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1. Overview of the proposed clustering method. The paper by Jiashun Jin and Wanjie
Wang (further referred to as [JW]) addresses an important issue of clustering in Gaussian mixture
models. To establish a conceptual framework, one may consider a model which is slightly simpler
than in [JW], but presents the same difficulties. Namely, assume that we observe an n× p matrix
X with rows

(1) Xi = µz(i) + Zi, i = 1, . . . , n,

where z : {1, . . . , n} → {1, . . . ,K} is an unknown assignment of the observations to K classes,
µ1, . . . , µK are unknown vectors in Rp, and Zi ∈ Rp are i.i.d. normal vectors with mean 0 and
covariance matrix σ2Ip. Here Ip is the p× p identity matrix. In [JW], the covariance matrix of Z1

is diagonal, with the diagonal elements bounded from below and from above by constants red that
are independent of p, and there is an additional common mean vector µ̄ in the model. This adds
some technicalities but does not change the essence of the problem. Jiashun Jin and Wanjie Wang
consider an asymptotic setting where p→∞ and n = o(p), but K is fixed. It is assumed that the
classes z−1(k), k = 1, . . . ,K, are “balanced” in the sense that their cardinalities δk = |z−1(k)| are
greater than C0n for some constant C0 > 0 independent of n and p. It is also assumed that the
vectors µ1, . . . , µK are linearly independent and s-sparse in a group sense, that is, all their non-zero
components belong to the same set of indices of size s (called here the sparsity pattern), where
s = p1−ϑ for some 0 < ϑ < 1. Note that we may write the model (1) in the form (which is a
simplified version of (2.6) in [JW]):

X = LM + Z,

where M is an K × p matrix with rows µ1, . . . , µK , and L is an n×K binary matrix with the ith
row is equal to the z(i)th canonical basis vector.

The clustering problem that is addressed in the paper is to find an estimator ẑ(·) of the class
assignment z(·) such that the normalized Hamming loss

min
φ

1
n

n∑
i=1

P
(
ẑ(i) 6= φ(z(i))

)
converges to 0 as p→∞. Here, minφ denotes the minimum over all permutations (φ(1), . . . , φ(n))
of (1, . . . , n).

Clearly, it is natural to take advantage of sparsity. The IF-PCA procedure of [JW] first selects the
sparsity pattern of the vectors µ1, . . . , µK based on the Kolmogorov-Smirnov (KS) statistics. The KS
statistics are computed independently for each j ∈ {1, . . . , p} based on n-samples (X1(j), . . . , Xn(j))
corresponding to the columns of X. Then, they are compared to a suitably chosen threshold t to
perform selection. This is called the feature selection step. Two main definitions of the threshold
are considered. One of them is t = A

√
log p with a carefully chosen A > 0, for which the theoretical

results are proved. The second one is a data-driven choice of t based on the version of the Higher
Criticism (HC) statistic, for which simulations are performed. We discuss this second choice in
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detail below. Assuming that the sparsity pattern is correctly selected with high probability, the
columns of X marked as non-selected are dropped. This reduces the dimension from p to s, leading
to a new matrix X′. Finally, the first K unit-norm left singular vectors of X′ are computed and a
k-means clustering procedure is applied to obtain the estimated assignment ẑ(·).

2. Optimality issue. One of the messages of the paper stated in Section 2.4 is that “clustering
and feature selection are possible and non-trivial” only when the non-zero components of the vectors
µk are greater than the critical values of order ((log p)/n)−1/6. Section 2.4 also discusses some
related “phase transitions”. However, the results deal with one particular method suggested in the
paper. There is no guarantee that the method is optimal. Moreover, only some upper bounds on
the rates are obtained, and there is no guarantee that the bounds are tight even for this particular
method. So, the phase transitions are only related to these upper bounds for the proposed procedure
and are not shown to represent a general phenomenon. The ((log p)/n)−1/6 critical value and the
corresponding rates for the Hamming loss appear to be too pessimistic1 - the critical features are
required to be rather strong.

An interesting question is to get more insight into the problem and to investigate critical thresh-
olds that cannot be improved with any method. This task needs developing minimax lower bounds
on the Hamming loss for suitably defined sparsity classes of vectors µ1, . . . , µK . Since there is no
minimax setting in [JW], it is difficult to say what would be the best rate or the smallest critical
value of useful features. However, using other methods than in [JW], one can achieve better critical
thresholds in a natural minimax setting for this model. The argument is as follows. The fact that
the jth column of the matrix LM contains at least one non-zero element implies that it contains at
least C0n non-zero elements, since the same row appears in LM at least C0n times (recall that C0n
is a lower bound on the size of any of K classes). Thus, for each j, we deal with a detection problem
for a normal means model in Rn where the mean vector is C0n-sparse. This is a “dense” case of
testing problem, and it is well-known that the minimal absolute value of the non-zero components,
for which successful detection is possible, is of order n−1/4 (see, for example, [2], Corollary 2, taking
there d = n, s = C0n). The optimal test is based on a chi-square type statistic and the testing
errors decrease exponentially in n. Thus, taking the maximum over j = 1, . . . , p (that can only have
a logarithmic influence on rates), we find that the sparsity pattern is correctly selected with high
probability when the non-zero components of vectors µk are of order n−1/4 (maybe up to logs),
which is much better than ((log p)/n)−1/6. One should note that this argument is valid under the
assumption that σ is known. There remains a question of whether the knowledge of σ is so crucial
that the rate of testing changes dramatically when σ is unknown. There are some problems where
it is indeed the case. However, the analogy with Verzelen and Arias-Castro [6, Section 3.3], who
considered a very similar problem, suggests that the case of diagonal covariance matrix does not
present this anomaly. Usually, it is enough to get a rough over-estimate of σ for the chi-square
statistic to work.

3. The form of the HC statistic for feature selection. A key step of the procedure in
[JW] consists in selecting the sparsity pattern by means of thresholding at some level t. Section
1.3 in [JW] introduces a data-driven threshold selection method based on the HC statistic (the
thresholding step of the IF-PCA procedure), which is only explored in [JW] numerically. We have
some questions concerning this method of threshold selection.

1The rate ((log p)/n)−1/6 is a logarithmic rate for all reasonable sample sizes since n−1/6 < log n if n < 108.
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The HC statistic defined in (1.11) of [JW] has the form

HCp,j =
√
p(j/p− π(j))√

max
{√

n(j/p− π(j)), 0
}

+ j/p

, 1 ≤ j ≤ p/2.(2)

Based on it, the index
ĵ = argmax1≤j≤p/2,π(j)>(log p)/pHCp,j ,

is selected, and the threshold t = tHC
p is defined as the ĵth largest KS score given by formula (1.6)

in [JW].
Observe that it is a one-sided statistic, which makes sense only if the non-negative scores ψn,j

are considered. However, the summary of the IF-HCT-PCA method in Table 3 of [JW] employs the
centered scores ψ∗n,j . For such scores, some significant features may correspond to highly negative
values of j/p − π(j). Thus, if most of the scores are negative, the method nevertheless will stop
at ĵ, corresponding to a positive score, no matter how small it is in absolute value. Therefore, we
wonder whether the authors mean using |HCp,j | rather than HCp,j .

The role of the term Q , max
{√

n(j/p− π(j)), 0
}

in (2) remains unclear. The discussion at the
end of Section 1.3 only arrives to the conclusion that the function HCp(t) is monotone between the
adjacent discontinuities. But this property is valid with many other choices of additive terms in the
denominator, not necessarily with the term Q. Furthermore, it is not clear why this property is so
important. Overall, we were not able to follow the discussion after the word ‘Remark’ at the end
of Section 1.3.

Finally, we wonder where does the exact form of the constraint π(j) > (log p)/p come from.
The authors write that it prevents an ill behavior of HCp,j for small j, by analogy with the HC
statistic of Donoho and Jin [4]. However, in [4] we find the truncation at 1/p rather than at
(log p)/p. Moreover, the 1/p truncated and non-truncated test statistics have the same asymptotic
distribution under the null hypothesis. This is conjectured in [4, page 974], and proved in [5]. One
can also prove that the (log p)/p truncation leads to the same distribution. Therefore, all these
truncations change nothing from the theoretical point of view – the asymptotic distribution is
not affected. However, they may turn out to be extremely important for the output of the HC
type procedures in practice. In view of this, choosing one of the many, asymptotically equivalent,
possible levels, such as (log p)/p, looks more like a rough guide rather than something precisely
recommended. Why not, for example, 5(log p)/p or (log p)2/p? Then, although nothing changes
in the theory, the behavior of the procedure in practice may become dramatically different. We
suspect that the literal application of the constraint π(j) > (log p)/p may actually result in a poor
behavior in reality, and all the story is rather a way to say that some truncation may be needed,
though ultimately chosen by hand. An open problem is to choose the truncation via a self-tuning
adaptive procedure. An alternative approach is to avoid any truncation and use a penalization in
the denominator of the test statistic (see [3, 5]). For example, a possible modification that is based
on Theorem 4.2.3 of [3] is to replace HCp,j , 1 ≤ j ≤ p/2, by the statistics

ĤCp,j ,

√
p(j/p− π(j))√

max
{√

n(j/p− π(j)), 0
}

+ (j/p) log log(p/j)
, 1 ≤ j ≤ p/2,

and set ĵ = argmax1≤j≤p/2ĤCp,j .
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4. Assumptions on the model and applications. The normality of the errors and the
diagonal structure of the covariance matrix are assumed throughout the paper. These seem to be
very strong assumptions in view of applications to the analysis of the considered gene microarray
data sets. In genomics, where a degree of correlation is high within a group of genes sharing the
same biological pathway, the data are of different kind (see, for example, [1]). The assumption that
n = pθ and s = p1−ϑ is also very specific and could be made more general. The main result of the
paper, Theorem 2.2, that ensures consistency of the proposed estimation procedure is stated under
these and some other quite restrictive assumptions. For example, the threshold is not data-driven
but should depend on the unknown θ or ϑ via q to get the rates in Corollary 2.2. At the same
time, for several data sets used in Section 1 of [JW], the empirical method, for which no theory
has been provided, gives reasonably good numerical results. This method, as defined, is completely
data-driven. In view of the above comments concerning the constraint π(j) > (log p)/p, we wonder
whether in the numerical experiments the truncation is done exactly in this form, or it is chosen
by hand.
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