . ,Ω
(n, n)). Note that the rank of Ω is K, so Eq. 1.5 is a low-rank matrix
model.

In the special case of2

θ1 = θ2 = . . . = θn = α, (1.6)

DCBM reduces to the stochastic block model (SBM). Note that SBM does
not model severe degree heterogeneity. The DCBM is also similar to that in
Chaudhuri et al. (2012) in some sense.

In DCBM, we allow (θ,Π, P ) to depend on n so the model is flexible
enough to capture all the three features aforementioned of natural networks.

• A reasonable metric for degree heterogeneity is θmax/θmin, which is
allowed to be large in DCBM. See Table 1.

1We model E[A] by Ω−diag(Ω) instead of Ω because the diagonals of E[A] are all 0. Here,
“main signal”, “secondary signal”, and “noise” refers to Ω, −diag(Ω) and W respectively.
2For SBM, the diagonal entries of P can be unequal. DCBM has more free parameters,
so we have to assume that P has unit diagonal entries to maintain identifiability.
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• A reasonable metric for overall network sparsity is ‖θ‖, and in DCBM,
‖θ‖ depends on n and is allowed to range freely between 1 and

√
n

(up to some multi-log(n) terms),3 corresponding to the most sparse
networks and the most dense networks, respectively.

• A reasonable metric for SNR is λK/
√
λ1 (see Jin et al. 2019 for an

explanation), where λk is the kth largest eigenvalue (in magnitude) of
Ω. If we allow θ, P , and Π to depend on n, then DCBM is adequate
for modeling the weak signal cases where |λk| may be much smaller
than |λ1|, 1 < k ≤ K.

In many recent works on community detection, it was assumed that the first
K eigenvalues are at the same magnitude. For example, some of these works
considered a DCBM model where in Eq. 1.4, we take P = αnP0. Here, αn

is a scaling parameter that may vary with n and P0 is a fixed matrix that
does not vary with n. In this special case, by similar calculations as in Jin
(2015), it is seen that all eigenvalues of Ω are at the same order under mild
regularity conditions on (Θ,Π) (e.g., the K communities are balanced; see
Jin (2015) for details). Such models do not allow for weak signals, and so
are relatively restrictive.

Motivated by these observations, it is desirable to have community de-
tection algorithms that

• accommodate severe degree heterogeneity,

• are adaptive to different levels of overall network sparsity,

• are effective not only for strong signals but also for weak signals.

1.2. The Orthodox SCORE SCORE, or SpectralClusteringOnRatios-
of-Eigenvectors, is a recent approach to community detection proposed by
Jin (2015). SCORE consists of three steps.

Orthodox SCORE Input: adjacency matrix A and the number of com-
munities K. Output: community labels of all nodes.

• (PCA). Obtain the first K leading eigenvectors ξ̂1, ξ̂2, . . . , ξ̂K of A (we
call ξ̂k the kth leading eigenvector if the corresponding eigenvalue is
the kth largest in absolute value).

3A multi-log(n) term is a term Ln > 0 that satisfies ”Lnn
−δ → 0 and Lnn

δ → ∞ for any
fixed constant δ > 0
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• (Post-PCA normalization). Obtain the n×(K−1)matrix of entry-wise
eigen-ratios by [

ξ̂2

ξ̂1
,
ξ̂3

ξ̂1
, . . . ,

ξ̂K

ξ̂1

]
, (1.7)

where the ratio of two vectors should be understood as the vector of
entry-wise ratios.4

• (Clustering). Cluster by applying k-means to rows of R̂, assuming
there are ≤ K clusters.

Compared to classical spectral clustering, the main innovation of SCORE
is the post-PCA normalization. The goal of this step is to mitigate the effect
of degree heterogeneity. The degrees contain very little information of the
community structure and pose merely as a nuisance, but severe degree het-
erogeneity makes different entries of the leading eigenvectors badly scaled.
As a result, without this step, SCORE tends to cluster nodes according to
their degrees instead of the community structure, and thus have unsatisfac-
tory clustering results. Take the Weblog data for example: with and without
this step, the error rates of SCORE are 58/1222 and 437/1222 respectively.
See Jin (2015) for more discussions.

SCORE is conceptually simple, easy to use, and does not need tuning.
In Jin (2015), Ji and Jin (2016), SCORE was shown to be competitive in
clustering accuracy. For computational time, note that in the k-means clus-
tering step of SCORE, one usually uses the Llyod’s algorithm (Hastie et al.,
2009); and as a result, SCORE is computationally fast and is able to work
efficiently for large networks. See Jin (2015) and also Table 4 of the current
paper for more discussions.

SCORE is a flexible idea, and can be conveniently extended to many
different settings such as network mixed membership estimation (Jin et al.,
2017), topic estimation in text mining (Ke and Wang, 2017), state aggre-
gation in control theory and reinforcement learning (Duan et al., 2018),
analysis of hyper graphs (Ke et al., 2020), and matrix factorization in image
processing.

4For example, ξ̂2
ξ̂1

is the n-dimensional vector ( ξ̂2(1)
ξ̂1(1)

, ξ̂2(2)

ξ̂1(2)
, . . . , ξ̂2(n)

ξ̂1(n)
)′. Note that we may

choose to threshold all entries of the n× (K − 1) matrix by ± log(n) from top and bottom
(Jin, 2015), but this is not always necessary. For all data sets in this paper, thresholding
or not only has a negligible difference.
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1.3. Contribution of this Paper For the three features aforementioned,
SCORE accommodates severe degree heterogeneity and is adaptive to dif-
ferent levels of overall network sparsity. However, when it comes to weak
signals, there are at least two problems that are not answered.

• What is the theoretical behavior of SCORE in the presence of weak
signals?

• In challenging application problems where the SNR is small, is it possi-
ble to improve SCORE to have better real data performance, without
sacrificing its good properties above?

Note that in the literature, the theoretical analysis on SCORE has been
largely focused on the case where the signals are relatively strong; see for
example (Jin, 2015).

In this paper, we analyze SCORE theoretically, especially for the weak
signal settings. We show that for a broad class of settings where we allow
for weak signals, severe degree heterogeneity, and a wide range of overall
network sparsity, SCORE attains an exponential rate of convergence for the
Hamming error. We also show that, when the SNR is appropriately large,
SCORE fully recovers the community labels except for a small probability.
The proof uses the most recent advancement on entry-wise bounds (a kind of
large-deviation bounds) for the leading eigenvectors of the adjacency matrix
(Abbe et al., 2019; Jin et al., 2017).

The theoretical analysis here assures that SCORE continues to work well
for weak signal settings. This of course does not rule out the possibility that
a further improved version may perform better in real data analysis.

As a second contribution of the paper, we propose SCORE+ as an im-
proved version of SCORE, especially for networks with weak signals. We
compare SCORE+ with SCORE and several other recent algorithms using
the 8 data sets in Table 1. For the 6 data sets where the signals are relatively
strong (the clustering errors of all methods considered are relatively low),
SCORE+ and SCORE have comparable performance. For the 2 data sets
(Simmons and Caltech) where the signals are relatively weak (the cluster-
ing errors of all methods considered are relatively high), SCORE+ improves
SCORE significantly, and has the lowest error rates among all methods con-
sidered in the paper.

SCORE+ proposes several changes to SCORE. We carefully explain the
rationale underlying each of these changes, using a mixture of theoretical
and numerical study. A much deeper understanding requires advanced tools
in random matrix theory that have not yet been developed, so we leave the
study along this line to the future.
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1.4. Content and Notations In Section 2, we analyze the orthodox
SCORE with some new theoretical results. We show that SCORE attains
exponential rates in Hamming clustering errors and achieves perfect clus-
tering provided that the SNR is reasonably large. In Section 3, we propose
SCORE+ as an improved version of SCORE. We compare the performance
of SCORE+ with SCORE and several recent approaches on community de-
tection using the 8 data sets in Table 1, and show that SCORE+ has the
best overall performance. SCORE+ proposes several changes to SCORE. We
explain the rationale underlying each of these changes, and especially why
SCORE+ is expected to have better performance than SCORE for networks
with weak signals. Section 4 proves the main results in Section 2.

In this paper, for any numbers θ1, θ2, . . . , θn, θmax = max{θ1, θ2, . . . , θn},
and θmin = min{θ1, θ2, . . . , θn}. Also, diag(θ1, θ2, . . . , θn) denotes the n × n
diagonal matrix with θi being the i-th diagonal entry, 1 ≤ i ≤ n, For any
vector a ∈ R

n, ‖a‖q denotes the Euclidean �q-norm, and we write ‖a‖ for
simplicity when q = 2. For any matrix P ∈ R

n,n, ‖P‖ denotes the matrix
spectral norm, and ‖P‖max denotes the maximum �2-norm of all the rows of
P . For two positive sequences {an} and {bn}, we say an � bn if there are
constants c2 > c1 > 0 such that c1an ≤ bn ≤ c2an for sufficiently large n.

2 SCORE: Exponential Rate and Perfect Clustering

We provide new theoretical results for the orthodox SCORE, which sig-
nificantly improves those in Jin (2015). For the “weak signal” case, the the-
ory in Jin (2015) is not applicable but our theory applies. For the “strong
signal” case, compared with Jin (2015), our theory provides a faster rate
of convergence for the clustering error and weaker conditions for perfect
clustering.

Consider a sequence of DCBM indexed by n, where (K, θ,Π, P ) are all
allowed to depend on n. Suppose, for a constant c1 > 0,

‖P‖max ≤ c1, ‖θ‖ → ∞, and θmax ≤ c1. (2.8)

Recall that C1, . . . , CK denote the K true communities. For 1 ≤ k ≤ K, let
nk = |Ck| be the size of community k, and let θ(k) ∈ R

n be the vector such

that θ
(k)
i = θi if i ∈ Ck and θ

(k)
i = 0 otherwise. We assume, for a constant

c2 > 0,

max
1≤k≤K

{nk}≤c2 min
1≤k≤K

{nk}, and max
1≤k≤K

{‖θ(k)‖}≤c2 min
1≤k≤K

{‖θ(k)‖}.
(2.9)
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Introduce a diagonal matrix G ∈ R
K,K by

G = K‖θ‖−2 · diag(‖θ(1)‖2, ‖θ(2)‖2, . . . , ‖θ(K)‖2).

Let μk denote the kth largest eigenvalue (in magnitude) of the K×K matrix
G1/2PG1/2, and let ηk denote the corresponding eigenvector. We assume,
for a constant c3 ∈ (0, 1) and c4 > 0,

min
2≤k≤K

|μ1 − μk| ≥ c3|μ1|, and η is a positive vector to min
1≤k≤K

{η1(k)} > 0

(2.10)
These conditions are mild. For Eq. 2.8, recall that ‖θ‖ measures the

overall network sparsity, and the interesting range of ‖θ‖ is between 1 and√
n, up to some multi-log(n) terms (see footnote 3). Therefore, it is mild

to assume ‖θ‖ → ∞. Condition (2.9) requires that the communities are
balanced in size and in total squared degrees, which is mild.

Condition (2.10) is also mild. The most challenging case for network
analysis is when the matrix P gets very close to the matrix of all ones,
where it is hard to distinguish one community from another. The condition
only rules out the less relevant cases such as the network is disconnected or
approximately so. These are strong signal cases where it is relatively easy to
distinguish one community from another. Note that the condition is satisfied
if all entries of P are lower bounded by a constant or if K is fixed and P
converges to a fixed irreducible matrix (see Section A.2 of Jin et al. 2017 for
a discussion of this condition).

In a hypothesis testing framework, Jin et al. (2019) has pointed out that
a reasonable metric for SNR in a DCBM is |λK |/

√
λ1, where we recall that

λk denotes the kth largest eigenvalue (in magnitude) of Ω = ΘΠPΠ′Θ and
that λ1 is always positive (Jin, 2015; Jin et al., 2017). We also introduce a
quantity to measure the severity of degree heterogeneity:

α(θ) = (θmin/θmax) · (‖θ‖/
√

θmax‖θ‖1) ∈ (0, 1].

The smaller α(θ), the more severe the degree heterogeneity. When θmax �
θmin, α(θ) is bounded below from 0 by a constant. In the presence of severe
degree heterogeneity, α(θ) gets close to 0. We shall see that the clustering
power of SCORE depends on

sn = α(θ) · (|λK |/
√
λ1), (2.11)

which is a combination of the SNR and the severity of degree heterogeneity.
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Let Π̂ = [π̂1, π̂2, . . . , π̂n]
′ denote the matrix of estimated community la-

bels by the orthodox SCORE. Define the Hamming error rate (per node) for
clustering by

Hamm(Π̂,Π) =
1

n

n∑
i=1

1{π̂i �= πi}, up to a permutation on columns of Π̂.

The next theorem is proved in Section 4.

Theorem 2.1. Consider a sequence of DCBM indexed by n, where Eqs. 2.8
–2.10 hold. Let sn be as in Eq. 2.11. There exist appropriately small con-
stants a1, a2 > 0, which depend on the constants c1-c4 in the regularity con-
ditions, such that, as long as sn ≥ a−1

1 K4
√
log(n), for sufficiently large n:

E

[
Hamm(Π̂,Π)

]
≤ 2K

n

n∑
i=1

exp

(
− a2θi ·min

{
(|λK |/

√
λ1)

2‖θ‖2
K2‖θ‖33

,
(|λK |/

√
λ1)‖θ‖

Kθmax

})

+ o(n−3).

Theorem 2.1 implies that the Hamming clustering error of SCORE de-
pends on (θ1, . . . , θn) in an exponential form. This significantly improves the
bound in Jin (2015), which depends on (θ1, . . . , θn) in a polynomial form.
Additionally, Theorem 2.1 suggests that the nodes with smaller θi have large
contributions to the Hamming clustering error, i.e., it is more likely for the
algorithm to make errors on low-degree nodes.

The clustering error has an easy-to-digest form in special examples.

Corollary 2.1. Consider a special DCBM, where

P = (1− b)IK + b1K1′K , πi
iid∼ Uniform({e1, e2, . . . , eK}).

Suppose K is fixed and θ satisfies that θmax ≤ Cθmin. There exist appro-
priately small constants ã1, ã2 > 0, such that, as long as (1 − b)‖θ‖ ≥
a−1
1 K4

√
log(n), for sufficiently large n,

E

[
Hamm(Π̂,Π)

]
≤ 2K

n

n∑
i=1

exp

(
−a2

θi
θ̄
· (1− b)2‖θ‖2

K3

)
+ o(n−3).

In this special example, ‖θ‖2 characterizes the average node degrees, and
(1−b) captures the “similarity” across communities. The clustering power of
SCORE is governed by sn � (1−b)‖θ‖2. The bound in Corollary 2.1 matches
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with the minimax bound in Gao et al. (2018), except for the constant 2K in
front and the constant a2 in the exponent.5 It was shown in Gao et al. (2018)
that the exponential error rate can be attained by first applying spectral
clustering and then conducting a refinement, where the refinement step was
motivated by technical convenience. In fact, numerical studies suggest that
spectral clustering alone can attain exponential error rates. Theorem 2.1
and Corollary 2.1 provide a rigorous theoretical justification.

The next theorem states that SCORE can exactly recover the community
labels with high probability, provided that the SNR is appropriately large.

Theorem 2.2. Consider a sequence of DCBM indexed by n, where Eqs. 2.8
–2.10 hold. Let sn be as in Eq. 2.11. If sn ≥ CK4

√
log(n) for a sufficiently

large constant C > 0, then we have that, up to a permutation on columns of
Π̂,

P(Π̂ �= Π) = o(n−3).

Furthermore, if K is finite and θmax ≤ Cθmin, then the above is true as long
as |λK |/

√
λ1 exceeds a sufficiently large constant.

The condition on sn cannot be significantly improved. Take the case
of fixed K and with moderate degree heterogeneity (θmax ≤ Cθmin) for
example. In this case, the condition becomes |λK |/

√
λ1 ≥ C for a large

enough constant C > 0. It was shown in Jin et al. (2019) that, if we allow
|λK |/

√
λ1 → 0, then we end up with a class of models that is too broad so

we can find two sequences of DCBM models with different (fixed) K but are
indistinguishable from each other. In such settings, successful clustering is
impossible.

In the literature, the exponential error rate and the perfect clustering
property were mainly obtained for non-spectral methods (e.g., Gao et al.
2018; Chen et al. 2018). While spectral methods are practically popular, its
theoretical analysis is challenging, since it requires sharp entry-wise bounds
for eigenvectors. A few existing works either focus on SBM which does
not allow for degree heterogeneity (e.g., Abbe et al. 2019; Su et al. 2019)
or restrict to the “strong signal” case and dense networks (e.g., Liu et al.
2019). Our results are new as we provide the first exponential rate result
and perfect clustering result for spectral methods that accommodate severe
degree heterogeneity, sparse networks, and weak signals.

Our analysis uses some results on the spectral analysis of the adjacency
matrices from our work (Jin et al., 2017), especially the entry-wise large-
deviation bounds for empirical eigenvectors. We refer interesting readers to

5When translating the bound in Gao et al. (2018), we notice that θi there have been
normalized, so that their θi corresponds to our (θi/θ̄).
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a detailed description in Jin et al. (2017). It is understood that the main
technical difficulty of analyzing spectral methods lies in entry-wise analysis
of eigenvectors. Recent progress includes (but does not limit to) Abbe et al.
(2019), Fan et al. (2019), Jin et al. (2017), Liu et al. (2019), Mao et al.
(2020) & Su et al. (2019).

3 SCORE+, a Refinement Especially for Weak Signals

We propose SCORE+ as a refinement of SCORE for community detec-
tion. SCORE+ inherits the appealing features of SCORE. It improves the
performance of SCORE in real applications, especially for networks with
weak signals.

3.1. SCORE+ Recall that under DCBM,

A = Ω− diag(Ω) +W = “main signal” + “secondary signal” + “noise”,

where the “main signal” matrix Ω equals to ΘΠPΠ′Θ and has a rank K.
SCORE+ is motivated by several observations about SCORE.

• Due to severe degree heterogeneity, different rows of the “signal” ma-
trix and the “noise” matrix are in very different scales. We need two
normalizations: a pre-PCA normalization to mitigate the effects of de-
gree heterogeneity on the “noise” matrix, and a post-PCA normaliza-
tion (as in SCORE) on the “signal” matrix; we find that an appropriate
pre-PCA normalization is Laplacian regularization.6 See Section 3.3.2
for more explanations.

• The idea of PCA is dimension reduction: We project rows of A to
the K-dimensional space spanned by the first K eigenvectors of A,
ξ̂1, ξ̂2, . . . , ξ̂K , and reduce A to the n ×K matrix of projection coeffi-
cients:

[η̂1, η̂2, . . . , η̂K ] ≡ [ξ̂1, ξ̂2, . . . , ξ̂K ] · diag(λ̂1, λ̂2, . . . , λ̂K).

Therefore, in SCORE, it is better to apply the post-PCA normaliza-
tion to [η̂1, η̂2, . . . , η̂K ] instead of [ξ̂1, ξ̂2, . . . , ξ̂K ]; the two post-PCA
normalization matrices (old and new) satisfy

[
η̂2
η̂1

,
η̂2
η̂1

, . . . ,
η̂K
η̂1

]
=

[
ξ̂2

ξ̂1
,
ξ̂2

ξ̂1
, . . . ,

ξ̂K

ξ̂1

]
· diag

(
λ̂2

λ̂1

,
λ̂3

λ̂1

, . . . ,
λ̂K

λ̂1

)
.

6This is analogous to the Students’ t-test, where for n samples from an unknown distribu-
tion, the t-test uses a normalization for the mean and a normalization for the variance.
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In effect, the new change is using eigenvalues to re-weight the columns

of
[
ξ̂2
ξ̂1
, ξ̂2
ξ̂1
, . . . , ξ̂K

ξ̂1

]
. See Section 3.3.3 for more explanations.

• In SCORE, we only use the first K eigenvectors for clustering, which
is reasonable in the “strong signal” case, where all the nonzero eigen-
values of the “signal” matrix are much larger than the spectral norm
of the “noise” matrix (in absolute value). In the “weak signal” case,
some nonzero eigenvalues of the “signal” can be smaller than the spec-
tral norm of the “noise”, and we may need one or more additional
eigenvectors of A for clustering. In Section 3.3.4, we have an in-depth
study on the weak signal case; see details therein.

SCORE+ Input: A, K, a ridge regularization parameter δ > 0 and a
threshold t > 0. Output: class labels for all n nodes.

• (Pre-PCA normalization with Laplacian). LetD = diag(d1, d2, . . . , dn)
where di is the degree of node i. Obtain the graph Laplacian with ridge
regularization by

Lδ = (D + δ · dmax · In)−1/2A(D + δ · dmax · In)−1/2, where dmax = max
1≤i≤n

{di}.

Note that the ratio between the largest diagonal entry of D+ δdmaxIn
and the smallest one is smaller than (1 + δ)/δ. Conventional choices
of δ are 0.05 and 0.10.

• (PCA, where we retain possibly an additional eigenvector). We assess
the aforementioned “signal weakness” by 1 − [λ̂K+1/λ̂K ], and include
an additional eigenvector for clustering if and only if

(1− [λ̂K+1/λ̂K ]) ≤ t, (a conventional choice of t is 0.10).

• (Post-PCA normalization). Let M be the number of eigenvectors we
decide in the last step (therefore, either M = K or M = K + 1).
Obtain the matrix of entry-wise eigen-ratios by

R̂ =

[
η̂2
η̂1

,
η̂3
η̂1

, . . . ,
η̂M
η̂1

]
, where η̂k = λ̂kξ̂k, 1 ≤ k ≤ M. (3.12)

• (Clustering). Apply classical k-means to the rows of R̂, assuming ≤ K
clusters.
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The code is available at http://zke.fas.harvard.edu/software.html.
Compared to SCORE, SCORE+ (a) adds a pre-PCA normalization step,

(b) may select one more eigenvectors for later use if necessary, and (c) uses

eigenvalues to re-weight the columns of
[
ξ̂2
ξ̂1
, ξ̂3
ξ̂1
, . . . , ξ̂K

ξ̂1

]
. In Section 3.3, we

further explain the rationale underlying these refinements.
3.2. Numerical Comparisons We compare SCORE+ with a few re-

cent methods: Orthodox SCORE, the convexified modularity maximization
(CMM) method by Chen et al. (2018), the latent space model based (LSCD)
method by Ma et al. (2020), the normalized spectral clustering (OCCAM)
method for potentially overlapping communities by Zhang et al. (2020), and
the regularized spectral clustering (RSC) method by Qin and Rohe (2013).
For each method, we measure the clustering error rate by

min{τ : permutation over {1,2,...,K}}
1

n

n∑
i=1

1{τ(�̂i) �= �i},

where �i and �̂i are the true and estimated labels of node i.
The error rates are in Table 2, where for SCORE+, we take (t, δ) =

(0.1, 0.1). For the three relatively large networks (Weblog, Simmons, Cal-
tech), the error rates of SCORE+ are the best among all methods, and
for the other networks, the error rates are close to the best. Especially,
SCORE+ provides a commendable improvement for the Simmons and Cal-
tech data sets. In Section 3.3.4, we show that the Simmons and Caltech data
sets are “weak signal” networks, and all other networks are “strong signal”
networks.

RSC (Qin and Rohe, 2013) is an interesting method that applies the idea
of SCORE to the graph Laplacian. It can be viewed as adding a pre-PCA

Table 2: Error rates on the 8 datasets listed in Table 1. For SCORE+, we
set (t, δ) = (0.1, 0.1)
Dataset SCORE SCORE+ CMM LSCD OCCAM RSC

Weblogs 58/1222 51/1222 62/1222 58/1222 65/1222 64/1222
Simmons 268/1137 127/1137 137/1137 134/1137 266/1137 244/1137
Caltech 183/590 98/590 124/590 106/590 189/590 170/590
Football 5/110 6/110 7/110 21/110 4/110 5/110
Karate 0/34 1/34 0/34 1/34 0/34 0/34
Dolphins 0/62 2/62 1/62 2/62 1/62 1/62
Polbooks 1/92 2/92 1/92 3/92 3/92 3/92
UKfaculty 2/79 2/79 7/79 1/79 5/79 0/79

The method that attains the best performance are in bold

http://zke.fas.harvard.edu/software.html
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normalization step to SCORE (but it does not include other refinements
as in SCORE+). For three of the data sets (Simmons, Caltech, UKfac-
ulty), the modification provides a small improvement, and for three of the
data sets (Weblogs, Dolphins, Polbooks), the modification hurts a little bit.
The performance of OCCAM is more or less similar to that of SCORE and
RSC, which is not surprising, because OCCAM is also a normalized spectral
method.

The error rates of CMM and LSCD are comparable with that of SCORE+
in most data sets, except that CMM and LSCD have unsatisfactory re-
sults for UKfaculty and Football, respectively. For the three small data sets
(Karate, Dolphins, Polbooks), the three methods have similar error rates,
with CMM being slightly better. For the three large data sets (Weblogs,
Simmons, Caltech), SCORE+ is better than LSCD, and LSCD is better
than CMM.

LSCD is an iterative algorithm which solves a non-convex optimization
with rank constraint. Since the algorithm only provides a local optimum,
the difference between this local optimum and the global optimum may be
large, especially for large K. This partially explains why LSCD performs
unsatisfactorily on Football, for which data set K = 11. CMM first solves a
convexified modularity maximization problem to get an n×n matrix Ŷ and
then applies k-median to rows of Ŷ . The matrix Ŷ targets on approximating
a rank-K matrix, but for UKfaculty, the output Ŷ has a large (K + 1)th
eigenvalue. This partially explains why CMM performs unsatisfactorily on
this data set.

SCORE+ has two tuning parameters (t, δ), but each of which is easy to
set, guided by common sense. Moreover, SCORE+ is relatively insensitive
to the ridge regularization parameter δ: in Table 3, we investigate SCORE+
by setting t = 0.10 and letting δ range from 0.025 to 0.2 with an increment
of 0.025. The results suggest SCORE+ is relatively insensitive to different
choices of δ. In Section 3.3.4, we discuss further how to set the tuning
parameter t.

Computationally, SCORE and OCCAM are the fastest, SCORE+ and
RSC are slightly slower (the extra computing time is mostly due to the
pre-PCA step), and CMM and LSCD are significantly slower, especially for
large networks. For comparison of computing time, it makes more sense to
use networks larger than those in Table 1. We simulate networks from the
DCBM model in Section 1.1. In a DCBM with n nodes and K communities,
the upper triangle of A contains independent Bernoulli variables, with

E[A] = Ω− diag(Ω), and Ω = ΘΠPΠ′Θ,
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where P is a K×K symmetric nonnegative matrix, Θ = diag(θ1, θ2, . . . , θn)
with θi > 0 being the degree parameters, and Π is the n ×K label matrix.
For simulations, we let n range in {1000, 2000, 4000, 7000, 10000}, and for
each fixed n,

• for cn = 3 log(n)/n and (α, β) = (5, 4/5), generate θi such that (θi/cn)
are iid from Pareto(α, β);

• fix K = 4 and let Π be the matrix where the first, second, third, and
last quarter of rows equal to e1, e2, e3, e4, respectively;

• consider two experiments, where respectively, the P matrix is

⎡
⎢⎢⎣

1 1/3 1/3 1/3
1/3 1 1/3 1/3
1/3 1/3 1 1/3
1/3 1/3 1/3 1

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

1 2/3 .1 .1
2/3 1 .5 .5
.1 .5 1 .5
.1 .5 .5 1

⎤
⎥⎥⎦ ;

the value of |λK(P )|/λ1(P ) is 0.333 for the left and 0.083 for the right,
so that they represent the “strong signal” case and “weak signal” case,
respectively.

The error rates and computing time are reported in Table 4 (both error rates
and computing time are the average of 10 independent repetitions).

In summary, SCORE+ compares favorably over other methods both in
error rates and in computing times, either for networks with “strong signals”
or “weak signals”.

3.3. Rationale Underlying the Key Components of SCORE+ SCORE+
contains 4 components: the post-PCA normalization that was originally
proposed in SCORE, and 3 proposed refinements (pre-PCA normalization
using the Laplacian regularization, reweighing the leading eigenvectors by

Table 3: Community detection errors of SCORE+ for different δ (t is fixed
at 0.10)
δ Polblogs Karate Dolphins Football Polbooks UKfaculty Simmons Caltech
0.025 57 1 0 6 2 1 127 99
0.05 54 1 1 6 2 2 117 100
0.075 51 1 1 6 2 2 121 99
0.10 51 1 2 6 2 2 127 98
0.125 53 1 3 6 2 2 134 101
0.15 54 1 3 6 2 2 137 101
0.175 56 0 3 6 2 3 141 104
0.20 58 0 3 6 2 3 142 105

The method that attains the best performance are in bold
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Table 4: Comparison of error rates and computation time on simulated
data. Top: Experiment 1 (“strong signal”). Bottom: Experiment 2 (“weak
signal”)
n SCORE SCORE+ CMM LSCD OCCAM RSC

1000 0.08 (0s) 0.04 (3s) 0.03 (32s) 0.05 (35s) 0.06 (0s) 0.04 (0s)
2000 0.06 (1s) 0.03 (4s) 0.03 (240s) 0.04 (180s) 0.07 (1s) 0.03 (1s)
4000 0.16 (2s) 0.02 (7s) 0.03 (1930s) 0.03 (967s) 0.14 (2s) 0.02 (2s)
7000 0.04 (6s) 0.01 (22s) 0.02 (10500s) 0.02(2900s) 0.05 (6s) 0.02 (13s)
10000 0.03 (9s) 0.01 (39s) 0.01 (31000s) 0.02 (6000s) 0.03 (9s) 0.01 (21s)

1000 0.37 (1s) 0.07 (3s) 0.10 (47s) 0.17 (40s) 0.37 (0s) 0.32 (0s)
2000 0.31 (1s) 0.05 (4s) 0.07 (313s) 0.06 (194s) 0.31 (1s) 0.32 (1s)
4000 0.30 (1s) 0.05 (7s) 0.06 (2130s) 0.06 (960s) 0.30 (1s) 0.30 (2s)
7000 0.26 (4s) 0.03 (22s) 0.05 (10800s) 0.05 (2900s) 0.27 (4s) 0.28 (13s)
10000 0.27 (9s) 0.03 (39s) 0.04 (32150s) 0.04 (6100s) 0.28 (9s) 0.29 (21s)

The method that attains the best performance are in bold

eigenvalues, and recruiting one more eigenvector for use when the eigengap
is small). We now explain the rationale of each of these components.

Recall that under DCBM,

A = Ω− diag(Ω) +W = “main signal” + “secondary signal” + “noise”,

where the “main signal” matrix Ω equals to ΘΠPΠ′Θ and has a rank K. Let
ξ1, ξ2, . . . , ξK be the eigenvectors of Ω associated with K largest eigenvalues
in magnitude. Write Ξ = [ξ1, ξ2, . . . , ξK ] = [Ξ1,Ξ2, . . . ,Ξn]

′.
3.3.1. Rationale Underlying the Post-PCA Normalization. The ratio-

nale underlying the post-PCA normalization was carefully explained in Jin
(2015), so we keep the discussion brief here. Under DCBM, Jin (2015) ob-
served that

Ξi = θi · qi, where {q1, . . . , qn} take only K distinct values in R
K .

Without θi’s, we can directly apply k-means to rows of Ξi. Now, with
the degree parameters, Jin (2015) considered the family of scaling invariant
mappings (SIM), M : RK → R

K , such that M(ax) = M(x) for any a > 0
and x ∈ R

K , and proposed the post-PCA normalization

Ξi → M(Ξi), 1 ≤ i ≤ n.
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The scaling-invariance property of M ensures {M(Ξ1), . . . ,M(Ξn)} take only
K distinct values, so that we can apply k-means. Two examples of SIM
include:

• M(x) = (x2/x1, x3/x1, . . . , xn/x1)
′, i.e., normalizing Ξi by its first en-

try;

• M(x) = ‖x‖−1
p x, i.e., normalizing Ξi by its Lp-norm.

The first one was recommended by Jin (2015) and is commonly referred to
as SCORE. The second one is a variant of SCORE and was proposed in the
supplement of Jin (2015).

In the more general DCMM model with mixed membership, Jin et al.
(2017) discovered that the post-SCORE matrix is associated with a low-
dimensional simplex geometry and developed SCORE into a simplex-vertex-
hunting method for mixed-membership estimation. Interestingly, although
each normalization in the scaling invariant family proposed by Jin (2015)
works for DCBM, only the SCORE normalization produces the desired sim-
plex geometry under DCMM.

3.3.2. Why the Laplacian is the Right Pre-PCA Normalization. The
target of SCORE is to remove the effect of degree heterogeneity in the “main
signal” matrix Ω. However, the “noise” matrix W = A−E[A] is also affected
by degree heterogeneity and requires a proper normalization. We note that,
since PCA only retains a few leading eigenvectors which are driven by “sig-
nal,” the “noise” is largely removed after conducing PCA. Therefore, one
has to use a pre-PCA operation to normalize the “noise” matrix.

Our idea is to re-weight the rows and columns of A by node degrees. Let
D be the diagonal matrix where D(i, i) is the degree of node i. There are
many ways for pre-PCA normalization, and simple choices include

• A → D−1/2AD−1/2.

• A → D−1AD−1.

Which one is the right choice?
Given an arbitrary positive diagonal matrix H, write

H−1AH−1 = H−1ΩH−1︸ ︷︷ ︸
“signal”

+H−1[A− E[A]− diag(Ω)]H−1︸ ︷︷ ︸
“noise”

.

The best pre-PCA normalization is such that, despite severe degree hetero-
geneity, the variances of all entries of the “noise” matrix are at the same
order (Jin and Ke, 2018). Under DCBM, by direct calculations,
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variance of (i, j)-entry of “noise” � θiθj
h2ih

2
j

=⇒ we hope hi ∝
√
θi.

At the same time, the node degrees satisfy

di ∝ θi, approximately.

Therefore, the right choice is hi ∝
√
di, i.e., we should use the pre-PCA

normalization of A → D−1/2AD−1/2. See Mihail and Papadimitriou (2002)
for a similar finding. For better practical performance, we add a ridge reg-
ularization.

Besides normalizing the “noise” matrix, the pre-PCA normalization also
changes the “signal” matrix from Ω to D−1/2ΩD−1/2. Fortunately, the new
“signal” matrix has a similar form as Ω = ΘΠPΠ′Θ, except that Θ is re-
placed by D−1/2Θ, so the post-PCA normalization of SCORE is still valid.

3.3.3. Why η̂k is the Appropriate Choice in Post-PCA Normalization.
In the post-PCA normalization, SCORE+ constructs the matrix of entry-
wise eigen-ratios using η̂1, . . . , η̂K , where each η̂k is ξ̂k weighted by the cor-
responding eigenvalue. There are many ways of weighting the eigenvectors,
and simple choices include

• [ξ̂1, ξ̂2, . . . , ξ̂K ] · diag(λ̂1, λ̂2, . . . , λ̂K).

• [ξ̂1, ξ̂2, . . . , ξ̂K ] · diag
(√

λ̂1,
√
λ̂2, . . . ,

√
λ̂K

)
.

Why do we choose the first one?
We briefly explained it in Section 3.1 using the perspective of project-

ing rows of data matrix to the span of ξ̂1, . . . , ξ̂K . We now take a dif-
ferent perspective. Recall that Lδ is the regularized graph Laplacian, by
Abbe et al. (2019), the first-order approximations of eigenvectors are

ξ̂k ≈ 1

λk
Lδξk ≈ ξk +

1

λk
(Lδ − E[Lδ])ξk.

Intuitively speaking, since each ξk has a unit-norm, the “noise” vector (Lδ−
E[Lδ])ξk is at the same scale for different k; it implies that the noise level
in different eigenvectors is proportional to 1/λk. This means ξ̂1 is less noisy
than ξ̂2, and ξ̂2 is less noisy than ξ̂3, and so on. By weighing the eigenvectors
by λ̂k, the noise level in η̂1, . . . , η̂K is approximately at the same order.

In most theoretical studies, λ1, . . . , λK are assumed at the same order,
so whether or not to re-weight the eigenvectors does not affect the rate of
convergence. However, in many real data, the magnitudes of the first a few
eigenvalues can be considerably different, so such a weighting scheme does
improve the numerical performance.
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3.3.4. When We Should Choose One More Eigenvector for Inference.
In SCORE+, we retain M eigenvectors in the PCA step for later uses, where

M =

{
K, 1− (λ̂K+1/λ̂K) > t,

K + 1, otherwise.

For the 8 data sets in Table 1, if we choose t = 0.1 as suggested, then
M = K + 1 for the Simmons and Caltech data sets, and M = K for all
others. The insight is that, if a data set fits with the “strong signal” profile,
then we use exactly K eigenvectors for clustering, but if it fits with the
“weak signal” profile, we may need to use more than K eigenvectors. Our
analysis below shows that the Simmons and Caltech data sets fit with the
“weak signal” profile, while all other data sets fit with the “strong signal”
profile.

We illustrate our points with the scree plot and the Rayleigh quotient.
Let � ∈ R

n be the true community label vector, and let

Sk = {1 ≤ i ≤ n : �i = k}, 1 ≤ k ≤ K.

For any vector x ∈ R
n, define normalized Rayleigh quotient (Fisher, 1936):

Q(x) = 1− Within-Class-Variance

Total Variance
=

Between-Class-Variance

Total Variance
,

where Total Variance, Within-Class Variance, and Between-Class-variance
are
∑n

i=1(xi− x̄)2,
∑K

k=1

∑
i∈Sk

(xi− x̄k)
2, and

∑K
k=1(|Sk| ·(x̄k− x̄)2), respec-

tively (x̄ is the overall mean of xi and x̄k is the mean of xi over all i ∈ Sk).
Rayleigh quotient is a well-known measure for the clustering utility of x.
Note that 0 ≤ Q(x) ≤ 1 for all x, Q(x) = 1 when x = �, and Q(x) ≈ 0 when
x is a randomly generated vector.

Fix δ = 0.1. Let λ̂1, λ̂2, . . . , λ̂K+1 be the (K + 1) eigenvalues of Lδ with
largest magnitude and let ξ̂1, ξ̂2, . . . , ξ̂K+1 be the corresponding eigenvectors.
Below are some features that help differentiate a “strong signal” setting from
a “weak signal” setting.

• In the scree plot, we expect to see a relatively large gap between λ̂K

and λ̂K+1 when the “signal” is strong, and a relatively small gap if the
“signal” is relatively weak.

• In a “strong signal” setting, we expect to see that the Rayleigh quotient
Q(ξ̂k) is relatively large for k = K, but is relatively small for k =
K + 1,K + 2, etc. In a “weak signal” setting, we may observe that a
relatively large Rayleigh quotient Q(ξ̂k) for k = K+1,K+2, etc., and
Q(ξ̂K) can be relatively small.
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Figure 1: A typical “strong signal” dataset (Weblogs, left panels) and a
typical “weak signal” dataset (Caltech, right panels). The top two figures
display the absolute eigenvalues. We observe there is a relatively large gap
between |λ̂K | and |λ̂K+1| in a “strong signal” profile and a relatively small
gap in a “weak signal” profile. The bottom two plots display the Rayleigh
quotients Q(ξ̂k). We observe that Q(ξ̂k) for k = K + 1,K + 2, . . . are all
small in a “strong signal” profile but some of them are large in a “weak
signal profile

The points are illustrated in Fig. 1 with the Weblog data and Simmons data,
which are believed to be a typical “strong signal” dataset and a typical “weak
signal” dataset, respectively. We note that the first eigenvector consists
of global information of Lδ and it alone does not have much utility for
clustering. Therefore, the corresponding Rayleigh quotient Q(ξ̂1) is usually
small. In SCORE (e.g., Eq. 3.12), we use ξ̂1 for normalization, but not
directly for clustering.

Table 5 shows the Rayleigh quotients of all 8 datasets. We found that the
(K + 1)th eigenvector contains almost no information of community labels,
except for Caltech and Simmons. This agrees with our findings that Caltech
and Simmons fit with the “weak signal” profile.
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Table 5: Rayleigh quotient Q(ξ̂k) for 8 networks. The first four rows are
for eigenvectors of the adjacency matrix, and the last four rows are for
eigenvectors of the regularized graph Laplacian. Except for Simons and
Caltech, the (K + 1)th eigenvector of all other datasets contains almost no
information
Dataset Polblogs Karate Dolphins Football Polbooks UKfaculty Simmons Caltech
Eigen(K) 0.36 0.76 0.60 0.45 0.63 0.80 0.04 0.25
Eigen(K+1) 0.02 0.07 0.00 0.01 0.01 0.11 0.20 0.47
Eigen(K+2) 0.06 0.05 0.01 0.00 0.01 0.00 0.13 0.06
Eigen(K+3) 0.01 0.01 0.01 0.01 0.01 0.00 0.15 0.11

Eigen(K) 0.45 0.81 0.79 0.48 0.79 0.89 0.07 0.32
Eigen(K+1) 0.02 0.02 0.00 0.22 0.01 0.06 0.31 0.54
Eigen(K+2) 0.03 0.01 0.00 0.00 0.00 0.00 0.08 0.03
Eigen(K+3) 0.01 0.01 0.02 0.02 0.00 0.00 0.00 0.09

The eigenvector associated with the largest RQ(ξk) are in bold

How to choose between K = M and K = M + 1? The scree plot could
potentially be a good way to estimate how much information is contained
in each eigenvector. If the Kth and (K + 1)th eigenvalues are close, it is
likely that the (K +1)th eigenvector also contains information. To measure
“closeness”, we propose to use the quantity 1− [λ̂K+1/λ̂K ] with a scale-free
tuning parameter t = 0.1. This seems to work well on all the 8 datasets. See
Table 6.

4. Proofs

We now prove Theorems 2.1, Corollary 2.1, and Theorem 2.2.

Table 6: The quantity 1− [λ̂K+1/λ̂K ] for 8 network data sets, where λ̂k are
from the adjacency matrix (left) and the regularized graph Laplacian (right).
With a threshold t = 0.1, this criterion successfully selects M = K + 1 for
Simmons and Caltech and M = K for all others
Dataset Adjacency matrix Regularized graph Laplacian

Polblogs 0.5997 0.5223
Karate 0.4140 0.1768
Dolphins 0.1863 0.2027
Football 1.9255 0.1414
Polbooks 0.5034 0.2246
UKfaculty 0.3139 0.3336
Simmons 0.0804 0.0533
Caltech 0.0777 0.0236

Values below the threshold 0.1 are in bold
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4.1. Analysis of Empirical Eigenvectors Recall that λk and λ̂k denote
the kth largest eigenvalue (in magnitude) of Ω and A, respectively, and ξk
and ξ̂k denote the respective eigenvectors. Define

βn= |λK(G1/2PG1/2)|, where G=K‖θ‖−2 · diag
(
‖θ(1)‖2, . . . , ‖θ(K)‖2

)
.

Let ‖M‖2→∞ denote the maximum row-wise �2-norm of a matrix M . The
key technical tool we need in the proof is the following lemma:

Theorem 4.1. Under conditions of Theorem 2.1, write Ξ̂0 = [ξ̂2, ξ̂3, . . . ,
ξ̂K ], Ξ0 = [ξ2, ξ3, . . . , ξK ], and Λ0 = diag(λ2, λ3, . . . , λK). With probability
1− o(n−3), there exists an orthogonal matrix O ∈ R

K−1,K−1 (which depends
on A and is stochastic) such that

‖Ξ̂0O −AΞ0Λ
−1
0 ‖2→∞ ≤ CθmaxK

5
√
θmax‖θ‖1 log(n)

βn‖θ‖3
.

Theorem 4.1 is an extension of equation (C.71) in Jin et al. (2017) (this
equation appears in the proof of Lemma 2.1 of Jin et al. (2017)). Lemma 2.1
of Jin et al. (2017) assumes that |λ2|, |λ3|, . . . , |λK | are at the same order,
but here we allow them to be at different orders. The proof also needs some
modification.

Remark In the bound in Theorem 4.1, the power of K can be further
reduced by adding mild regularity conditions on |λ2|, |λ3|, . . . , |λK |. For ex-
ample, if we assume |λ2|, |λ3|, . . . , |λK | can be grouped into s = O(1) groups
such that κ(I) ≤ C for each group (see the statement of Lemma 4.1 for the
definition of κ(I)), then the power of K can be reduced from K5 to K

√
K.

In fact, the setting in Jin et al. (2017) corresponds to a special case of s = 2.
Proof of Theorem 4.1. Re-arrange the (K − 1) eigenvalues in the

descending order, i.e., λ(2) ≥ λ(3) ≥ . . . ≥ λ(K). We first assume that all
these eigenvalues are positive and use the following procedure to divide them
into groups:

• Initialize: k = 1 and m = 2.

• Compute the eigen-gaps gs, where gs = λ(s)−λ(s+1), form ≤ s ≤ K−1,
and gK = λ(K). Let s∗ = min{m ≤ s ≤ K : gs ≥ K−1λ(m)}. Since

λ(m) =
∑K

s=m gs, such s∗ must exist.

• Group λ(m), λ(m+1), . . . , λ(s∗−1), λ(s∗) together as the kth group.
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• If s∗ = K, terminate; otherwise, increase k by 1, reset m = s∗+1, and
repeat the above steps to obtain the next group.

For each group k, let Ik be the corresponding index set in the original order,
i.e., group k consists of eigenvalues λj for all j ∈ Ik. Define the eigengap
associated with group k as

δ(Ik) = min

⎧⎪⎨
⎪⎩ min

1≤i, j≤K
i∈Ik, j /∈Ik

|λi − λj |, min
i∈Ik

|λi|

⎫⎪⎬
⎪⎭ . (4.13)

The above grouping procedure, as well as the first inequality of condition
Eq. 2.10, guarantees that

max
j∈Ik

|λj | ≤ K · δ(Ik), for each group k. (4.14)

When some of the (K − 1) eigenvalues are negative, we first partition these
eigenvalues into two subsets, one consists of positive eigenvalues, and the
other consists of negative ones. We directly apply the grouping procedure
in the first subset. In the second subset, we take absolute values, sort in the
descending order, and then apply the above grouping procedure. Finally,
we combine the two collections of groups. The resulting groups still satisfy
Eq. 4.14.

We then prove the following technical lemma, which extends Theorem
2.1 of Abbe et al. (2019) and Lemma C.3 of Jin et al. (2017).

Lemma 4.1. Let M ∈ R
n,n be a symmetric random matrix, where EM =

M∗ for a rank K0 matrix M∗. Let d∗k and dk be the kth largest nonzero
eigenvalue of M∗ and M , respectively, and let η∗k and ηk be the corresponding
eigenvector, respectively, 1 ≤ k ≤ K0. Consider a partition

{1, 2, . . . ,K0} = I ∪
(
∪N
k=1Ik

)
, where I = {s+ 1, s+ 2, . . . , s+ r},

with s and r being two integers such that 1 ≤ r ≤ K0 and 0 ≤ s ≤ K0 − r,
and where each of I1, I2, . . . , IN contains consecutive indices. For any index
subset B ⊂ {1, 2, . . . ,K0}, define

δ(B) = min

{
min

i∈B,j /∈B
{|d∗i − d∗j |}, min

i∈B
|d∗i |

}
, and κ(B) =

(
max
i∈B

{|d∗i |}
)
/δ(B).

Let D = diag(ds+1, . . . , ds+r), D
∗ = diag(d∗s+1, . . . , d

∗
s+r),

U = [ηs+1, ηs+2, . . . , ηs+r], and U∗ = [η∗s+1, η
∗
s+2, . . . , η

∗
s+r].
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Let M∗
m,· denote the m-th row of M∗, for 1 ≤ m ≤ n. Suppose for a number

γ > 0, the following assumptions are satisfied:

• A1 (Incoherence): max1≤m≤n ‖M∗
m,·‖ ≤ γΔ∗, where Δ∗ = δ(I).

• A2 (Independence): For any 1 ≤ m ≤ n, the entries of the m-th row
and column of M are independent with the other entries.

• A3 (Spectral norm concentration): For a number δ0 ∈ (0, 1), P(‖M −
M∗‖ ≤ γΔ∗) ≥ 1− δ0.

• A4 (Row concentration): There is a number δ1 ∈ (0, 1) and a con-
tinuous non-decreasing function ϕ(·) with ϕ(0) = 0 and ϕ(x)/x being
non-increasing in R

+ such that, for any 1 ≤ m ≤ n and non-stochastic
matrix Y ∈ R

n,r,

P

(
‖(M −M∗)m,·Y ‖2 ≤ Δ∗‖Y ‖2→∞ϕ

(
‖Y ‖F√

n‖Y ‖2→∞

))
≥ 1− δ1/n.

With probability 1− δ0 − 2δ1, for an orthogonal matrix O ∈ R
r,r,

‖UO −MU∗(D∗)−1‖2→∞

≤ C [κ(κ+ ϕ(1))(γ + ϕ(γ)) + κ̃γ] · ‖Ũ∗‖2→∞, (4.15)

where Ũ∗ = [η1, η2, . . . , ηK0 ] and κ̃ =
∑

1≤k≤N κ(Ik).

We now prove Lemma 4.1. The proof is a light modification of the
proof of Lemma C.3 of Jin et al. (2017). Fix 1 ≤ m ≤ n. Let M (m)

be the matrix by setting the mth row and the mth column of M to be

zero. Let η
(m)
1 , η

(m)
2 , . . . , η

(m)
n be the eigenvectors of M (m). Write U (m) =

[η
(m)
s+1, . . . , η

(m)
s+r]. Let H = U ′U∗, H(m) = (U (m))′U∗ and V (m) = U (m)H(m)−

U∗. We aim to prove

‖Mm·V
(m)‖ ≤ 6(κ+ κ̃)γΔ∗‖Ũ∗‖2→∞

+Δ∗ϕ(γ) (4κ‖UH‖2→∞ + 6‖U∗‖2→∞) . (4.16)

Once Eq. 4.16 is obtained, the proof is almost identical to the proof of (B.26)
in Abbe et al. (2019), except that we plug in Eq. 4.16 instead of (B.32) in
Abbe et al. (2019). This is straightforward, so we omit it. What remains is
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to prove Eq. 4.16. In the proof of (Abbe et al. 2019, Lemma 5), it is shown
that

‖Mm·V
(m)‖ ≤ ‖M∗

mV (m)‖+ ‖(M −M∗)m·V
(m)‖,

‖(M −M∗)m·V
(m)‖ ≤ Δ∗ϕ(γ) (4κ‖UH‖2→∞ + 6‖U∗‖2→∞) .

Combining them gives

‖Mm·V
(m)‖ ≤ ‖M∗

m·V
(m)‖+Δ∗ϕ(γ) (4κ‖UH‖2→∞ + 6‖U∗‖2→∞) . (4.17)

We further bound the first term in Eq. 4.17. Define

I0 = ∪{1≤k≤N : maxj∈Ik
|d∗j |>maxj∈I |d∗j |}Ik.

In other words, I0 is the union of groups of eigenvalues such that the
largest absolute eigenvalue in that group is larger than ‖D∗‖. Let M̃∗ =∑

j∈I0 d
∗
jη

∗
j (η

∗
j )

′.

‖M∗
m·V

(m)‖ ≤ ‖M̃∗
m·V

(m)‖+ ‖(M∗
m· − M̃∗

m·)V
(m)‖

≤ ‖M̃∗
m·V

(m)‖+ ‖M∗ − M̃∗‖2→∞‖V (m)‖
≤ ‖M̃∗

m·V
(m)‖+ 6γ‖M∗ − M̃∗‖2→∞,

where the last line uses ‖V (m)‖ ≤ 6γ, by (B.12) of Abbe et al. (2019).

Note that M∗ − M̃∗ =
∑

j /∈I0 d
∗
jη

∗
j (η

∗
j )

′. By definition of I0, for any j /∈ I0,
|d∗j | ≤ maxi∈I |d∗i | ≤ κΔ∗. It follows that

‖M∗ − M̃∗‖2→∞ ≤
(
max
j /∈I0

|d∗j |
)
‖Ũ∗‖2→∞ ≤ κΔ∗‖Ũ∗‖2→∞.

Combining the above gives

‖M∗
m·V

(m)‖ ≤ ‖M̃∗
m·V

(m)‖+ 6κγΔ∗‖Ũ∗‖2→∞. (4.18)

Without loss of generality, we assume all groups except for I are contained
in I0, i.e., I0 = ∪N

k=1Ik. Let D
∗
k = diag(d∗j )j∈Ik , U

∗
k = [η∗j ]j∈Ik , Uk = [ηj ]j∈Ik ,

U
(m)
k = [η

(m)
j ]j∈Ik , and H

(m)
k = (U

(m)
k )′U∗

k . Then,

M̃∗ =
N∑
k=1

U∗
kΛ

∗
k(U

∗
k )

′.

Similar to (B.12) of Abbe et al. (2019), we have ‖U (m)
k H

(m)
k − U∗

k‖ ≤ 6γk,
where γk is defined in the same way as γ but is with respect to the eigen-gap
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of group k, which is Δ∗
k ≡ δ(Ik). It is not hard to see that γk = γΔ∗/Δ∗

k.
Therefore,

‖U (m)
k H

(m)
k − U∗

k‖ ≤ 6γΔ∗/Δ∗
k, 1 ≤ k ≤ N. (4.19)

By mutual orthogonality of eigenvectors, (U
(m)
k )′U (m) = 0, and (U∗

k )
′U∗ = 0.

Additionally, we have ‖U (m)
k ‖ = 1 and ‖H(m)

k ‖ ≤ 1. It follows that

‖M̃∗
m·V

(m)‖ ≤
N∑

k=1

‖e′m[U∗
kΛ

∗
k(U

∗
k )

′][U (m)H(m) − U∗]‖

=
N∑

k=1

∥∥∥e′m[U∗
kΛ

∗
k(U

∗
k )

′]U (m)H(m)
∥∥∥ (by mutual orthogonality)

≤
N∑

k=1

∥∥∥e′m[U∗
kΛ

∗
k(U

∗
k )

′]U (m)
∥∥∥

=
N∑

k=1

∥∥∥e′mU∗
kΛ

∗
k(U

∗
k − U

(m)
k H

(m)
k )′U (m)

∥∥∥ (by mutual orthogonality)

≤
N∑

k=1

∥∥∥e′mU∗
kΛ

∗
k(U

∗
k − U

(m)
k H

(m)
k )′

∥∥∥

≤
N∑

k=1

‖U∗
k‖2→∞ · ‖Λ∗

k‖ · ‖U∗
k − U

(m)
k H

(m)
k ‖

≤
N∑

k=1

6(‖Λk‖∗/Δ∗
k) · γΔ∗‖U∗

k‖2→∞ (by Eq. 4.19)

≤ 6γΔ∗ ·
(

N∑
k=1

κ(Ik)

)
· ‖Ũ∗‖2→∞ (note that‖U∗

k‖2→∞ ≤ ‖Ũ∗‖2→∞).

We plug it into Eq. 4.18 and use the definition of κ̃. It gives

‖M∗
m·V

(m)‖ ≤ 6(κ+ κ̃)γΔ∗‖Ũ∗‖2→∞. (4.20)

Combining Eq. 4.20 with Eq. 4.17 gives Eq. 4.16. Then, the proof of
Lemma 4.1 is complete.

We now apply Lemma 4.1 to prove the claim. For the groups in Eq. 4.14,
they satisfy that

κ(Ik) ≤ K, and δ(Ik) ≥ K−1|λK | ≥ K−2βn‖θ‖2.

We fix I to be one of the groups, and let I1, . . . , IN be the remaining groups.
We apply Lemma 4.1 to M = A, M∗ = Ω = diag(Ω) + (A− EA), and

Δ∗ � βnK
−2‖θ‖2, γ � K2

√
θmax‖θ‖1

βn‖θ‖2
.
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We construct ϕ(γ) in the same way as in Lemma C.3 of Jin et al. (2017). It
satisfies that ϕ(γ) ≤ Cγ

√
log(n). Similarly as in the proof of Lemma C.3,

we can show that conditions A1-A4 are satisfied. Write

Ξ̂01 = [ξ̂i]i∈I , Ξ01 = [ξi]i∈I , and Λ1 = diag(λi)i∈I .

It follows from Eq. 4.15 that there exists an orthogonal matrix O ∈ R
|I|×|I|

such that

‖Ξ̂01O −AΞ01Λ
−1
1 ‖2→∞ ≤ C

K4
√

θmax‖θ‖1 log(n)
βn‖θ‖2

‖Ξ‖2→∞.

By Lemma B.2 of Jin et al. (2017), ‖Ξ‖2→∞ = O(
√
K‖θ‖−1θmax). Plugging

it into the above inequality, we find that

‖Ξ̂01O −AΞ01Λ
−1
1 ‖2→∞ ≤ CθmaxK

4
√
Kθmax‖θ‖1 log(n)
βn‖θ‖3

. (4.21)

The above inequality holds for each group. Note that Ξ̂0 is obtained by
putting such Ξ̂01 together. When B = [B1, B2, . . . , BN ], it holds that

‖B‖2→∞ ≤
√∑

k ‖Bk‖22→∞ ≤
√
Kmaxk ‖Bk‖2→∞. Combining it with

Eq. 4.21 gives the claim.
4.2. Proof of Theorem 2.1 The rationale of SCORE guarantees that

the rows of R take only K distinct values v1, v2, . . . , vK ∈ R
K−1. Below, we

first derive a crude high-probability bound for Hamm(Π̂,Π) without using
Theorem 4.1. This bound implies that each k-means center is close to one
of the true vk. Next, we use Theorem 4.1 to derive a sharper bound for
E[Hamm(Π̂,Π)].

We start from deriving a crude bound for Hamm(Π̂,Π). Let βn be the
same as in Section 4.1. By Lemma B.1 of Jin et al. (2017), C−1K−1‖θ‖2 ≤
λ1 ≤ ‖θ‖2, and |λK | � K−1βn‖θ‖2. It follows that

C−1
√
K(|λK |/

√
λ1) ≤ βn‖θ‖ ≤ CK(|λK |/

√
λ1).

Therefore, the assumption sn ≥ a−1
1 K4

√
log(n) guarantees that

θmaxK
4
√
Kθmax‖θ‖1 log(n)

βnθmin‖θ‖2
≤ a1. (4.22)

Let O be the orthogonal matrix in Theorem 4.1. By Lemma 2.1 of Jin et al.
(2017), with probability 1− o(n−3), there exists ω ∈ {±1} such that

‖ωξ̂1−ξ1‖∞ ≤ CθmaxK
√
θmax‖θ‖1 log(n)
‖θ‖3 , ‖Ξ̂0O−Ξ0‖F ≤ C

K
√
Kθmax‖θ‖1
βn‖θ‖2

. (4.23)
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By Lemma B.2 of Jin et al. (2017), ξ1(i) ≥ C−1θi/‖θ‖ ≥ C−1θmin/‖θ‖.
By choosing a1 appropriately small, the condition on sn guarantees that
‖ξ̂1 − ξ1‖∞ ≤ ξ1(i)/3, for any 1 ≤ i ≤ n. Then, we can use a proof similar
to that in Lemma C.5 of Jin et al. (2017) to show that, with probability
1− o(n−3), there exists an orthogonal matrix H such that

n∑
i=1

‖Hr̂i − ri‖2 ≤
‖Ξ̂0O − Ξ0‖2F

(min1≤i≤n θi/‖θ‖)2
≤ CK3θmax‖θ‖1

θ2minβ
2
n‖θ‖2

.

Since θ2max ≥ ‖θ‖2/n, we can further write that

n∑
i=1

‖Hr̂i − ri‖2 ≤
CnK3θ3max‖θ‖1
θ2minβ

2
n‖θ‖4

≤ Cn · a21
K6 log(n)

, (4.24)

where the last inequality is from Eq. 4.22. Recall that the rows of R take
only K distinct values v1, . . . , vK . By Lemma B.3 of Jin et al. (2017), there
exists a constant c0 > 0 such that, for all 1 ≤ k �= � ≤ K,

‖vk − v�‖ ≥ c0
√
K and ‖vk‖ ≤ C

√
K. (4.25)

Furthermore, in the proof of Theorem 2.2 of Jin (2015), it was shown that
the k-means solution satisfies that

Hamm(Π̂,Π) ≤ (3/δ)2
n∑

i=1

‖Hr̂i − ri‖2,

where δ is the minimum distance between two distinct rows of R. Combining
the above gives

Hamm(Π̂,Π) ≤ Ca21 ·
n

K7 log(n)
, (4.26)

where C is a constant that does not depend on a1.
This crude bound Eq. 4.26 is enough for studying the k-means centers.

By Eq. 4.26, the total number of misclustered nodes is O(n/[K7 log(n)]).
Also, Condition Eq. 2.9 implies that each true cluster has at least c−1

2 K−1n
nodes. This means that each cluster has only a negligible fraction of mis-
clustered nodes. Particularly, each true cluster Ck is associated with one
and only one k-means cluster, which we denote by Ĉk; furthermore, we have
|Ĉk\Ck| = O(n/[K7 log(n)]) and |Ĉk\Ck| = O(n/[K7 log(n)]). The cluster
center v̂k of the cluster Ĉk satisfies that

v̂k =
1

|Ĉk|
∑
i∈Ĉk

r̂i.
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Note that ri = vk for i ∈ Ck. It follows that∥∥∥∥∥∥Hv̂k − vk‖ ≤ 1

|Ĉk|

∥∥∥∥∥∥
∑
i∈Ĉk

(Hr̂i − ri)

∥∥∥∥+ 1

|Ĉk|

∥∥∥∥∥∥
∑

i∈Ĉk\Ck

(ri − vk)

∥∥∥∥∥∥ .

By Eq. 4.25, ‖ri − vk‖ = O(
√
K). Furthermore, |Ĉk| � c−1

2 K−1n and
|Ĉk\Ck| = O(n/[K7 log(n)]). Combing them with the Cauchy-Schwarz in-
equality, we find that

‖Hv̂k − vk‖ ≤ 1√
|Ĉk|

·
√∑

i∈Ĉk

‖Hr̂i − ri‖2 +
|Ĉk\Ck|
c−1
2 K−1n

·O(
√
K)

≤ 1√
c−1
2 K−1n

·O
(√

n

K6 log(n)

)
+O

(
1

K5
√
K log(n)

)

= O

(
1

K2
√

K log(n)

)
.

The right hand side is o(
√
K). Let c0 be the same as in Eq. 4.25. Then, for

sufficiently large n,

‖Hv̂k − vk‖ ≤ c0
√
K/8, for all 1 ≤ k ≤ K. (4.27)

Next, we use Theorem 4.1 to get the desired bound for E[Hamm(Π̂,Π)].
LetD be the event that Eq. 4.27 holds. We have shown that P(Dc) = o(n−3).
It follows that

E[Hamm(Π̂,Π)] =
1

n

n∑
i=1

P(π̂i �= πi) ≤
1

n

n∑
i=1

P(π̂i �= πi, D) + o(n−3). (4.28)

It remains to bound the probability of making a clustering error on i, when
the event D holds. Suppose i ∈ Ck. On the event D, if ‖Hr̂i−ri‖ ≤ c0

√
K/4,

then
‖Hr̂i −Hv̂k‖ ≤ c0

√
K/4 + c0

√
K/8 ≤ 3c0

√
K/8,

while for any � �= k,

‖Hr̂i −Hv̂�‖ ≥ ‖vk − v�‖ − c0
√
K/4− c0

√
K/8 ≥ 5c0

√
K/8.

Then, node i must be clustered into Ĉk, i.e., there is no error on i. This
implies that

P(π̂i �= πi, D) ≤ P

(
‖Hr̂i − ri‖ > c0

√
K/4

)
. (4.29)
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We further study the right hand side of Eq. 4.29. Let (ξ̂1, Ξ̂0, ω,O) be
the same as in Eq. 4.23. Fix i. Let Ξ̂′

0,i ∈ R
K−1 and Ξ′

0,i ∈ R
K−1 denote the

ith row of Ξ̂0 and Ξ0, respectively. Then,

Hr̂i =
1

ωξ̂1(i)
O′Ξ̂0,i, ri =

1

ξ1(i)
Ξ0,i.

It is seen that

Hr̂i − ri =
1

ωξ̂1(i)
(O′Ξ̂0,i − Ξ0,i)−

ωξ̂1(i)− ξ1(i)

ωξ̂1(i)
ri.

By Lemma B.2 of Jin et al. (2017), ξ1(i) ≥ C−1θi/‖θ‖. Combining it with
Eq. 4.23 gives ‖ωξ̂1 − ξ1‖∞ = o(ξ1(i)). It follows that ωξ̂1(i) ≥ ξ1(i)/2 ≥
C−1θi/‖θ‖. Additionally, ‖ri‖ ≤ C

√
K, by Eq. 4.25. Therefore, with prob-

ability 1− o(n−3),

‖Hr̂i − ri‖ ≤
C‖θ‖
θi

(
‖O′

Ξ̂0,i − Ξ0,i‖ +
√
K|ωξ̂1(i) − ξ1(i)|

)

≤
C‖θ‖
θi

(
‖O′

Ξ̂0,i − Λ
−1
0 Ξ

′
0A·,i‖ + ‖Λ−1

0 Ξ
′
0A·,i − Ξ0,i‖ +

√
K|ωξ̂1(i) − ξ1(i)|

)

≤
C‖θ‖
θmin

(
‖Ξ̂0O − AΞ0Λ

−1
0 ‖2→∞ +

√
K‖ωξ̂1 − ξ1‖∞

)
+

C‖θ‖
θi

‖Λ−1
0 Ξ

′
0A·,i − Ξ0,i‖.

We plug in Theorem 4.1 and the first inequality of Eq. 4.23. It yields

‖Hr̂i − ri‖ ≤ CθmaxK
5
√
θmax‖θ‖1 log(n)

βnθmin‖θ‖2
+

C‖θ‖
θi

‖Λ−1
0 Ξ′

0A·,i − Ξ0,i‖

≤ C
√
K · a1 +

C1‖θ‖
θi

‖Λ−1
0 Ξ′

0A·,i − Ξ0,i‖,

where the second inequality is from Eq. 4.22 and the constant C1 does not
depend on a1. By choosing an appropriately small a1, we can make the first
term ≤ c0

√
K/8. It follows that

P(π̂i �= πi, D) ≤ P

(
C1‖θ‖
θi

‖Λ−1
0 Ξ′

0A·,i − Ξ0,i‖ > c0
√
K/8

)
+o(n−3). (4.30)

Note that A = Ω+W − diag(Ω), where W = A− EA and Ω = ΘΠPΠ′Θ =
ΞΛΞ′. In particular,

Λ−1
0 Ξ′

0Ω = Ξ′
0.

It follows that

Λ−1
0 Ξ′

0A·,i = Λ−1
0 Ξ′

0[Ω+W −diag(Ω)]·,i = Ξ0,i+Λ−1
0 Ξ′

0W·,i−Ω(i, i)Λ−1
0 Ξ0,i.
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Note that Ω(i, i) ≤ θ2i . Additionally, ‖Λ−1
0 ‖ = |λK |−1 � Kβ−1

n ‖θ‖−2 and
‖Ξ0,i‖ ≤ ‖Ξ0‖ ≤ 1. It follows that

C1‖θ‖
θi

‖Λ−1
0 Ξ′

0A·,i − Ξ0,i‖ ≤ C1‖θ‖‖Λ−1
0 ‖

θi

(
‖Ξ′

0W·,i‖+ θ2i
)

≤ C2K

θiβn‖θ‖
‖Ξ′

0W·,i‖+
C2Kθmax

βn‖θ‖
,

where C2 > 0 is a constant that does not depend on a1. The second term
is O(Kβ−1

n ‖θ‖−1). At the same time, the left hand side of Eq. 4.22 is lower
bounded by K4

√
K log(n)/(βn‖θ‖). Therefore, Eq. 4.22 implies that the

second term is O(1/[K3
√
K log(n)]) = o(

√
K). Particularly, for sufficiently

large n, the second term is ≤ c0
√
K/16, i.e.,

C1‖θ‖
θi

‖Λ−1
0 Ξ′

0A·,i − Ξ0,i‖ ≤ C2K

θiβn‖θ‖
‖Ξ′

0W·,i‖+ (c0/16)
√
K.

We plug it into Eq. 4.30 to get

P(π̂i �= πi, D) ≤ P

(
C2K

θiβn‖θ‖
‖Ξ′

0W·,i‖ > (c0/16)
√
K

)
+ o(n−3)

= P

(
‖Ξ′

0W·,i‖2 >
c20

162C2
1

· θ
2
i β

2
n‖θ‖2
K

)
+ o(n−3)

= P

(
K∑
k=2

(e′iWξk)
2 >

c20
162C2

1

· θ
2
i β

2
n‖θ‖2
K

)
+ o(n−3)

≤
K∑
k=2

P

(
|e′iWξk| >

c0
16C1

· θiβn‖θ‖
K

)
+ o(n−3), (4.31)

where the last inequality is because of the probability union bound.
It remains to get a large deviation inequality for |e′iWξk|. Note that

e′iWξk =
∑

1≤j≤n:j 	=i

ξk(j)W (i, j).

The summands are independent, and |ξk(j)W (i, j)| ≤ |ξk(j)| ≤ C
√
Kθj/

‖θ‖ ≤ C
√
Kθmax/‖θ‖ (the bound of |ξk(j)| is from Lemma B.2 of Jin et al.

(2017)).We shall apply Bernstein’s inequality.Note that
∑

j ξ
2
k(j)Var(W(i, j))

≤
∑

j ξ
2
k(j)‖P‖maxθiθj ≤ C

∑
j(Kθ2j/‖θ‖2)θiθj ≤ θi · CK‖θ‖33/‖θ‖2.

It follows from Bernstein’s inequality that
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P
(
|e′iWξk| > t

)
≤ 2 exp

(
− t2/2

θi · CK‖θ‖33/‖θ‖2 + (t/3) · C
√
Kθmax/‖θ‖

)
, for all t > 0.

We plug in t = (c0/16C1) ·K−1θiβn‖θ‖. It follows that

P

(
|e′iWξk| >

c0

16C1
· θiβn‖θ‖

K

)
≤ 2 exp

(
−

K−2θ2i β
2
n‖θ‖2

C3θi ·K‖θ‖33/‖θ‖2 + C4θi ·K−1/2θmaxβn

)

≤ 2 exp

(
−a2θi ·min

{
β2
n‖θ‖4

K3‖θ‖33
,

βn‖θ‖2

K
√
Kθmax

})

≤ 2 exp

(
−a2θi ·min

{
(|λK |/

√
λ1)2‖θ‖2

K2‖θ‖33
,
(|λK |/

√
λ1)‖θ‖

Kθmax

})
. (4.32)

where C3, C4 are constants that depend on (c0, C2, C), a2 = min{C3, C4},
and the last inequality is due to βn ≥

√
K(|λK |/

√
λ1). We plug it into

Eq. 4.31 to get

P(π̂i �= πi, D) ≤ 2K exp

(
−a2θi ·min

{
(|λK |/

√
λ1)

2‖θ‖2
K2‖θ‖33

,
(|λK |/

√
λ1)‖θ‖

Kθmax

})
+ o(n−3).

Combining it with Eq. 4.28 gives the desired claim.
4.3. Proof of Corollary 2.1 We use an intermediate result in the proof

of Theorem 2.1, which is the second last line of Eq. 4.32. We plug it into
Eq. 4.31 and Eq. 4.28 to get

E[Hamm(Π̂,Π)] ≤ 2K
K∑
k=1

exp

(
−a2θi ·min

{
β2
n‖θ‖4

K3‖θ‖33
,

βn‖θ‖2

K
√
Kθmax

})
,

(4.33)
where βn = |λK(G1/2PG1/2)|, with G = K‖θ‖−2diag(‖θ(1)‖2, . . . , ‖θ(K)‖2).
In this example, from the way πi is generated, by elementary probability,
‖G−IK‖ = O(

√
log(K)/n); moreover, the first eigenvalue of P is (1−b)+Kb,

and other eigenvalues are all equal to (1− b). It follows that

βn � 1− b.

Additionally, since θmax ≤ Cθmin, we have ‖θ‖33 � ‖θ‖2θ̄. It follows that

β2
n‖θ‖4

K3‖θ‖33
� n

θ̄

(1− b)2‖θ‖2
K3

,
βn‖θ‖2

K
√
Kθmax

� 1

θ̄

(1− b)‖θ‖
K
√
K

.

The first term is dominating. We plug it into Eq. 4.33. The claim follows
immediately.
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4.4. Proof of Theorem 2.2 We have shown in Eq. 4.29 that there is an
event D such that P(Dc) = o(n−3) and that on the event D,

‖Hr̂i − ri‖ ≤ c0
√
K/4 =⇒ π̂i = πi.

Therefore, it suffices to show that, with probability 1− o(n−3),

‖Hr̂i − ri‖ ≤ c0
√
K/4. (4.34)

In the equation above Eq. 4.30 and the equation above Eq. 4.31, we have
shown that, as long as a1 in Theorem 2.1 is properly small,

‖Hr̂i − ri‖ ≤ (c0/8)
√
K +

C1‖θ‖
θi

‖Λ−1
0 Ξ′

0A·,i − Ξ0,i‖

≤ (c0/8)
√
K +

C2K

θiβn‖θ‖
‖Ξ′

0W·,i‖+ (c0/16)
√
K

≤ (3c0/16)
√
K +

C2K

θiβn‖θ‖

√√√√ K∑
k=2

(e′iWξk)2. (4.35)

We then apply Eq. 4.32. In order for the exponent of the right hand side of
Eq. 4.32 to be at the order of log(n), we need

θmin ·
(|λK |/

√
λ1)

2‖θ‖2
K2‖θ‖33

≥ C log(n), and θmin ·
(|λK |/

√
λ1)‖θ‖

Kθmax
≥ C log(n), (4.36)

for a large enough constant C > 0. Note that the condition on sn implies

θ2min‖θ‖2(|λK |/
√
λ1)

2

K8θ3max‖θ‖1
≥ C log(n),

for a large constant C > 0. It is straightforward that this condition guaran-
tees Eq. 4.36. Then, the right hand side of Eq. 4.32 can be o(n−3). In other
words, with probability 1− o(n−3),

|e′iWξk| ≤ cK−1θiβn‖θ‖, (4.37)

where the constant c1 > 0 can be arbitrarily small by setting the constant
C in the assumption of sn to be sufficiently large. We plug it into Eq. 4.35
to get, with probability 1− o(n−3),

‖Hr̂i − ri‖ ≤ (3c0/16)
√
K + C2c

√
K.

Since c can be made arbitrarily small by increasing C in the assumption of
sn, we choose a large enough C such that C2c < (c0/16)

√
K. Then, Eq. 4.34

is satisfied. The claim follows directly.
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