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Given a symmetric social network, we are interested in testing whether
it has only one community or multiple communities. The desired tests should
(a) accommodate severe degree heterogeneity, (b) accommodate mixed mem-
berships, (c) have a tractable null distribution and (d) adapt automatically to
different levels of sparsity, and achieve the optimal phase diagram. How to
find such a test is a challenging problem.

We propose the Signed Polygon as a class of new tests. Fixing m > 3,
for each m-gon in the network, define a score using the centered adjacency
matrix. The sum of such scores is then the mth order Signed Polygon statistic.
The Signed Triangle (SgnT) and the Signed Quadrilateral (SgnQ) are special
examples of the Signed Polygon.

We show that both the SgnT and SgnQ tests satisfy (a)—(d), and especially,
they work well for both very sparse and less sparse networks. Our proposed
tests compare favorably with existing tests. For example, the EZ and GC tests
behave unsatisfactorily in the less sparse case and do not achieve the optimal
phase diagram. Also, many existing tests do not allow for severe heterogene-
ity or mixed memberships, and they behave unsatisfactorily in our settings.

The analysis of the SgnT and SgnQ tests is delicate and extremely te-
dious, and the main reason is that we need a unified proof that covers a wide
range of sparsity levels and a wide range of degree heterogeneity. For lower
bound theory, we use a phase transition framework, which includes the stan-
dard minimax argument, but is more informative. The proof uses classical
theorems on matrix scaling.

1. Introduction. Given a symmetrical social network, we are interested in the global
testing problem where we use the adjacency matrix of the network to test whether it has only
one community or multiple communities. A good understanding of the problem is useful for
discovering nonobvious social groups and patterns [5, 14], measuring diversity of individual
nodes [15], determining stopping time in a recursive community detection scheme [33, 44].
It may also help understand other related problems such as membership estimation [43] and
estimation of the number of communities [40, 42].

Natural networks have several characteristics that are ubiquitously found:

e Severe degree heterogeneity. The distribution of the node degrees usually has a power-law
tail, implying severe degree heterogeneity.

e Mixed memberships. Communities are tightly woven clusters of nodes where we have more
edges within than between [17, 39]. Communities are rarely nonoverlapping, and some
nodes may belong to more than one community (and thus have mixed memberships).

e Sparsity. Many networks are sparse. The sparsity levels may range significantly from one
network to another, and may also range significantly from one node to another (due to
severe degree heterogeneity).
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Phase transition is a well-known optimality framework [13, 22, 34, 38]. It is related to the
minimax framework but can be more informative in many cases. Conceptually, for the global
testing problem, in the two-dimensional phase space with the two axes calibrating the “spar-
sity” and “signal strength,” respectively, there is a “Region of Possibility” and a “Region of
Impossibility.” In the “Region of Possibility,” any alternative is separable from the null. In
the “Region of Impossibility,” any alternative is inseparable from the null.

If a test is able to automatically adapt to different levels of sparsity and separate any given
alternative in the “Region of Possibility” from the null, then we call it “optimally adaptive.”

We are interested in finding tests that satisfy the following requirements:

(R1) Applicable to networks with severe degree heterogeneity.

(R2) Applicable to networks with mixed memberships.

(R3) The asymptotic null distribution is easy to track, so the rejection regions are easy to set.

(R4) Optimally adaptive: We desire a single test that is able to adapt to different levels of
sparsity and is optimally adaptive.

1.1. The DCMM model. We adopt the Degree Corrected Mixed Membership (DCMM)
model [24, 43]. Denote the adjacency matrix by A, where
1, ifnode i and node j have an edge,
(1.1) Ajj = , J g

0, otherwise.

Conventionally, self-edges are not allowed so all the diagonal entries of A are 0. In DCMM,
we assume there are K perceivable communities Cy, Cs, ..., Ck, and each node is associated
with a mixed-membership weight vector 7; = (r; (1), 7;(2), ..., 7 (K))" where for 1 <k <
Kand1<i<n,

(1.2) 7; (k) = the weight node i puts on community k.

Moreover, for a K x K symmetric nonnegative matrix P, which models the community
structure, and positive parameters 01, 0,, ..., 8,, which model the degree heterogeneity, we
assume the upper triangular entries of A are independent Bernoulli variables satisfying

(1.3) P(Aij=1)=9i0j-JTI!PJTJ'EQZ‘J', 1<i<j<n,

where 2 denotes the matrix @TTPIT'®, with © being the n x n diagonal matrix diag(dy, ...,
6,) and IT being the n x K matrix [71, 72, ..., m,] . For identifiability (see [24] for more
discussion), we assume

(1.4) all diagonal entries of P are 1.

When K =1, (1.4) implies P =1, and so €;; =6;0;,1 <i, j <n.
Write for short diag(2) = diag(211, 222, ..., Qun), and let W be the matrix where for
1<i,j<n,W;j=A;; —Q;jifi # jand W;; =0 otherwise. In matrix form, we have

(1.5) A=Q —diag(Q) + W, where Q=0OIPIT'O.

DCMM includes three models as special cases, each of which is well known and has been
studied extensively recently.

e Degree Corrected Block Model (DCBM) [29]. If we do not allow mixed memberships (i.e.,
each weight vector 7; is degenerate with one entry being nonzero), then DCMM reduces
to the DCBM.

o Mixed-Membership Stochastic Block Model (MMSBM) [1]. DCBM further reduces to
MMSBM if 0; = --- = 0,(= ,/a,). In this special case, Q2 = o, [1PIT', and for identi-
fiability, (1.4) is too strong, so we relax it to that the average of the diagonals of P is 1.
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e Stochastic Block Model (SBM) [20]. MMSBM further reduces to the classical SBM if
additionally we do not allow mixed memberships.

Under DCMM, the global testing problem is the problem of testing
(1.6) H":K=1 vs. H"™:K>2.

The seeming simplicity of the two hypotheses is deceiving, as both of them are highly com-
posite, consisting of many different parameter configurations.

1.2. Phase transition: A preview of our main results. Let Ay, A2, ..., Ak be the first K
eigenvalues of Q, arranged in the descending order in magnitude. We can view (a) 4/A both
as the sparsity level and the noise level [23] (i.e., spectral norm of the noise matrix W), (b) |Ao|
as the signal strength, so that |A;|/+/A] is the Signal-to-Noise Ratio (SNR) and (c) |A2|/A;
as a measure of dissimilarity between different communities (Example 1 below illustrates
why it measures “dissimilarity”). We note that [12, 19] also pointed out that |Ay|/+/A] is a
reasonable metric of SNR.

Now, in the two-dimensional phase space where the x-axis is «/A1, which measures the
sparsity level, and the y-axis is |[A2|/A1, which measures the community dissimilarity, we
have two regions.

e Region of Possibility (1 < /A1 K /1, |A2|/+/*1 = 00). For any alternative hypothesis in
this region, it is possible to distinguish it from any null hypothesis, by the Signed Polygon
tests to be introduced.

e Region of Impossibility (1 K /A1 < /1, |A2|/+/*1 — 0). In this region, any alternative
hypothesis is inseparable from the null hypothesis, provided with some mild conditions.

See Figure 1 (left panel). Also, see Sections 2 and 3 for our main theorems on Possibility
and Impossibility, respectively. Note that the figure is only for illustration purposes, where
the cases of |Ay| = coa/A; for some constant ¢y > 0 are compressed in the separating the
boundary of two regions (red curve). The Signed Polygon test satisfies all requirements (R1)-
(R4) above. Since the test is able to separate all alternatives (ranging from very sparse to less
sparse) in the Region of Possibility from the null, it is optimally adaptive.

REMARK 1. A stronger version of the phase transition is that for a constant cg > 0,
the Region of Possibility and Region of Impossibility are given by |A2|/+/A1 > ¢ and
|A2]/+/A1 < co, respectively. For the broad setting, we consider, this is an open problem,
though for some special cases, there are some interesting works (e.g., [19]); see Remark 11.

It is instructive to consider a special DCMM model, which is a generalization of the sym-
metric SBM [37] to the case with degree heterogeneity.

EXAMPLE 1 (A special DCMM). Letey,...,ex be the standard basis of RK. Fixing a
positive vector # € R” and a scalar b, € (0, 1), we assume

(1.7) P=0-by)lg —I—banl’K, 7; are i.i.d. sampled from ey, ..., exg.

In this model, (1 — b,) measures the “dissimilarity” between different communities (it quan-
tifies how well we can tell whether two nodes i and j are from the same community or
not; note that b, = 1 corresponds to the null case where all communities are indistinguish-
able) and ||#]| measures the sparsity level. In this model, A1 ~ (1 + (K — Db,)|16]|* and
M~ (1=by)0]1%, 2 < k < K. The sparsity level is v/A| =< ||0]|, the community dissimilarity
is characterized by A/A1 =< (1 — b,), and the SNR is |A2|/+/A1 < [|10]|(1 — b,,). The Region
of Possibility and Region of Impossibility are given by {1 < [|0] < /7, [|0]/(1 — by,) — oo}
and {1 < ||0]| < +/n, ||0]I(1 — b,) — 0}, respectively. See Figure 1 (right panel).
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Possibility

Possibility (1= b,)]10]] = o0

\/\21/\//\71H S —

Impossibility
[Ael/V/A1 — 0

Impossibility
(1 = brr)HaH =

VA lell

FI1G. 1. Left: Phase transition. In the Region of Impossibility, any alternative hypothesis is indistinguishable
from a null hypothesis, provided that some mild conditions hold. In the Region of Possibility, the Signed Polygon
test is able to separate any alternative hypothesis from a null hypothesis asymptotically. Right: Phase transition
for the special DCMM model in Example 1, where /A1 < |10, |A2]/A1 < (1 —by) and |Ay|//A1 =< (1 —bp)|0].

REMARK 2. As the phase transition is hinged on A, /+/X1, one may think that the statistic

A2 / Al is optimally adaptive, where Ay is the kth largest (in magnitude) eigenvalue of A. This

is however not true, because the consistency of Ao for estimating A, cannot be guaranteed in
our range of interest, unless with strong conditions on Gy« [23].

1.3. Literature review, the signed polygon and our contribution. Recently, the global
testing problem has attracted much attention and many interesting approaches have been pro-
posed. To name a few, Mossel et al. [37] and Banerjee and Ma [3] (see also [4]) considered a
special case of the testing problem, where they assume a simple null of Erd6s—Renyi random
graph model and a special alternative which is an SBM with two equal-sized communities.
They provided the asymptotic distribution of the log-likelihood ratio within the contiguous
regime. Since the likelihood ratio test statistic is NP-hard to compute, [3] introduced an ap-
proximation by linear spectral statistics. Lei [32] also considered the SBM model and studied
the problem of testing whether K = Ky or K > Ky, where K is a prespecified integer. His
approach is based on the Tracy—Widom law of extreme eigenvalues and requires delicate ran-
dom matrix theory. Unfortunately, these works have been focused on the SBM (which allows
neither severe degree heterogeneity nor mixed membership). Therefore, despite the elegant
theory in these works, it remains unclear how to extend their ideas to our settings.

Along a different line, graphlet counts (GC) have been frequently used for hypothesis
testing in nonparametric and parametric network models. This includes the EZ test [16] and
GC test [25]. Other interesting works include [6, 7, 36]. In particular, [25] suggested a general
recipe for constructing test statistics and showed that both GC and EZ tests have competitive
power in a broad setting. Unfortunately, it turns out that in the less sparse case, the variance
of the GC test statistic is much larger than expected, which largely hurts the power of the test.
The underlying reason is that GC tests use noncentered cycle counts. If, however, we use
centered cycle counts, we can largely reduce the variances and have a more powerful test.
A similar phenomenon was discovered by Bubeck et al. [10] for the SBM setting.

This motivates a class of new tests, which we call Signed Polygon, including the Signed
Triangle (SgnT) and the Signed Quadrilateral (SgnQ). The Signed Polygon statistics are re-
lated to the Signed Cycle statistics, first introduced by Bubeck et al. [10] and later generalized
by Banerjee [2]. Both the Signed Polygon and Signed Cycle recognize that using centered-
cycle counts may help reduce the variance, but there are some major differences. The study
of the Signed Cycles has been focused on the SBM and similar models, where under the null,
P(Ajj=1)=a,1<i# j <n,and « is the only unknown parameter. In this case, a natural
approach to centering the adjacency matrix A is to first estimate « using the whole matrix
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A (say, @), and then subtract all off-diagonal entries of A by &. However, under the null of
our setting, P(A;; = 1) =6;0;, 1 <i # j <n, and there are n different unknown parameters
01,03, ..., 0,. In this case, how to center the matrix A is not only unclear but also worrisome,
especially when the network is very sparse, because we have to use limited data to estimate a
large number of unknown parameters. Also, for any approaches we may have, the analysis is
seen to be much harder than that of the previous case. Note that the ways how two statistics
are defined over the centered adjacency matrix are also different; see Section 1.4 and [2, 10].

In the Signed Polygon, we use a new approach to estimate 61, 63, ..., 6, under the null, and
use the estimates to center the matrix A. To our surprise, data limitation (though a challenge)
does not ruin the idea: even for very sparse networks, the estimation errors of 61, 6s, ..., 6,
only have a negligible effect. The main contributions of the paper are as follows:

e Discover the phase transition for global testing in the broad DCMM setting by identifying
the Regions of Impossibility and Possibility.

e Propose the Signed Polygon as a class of new tests that are appropriate for networks with
severe degree heterogeneity and mixed memberships.

e Prove that the Signed Triangle and Signed Quadrilateral tests satisfy all the requirements
(R1)-(R4), and especially that they are optimally adaptive and perform well for all net-
works in the Region of Possibility, ranging from very sparse ones to the least sparse ones.

To show the success of the Signed Polygon test for the whole Region of Possibility is very
subtle and extremely tedious. The main reason is that we hope to cover the whole spectrum of
degree heterogeneity and sparsity levels. Crude bounds may work in one case but not another,
and many seemingly negligible terms turn out to be nonnegligible (see Sections 1.4 and 4).
The lower bound argument is also very subtle. Compared to work on SBM where there is only
one unknown parameter under the null, our null has n unknown parameters. The difference
provides a lot of freedom in constructing inseparable hypothesis pairs, and so the Region of
Impossibility in our setting is much wider than that for SBM. Our construction of inseparable
hypothesis pairs uses theorems on nonnegative matrix scaling, a mathematical area pioneered
by Sinkhorn [41] and Olkin [35] among others (e.g., [9, 28]).

1.4. The signed polygon statistic. Recall that A is the adjacency matrix of the network.
Introduce a vector 1 by (1, denotes the vector of 1’s)

(1.8) A=(1/vV)A1l,, whereV =1, A1,.
Fixing m > 3, the order-m Signed Polygon statistic is defined by (notation: (dist) is short for
“distinct,” which means any two of iy, ..., i, are unequal)
1.9 UM= > (Aii,— 0 Hi) (Aigiy — Digiy) - (Aiiy — Aiy i)

01,2, s i (dist)
When m = 3, we call it the Signed-Triangle (SgnT) statistic:
(1.10) To= ) (Aii, = i) (Aigiy = iy i) (Aigiy — i iy )-

i1,ip,i3(dist)
When m = 4, we call it the Signed-Quadrilateral (SgnQ) statistic:
(L1D) Qu= Y (Aii, — iy 0i) (Aigis — Nin i) (Aisiy — Ni i) (Aigiy — Digfiy)-
i1,i2,i3,i4(dist)

For analysis, we focus on 7;, and Q,, but our main results are extendable to general m.
The key to understanding and analyzing the Signed Polygon is the Ideal Signed Polygon.
Introduce a nonstochastic counterpart of 7 by

(1.12) n* = (1//v0)21,, where vy =1,Q1,.
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Define the order-m Ideal Signed Polygon statistic by
(1.13) M= 3 (Ani = i) (Ani = nfynl) - (i — 5, )

i1,02,...,0m (dist)

We expect to see that  ~ E[5] ~ n*. We can view l7,$m) as the oracle version of Uy (m) , with

n* given. We can also view U,E’") as the plug-in version of U,g ™) , where we replace n* by 7.
For implementation, it is desirable to rewrite 7,, and Q,, in matrix forms, which allows us
to avoid using an for-loop and compute much faster (say, in MATLAB or R). For any two
matrices M, N € R™", let tr(M) be the trace of M, diag(M) = diag(M11, M2, ..., Mp,),
and M o N be the Hadamard productof M and N (i.e., MoN e R*", (M oN);; = M,,N,j)
Denote A = A — /#’. The following theorem is proved in the Supplementary Material [26].

THEOREM 1.1. We have T, = tr(A3) —3tr(A 0 A?) +2tr(A o Ao A) and Q, = tr(A*) —
4tr(Ao A%) +8tr(Ao Ao A2) —6tr(AoAoAoA) —2tr(A% o0 A%) 42 - 1/, [diag(A)(A o
A) d1ag(A)]1 +1 [A oAoAcAll,. The complexity of computing both T,, and Qn is O(n*d),
where d is the average degree of the network.

Compared to the EZ and GC tests [16, 25], the computational complexity of SgnT and
SgnQ is of the same order.

REMARK 3. The computational complexity of U," () remalns as O(n’d) for 1arger m.

Similarly as that in Theorem 1.1, the main complexity of U ) comes from computing Am,
Since we can compute A™ with A™ = A"~ A and recursive matrix multiplications, each
time with a complexity of O (n3d), the overall complexity is 0 (n2d).

REMARK 4 (Connection to the Signed Cycle). In the more idealized SBM or MMSBM
model, we do not have degree heterogeneity, and Q2 = «, 1,1/, under the null, where «,, is
the only unknown parameter. In this simple setting, it makes sense to estimate «, by &, =
d/(n — 1), where d is the average degree. This gives rise to the Signed Cycle statistics [2,
100: C = 5 i aisny(Airis — @) (Aiyiy — @) .. (Aiiy — Gn). Bubeck et al. [10] first
proposed C,?) for a global testing problem in a model similar to MMSBM. Although their
test statistic is also called the Signed Triangle, it is different from our SgnT statistic (1.10),
because their tests are only applicable to models without degree heterogeneity. The analysis
of the Signed Polygon is also much more delicate than that of the Signed Cycle, as the error
(&, — o) is much smaller than the errors in (n — n™).

It remains to understand (A) how the Signed Polygon manages to reduce variance, and (B)
what are the analytical challenges.

Consider Question (A). We illustrate it with the Ideal Signed Polygon (1.13) and the null
case. In this case, 2 = 06'. It is seen n* =0, A;; — n;“n’; =A;jj —Qij =W, fori#j
(see (1.5) for definition of W), and so 17,5’”) = i1 insoim(dist) Wiria Wiis - - - Wi, i, . Here, each
term is an m-product of independent centered Bernoulli variables, and W;,;, Wi2i3 Wi
and W/ rW i - Wl/ i are correlated only when {iy, i3, ..., i} and {il, i2, ..., 1, } are the
vertices of the same polygon. Such a construction is known to be efficient in variance reduc-
tion (e.g., [10]).

In comparison, for an order-m GC statistic [25], N™ = Diviinim (dist) Aiviz Aigis -+ - Aiiy
is the main term. Since here the Bernoulli variables are not centered, we can split Nn(m) into
two uncorrelated terms: N, ) — (m) + (Ny ) l7,(,m)). Compared to the Signed Polygon,
the additional variance comes from the second term, which is undesirably large in the less
sparse case [30].
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REMARK 5. The above also explains why the order-2 Signed Polygon does not work

well. In fact, when m =2, U,"™ = Yivi W,
variance due to the square of the W-terms.

; 12 under the null, which has an unsatisfactory

Consider Question (B). We discuss with the SgnQ statistic. Recall that n* is a nonstochastic
proxy of 7. For any 1 <i,j <n and i # j, we decompose nl’."n}‘ — 0;1j = 8;j +rij, where
8;j is the main term, which is a linear function of #; and 7;, and r;; is the remainder term.
Introduce

(1.14) Q=Q—n*(n*).

We have A;; — n;nj = ﬁij + W;; + &;j + rij. After inserting this into Q,, each 4-product
is now the product of 4 bracketed terms, where each bracketed term is the sum of 4 terms.
Expanding the brackets and reorganizing, Q, splits into 4 x 4 x 4 x 4 = 256 post-expansion
sums, each having the form }; i i i, (dis) @i1in Piriz Cisigdigiy » Where a is a generic term, which
can be equal to either of the four terms Q, W, § and r; same for b, ¢ and d. While some of
these terms may be equal to each other, the symmetry, we can exploit is limited, due to (a)
degree heterogeneity, (b) mixed memberships and (c) the underlying polygon structure. As a
result, we still have more than 50 post-expansion sums to analyze.

The analysis of a post-expansion sum with the presence of one or more r-term is the
most tedious of all, where we need to further decompose each r-term into three different
terms. This requires analysis of more than 100 additional post-expansion sums. We may think
most of the post-expansion sums are easy to control via a crude bound (e.g., by the Cauchy—
Schwarz inequality). Unfortunately, this is not the case, and many seemingly negligible terms
turn out to be nonnegligible. Here are some of the reasons:

e We wish to cover most interesting cases. A crude bound may be enough for some cases but
not for others.

e We desire to have a single test that achieves the phase transition for the whole range of
interest. Alternatively, we may want to find several tests, each covering a subset of cases
of interest, but this is less appealing.

As a result, we have to analyze a large number of post-expansion sums, where the analysis
is subtle, extremely tedious and error-prone, involving delicate combinatorics, due to the
underlying polygon structure. See Section 4.

REMARK 6. In Signed Polygon (1.9), we estimate Q by 77’ = (1,A1,)~'A1,1, A for
the null. Alternatively, we may use a spectral approach and estlmate Q by )11.;?1%{ , where A,
and él are the first eigenvalue and eigenvector of A, respectively. Unfortunately, even in the
more idealized SBM case, this estimate may be unsatisfactory for sparse networks (e.g., [11],
Section 2.2). In fact, for our main results to hold, we need to have |)A»1 — A1] < CJ|0| with
large probability, but the best concentration inequality we have is A1 — 21| < C/Bmax O
with large probability ([24], Lemma C.1). In the presence of severe degree heterogeneity,
we often have +/Omax 1011 > [10]|. Also, unlike 77’ in our proposal, )»15151 is not an explicit
function of A, so the alternative version of the Signed Polygon statistic is much harder to
analyze.

1.5. Organization of the paper. Section 2 focuses on the Region of Possibility and con-
tains the upper bound argument. Section 3 focuses on the Region of Impossibility and con-
tains the lower bound argument. Section 4 presents the key proof ideas, with the proof of
secondary lemmas deferred to the Supplementary Material. Section 5 presents the numerical
study, and Section 6 discusses extensions and connections.
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For any ¢ > 0 and 6 € R", |6, denotes the £9-norm of 6 (when g = 2, we drop the
subscript for simplicity). Also, Onin and Oy« denote min{by, ..., 6,} and max{fy, ..., 6,},
respectively. For any n > 1, 1,, € R" denotes the vector of 1’s. For two positive sequences
{an};2 and {b,}72,, we write a, ~ by if lim, . a,/b, = 1, and we write a,, < b, if for

n=1>
sufficiently large n, there are two constants ¢; > ¢1 > 0 such that ¢1 < a, /b, < cp. We use
2 itin.....im(disp 0 denote the sum over all (iy, ..., i) such that 1 <iy <nand iy # i, for1 <

k # ¢ <m.We use C > 0 as a generic constant that may vary from occurrence to occurrence.
For constants that need to be more specific, we use ¢y, cy, etc.

2. The signed polygon test and the upper bound. For reasons aforementioned, we fo-
cus on the SgnT statistic 7;, and SgnQ statistic Q,,, but the ideas are extendable to general
Signed Polygon statistics. In this section, we study the upper bound. In detail, in Section 2.1,
we establish the asymptotic normality of both test statistics. In Sections 2.2-2.3, we discuss
the power of the two tests. We show that if |A;|/+/A1 — oo and some mild regularity con-
ditions hold, then for each of the two tests, the sum of Type I and Type II errors tends to O
as n — 00. The lower bound is studied in Section 3, where we show that for an alternative
hypothesis setting with |A;|/+/A1 — 0, we can always pair it with a null setting so that two
hypotheses are asymptotically inseparable.

In a DCMM model, Q@ = OITPIT'O, where ® = diag(#;,...,6,), and IT is the n x K
membership matrix [z, 72, ..., 7,]". We assume as n — o0,

2.1) 101l > 00, Omax — 0, and  ([01%/1011)/log(l6]l1) — O.

The first condition is necessary. In fact, if ||#] — 0, then the alternative is indistinguish-
able from the null, as suggested by lower bounds in Section 3. The second one is mild
as we usually assume 6pax < C. This is due to that under DCMM, P has unit diagonal
entries and 6;0; (7] Pm;) is a probability for all i # j. The last one is weaker than that
of Omax+/log(n) — 0, and is very mild. It is assumed mostly for technical reasons and is
not required in many cases (e.g., the dense case where all 6; = O(1)). Moreover, introduce
G = ||0||2IT’®2I1 € RE*K This matrix is properly scaled and it can be shown that |G || < 1
(Appendix E, Supplemental Material). When the null is true, K = P = G =1, and we do not
need any additional condition. When the alternative is true, we assume

maX]kaK{er'lzleini(k)} <C ||G_1H <C ||P||<C
minj<x<x {d1; Oimi(k)} — - -

Here, C > 0 is a generic constant; see Section 1.5. The conditions are mild. Take the first
two, for example. When there is no mixed membership, they only require the K classes to be
relatively balanced.

2.2)

2.1. Asymptotic normality of the null. Theorems 2.1-2.2 are proved in the supplement.

THEOREM 2.1 (Limiting null of the SgnT statistic). Consider the testing problem
(1.6) under the DCMM model (1.1)—(1.4), where the condition (2.1) is satisfied. Sup-
pose the null hypothesis is true. As n — oo, E[T,] = o(||0]1?), Var(T},) ~ 6]60° and

(T, — E[T,])/+/Var(T,;) — N(O, 1) in law.

THEOREM 2.2 (Limiting null of the SgnQ statistic). Consider the testing problem
(1.6) under the DCMM model (1.1)—(1.4), where the condition (2.1) is satisfied. Suppose
the null hypothesis is true. As n — oo, E[Q,] = (2 + 0(1))||0||4, Var(Q,,) ~ 8||6’||8 and

(Qn —E[Qn])//Var(Q,) —> N(0, 1) in law.
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Note that under the null, the limiting distributions of 7,,/+/Var(7,) and Q,/+/Var(Q,)
are N (0, 1) and N (1/+/2, 1), respectively. To appreciate the difference, recall that the Signed
Polygon can be viewed as a plug-in statistic, where we replace ™ in the Ideal Signed Polygon
by 7. Under the null, the effect of the plug-in is negligible for SgnT but not for SgnQ, so the
two limiting distributions are different. See Section 4 for details.

2.2. The level-a SgnT and SgnQ tests. By Theorems 2.1 and 2.2, the null variances of
the two statistics depend on ||@]2. To use the two statistics as tests, we need to estimate [|0.
For 1 and n* defined in (1.8) and (1.12), respectively, we have 1 ~ n* and n* = 6 under the
null. A reasonable estimator for [|6 |2 under the null is therefore || | 2 We propose to estimate
16112 with (||7]|*> — 1), which corrects the bias and is slightly more accurate than ||7]|>. The
following lemma is proved in the Supplementary Material.

LEMMA 2.1 (Estimation of ||0]|?). Consider the testing problem (1.6) under the DCMM
model (1.1)-(1.4), where the condition (2.1) holds when either hypothesis is true and con-
dition (2.2) holds when the alternative is true. Then, under both hypotheses, as n — 00
AIA1? = D/In*I> — 1 in probability, where ||n*|* = (1,2*1,)/(1,Q1,). Furthermore,
In*112 = 16112 under H and |n*||> < 61> under H".

Combining Lemma 2.1 with Theorem 2.1 gives

2.3) T,/\6(17112 —1)> — N(0,1), inlaw.

Fix o € (0, 1). We propose the following SgnT test, which is a two-sided test where we reject
the null hypothesis if and only if

(2.4) 1Tl = zaaV6(I1A17 = 1)*2, z4/2: upper (@/2)-quantile of N(0, 1).

Similarly, combining Theorem 2.2 and Lemma 2.1, we have

(2.5) [0 = 2(171* = 1’18712 = 1)* — N, 1), inlaw.

With the same «, we propose the following SgnQ test, which is a one-sided test where we
reject the null hypothesis if and only if

(2.6) 0n > 2+ z2oV8) (171> = 1)%,  z4: upper a-quantile of N (0, 1).
As aresult, for both tests we just defined, the levels satisfy

P e (Reject the null) - ¢, asn — oo.
0

Figure 2 shows the histograms of 7,,/,/6(||7]2 — 1)3 (left) and (Q, — 2(||7]|> — 1)?)/

(/8(|I7112 — 1)%) (right) under a null and an alternative simulated from DCMM. Recall that
in DCMM, © = 66’ under the null and Q2 = OITPIIO, where ® = diag(dy, ..., 6,). For the
null, we take n = 2000 and draw 6; from Pareto(12, 3/8) and scale 8 to have an £%-norm of
8. For the alternative, we let (n, K) = (2000, 2), P be the matrix with 1 on the diagonal and
0.6 on the off-diagonal, rows of IT equal to {1, 0} and {0, 1} half by half, and with the same
6 as in the null but (to make it harder to separate from the null) rescaled to have an £%-norm
of 9. The results confirm the limiting null of N (0, 1) for both tests.
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FIG. 2. Left: histograms of the SgnT test statistics in (2.3) for the null (blue) and the alternative (yellow).
Empirical mean and SD under the null: 0.04 and 0.94. Right: same but for SgnQ test statistic in (2.5). Empirical
mean and SD under the null: —0.02 and 0.92. Repetition: 1000 times. See setting details in the main text.

2.3. Power analysis of the SgnT and SgnQ tests. The matrices Q2 and Q play a key role in
power analysis. Recall that €2 is defined in (1.3) where rank(2) = K, and Q=Q— n*(n*)
is defined in (1.14) with n* = Q1,,/,/1,,21,, as in (1.12). Recall that A1, X, ..., Ag are the
K nonzero eigenvalues of Q. Let &1, &, ..., £k be the corresponding eigenvectors. The fol-
lowing theorems are proved in the Supplemental Material.

THEOREM 2.3 (Limiting behavior the SgnT statistic (alternative)). Consider the testing
problem (1.6) under the DCMM model (1.1)—(1.4). Suppose the alternative hypothesis is
true, and the conditions (2.1)—(2.2) hold. As n — oo, E[T,,] = tr(§~23) + 0((|A2|/A1)3||9 1) 4+
o(011*) and Var(T,) < C[[1011° + (x2/AD*1011*16115].

THEOREM 2.4 (Limiting behavior of the SgnQ statistic (alternative)). Consider the test-
ing problem (1.6) under the DCMM model (1.1)—(1.4). Suppose the alternative hypothesis is
true and the conditions (2.1)~(2.2) hold. As n — 00, E[Q,] = tr(Q*) + o((Aa/A1)*1011%) +
0(101*) and Var(Q,) < C[I101® + (k2/AD° 1013116 113].

We conjecture that both 7,, and Q, are asymptotically normal under the alternative. In
fact, asymptotic normality is easy to establish for the Ideal SgnT and Ideal SgnQ. To establish
results for the real SgnT and real SgnQ, we need very precise characterization of the plug-in
effect. For reasons of space, we leave them to the future.

Consider the SgnT test (2.4) first. By Theorem 2.3 and Lemma 2.1, under the alternative,

T, tr(2%)
are
Jodaz—n3  Jeln#e

where 0,12 denotes the asymptotic variance, which satisfies that

2.7) the mean and variance of and 0,%, respectively,

C, if [Aa/21] < 101/1013,
COa/AD* - (1015/161%), if [Aa/21] > /161716113

If we fix the degree heterogeneity vector € and let (Ap/A) range, there is a phase change in
the variance. We shall call:

e the case of |Ay/A1| < C,/||6 ||/||9||§ as the weak signal case for SgnT.
e the case of |Ay/A1| > /|6 ||/||9||§ as the strong signal case for SgnT.

It remains to derive a more explicit formula for tr(§23). Recall that A, and & are the kth
eigenvalue and eigenvector of Q, 1 <k < K, respectively. Define A € RK—Dx(K=1) apq

(2.8) oy <



3418 J.JIN,Z. T. KE AND S. LUO

h e RE=! by A =diag(ho, A3, ..., Ax) and hx = (1,c1)/(1,61), 1 <k < K — 1. It can be
shown that 1/,&; # 0 and ||k]|oc < C so the vector & is well defined. In the special case of
In]lco = 0(1) (this happens when the angle between 1, and & is small):

e We can show that tr($2%) ~ YK, A7
e Motivated by these, we say ““signal cancellation” happens when | tr(§~23)| < Z,f:z Akl

Therefore, “signal cancellation” may happen if the (K — 1) eigenvalues A3, A3, ..., Ax have
different signs. In fact, in the extreme case, we can have Zfzz )»2 = 0, though Z,{;z IAel?
is very large (e.g., [25], Section 3.3). Normally, the “signal cancellation” is found for odd-
order moment-based statistics (e.g., 3rd, 5th, ..., moment), but not for even-order moment
methods (in fact, the SgnQ test will not experience such “signal cancellation”).

Fortunately, “signal cancellation” is only possible when A», A3, ..., Ax have different
signs, and can be avoided in some special cases. We propose the following conditions.

CONDITION 2.1. (a) A2, A3, ..., Ax have the same signs, (b) K =2 and (c) |A2|/ 1 —
0, and |tr(A3) 4 30 A3h + 3(h Ah) (W A%h) + (W AR)3| = C K, a3

In (a)—(b), Az, ..., Ax have the same signs. Condition (c) is based on more delicate analy-
sis; see the proof of Lemma 2.2 for details.

While the above discussion is motivated by the case of ||/||coc = 0(1), the idea continues
to be valid for more general cases. The following is proved in the Supplementary Material.

LEMMA 2.2 (Analysis of tr(2%)). Suppose conditions of Theorem 2.3 hold. Under the
alternative hypothesis,
o If |Ma|/A1 — 0, then tr($2%) = tr(A3) + 30/ A3h + 3(h AR) (W A2h) + (W Ah)? + o(|A2]?).
o If Ao, A3, ..., Ak have the same signs, then

K
- Acl? M), if A/ 0,
‘tr(Q3)|Z kg; kl +0(| 2|) if |A2/A1] —
Clral?, if Aa/a1] > C.

e In the special case where K =2, the vector h is a scalar, and

(@) | S0 D+ o] Pl if al/2 0,

> Claal’, if ha/M| = C.
As a result, when either one of (a)—(c) holds, | tr(S~23)| >C 215:2 [Ak]3.

It can be shown that ||n*| =< +/A1 < ||#]. We combine Lemma 2.2 with (2.7)-(2.8).
In the weak signal case, —=Lnl_ > CEl ) C()»_% YK 1ak?). In the strong sig-
g > SVar(T,) — [ = 1 k=2 1Mkl ) 8 Si8

COofs 1l

. —2/K 3,2 E(T,]
nal case, since (Az/kl)z < A7 ko [Ak[7)3, we have > > >
VVarn) = 32K B3 1012

Cle)’®
13

a result, in both cases, the power of the SgnT test — 1 as long as A1_3/2 Z/fzz Ak = oo.

This is validated in the following theorem, which is proved in the Supplemental Material.

_3 |
(A Zf:z |A%13)3, where it should be noted that in our setting, ||9||3/||9||§ — 00. As

THEOREM 2.5 (Power of the SgnT test). Under the conditions of Theorem 2.3, for any
fixed a € (0, 1), consider the SgnT test in (2.4). Suppose one of the cases in Condition 2.1
holds. As n — 00, if)\l_l/z(zlfzz IAk3)Y/3 — oo, then the Type I error — a, and the Type II
error — Q.
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Next, consider the SgnQ test (2.6). By Theorem 2.4 and Lemma 2.1, under the alternative,

the mean and variance of [Q,, — 2([|7]1> — 1)21//8(|I7]12 — 1)* are tr(Q*)/,/8]/n* || and 62,
respectively, where a,f denotes the asymptotic variance and satisfies

2 _|C. if [22/31] < 16115
"= Ca/anl 1018, if a/ral > 1015

Similar to the SgnT test, if we fix the degree heterogeneity vector 6 and let (A/A1) range,
there is a phase change in the variance. We shall call:

e the case of A2 /A1| < C||6 ||371 as the weak signal case for SgnQ.
e the case of [A2/A1| > |0 ||3_1 as the strong signal case for SgnQ.

We now analyze tr(Q*). The following lemma is proved in the Supplementary Material.

LEMMA 2.3 (Analysis of tr(Q24)). Suppose the conditions of Theorem 2.4 hold. Under
the alternative hypothesis,

o If [Mal/h1 — 0, then w(QY) = tr(AY) + (¢'Aq)* + 2(h' A%h)? + 4(h' Ah)2 (W A%h) +
4h' AR+ 40 AR (W ASR) 4+ 0(03) 2 Yt A7

o If|hal/A1 > C, then tr(Q%) > C YK, 4t

e In the special case of K =2, h is a scalar and tr(§24) =[(h%2+ D*+o(1)]- )\g.

As a result, the SgnQ test has no issue of “signal cancellation,” and it always holds
&4 K 44 , , E[Q.] - COTkn )
that tr(R2%) > C ) _;_, A{. Then, in the weak signal case, we have

VVar(Q,) — ; lon* -
C()xl_2 Z,{;z k:). In the strong signal case, since (AZ/A1)3 < kl_3(Z,§:2 Ai)?‘t, we have
BEQn] - CEig 2 > CIOIE =25k 34)i where [6]3/]10]3 — oo. So, in
VO = T o 10 1 =0T e ’

both cases, the power of the SgnQ test goes to 1 if )»1_2 21522 k2 — o00. This is validated in
Theorem 2.6, which is proved in the Supplemental Material.

THEOREM 2.6 (Power of the SgnQ test). Under the conditions of Theorem 2.4, for any
fixed o € (0, 1), consider the SgnQ test in (2.6). As n — 00, if)»l_l/z(zlgiz Kﬁ)l/“ — 00, then

the Type I error — o, and the Type Il error — 0.

In summary, Theorem 2.5 and Theorem 2.6 imply that as long as

(2.9) |A2l/v/A1 — o0,

the levels of SgnT and SgnQ tests tend to o as expected, and their powers tend to 1. The
SgnT test requires mild conditions to avoid “signal cancellation,” but the SgnQ test has no
such issue (such an advantage of SgnQ test is confirmed by numerical study in Section 5).

REMARK 7. Practically, we prefer to fix «, say, « = 5%. If we allow the level o to
change with n, then when (2.9) holds, there is a sequence of «,, that tends to 0 slowly enough
such that [A2|/(za, /2 - «/)_»1) — 00. As a result, for either of the two tests, the Type I error
— 0 and the power — 1, so the sum of Type I and Type II errors — O.

EXAMPLE 1 (contd). For this example, A1 ~ (1 + (K — Db)|1611%, and Ax ~ (1 —
b)61%, k=2,3,..., K. The condition (2.9) of |X2]/+/A1 — oo translates to (1 —b,)||0] —
0. See Section 1.2 and also Section 3 for more discussion.
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3. Optimal adaptivity, lower bound and region of impossibility. We now focus on
the region of impossibility, where |A;|/+/A1 — 0. We first present a standard minimax lower
bound, from which we can conclude that there is a sequence of hypothesis pairs (one alter-
native and one null) that are asymptotically indistinguishable. However, this does not answer
the question whether all alternatives in the region of impossibility are indistinguishable from
the null. To answer this question, we need much more sophisticated study; see Section 3.2.

3.1. Minimax lower bound. Given an integer K > 1, a constant cg > 0, and two positive
sequences {a, ), and {8,}°2 |, we define a class of parameters for DCMM (recall that 2 =

OIPIT®, G = ||0||~>I1'OI1 and is properly scaled, and A is the kth largest eigenvalue of
Q in magnitude):

Mn(Ksc()s a}’lv ﬁl’l)
0,1, P) : Omax < B, 101171 < Bu, 10121011 1020 < Ba,

= maxi{) 7, 0;m;(k)} -1
: <co, |G < co. A2l /Vh1 = @
mine (>, 67 (0) ’

For the null case, K = P = mr; = 1, and the above defines a class of 6, which we write for
Short by M}’l(l, C09 a}’lv ﬂl’l) = MZ(IB”)'

THEOREM 3.1 (Minimax lower bound). Fix K > 2, a constant cg > 0 and any sequences
{an}o2 | and {Bn}52 | such that a, — 0 and B, — 0 as n — oo. Then, as n — oo,

inf{ sup P(y =1)+ sup P(¢=0)}—>1,
v 0eMy(Bn) 0,11, P)e M, (K ,co,0n, Bn)

where the infimum is taken over all possible tests .

Theorem 3.1 says that in the region of impossibility, there exists a sequence of alternatives
that are inseparable from the null. This does not show what we desire, that is any sequence in
the region of impossibility is inseparable from the null. This is discussed in the next section.

3.2. Region of impossibility. Recall that under DCMM, Q = OIIPIT'® and IT =
[71, 72, ..., m,]. Since our model is a mixed-membership latent variable model, in order
to characterize the least favorable configuration, it is conventional to use a random mixed-
membership (RMM) model for the matrix I, while (®, P) are still nonstochastic. In detail,

e LetV={xeRK x>0, YK x =1}
o Let Voy={eq,en,...,ex}, where ¢ is the kth Euclidean basis vector.

In DCMM-RMM, we fix a distribution F defined over V and assume 7; Lid- F where
h = E[m;]. If we further restrict that F' is defined over Vj), then the network has no mixed
membership, and DCMM-RMM reduces to DCBM-RMM.

The desired result is to show that, for any given P and F, there is a sequence of hypothesis
pairs (a null and an alternative)

3.1) H":Q=060, and H":Q=06NPI'O,

where © = diag(gl, 51, e, 9~n) and 67, can be different from 6;, such that the two hypotheses
within each pair are asymptotically indistinguishable from each other, provided that under
the alternative |A2|//A1 — O.
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Here, since 2 depends on 7;, Ar is random, and it is more convenient to translate the
condition of |A2|/+/A1 — O to the condition of

(3.2) 1611 - |n2(P)| — 0,

where ui(P) is the kth largest eigenvalue of P in magnitude. The equivalence of two condi-
tions are justified in Section F.1 of the Supplementary Material. Condition (2.2) can also be
ensured with high probability, by assuming that all entries of E[7;] are at the order of O(1).

Under the DCBM, the desired result can be proved satisfactorily. The key is the following
lemma, which is in the line of Sinkhorn’s beautiful work on scalable matrices [41] (see also
[9, 28, 35]) and is proved in the Supplementary Material.

LEMMA 3.1.  Fix a matrix A € R&-K with strictly positive diagonal entries and nonneg-
ative off-diagonal entries, and a strictly positive vector h € R | there exists a diagonal matrix
D =diag(d, ds, ...,dg) such that DADh =1k and dy > 0,1 <k <K.

In detail, consider a DCBM-RMM setting where 7; F and F s supported over Vj
(with possibly unequal probabilities on the K points). Recall & = E[x;]. By Lemma 3.1,
there is a unique diagonal matrix D such that DP Dh = 1g. Let

(3.3) O;=di-0;, ifmi=er,1<i<n,1<k<K.

The following theorem is proved in the Supplementary Material.

THEOREM 3.2 (Region of impossibility (DCBM)). Fix K > 1 and a distribution F de-
fined over Vy. Consider a sequence of DCBM model pairs indexed by n:

H":Q=060' and H":Q=060PN'S,

where ; i F and ® = diag(gl, 52, .. 9 ) with 0 defined as in (3.3). If Omax < co for

a constant cy < 1, minj<x<g {hr} > C, and 1]l - |[m2(P)| — O, then for each pair of two
hypotheses, the x*-distance between the two joint distributions tends to 0, as n — 0.

To generalize this to RMM-DCMM, we fix a dlstrlbutlon F defined over V. Given a set

of (®, P, Il) with ® = diag(61, 03, ...,6,) and T; ~ K F lethD =E[D~ 71,/||D ;1] for
any diagonal matrix D € RKxK with positive diagonals. We assume that there is a D such
that

(3.4) DPDhp=1k, min {hps}=>C.
1<k<K

When such a D exists, we let

(3.5) 0 =6;/| D'

1<i<n.

When the support of F is restricted to Vo, all realizations of 7; are degenerate (i.e., one
entry is 1, and other entries are 0), so h p=h, 6 is the same as that in (3.3), and (3.4)
holds by Lemma 3.1. Under DCMM-RMM, 7;’s are not degenerate. We conjecture that (3.4)
continues to hold generally (we can show it for the cases of K =2, 3; the proof is elementary
so is omitted). The following theorem is proved in the Supplementary Material.

THEOREM 3.3 (Region of Impossibility (DCMM)). Fix K > 1 and a distribution F
defined over V. Consider a sequence of DCMM model pairs indexed by n:

H":Q=60' and H":Q=060PN'S,
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where ;S F and ® = diag(8}, 03, .. ., 8,) with 6; defined as in (3.5). If (3.4) holds, Omax <
co for a constant co < 1, and ||0|| - |nu2(P)| — 0, then for each pair of two hypotheses, the
Xz-distance between the two joint distributions tends to 0, as n — 00.

One of the main strengths of Theorems 3.2-3.3 is that this lower bound is valid for an
arbitrary choice of 6 € R’ . This is stronger than the standard minimax lower bound.

In Theorem 3.3, we try to be as general as we can so I is given (and we are not allowed
to change it in our construction). For any P and F, by Lemma 3.1, there is a unique positive
diagonal matrix D such that D P Dh = 1 where h = [E[7;]. We now consider a special case
where we allow IT to depend on D in our construction. In this case, Condition (3.4) can be
removed. Let [T = [71, 72, ..., 7] and Q= d1ag(91 92, . 9 ), with

(3.6) 7; = Dm; /|| Dmi |1, 6; = || D7l - 6;

THEOREM 3.4 (Region of impossibility (DCMM with flexible I1)). Fix K > 1 and a
distribution F defined over V. Consider a sequence of DCMM model pairs indexed by n:
Hé") :Q=00" and Hl(") : Q= OIIPII'®, where T1 and © are defined as in (3.6). If Omax <
co for a constant co < 1, minj<x<g {hr} > C, and ||0]| - |u2(P)| — O, then for each pair of
two hypotheses, the x*-distance between the two joint distributions tends to 0, as n — oo.

Finally, we consider the case where we require that the null and the alternative have per-
fectly matching ® matrix (up to an overall scaling). This is especially of interest when we
consider SBM or MMSBM models where we have little freedom in choosing the ® matrix.
In this case, in order that the two hypotheses are indistinguishable, the expected node degrees
under the alternative have to match those under the null. For each 1 <i < n, conditional
on 7; and neglecting the effect of no self-edges, the expected degree of node i equals to
1011 - 6; and 1011 - (n’ Ph) - 6; under the null and under the alternative, respectively, where

{m} Hé, F and h = E[7;]. For the expected degrees to match under any realized 7;, it is
necessary that

3.7 Ph=gq,1k, forsome scaling parameter g, > 0.

THEOREM 3.5 (Region of impossibility (DCMM with matching ®)). Fix K > 1 and a
distribution F defined over V. Consider a sequence of DCMM model pairs mdexed by n:
H" :Q =g, 00 and H™ : Q = OTIPII'O, where © = diag(61. 6. ....0,), 7  F, and
(P, h, qy) satisfy (3.7). If 6max < co for a constant cy < 1, minj<k<g{hx} > C and |0] -
|ua(P)| — 0, then for each pair of two hypotheses, the x>-distance between the two joint
distributions tends to 0, as n — 00.

Theorems 3.4-3.5 are proved in the Supplementary Material.

EXAMPLE 1 (continued). In Example 1, 7; is drawn from eq, e3, . .., ex with equal prob-
abilities, and P = (1 — b,)Ix + banl’K. Therefore, h = E[x;] = (1/K)1k. In this case, all
conditions of Theorem 3.5 hold. Note ¢, = (1/K) + (K — 1)b, /K and u2(P) = (1 — by,).

REMARK 8 (Least favorable configuration of LDA-DCMM). The Dirichlet model is
often used for mixed memberships [1]. Consider the model pairs Hén) 1 Q = g,00 and
Hl(") : Q= OIIPIT'O and where 7; S Dir(«) (Dir(«): Dirichlet distribution with parameters
a=(ap,...,ak)"). By Theorem 3.5, as long as Pa o 1k, the null and alternative hypothe-
ses are asymptotically indistinguishable if (1 —g,)||@|| — 0. One can easily construct P such
that Pa o< 1. For example, P = (1 —q,) MM’ + g, 1k 1, where M € REX(K=1) i a matrix
whose columns are from SpanL (o) and satisfy diag(MM') = Ig.
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3.3. Optimal adaptivity. Recall that /A1, |A2|/A1, and |A2|/+/A] can be viewed as a
measure for the sparsity, community dissimilarity and SNR, respectively. Combining Theo-
rems 2.1-2.4, Theorems 3.2-3.5 and Remark 7 in Section 2.3, in the two-dimensional phase
space where the x-axis is 4/A; and the y-axis is the |A2|/A1, we have a partition to two
regions, the region of possibility and the region of impossibility.

e Region of impossibility (1 < /A1 < /1, |A2|/+/A1 = o(1)). In this region, any DCBM
alternative is asymptotically inseparable from the null, and up to a mild condition, any
DCMM alternative is also asymptotically inseparable from the null.

e Region of possibility (1 < /A1 < /1, |A2|/+/A1 — 00). In this region, asymptotically,
any alternative is completely separable form any null.

The SgnQ test is optimally adaptive: for any alternative in the region of possibility, the test
is able to separate it from the null with a sum of Type I and Type II errors tending to 0. The
SgnT test is also optimally adaptive, provided that some mild conditions hold to avoid signal
cancellation. To the best of our knowledge, the Signed Polygon is the only known test that is
both applicable to general DCMM (where we allow severe degree heterogeneity and arbitrary
mixed memberships) and optimally adaptive. The EZ and GC tests are the only other tests
we know that are applicable to general DCMM, but their variances are unsatisfactorily large
for the less sparse case, so they are not optimally adaptive. See [30] for details.

REMARK 9. Most existing lower bound results [2, 16, 37] are within the standard min-
imax framework, where they focus on a particular sequence of alternative (e.g., the off-
diagonals of P are equal). In our case, the standard minimax theorem only implies that in
the region of impossibility, there is a sequence of alternative that are inseparable from the
null. Our results (Theorems 3.2-3.5) shed new light on the region of impossibility, saying
that for each alternative, we can pair it with a null such that two hypotheses are asymptoti-
cally inseparable.

REMARK 10. Existing minimax lower bounds [2, 4, 37] are largely focused on the SBM.
Though a least favorable scenario for SBM is least favorable for DCMM, the former does
not provide much insight on how the least favorable configurations and the phase transition
depend on the degree heterogeneity and mixed memberships. Moreover, our results (see also
[19]) suggest that ||6]|, not ||¢]|1, determines the separating boundary. In the SBM case, 61 =
- =0, and ||0]|1 = /10|, so it is hard to tell which of the two norms decides the boundary.
In DCMM, there is no simple relationship between ||#]|1 and ||@]|, and we can tell this clearly.

REMARK 11. A sharper version of the phase transition is that there exists a constant
co > 0 such that the region of possibility and region of impossibility are given by |A2|/+/A1 >
co and |A2|//A1 < co, respectively. In some special cases, these kinds of results exist for
community detection (a related but different problem). For example, [19] considered a setting
where (i) there is no mixed membership, (ii) for some constants a, b > 0, P(k,£) = a if
k = £ and b otherwise, (iii) the communities have equal size and (iv) for a constant ¢ > 0,
{/n6;}}_, are ii.d. drawn from a fixed distribution supported in [¢, c0). They showed that,
when (a — b)2E|6]1? < K (a + b), it is impossible to reconstruct the community label matrix
[1. Moreover, in the special case of K = 2, [18] (also, see [12]) showed that when (a —
b)’E||0]1> > 2(a + b), it is possible to construct an estimate of IT that is positively correlated
with the true community labels. By connecting (a, b, E||0]|?) with eigenvalues, it is seen that
these results give a sharp phase transition at ¢y = 1, in the special case where K =2 and (i)—
(iv) hold. For more general settings, whether such a sharp phase transition exists is unclear:
a slight change in conditions (i)—(iv) may affect the lower bounds, and the optimal tests (for
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the sharp phase transition) are hard to find as they usually need to adapt to specific features
of the model. Also, technically, allowing for mixed memberships makes the lower bound
much harder to study, and allowing for unequal community sizes and unequal off-diagonal
entries in P requires an application of DAD theorem in lower bound construction (which is
not needed in [19]). Moreover, [12, 18, 19] are for community detection and our paper is on
global testing. For general DCMM settings, it is unclear whether the phase transitions for two
problems are the same.

4. The behavior of the SgnQ test statistics. In this section, we study the SgnQ test
statistic 0, and explain how to prove Theorems 2.2, 2.4 and 2.6. We introduce a proxy SgnQ
test statistic Q) and an Ideal SgnQ test statistic Qn Writing Q, = Qn + (0 — Qn) +
(Qn — Q;), we study the three terms on the RHS in Sections 4.1-4.3, respectively. Given
these results, the proofs of Theorems 2.2, 2.4 and 2.6 are straightforward and contained in
Section B of the Supplementary Material. The study of the SgnT test statistic 7,, is similar
and contained in Section A of the Supplementary Material, where we also prove Theorems
2.1,2.3 and 2.5.

Recall that the SgnQ statistic 0, is defined as

On= Y (A — i) (Ainis — Niniy) (Aiziy — RliaNiy) (Aigiy — ighiy)
i1,i2,03,i4(dist)
where ij = Al,//V, with V = 1/ A1,. In Section 1.4, we have introduced the following
nonstochastic proxy of 7: n* = Q1,/,/v9, where vy = 1,21,,. We now introduce another
(stochastic) proxy 1 by

4.1) =Al,/Jv, where v=E[1,Al,] =1, (Q — diag(Q))1,,.
Denoting the mean of 7 by n, it is seen that
4.2) = ([© — diag(2)]1 /\/1’ Q — diag(Q))1,

Here, n and n* are close to each other but n* has a more explicit form. For example, under
the null hypothesis, Q2 = 06, and it is seen that n* = 6. Recall that A = Q — diag(Q) + W
and Q =Q —n*(n*). Fix 1 <i, j <n and i # j. First, we write

Aij = hifij = (Aij — nfns) + (s — fifj) = Qij + Wij + (0 — i)
Second, we write n;“n;f —nifj = 8;j +rij, where
4.3) Sij=ni(m; —n;)+njmi —ni)
is the linear approximation term of (17:‘17;“- — ;1) and r;j = (n;"n;? —0;n;) — &;j is the re-
mainder term. By definition and elementary algebra,

~ - UV\. .
(4.4) iy = (= i) = = 7)oy = ) + (1= 5 .

It is shown that r;; is of a smaller order than that of §;;. The remainder term can be shown to
have a negligible effect over 7;, and Q,, in terms of the variances of 7;, and Q,, respectively;
see Theorem 4.3.

Let X be the symmetric matrix where all diagonal entries are 0 and for 1 <i, j <n but
i #j, Xij = A;j —0i7)j, or equivalently,

4.5) Xij=§ij+Wij+8ij+rij-

If we omit the remainder term, then we have a proxy of X, denoted by X*, where all diagonal
entries of X™* are 0, and for 1 <i, j <nbuti # j,

(4.6) X5, = Qij + Wij +8ij.
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If we further omit the § term, then we have another proxy of X, denoted by X, where all
diagonal entries of X are 0, and for 1 <i, j <n buti # j,

4.7) )N(,'jZQij-i-Wij.

With the above notation, we can rewrite Oy as Qn = Y, i, is.ia(dist) Xirio Xigiz Xizig Xigiy- We
introduce the Proxy SgnQ test statistic and Ideal SgnQ test statistic by

Q: = Z X;kliZngX;:mXZilv On= Z Xiyir Xiiy Xigiy Xiyiy -
i1,i2,i3,i4(dist) i1,i2,03,i4(dist)
The Ideal SgnQ test statistic Qn is the same as that defined in (1.13). Using these notation,

we partition Oy, as Qy = Qn + (O — 0p) + (Qy — Q7). In Sections 4.1-4.3, we study the
three terms on the right-hand side, respectively.

4.1. The behavior of the ideal SgnQ test statistics. In view of (4.7), the Ideal SgnQ test
statistic Q,, is written as

@48)  On= > (Quiy + Wii) Qisiy + Winiy) Qs iy + Wisiy) (Qigiy + Wigi).
i1,ip,i3,i4(dist)

Under the null, Q = 06" and n* = 0. By definition, Q ;i =0, and the statistic reduces to

Qn = Zil,iz,ig,m(dist) Wiii» Wisis Wiziy Wiyiy - The right-hand side is the sum of a large number

of uncorrelated terms, with each term being a 4-product of independent centered-Bernoulli

Variagles. It can be shown that the statistic is asymptotically normal, with E[Qn] =0 and

Var(Qy,) ~ 8]1611°.

Consider the alternative hypothesis. In the right-hand side of (4.8), expanding the bracket
and rearranging, we have 2 x 2 x 2 x 2 = 16 post-expansion sums, each having the form of
Dy in.is.ia(dist) QirinDinisCizigdiyiy » Where a is a generic notation which may either equal to Q
or W; same for b, ¢ and (d). For example, Zil,iz,i&m(dist) Wi1i2§i2i3 Wisiy Wiyi, 1s one of the
16 post-expansion sums, corresponding to b = €2, and a = ¢ = d = W. Note that each of 16
post-expansion sums is the sum of many 4-product, where the number of the € factors in
each product is the same; denote this number (which can be 0, 1, 2, 3 or 4) by Ng. Similarly,
the number of the W factors in each product are also the same. Denote it by Ny, we have
Ng + Nw = 4. For the example above, (Ng, Nw) = (1, 3).

According to (Ng, Nw), we can group the 16 post-expansion sums into 6 different types.
Table 1 presents the mean and variance of each type (Recall that A1, ..., Ax are the K eigen-
values of €2, arranged in descending order in magnitude. In Table 1, a = |A2|/A;. In the
alternative, we assume |A2|/+/A] — 00, which translates to «||@| — oo since /A1 < ||6]).

TABLE 1
The 6 different types of the 16 post-expansion sums of On (161 g is the £9-norm of 0 (the subscript is dropped
when q = 2). In our setting, &[0 — 0o, and 0113 < 1013 < 1101 < 16111

Type # (Ng,Nw) Examples Mean Variance

I 1 ©0,4) i j k. ecdisty Wii Wik Wie We; 0 = o3

11 4 (13 Yij k ecdisty ij Wik Wee Wei 0 < ca? (011615 = o6 [®)
Ma 4 (2.2 ik ecdisn) 2ij 2k Wie Wi 0 < Ca[01%1615 = oS0 131615
mb 2 @22 i, jok.edist) 2 Wik e Wei 0 <ca*9]32 =o(l011®)

IV o4 G X ks Rk We 0 <a®101%1915

v 1 (4,0) Yi ik ecdisty i ke ~w(@h) 0
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From the table, among all 16 post-expansion sums, the total mean is ~ tr(Q2%), and the
total variance < C|0|% + C(1221/AD° 10113116 11S, with Type I sum and Type IV sum being the
major contributors. The following theorem is proved in the Supplementary Material.

THEOREM 4.1 (Ideal SgnQ test statistic). Consider the testing problem (1.6) under the
DCMM model (1.1)—(1.4), where the condition (2.2) is satisfied under the alternative hy-
pothesis. Suppose Omax — 0 and ||| — oo as n — oo, and suppose |Ay|/~/A| — 00 un-
der the alternative hypothesis. Then, under the null hypothesis, as n — 00, E[Q,] = 0,

Var(Q,) = 81018 - [1 4+ o(D], and (On — E[On])/y/ Var(0,) —> N(0,1) in law. Fur-

thernzore, under the alternative hypothesis, as n — 00, E[Qn] = tr(§~24) + 0(||9||4) and
Var(T,) < CIIIO|® + (A2l /2001011 [1018].

4.2. The behavior of (Q) — 0,). The Proxy SgnQ test statistic is defined as o =
Divininsia(dist) Xiyin Xinis Xiyig Xiyiy - Inserting X% = Q;j; + Wi; + §;j and expanding every
bracket, we similarly obtain 3 x 3 x 3 x 3 = 81 different post-expansion sums, where 15
of them do not involve any § term. The sum of the remaining 65 terms is (Q}; — 0,). For
each of these 65 post-expansion sums, we are summing over many 4-products, where each
of them has the same number of Q factors, W factors, and § factors, which we denote by
Ng., Nw, and Ns, respectively. According to (Ng, Nw, Ns), we divide the 65 post-expansion
sums into 10 different types. See Table 2, where we recall that o = |Az|/A1.

We now analyze Q) — 0, Consider the null hypothesis first. Under the null, Q is a zero
matrix, so the nonzero post-expansion sums only include Type Ia, Type Ila, Type Illa and
Type IV. It is seen that [E[Q* — 0,/]| < C||8]|* and Var(Q* — 0,,) = o(||6||®). Note that [|6|®
is the order of Var(@n) under the null. The difference between the variance of Q; and the
variance of Qn is negligible, but the difference between the mean of Q) and the mean of én
is nonnegligible. With lengthy calculations (see the Supplementary Material), we can show
that E[Q} — 0,1~ 2|16||*. Therefore, (0 — 2116]1*) and Q, have a negligible difference
under the null.

Consider the alternative hypothesis next. From Table 2, |[E[ Q) — Qn]l < C(Ix21/20)%0118,
where the major contribution is from Type Ic and Type Ilc post-expansion sums. Un-
der our assumptions for the alternative, [A2|/+/A1 — 00 and A; < ||6||4 It is easy to see
that |E[Q} — Qn]| = o(k ), where )é is the order of tr(Q4) and E[Qn] see Lemma 2.3
and Theorem 4.1. Additionally, [|6]* = O(AZ) = o(k ) which is also of a smaller or-
der of E[Qn] We conclude that |[E[Q} — Qn — 2||9|| 1l = O(E[Qn]) From the table,
Var(Q* — 0,) < C(|Aal/21)06]] 12||9||3/||9||1 + o(||01I®), with the major contribution from
Type 1d. Here, the second term is smaller than Var(Qn) and the first term is upper bounded
by C(lkzl/kl)6 le|® ||9||3 (usmg the universal inequality of leN* < ||9||1||9|| ), which has a
comparable order as Var(Q,). It follows that Var(Q} — On =201 = Var(Q;, — 0,) <
CVar(Qn) Combining the above, we obtain that the SNR of (Q;; —2||0 ) and Qn are at the
same order.

These results are summarized in Theorem 4.2 and proved in the Supplementary Material.

THEOREM 4.2 (Proxy SgnQ test statistic). Consider the testing problem (1.6) under the
DCMM model (1.1)—(1.4), where the condition (2.2) is satisfied under the alternative hypoth-
esis. Suppose Omax — 0 and ||0] — oo as n — oo, and suppose |A2|//A1 — oo under the
alternative hypothesis. Then, under the null hypothesis, as n — oo, E[(Q} —2]0 1) — Qn] =
o(I01*) and Var(Q* Qn) = 0(||60||®). Furthermore, under the alternative hypotheszs

[(Q* 2[1614) — Qn] = o((I22l/A)*10113) and Var(Q; — Qn) < C(IA2l/20)° 101811615 +
o([101®).
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TABLE 2
The 10 types of the post-expansion sums for (Q}; — O). Notation: same as in Table 1

Type # (N5, Ng, Nw) Examples Abs. Mean Variance
Ia 4 (1L,0,3)  YijkedijWixWeeWe 0 <Clo12161§ = o(l6]1®)
@isty
b 8 (LL2) X jkedii Rk Wie Wy 0 <Ca?|01*1011§ = o(101®)
(dist) 5
4 i jkt 8ij Wik Qe Wei 0 < ca? (11615 =o(611®)
(dist)
~ ~ C 4 2] 10 0 3
e 8 (L2D)  Sijredy@uleeWa <Co?10l6 =o@ol®) < Sl = owbyoy8)019)
(dist)
~ ~ 4014110119
4 i j ke 8168 jk Wee St 0 < S — o0 )®)
(dist)
~ ~ ~ C 6 ) 12 9 3
o4 (130 Y jkedCde 0 < S — 0@SpepB019)
(dist)
Ha 4 (2,02  YijkedijdpuWuWe <ClOI*=o@*|0]®) <Clo12101§ = o611
(dist)
6 3
2 Sk 8 WikdkeWer < ClIOI* = o@*1611%) < OIS — o(j011%)
(dist) B
I 8 2L ijkedijdjxSueWe 0 < ca?|01*1615 =o(l611®)
(dist)
~ 2 8 3
4 Si ke QdeWa < Calol =o@lo)®) < I —o(0)®)
(dist)
~ o~ 409114
e 4 @20 Yijeedidiliela <CalI0l°=o@Ho)®) < S =o@fIof1019)
(dist) 1
~ ~ 2 8 4 8 6
2 <Y ke Qo SOl —o@te)®) < S _ o098
(dist) 19113 len
6 3
Ma 4 (.01 SijkedddeWa  <Clol*=o@* 6] < SEEI — o(j0118)
(dist)
~ 6 2 8 3
Wb 4 (10 =Xijkedydpdeln = S —o@hiort) < SERtE = ool
(dist) 1
10
IV 1 40,00 Yijrediidudede < ClOI*=o@*o)®) < % =o(011®)
(dist) 1

4.3. The behavior Of(Qn — Q;:) Recall that Qn = Zil,ig,i3,i4(dist) Xi]iZXi2i3Xi3i4Xi4i1,
where X;; = ?z,-j + Wi +6;j +rij forany i # j. Similar to Sections 4.1-4.2, we first expand
every bracket in the definitions and obtain 4 x 4 x 4 x 4 = 256. Out of the 256 post-expansion
sums in Oy, 3 x 3 x 3 x 3 =81 of them do not involve any r term and are contained in
Q7 this leaves a total of 256 — 81 = 175 different post-expansion sums in (Q, — Q). In
the Supplementary Material, we investigate the order of mean and variance of each of the
175 post-expansion sums in (Q, — Q). The calculations are very tedious: although we ex-
pect these post-expansion sums to be of a smaller order than the post-expansion sums in
Sections 4.1-4.2, it is impossible to prove this argument rigorously using only some crude
bounds (such as the Cauchy—Schwarz inequality). Instead, we still need to do calculations for
each post-expansion sum; details are in the Supplementary Material.

THEOREM 4.3 (Real SgnQ test statistic). Consider the testing problem (1.6) under the
DCMM model (1.1)—(1.4), where the condition (2.2) is satisfied under the alternative hypoth-
esis. Suppose Omax — 0 and ||0|| — oo as n — oo, and suppose |Az|//A1 — oo under the
alternative hypothesis. Then, under the null hypothesis, as n — oo, |[E[Q, — Q]| = o(ll61%
and Var(Q, — Q;) =o(|¢ I1®). Under the alternative hypothesis, as n — oo, |[E[Q, — orll =
o((I221/A*1011%) and Var(Qn — Q;) = o((IA21/AD°1I01%1011%) + o(16]1%).
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5. Simulations. We investigate the numerical performance of two Signed Polygon tests,
the SgnT test (2.4) and the SgnQ test (2.6). We also include the EZ test [16] and the GC test
[25] for comparison. For reasons mentioned in [25], we use a two-sided rejection region for
EZ and a one-sided rejection region for GC.

Given (n, K), a scalar 8, > 0 that controls ||0||, a symmetric nonnegative matrix P €
RXXK 'a distribution f(#) on R, and a distribution g (i) on the standard simplex of RX , we
generate two network adjacency matrices A™!! and A%, under the null and the alternative,
respectively, as follows: (i) Generate 01,605, ...,0, i.id. from f(0). Let 6; = B, - éi/||é||,
1 <i <n. (ii) Generate 71, 702, . . ., 7, iid from g(m). (iii) Let Q' = @I PIT'O®’, where © =
diag(6y,...,6,) and I1 = [, 72, ..., 71, ]'. Generate A from Qalt according to Model (1.1).
(iv) Let Q™! = (¢’ Pa)-66', where a = Ee,m e RX is the mean vector of g (7). Generate A™!!
from Qnull according to Model (1.1). The pair (@ Qalty is constructed in a way such that
the corresponding networks have approximately the same expected average degree. This is
the most subtle case for distinguishing two hypotheses (see Section 3).

It is of interest to explore different sparsity levels and also focus on the parameter settings
where the SNR is neither too large nor too small. Therefore, for most experiments, we let
Bn = |10 range but fix the SNR at more or less the same level. See details below. For each
parameter setting, we generate 200 networks under the null hypothesis and 200 networks
under the alternative hypothesis, run all the four tests with a target level &« = 5% and then
record the sum of percent of type I errors and percent of type II errors. For space limit, we
do not report separately the percent of each type of errors but relegate these results to the
Supplementary Material.

5.1. Experiment 1. We study the role of degree heterogeneity. Fix (n, K) = (2000, 2).
Let P be a 2 x 2 matrix with unit diagonal entries and all off-diagonal entries equal to b,,.
Let g(;r) be the uniform distribution on {(0, 1), (1, 0)}. We consider three subexperiments,
Exp la—1c, where respectively we take f(6) to be the following: (a) Uniform(2, 3), (b) two-
point distribution 0.9581 + 0.0583, where §, is a point mass at a and (c) Pareto(10, 0.375),
where 10 is the shape parameter and 0.375 is the scale parameter. The degree heterogeneity
is moderate in Exp 1a—1b, but more severe in Exp 1c. In such a setting, SNR is at the order of
16]1(1 — b,). Therefore, for each subexperiment, we let 8,, = ||0|| vary while fixing the SNR
tobe ||0]|(1 — b,) = 3.2. The sum of Type I and Type II errors are displayed in Figure 3.

First, both the SgnQ test and the GC test are based on the counts of 4 cycles, but the
G C test counts noncentered cycles and the SgnQ test counts centered cycles. As we pointed
out in Section 1, counting centered cycles may have much smaller variances than counting
noncentered cycles, especially in the less sparse case, and thus improves the testing power.
This is confirmed by numerical results here, where the SgnQ test is consistently better than
the GC test, significantly so in the less sparse case. Similarly, both the SgnT test and the
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-0-GC --GC ’ -0-GC o~ ¢
08 —o-SgnT 08 —o-SgnT L%~ -+’ 08 —o-SgnT ,:/
SgnQ . SgnQ » ’ SgnQ 27
0.6 y AN 0.6 ,ﬂ, 0.6 ¢ I A
7 om _-‘; N P Vi 7 M- 0
? ,o- B o - _¢ O - _o » _’/ 7
0.4 ’, 04 = e 7 04 N A
- - II/‘ ’ . » o /¢ ’
~ ¢ - g 27 ./ »
02 o —~g 02 - - 02 >~ ¢
o =87 ~o, »S o= a 4
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F1G. 3. From left to right: Experiment la, 1b and 1c. The y-axis are the sum of Type I and Type 11 errors (testin,
8 P y yp yp 8

level is fixed at 5%). The x-axis are ||0|| or sparsity levels. Results are based on 200 repetitions.
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EZ test are based on the counts of 3 cycles, but the EZ test counts noncentered cycles and
the SgnT test counts centered cycles, and we expect that SgnT significantly improves EZ,
especially in the less sparse case. This is also confirmed in the experiment.

Second, SgnQ and GC are order-4 graphlet counting statistics, and SgnT and EZ are order-
3 graphlet counting statistics. In comparison, SgnQ significantly outperforms SgnT, and GC
significantly outperforms EZ (in the more sparse case; see discussion below for the less
sparse case). A possible explanation is that higher-order graphlet counting statistics have
larger SNR. Investigation toward this direction is interesting, and we leave it to future study.
Note that SgnQ is the best among all four tests.

Last, GC outperforms EZ in the more sparse case but underperforms EZ in the less sparse
case. The reason for the latter is as follows. The biases of both tests are negligible in the more
sparse case, but are nonnegligible in the less sparse case, with that of GC much larger. In [30],
we propose a bias correction method, where the performance of GC is significantly improved.
However, GC continues to underperform SgnQ, because even with the bias corrected, it still
has a variance that is unsatisfactorily large.

5.2. Experiment 2. We study the cases with larger K and a more complicated matrix of
P. For some b, € (0, 1), let ¢, = %min(l — by, by,), and let P be the matrix with 1 on the
diagonal and the off-diagonal entries i.i.d. drawn from Unif(b, — €,, b, + €,); once the P
matrix is drawn, it is fixed throughout different repetitions. We consider two subexperiments,
Exp 2a and 2b. In Exp 2a, we take (n, K) = (1000, 5), f(6) to be Pareto(10, 0.375), and g(7r)
to be the uniform distribution on {eq, ..., ex} (the standard basis vectors of RX). We let B
range but fix ||0||(1 — b,) at 4.5, so the SNR will not change drastically. In Exp 2b, we take
(n, K) = (3000, 10), f(0) to be 0.958; +0.0583, and g() = 0.1 X7_; 8, +0.1538_3 8., +
0.05 Z,l(; 8¢, (so to have unbalanced community sizes). Similarly, we let 8, range but fix
1611(1 — b,) =5.2. The sum of Type I and II errors are shown in Figure 4.

In these examples, EZ and GC underperform SgnT and SgnQ, especially in the less sparse
case, and the performances of SgnT and SgnQ are more similar to each other, compared
to those in Experiment 1. In these examples, we have larger K, more complicated P and
unbalanced community sizes, and the performance of SgnT and SgnQ test statistics suggest
that they are relatively robust.

5.3. Experiment 3. We investigate the role of mixed membership. We have three sub-
experiments, Exp 3a-3c. where the memberships are not mixed, lightly mixed and signifi-
cantly mixed, respectively. For all subexperiments, we take (n, K) = (2000, 3) and f () to
be Unif(2, 3). For Exp 3a, we let g1 () = 0.45,, +0.38,, +0.38,,. In Exp 3b, we let g2(7) =
0.3 22:1 8¢, +0.1 - Dirichlet, and in Exp 3¢, we let g3(;r) = 0.25 2221 8¢, +0.25 - Dirichlet,
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FI1G. 4.  From left to right: Experiment 2a and 2b. The y-axis are the sum of Type I and Type Il errors (testing
level is fixed at 5%). The x-axis are ||0|| or sparsity levels. Results are based on 200 repetitions.
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FIG. 5. From left to right: Experiment 3a, 3b and 3c. The y-axis are the sum of Type I and Type Il errors (testing

level is fixed at 5%). The x-axis are ||6|| or sparsity levels. Results are based on 200 repetitions.

where Dirichlet represents the symmetric K-dimensional Dirichlet distribution. In Exp 3a—
3b, we let B, range while (1 — b,)||0]| is fixed at 4.2 so the SNR’s are roughly the same. In
Exp 3c, we also let 8, range but (1 — b,)||0]| = 4.5 (the SNR’s need to be slightly larger to
counter the effect of mixed membership, which makes the testing problem harder).

The sum of Type I and Type II errors are presented in Figure 5. First, the results confirm
that mixed memberships make the testing problem harder. For example, the value of ||6|(1 —
b,) in Exp 3c is higher than that of Exp 3a—3b, but the testing errors are higher, due to
that the memberships in Exp 3¢ are more mixed. Second, SgnQ consistently outperforms
EZ and SgnT. Third, GC is comparable with SgnQ in the more sparse case, but performs
unsatisfactorily in the less sparse case, for reasons explained before. Last, in these settings,
SgnT is uniformly better than EZ, and more so when the memberships become more mixed.

5.4. Experiment 4. We vary the size of network and study its impact on testing errors.
We fix K =2 and let P be a 2 x 2 matrix with unit diagonals and off-diagonals equal to b,,.
Let g(;r) be the uniform distribution on {(0, 1), (1,0)} and let f(€) be Pareto(8, 0.375). We
let n ranges from {100, 300, 1000, 3000}. Note that in our data generating process, 8, = ||0||
controls the sparsity level and (1 — b,,)||€]| is the SNR. As n varies, we fix 8, = 4 and change
b, accordingly so that the SNR is fixed at 3. The results are in Table 3. This is a sparse setting,
therefore, the biases in EZ and GC are negligible and they both control the Type I error well.
The SgnT and SgnQ tests also control the Type I error well. In terms of the Type II errors,
GC and SgnQ are better than EZ and SgnT. The results are relatively stable as n varies.

6. Discussions. A closely related idea is to use ||A — 17’|| as the test statistics. To see
why this is a reasonable choice, consider the proxy test statistic |A — n*(n*)’||, where we
recall that »n* = 6 under the null; see (1.12). Therefore, A — n*(n*)’ is equal to W and
(2 — (n*(n™)) + W, under the null and the alternative, respectively. The test has reason-
able power, as ||A — n™(n*)’|| is expected to be bigger in the alternative than in the null. An-
other related idea is to extend the Signed Polygon to address the problem of testing whether

TABLE 3
Experiment 4. Numbers in each cell are Type I error, Type Il error and their sum

n 100 300 1000 3000
EZ (0.025, 0.22, 0.245) (0.055, 0.26, 0.315) (0.05,0.27,0.32) (0.06, 0.275, 0.335)
GC (0.02,0.02, 0.04) (0.06, 0.02, 0.08) (0.04, 0.005, 0.045) (0.04, 0.005, 0.045)
SenT (0.01, 0.15, 0.16) (0.04,0.14, 0.18) (0.065, 0.175, 0.24) (0.06, 0.14, 0.2)

SgnQ

(0.05, 0.015, 0.02)

(0.04, 0.005, 0.045)

(0.04, 0, 0.04)

(0.02, 0.005, 0.025)
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K = ko versus K > kg, where ko > 1 is a prescribed integer. Let Q= Z],?:l )A\kéké,é, where
Ay are the kth eigenvalue of A, arranged in the descending order in magnitude and ék is
the corresponding eigenvector. The Signed Polygon test statistic can then be extended to
Ué’j}% = Zil,iz """ i (dist) (Aiyiy — Qi]iz)(Ai2i3 — Qi2i3) (A — Qimil)' See [27] for more
discussion. It remains unclear whether these test statistics are optimally adaptive, and we
leave the study to the future.

Another testing idea would be using the first eigenvalue of A=6"140""—h1, 1), fora
reasonable estimate 6 for 6 and a proper b. Unfortunately, even if 6 = 6, the distribution of
the test is unknown for general cases. In fact, this is essentially the approaches proposed in
[8, 32]). Both papers showed that in the dense case of 8 =6, = --- =6, = O(1), the largest
eigenvalue of A (when standardized) converges to the Tracy—Widom law. Unfortunately, the
approaches have been focused on the more idealized SBM model and the less sparse case
where ) =) =--- =0, = \Ja, > O (n—1/9), and the limiting distribution remains unknown
for other cases.

The testing problem is also closely related to the problem of estimating K. In fact, we can
cast the estimation problem as a sequential testing problem where we test K = ko vs. K > kg
for kg =1, 2,3, ..., and estimate K to be the smallest ko where we accept the null.

Note also the lower bound argument for the global testing problem sheds useful insight
for many other problems (e.g., estimating K, community detection, mixed membership).
Take the problem of estimating K, for example. Given an alternative setting, if we cannot
distinguish it from some null setting, then the underlying parameter K is not estimable.

In a high level, these ideas, together with the Signed Polygon, are related to the ideas in
[21] on testing K = kg versus K > kg, in [32] on goodness-of-fit, and in [31] on estimating
K . However, the focus of these works are on the more idealized model where we do not have
degree heterogeneity, and how to extend their ideas to the current setting remains unclear.
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This supplement contains additional results and technical proofs for the
main article [4]. Appendix A studies the behavior of the SgnT test statistic
and proves Theorems 2.1, 2.3, and 2.5. Appendix B is about the properties of
the SgnQ test statistic and proves Theorems 2.2, 2.4, and 2.6. Appendix C de-
rives the matrix forms of signed-polygon statistics and proves Theorem 1.1.
Appendix D studies the estimation error of H0H2 and proves Lemma 2.1. Ap-
pendix E contains spectral analysis for {2 and Qand proves Lemmas 2.2-2.3.
Appendix F analyzes the region of impossibility and proves Lemma 3.1 and
Theorems 3.1-3.5. Appendix G calculates the mean and variance of signed-
polygon statistics and proves the results in Tables 1-2, Tables A.1-A.2, The-
orems 4.1-4.3, and Theorems A.1-A.3. Appendix H contains additional sim-
ulation results.
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APPENDIX A: THE BEHAVIOR OF THE SGNT TEST STATISTIC

We now discuss the behavior of the SgnT test statistic and prove Theorems 2.1, 2.3, and
2.5. The discussion is similar to that of SgnQ in Section 4, and so we keep it brief.
Recall that the SgnT test statistic is defined by

Tn = Z (Ailiz - 771'1 ﬁiz)(Aizis — i, ﬁiB)(Aish - ﬁis ﬁll)
il,iQ,ig(diSt)

Similarly, define the Ideal SgnT test statistic T, » and the Proxy SgnT test statistic and 7, and
write

(1) Ty =Qn+(Q — Qn) + (Qn — Q7).

We have the following observations.

. @n is the sum of 8 different post-expansion sums, divided into 4 types. See Table A.1.

* @ — Qn is the sum of 19 different post-expansion sums, divided into 6 different types.
See Table A.2.
* Qn — Q) is the sum of 37 different post-expansion sums.

The following lemmas are proved in the supplementary material.
TABLE A.1

The 4 types of the 8 post-expansion sums for Tn (10\lq is the 09-norm of 0 (the subscript is dropped when
q = 2). In our setting, ||0|| — oo, and H@HZ1 < ||9H§ < Ht9||2 < 16]]1-

Type # (Ng,Nyy) Examples Mean Variance
L1 03 ks WigWisWei 0 =10
I3 (LY X kaist) U Wik W 0 <ca®9)7)elI§ = o(l6]|°)
111 3 2, Zi,j,k(dist) S:luf:lijVkZ O~ < Ca4‘|9||4”9“g
v B0 ks Ui EQe  ~ (@) 0

THEOREM A.1 (Ideal SgnT test statistic). Consider the testing problem (1.6) under the
DCMM model (1.1)-(1.4), where the condition (2.2) is satisfied under the alternative hypoth-
esis. Suppose Omax — 0 and ||0|| — oo as n — oo, and suppose |\2|/\/A1 — oo under the
alternative hypothesis. Then, under the null hypothesis, as n — oo,

E[T,]=0,  Var(T,,)=6[6]° [1+o(1)],

and
T, — E[T},]

— — N(0,1), in law.
Var(T7,)

Furthermore, under the alternative hypothesis, as n — 0o,

E[T,] = (%) +o(|6]*),  Var(T,,) < Cl18]1° + C(|Aal /M) * 6] 16]15-

THEOREM A.2 (Proxy SgnT test statistic). Consider the testing problem (1.6) under
the DCMM model (1.1)-(1.4), where the condition (2.2) is satisfied under the alternative
hypothesis. Suppose Omax — 0 and ||0|| — oo as n — oo, and suppose |\o|//A1 — oo under
the alternative hypothesis. Then, under the null hypothesis, as n — oo,

E[T,; - o) =o(|0]%),  Var(T;; —T,) = o(||0]

6)‘




TABLE A.2
The 6 types of the 19 post-expansion sums for (Tp; — Tn). Notations: same as Table A.1.
Type # (N(;,NQ,NW) Examples Abs. Mean Variance
] I 0 3
W3 (1,02 Z&j,k) 5 Wik Wi 0 < I8 — o))
ist
~ s C 2 ) 6 0 3
oo D S b < Cal|0]*=o(a®0]) < GBI — o101 )
ist
« ~ ~ C 4 0 8 /] 3
3020 D o 0 < GBI — oot oy en§)
list
Ma 3 Q0D ik 0i0iEWe < CloIP=o(l6]?) <Cll1§ = o(101%)
(dist) 6 21910
mo3 QL0 S dut < Sl < GO — o(j011%)
b el Ik
4 P 4 3 .
meooT G000 S it < Silb=o(e)?) < Il — o()1011%)
(;th) ij 95k ki o2 IR
18

Furthermore, under the alternative hypothesis,

E[Ty; = Tn] = o((|A]/20)°[16]]°),

n

Var(T;; — Tp) < C(1hal /M) 10]* 10115 + o(10]°)-

THEOREM A.3 (Real SgnT test statistic). Consider the testing problem (1.6) under the
DCMM model (1.1)-(1.4), where the condition (2.2) is satisfied under the alternative hypoth-
esis. Suppose Omax — 0 and ||0|| — oo as n — oo, and suppose |\a|//A1 — oo under the
alternative hypothesis. Then, under the null hypothesis, as n — oo,

[E[T, —Tx]|=o(|01*),  and  Var(T,—T;)=o0(|0]|°).
Under the alternative hypothesis, as n — o0,
[T, — ;]| = o((|A2] /A1) 10]1°),
Var(T,, — Tpr) = o((|A2l/X1)*[10]1*16113) + o([|6]|°).-

Combining Theorems A.1, A.2, and A.3, Theorems 2.1, 2.3, and 2.5 follow by similar
arguments as in Appendix B.

APPENDIX B: THE BEHAVIOR OF THE SGNQ TEST STATISTIC

We prove Theorems 2.2, 2.4, and 2.6. We use the same notations as those in Section 4 of
the main article, and the proof here relies on Theorems 4.1-4.3 in the main article.

Consider Theorem 2.2. In this theorem, we assume the null is true. First, by Theorems 4.2
and 4.3 and elementary statistics, E[Q% — Q,] ~ 2[|0]|*, |E[Qn — Q]| = o(||0]|*), Var(Q}, —
Qn) = o(]|0]|®), and Var(Q,, — Q%) = o(||0]|®). It follows that
2 E[Qn] - E[@n] = 2+ oW)[0l*,  Var(Qn — Qn) =o(]|0]®).

By Theorem 4.1.
Qvn B E[Qvn] N

Var(Q»)

Since for any random variables X and Y, Var(X +Y') < (1+a,)Var(X)+(1+ i)Var(Y)
for any number a,, > 0, combining the above and letting a,, tend to 0 appropriately slow,

4) E[Qn] ~2(0]|*,  Var(Qn) ~ 80|

3) E[Qn] = o([l6]]*), Var(Qn) ~8]16]1%, N(0,1).



Moreover, write

Qn—E[Qn] _ [Var(Qy) [ —Qn) + Qn —E[Qn] | EQ] —E[Qn]}
VVar(Qy) Var(@n) \/Var \/Var(@n) Var(Qn)

On the right hand side, by (2)-(4), as n — oo, the term outside the bracket — 1, and for the
three terms in the bracket, the first one has a mean and variance that tend to 0 so it tends to 0
in probability, the second one weakly converges to /N (0, 1), and the last one — 0. Combining
these,

Var(Qn)

Combining (4) and (5) proves Theorem 2.2.
Next, we consider Theorem 2.4, where we assume the alternative is true. First, similarly,
by Theorems 4.2 and 4.3,

E[Q;, — Qn] = (24 o(1) 101" + o((| A2l /A1) [16]1°),
Var(Qn — Qn) < C(A2/A)°I01B(10]15 + o([16]]).
Second, by Theorem 4.1,
E[Qn] = tr(Q@*) +o([0]*),  Var(Qn) < C[I0]* + (A2/A1)%[10]1%16115].

Combining these proves Theorem 2.4.
Last, we consider Theorems 2.5-2.6. Since the proofs are similar, we only show Theorem

2.6. First, by Theorem 2.2 and Lemma 2.1, under the null, % — N(0,1), so the

(5) — N(0,1), in law.

Type I error is
n— 20117 2 1 2
H“’) <Qn > (2+ za\/g)(\ﬁHQ — 1)2> = P(Q 8(H(7A7||]7’2H— 1)4) > za) =a+o(l).

Second, fixing 0 < € < 1, let A, be the event {(||7]|* — 1) < (1 + €)||n*||*}. By Lemma 2.1
and definitions, on one hand, over the event A, (||7]|*> — 1) < (1 +¢)||n*||> < C||0||?, and on
the other hand, P(A¢) = o(1). Therefore, the Type II error

Py (@n < @+ 2aVB) 1P - 1?)

<Ppw <Qn <2+ zaV8) (171 - 1)2,Ae> +P(A°)

<Py (Qn <C(2+ za\/§)||9||4> +o(1),

where by Chebyshev’s inequality, the first term in the last line
(6) < [E(Qn) = C(2+ 2 VR)[|0]] 72 - Var(Qy).

By Lemma D.2 of the supplementary material and our assumptions, A\; < [|0]|2, |X2|/v/ A1 —
o0, and [|0|| — oo. Using Lemma 2.3 E[Q,,] > CA3 > )2, and it follows that E(Q,) >
C(2+ 24v/8)||0]|*, so for sufficiently large n,

E(Qn) ~ C(2 4+ 2aVB) 6] > JE[Qn] > O\
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At the same time, by Theorem 2.4,
Var(Qn) < C(|0]1* + (A2/20)°[|0]1*]10]13)-
Combining these, the right hand side of (6) does not exceed
CII9H8 + (2/A)001°16115
3 =
A3
where (1) = CA;%(|0]|® and (IT) = CA;%(A\2/A1)8]10]|3]|0]|S. Now, first, since A1 =< ||]|2
and |A2|/v A1 — 0, (I) < C(X2/v/A1)~% — 0. Second, since \; =< [|0]|? and ||0]|$ < [|0]|*,

(I1) = CAPATC0I1F)10]1S < CAS 2. As | A2| /v A1 — 00, VAT =< ||| with [|0]| = oo, [A2| —
oo and (IT) — 0. Inserting these into (7), the Type II error — 0 and the claim follows. ]

)

(1) + (11),

APPENDIX C: MATRIX FORMS OF SIGNED-POLYGON STATISTICS
We prove Theorem 1.1. Recall that A=A- 77. By definition,

~3 ~ o~ o~
T, =tr(A°) — E AijAjk,‘Ak’ia
at least two of
1,7,k are equal

Qn =tr(A%) — Z Aij A Age A
at least two of
1,7,k,L are equal
First, we derive the matrix form of 7),. If at least two of {4, j, k} are equal, there are four
cases: () i=j,k#i,(b)j=k,i#7j,(c) k=1, j#k, (d)i=j=k. The first three cases
are similar. It follows that

T, = tr(A%) — 3 Z gugfk - ng’z

i,k (dist)
tr(A%) — 3(2 Ay A% - Z 2{?2) - Z A3

= tr(A%) — 3tr(Ao A?) + 2tr(Ao Ao A).

This gives the desired expression of 7,.

Next, we derive the matrix form of @,,. When at least two of {3, j, k, ¢} are equal, depend-
ing on how many indices are equal, we have four patterns: {i,4,7,i}, {i,4,4,5}, {4,%,7,7},
{i,1,7,k}, where (i, j, k) are distinct. For each pattern, depending on the appearing locations
of the next distinct indices, there are a few variations. Take the pattern {4,1, j, k} for exam-
ple: (a) when a new distinct index appears at location 2 and at location 3, the variations are
(i,7,k,4), (i,7,k,7), (i,4,k,k); (b) when a new distinct index appears at location 2 and at
location 4, the variations are (4, 7,4, k), (4, 7,7, k); (c) when a new distinct index appears at
location 3 and location 4, the variation is (i, 1, 7, k). Using similar arguments, we can find all
variations of each pattern. They are summarized in Table C.3. Define

Si Z gii;lijgjk;lkh Sy = Z szzjgzzka
i,4,k(dist) i,5,k(dist)
i,j(dist) i,j(dist)

S5 = Z fz[iig?jgjﬁ Sﬁ = ZZ?Z
i,j(dist) i



TABLE C.3

Decomposition of tr(g4). We note that the last column sums to n*.
Pattern Variations Summand Sum #Summands
{i7j7k7£} ( 2 Js ks e) A‘ A]k‘Akafi Qn n(n_ 1)(n_2)(n_3)
4,5,k 8)  AjjAjRAK Ay St
(i,5.k,d)  AjAjApiAj S
(i, gk} (Gdkk)  AijAj A Ak St 6n(n—1)(n—2)
(4,454, k) AZ]A]ZAZkAkZ )

(4,9,5.k)  AijAj A]kAkz S1
(i,%,4, k) AiiA"A'kAki Sy

ij 4
(i,4,i0)  AjjAjiAi Ay S3
{iyiingy  (B02d) A Agidisdse S An(n—1)
(i,6,5,9)  AjAijAji Ay S3
(4,4,8,7)  AuAyuAijAy  S3
S (4,4,4,5) Az]éjzAzj*’L}]'L Sy
{4.5.0Y 4,40 AgAjjA;Ay  Ss 3n(n—1)
(4,4,5,7) AZZAZ]AJJA]Z S5
{3,4,1,1} (3,7,1,1) Ay Aii Aii A Se n
It follows from Table C.3 that
(8) Qp =tr(AY) — 45, — 25, — 485 — 4 — 255 — Sg.

What remains is to derive the matrix form of 5;-Sg. By direct calculations,

S1 = Z;{” l: Z gzjg]kgkl - Z}ngjjgﬂ]

[ £,k j#i
-~y A, {(Z AyAd 2 A4+ ) - (L A2A,
i gk J J
= A AijA AL -2 Z AZAYL - AuAL A +2) A
i i

’]’

g;.)}

—tr(Ao A%) — 2tr(A o Ao A?) — 1/ [diag(A)(A o A)diag(A)]1, + 2S.

Moreover, we can derive that

s=y| > ma-y

_Z[(ZA —2ZA2A2+A4)—<%:K§].—Z§Z.>]
=) AjA 2ZA2A2 ZA +2ZA

1,5,k

= tr(A%0 A%) — 2tr(AvoA2) — 1/ [AoAo Ao All, + 25.

It is also easy to see that

Sy = ZA2A2 ZA tr(Ao Ao A%) — S5,



Si=Y_ A} }:A4_1'AvoAoA} — Sg,
S5 = AiALA;; — S5 =1 [diag(A)(A o A)diag(A)]1, — Sg,

Sg=tr(AoAoAocA).
Plugging the matrix forms of S-S into (8), we obtain
Qy =tr(A*) — 4tr(A o A%) — 2tr(A% 0 A%) 4+ 8tr(Ao Ao A?) —6tr(Ao Ao Ao A)
+2-1/ [diag(A)(A o A)diag(A)]1, + 1/ [Ac Ao Ao A]l,

This gives the desired expression of (),.
Last, we discuss the complexity of computing 7, and @Q,,. It involves the following oper-
ations:

AA/

* Compute the matrix A=A- m
* Compute the Hadamard product of finitely many matrices.

* Compute the trace of a matrix.

* Compute the matrix DM D for a matrix M and a diagonal matrix D.
» Compute 1/, M 1,, for a matrix M.

* Compute the matrices Ak for k= 2,3,4.

Excluding the last operation, the complexity is O(n?). For the last operation, since we can
compute Ak recursively from Ak = A*=1 A it suffices to consider the complexity of com-
puting BA, for an arbitrary n X n matrix B. Write

BA=BA— Bj(i).

Consider computing BA. The (i, j)-thentry of BAis 3. 4, .o BieAs;, where the total num-
ber of nonzero Ay; equals to d;, the degree of node j. Hence, the complexity of comput-
ing the (i,7)-th entry of BA is O(d;). It follows that the complexity of computing BA is

O3 1 =1dj) =O(n 2d). Consider computing B#(1))’. We first compute the vector v = B

and then compute v(7))’, where the complexity of both steps is O(n?). Combining the above,
the complexity of computing BAis O(n?d). We have seen that this is the dominating step in

computing 7}, and @Q,,, so the complexity of the latter is also O(n?d).
APPENDIX D: ESTIMATION OF ||4]]
We prove Lemma 2.1. First, we show that

|12 =0]|%, under the null,
= [10]|%, under the alternative.

Recall that n* = (1/4/1/,91,,)Q1,,. Hence,
©) I]1* = (1,2%1)/ (15,210).

Under the null, Q = 66, and the claim follows by direct calculations. Under the alternative,
K /
Q=231 My s0

K K
1,01, = Z Ae(10,61)%, 1,9%1, = Z Ar(18k)*.
=1

k=1
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By Lemma E.2, \; < ||0||2. By Lemma E.3, 1/,¢; < ||0]|~Y/|0||1 and |1/ &x| = (H@H 1H(9|| ).
It follows that 17,921, > A\2(1,£1)? > C||0)12]|0]|*> and 1,921, < A2 Zk:l( &)? <
C|1013110/|*. We conclude that

(10) L1, < [|6] 701",

Moreover, 1,01, < [\1| S5, (1,6:)% < C||6])?, and by Lemma E.4, 1/,Q1,, > C||0]3. 1t
follows that
(11) 101, = 0]3.

Plugging (10)-(11) into (9) gives the claim.
Next, we show (||7]|? — 1)/||n*||> — 1 in probability. Since ||n*|| < ||0|| — oo as n — oo,
it suffices to show [|7}|2/||n*||*> — 1 in probability. By definition,

s 11,A%1,
Iil? =3
Compare this with (9), all we need to show is that in probability,
17,Al, 17,A%1,
(12) n — 1, and n — 1.
1701, 1021,

Since the proofs are similar, we only show the second one. By elementary probability, it is
sufficient to show that as n — oo,

E[1],A%1 Var(1/, A%1
(13) ElL, AL] . oy, YarlanATly n ;”L) 0,
1021, (17.021,,)
We now prove (13). Consider the first claim. Write
(14) 1AL, =Y AjAj =Y AL+ > AjA.
0,5,k i£] 1,5,k (dist)

It follows that

E[1,A%0,] = Qi+ Y QQ.

i#] i,j,k(dist)

Since €2;; < 6;0; under both hypotheses, we have

E[1,4%1,] - 1,01, - 1,071, }<‘ZQ“+ > 2

( 7]7k“) are
not distinct

<Ze2+029292+029§9k
ik

< Cll6|”* + CH9H4 + 1511611
< Cllolliel,

where we have used the universal mequahty 19)* < H(‘)||3||0H1 Since [|0]|3 < 02,110/, =
0(||0]|1), the right hand side is o(||0]|3) = o(1/,21,,). S

(15) E[1],A%1,] = 1,,9%1,, + 1/,Q1,, + o(1,Q1,).
Combining this with (10)-(11) gives
/ 2 /
E[1], A%1,)] 1| < L1, 1

17,021, ~ 1021, T |6)12
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and the claim follows by ||6|| — oc.
Consider the second claim. By (14),

(16) Var(1!, A%1,) < QVar<Z Afj) + 2Var< 3 AijAjk)‘
i£j i.5,k(dist)
We re-write ), y A?j = Zi# Ajj=2 Zi<j Aj;j. The variables { A;;}1<i<j<n are mutually
independent. It follows that
(17) Var (3 4% ) =43 Var(4y5) <Y iy < CJ6lR.
1#£] 1<j i,J
Moreover, since A;; A, = (45 + Wi;) (Qk + Wji), we have

Do AgAp= Y QuQut2 ) Wit Y WiyWa

i,9,k(dist) i,5,k(dist) i,9,k(dist) i,5,k(dist)
= ) 9+ X1+ X
i,5,k(dist)

By elementary probability,

Var( Z AZ]A]]C) < 2Var(X1) -+ 2Var(X2).

i,5,k(dist)
To compute the variance of X, we note that
X1=4Y BisWik,  Big= >, Q.
i<k i¢{d.k}

The variables {W; }1<j<k-n are mutually independent, and |5;,| < C' >, 0;0; < C|0||16;.
It follows that

Var(X1) < C ) (10]116;)°(6;6) < CI6|I3 110113,

Jk
To compute the variance of X5, we note that
VaI‘(Xg) == Z Z E[VVUWJ‘kWi/j/Wj/k/}.
4,5,k (dist) 5’ k' (dist)

The summand is nonzero only when the two variables {W; ., W} are the same as the two
variables {W;;, W }. This can only happen if (i,7,k) = (¢, 5/, k") or (i,5,k) = (K, j',7'),
where in either case the summand equals to IE[W% szk]. It follows that

Var(Xa) = > 2B[WZWZ]<C6:656, < C||6]*[0]I7.

i,5,k(dist) 1,5,k
Combining the above gives
(18) Var( >0 Aydg) < ClolloN; + ClolPle < cloilols,
i,3,k(dist)

where we have used the fact that ||0]|;]|0]|3 > [|6]|* (Cauchy-Schwarz inequality) and ||0| —
oo. Plugging (17)-(18) into (16) gives
(19) Var(1;, A1) < C||0]I716]13.
Comparing this with (10) and using ||0]|3 < 62,,..]|0]|1, we obtain
Var(1,A%1,) _ ClOJEIRIS _ COn

(1.21,)2 = Jellel* — el
and the claim follows by ||6|| — oo.
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APPENDIX E: SPECTRAL ANALYSIS FOR € AND

We state and prove some useful results about eigenvalues and eigenvectors of €2 and €2. In
Section E.4, we prove Lemma 2.2 and 2.3 of the main file.

For 1 <k < K, let \; be the k-th largest (in absolute value) eigenvalue of {2 and let
&, € R™ be the corresponding unit-norm eigenvector. We write

E= [517525"'7€K] - [Ul,UQ,.. ~7un]/»
so that wu; is the i-th row of =. Recall that i is the K x K matrix ||0||~2(II'©2I).

E.1. Spectral analysis of (2. The following lemma relates A and &, to the eigenvalues
and eigenvectors of the K x K matrix G s PG:.

LEMMA E.1. Consider the DCMM model. Let dy, be the k-th largest (in absolute value)

eigenvalue of G: PG> and let Br € RE be the associated eigenvector, 1 < k < K. Then
under the null,

A =07, & ==26/]0].
Under the alternative, for 1 <k < K,
MNe=dill0]% & =110 [0 0 (LG By)].

Under the alternative hypothesis, we further have the following lemma:

LEMMA E.2. Under the DCMM model, as n — oo, suppose (2.2) holds. As n — oo,
under the alternative hypothesis,

A=< |62, ui|| < CNO| 10, forall1l <i<n.
The quantities (1/,£) play key roles in the analysis of the Signed Polygon tests. By Lemma
E.1,
& =(lo)~enc"p,

where $3; is the first eigenvector of G'/2PG/2, corresponding to the largest eigenvalue of
GY2PGY2 1t is seen G~1/2f; is the eigenvector of the matrix PG associated with the
largest eigenvalue of G'P, which is the same as the largest eigenvalue of G'/2PG'/2. Since
PG is a non-negative matrix, by Perron’s theorem, we can assume all entries of G~1/2 (1 are
non-negative. As a result, all entries of £; are non-negative, and

1;161 > 0.

The following lemma is proved in Section E.3.

LEMMA E.3. Under the DCMM model, as n — oo, suppose (2.2) holds. As n — o0,

/ < —1 / > -1 )
Jmax (Ll < CIOI0lh, - & = ClOIO]

and so forany 2 <k < K,
|15,k < O17.4]

We also have a lower bound for 1/,Q1,,. The following lemma is proved in Section E.3.

LEMMA E.4.  Under the DCMM model, as n — oo, suppose (2.2) holds. As n — oo, both
under the null hypothesis and the alternative hypothesis,

1,01, > C||9)3.
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E.2. Spectral analysis of Q. Recall that
Q=Q— (")),  wheren* = (1/,/1,91,)Q1,,

and Aq,...,Ag are the K nonzero eigenvalues of (), arranged in the descending order in
magnitude, and &1, . . ., £k are the corresponding unit-norm eigenvectors of {2 The following
lemma is proved in Section E.3.

LEMMA E.5. Under the DCMM model, as n — oo, suppose (2.2) holds. Then,
Dol < < C|ral.
Moreover, for any fixed integer m > 1,

[(Q™)ij] < CA2|™ - |0]| 20,0, forall1<i,j<n.

Recall that dy, ..., dx are the nonzero eigenvalues of G > PG> . Introduce
D =diag(dy,da,...,dx),  D=diag(ds,ds,...,dx),

and

:( n&2 1 53 1%§K>’ Z
067 1,67 15677 di( 1’
By Lemma E.3, 1/.&; > 0, so h and ug are both well-defined. Write = = [£1, &, ..., &k]|. The
following lemma gives an alternative expression of (2.
LEMMA E.6. Under the DCMM model,
Q=0 =M=,
where M is a K X K matrix satisfying
(14 ug) "W Dh —(1 +ug)"*W D
—(1+ )~ Dh D — (d1(1 +ug)) "' Dhh'D
If additionally |A2| /A1 — 0, then for the matrix M € RE-K
— WDh —h'D
a=fop- |20
—Dh D
we have
|Myj — M| <CN3 /A1, forall1<i,j<K.

We now study tr(Q3) and tr(Q4). They are related to the power of the SgnT test and
SgnQ test, respectively. We discuss the two cases |)\2| / A1 — 0 and |A2|/A1 > ¢ separately.

Consider the case of |A2|/A1 = o(1). Since Q = EMZ', where Z'E = [, we have
tr(Q%) =tr(M?),  and  tr(QY) = tr(M?).

The following lemma is proved in Section E.3.
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LEMMA E.7.  Consider the DCMM model, where (2.2) holds. As n — oo, if |A2]| /A1 — 0,
then

(20) [tr(Q7) — tr(M*) <o(|Aaf?),  [tr(Q*) — tr(M*)] < o(| Mo,
Moreover,

tr(M?) = tr(D*) + 3k’ D*h + 3(h' Dh)(h' D?h) 4 (W' Dh)?,
and

tr(M*) = tr(D*) + (W' Dh)* + 4(h' D?h)? + A(W' Dh)?(W' D*h) + 4h' D*h + 4(h' Dh)(K' D*h)

tr(D*) + (W' Dh)* + 2[(h' D?h)? + (k' Dh)?(h' D*h) 4+ k' D*h)

Vv

Y

tr(D%).

e In the special case where \a, A3, . .., A\ have the same signs,

K K
(M) =) A} =D Il
k=2 k=2

and so
K
[t (%) =D Ml +o(|X2f).
k=2

e In the special case where K = 2, the vector h is a scalar, and
tr(M3) = (14 h%)>A3, tr(M*) = (14 h%)*A4,
and so

(@) = [(L+ 7% +o(D)]A3, (@) = [(L+ 1) + o(1)]A3.

We now consider the case |A\2/\1| > ¢o. In this case, M is not a good proxy for M any
more, so we can not derive a simple formula for tr(23) or tr(Q2*) as above. However, for
tr(Q2*), since

(@) = %,
by Lemma E.5, we immediately have
N K K
@1 (@) >CX\ > CO)M)/(K=1)>C> AL
k=2

E.3. Proof of Lemmas E.1-E.7.

E.3.1. Proof of Lemma E.I. The proof for the null case is straightforward, so we only
prove the lemma for the alternative case. Consider the spectral decomposition
G'?pG'? =BDB.

where

D = diag(dy,...,dk) and B=1,...,0k]
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Combining this with 2 = ©IIPII'O gives
0 =OIG 3 (G: PG3)G :1I'0

= OIIG™:(BDB)G :1I'0

= (llo]I~*e11G™2 B)(||0]*D)(||0]| "' ©11G 2 BY

= H(||6|*D)H’,
where

H=|6|"'enG :B.
Recalling that G = (||6]|?)~! - ITI'©11, it is seen
(22) H'H =||0]|2B'G":(I'©’)G 2B = B'B = I,
Therefore,
Q=H(|6|>D)H’

is the spectral decomposition of €2. Since (lNDk, &) are the k-th eigenvalue of 2 and unit-norm
eigenvector respectively, we have

&k = %1 - the k-th column of H= £(||0])) ' OIIG /%34
This proves the claim. O

E.3.2. Proof of Lemma E.2. Consider the first claim. By Lemma E.1, A\; = dy||0]|?,

where d; is the maximum eigenvalue of G:PG=. It suffices to show that dy =< 1. Since
all entries of P are upper bounded by constants, we have

1P <C.

Additionally, since G is a nonnegative symmetric matrix,

K
2 < |Gllmax = k,0) = 0] > i 007 < 1.
23 |Gl <lc] ynﬂ)Hu%z?
It follows that
(24) di < [|G]|[|P]l < C.

At the same time, for any unit-norm non-negative vector = € R, since all entries of P are
non-negative and all diagonal entries of P are 1,

2'Px>a2'v=1.
It follows that
(G~:2)(G:PG:)(G :x) _ a'Px 1

dy = ||G2 PG> || > - = > :
I I (G o) 2G1z = |G|

Combining it with the assumption (2.2) gives
(25) dy > C.

where we note C' denotes a generic constant which may vary from occurrence to occurrence.
Combining (24)-(25) gives the claim.
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Consider the second claim. Let B = [f1, 82, ..., 8] and D = diag(d;,ds,...,dk) as in
the proof of Lemma E.1, where we note B is orthonormal. By Lemma E.1 and definitions,

u=16]| " imiG 2 B.
It follows that
il < 110176; - ImllllG = BI < (161) 61621,
where we have used ||B|| =1 and ||m;|| = [Zszl 7;(k)?]*/? < 1. Finally, by the assumption
(2.2), |G1| < C and so ||G~'/2|| < C. Combining these gives the claim. O
E.3.3. Proof of Lemma E.3. 1tis sufficient to show the first two claims. Consider the first
claim. By Lemma E.2, forall 1 <k < Kand1<i¢<n,
k(i) < Cllo) 6.
It follows that
n
(26) &l <CY 01 6 < Clol o), foralll<k< K,
i=1

and the claim follows.
Consider the second claim. By Lemma E.1,

27) & = [0 OI(G ™2 4),

where (3 is the (unit-norm) eigenvector of G 2 PG associated with A1, which is the largest
eigenvalue of G'/2PG'/2. By basic algebra, \; is also the largest eigenvalue of the matrix
PG, with G~/2, being the corresponding eigenvector. Since PG is a nonnegative matrix,
G (1 is a nonnegative vector (e.g., [2, Theorem 8.3.1]). Denote for short by

h=G™?p,.
It follows from (27) that

K n
(28) 1g = (107" 101h = ol > (3 mi(k)6s ) .

k=1 =1

We note that ZkK:1 (>, mi(k)6;) = ||6]|1. Combining it with the assumption (2.2) yields

lggK{;wz<k>ez} > Clloll
Inserting this into (28) gives
(29) 1,602 C(101) 01l - 17]]1-

We claim that ||| > 1. Otherwise, if ||k|| < 1, then every entry of & is no greater than 1 in
magnitude, and so

1Rl > [|]* = 1G~* By,
Since |G| =||G||=! > 1 (see (23)) and ||31]| =1,
IG™25: > 1.

and so it follows ||h|| > 1. The contradiction show that ||| > 1. The claim follows by com-
bining this with (29). O
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E.3.4. Proof of Lemma E.4. For1l <k <K, let
c= (o)~ 'r'e1, = (||6[l,) " (1,e11)"
Since 2 = OIIPII'O and all entries of P are non-negative,

K
(30) 1,01, = [613( Pe) = 161 (Y c2).
k=1

Note that, first, ¢, > 0, and second, ||0]]1 Zszl ¢, = 1,1101,, = 1/, 01,,, where the last term
is ||0]|1, and so

K
zg:ck::1.
k=1

Together with the Cauchy-Schwartz inequality, we have
K

K
Y =0 a)P/K=1/K.
k=1 k=1

Combining this with (30) gives the claim. O

_E.3.5. Proof of Lemma E.5. Consider the first claim. We first derive a lower bound for
|©2]|. By Lemma E.6,

31) 2] = [l6] - || M]],

where with the same notations as in the proof of Lemma E.6, M = D — (1 +ug)~'vv’. Let
M be the top left 2 x 2 block of M. Let Dy = diag(d;,ds2), and let vy be the sub-vector of
v in (36) restricted to the first two coordinates. By (36),

Mo = D[) — (1 + UO)_I’UQU(I) = Dg (_[2 — (1 + UO)_1D61/2U0’U6DO_E)D§,

and so by || Dy /?|| = |dy| /2 we have

G2 (L= (14 o) Dy e Dy ? )| < 1D A Mo DG 2| < [dal ! - | Mol

At the same time, since (1 + uo)_lDa 1 2U07}6D6 /2 is a rank-1 matrix, there is an orthonor-
mal matrix and a number b such that
QL +u0) " Dy oy Dy Q' = diag(b, 0).
It follows
(2~ (1 -+ u0) ™Dy uoeh Dy * ) | = |1 — diag(b, 0)| = maxc{|1 — bl, 1} > 1.
Inserting this into (32) gives
[ Mol| = |dz],
Note that || M || > || Mp||. Combining this with (31) gives
13 = |dzl16]2.
Next, we derive an upper bound for ||||. By Lemma E.3,

/ < —1 / > —1 )
(33) max (1, <Cl6|7 el 16 > Clel 18]
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By (33), all the entries of M are upper bounded by C|\2|, which implies ||M || < C|da|.
Plugging it into (31) gives

(34) Q]| < |da]]16]]2,

|1 + U()|
and all remains to show is
1+wug>C>0.

Now, recalling that Q2 = Zle Me€i&), and A = di[|0]|%, by definitions,

K
dy(17,61)* (1 +uo) = de(lisz)Q = [16]I7215,01,.
k=1

By Lemma E.4 which gives 1,,Q1,, > C||0||3. It follows that

16]] 21,01, 1612 - 1613
n > >C,
di(1,61)? 1011=2 - [10]|3

1+ug >

where in the second inequality we have used (33) and d; = (||6]|) 72 - A\; < 1 (see Lemma
E.2). Inserting this into (34) gives the claim.
Consider the second claim. By Lemma E.6,
Q=2=M=',
where = and M are the same there. Write
E= [517525 o aé-K] - [ulaUQa o 7un],-
Note that €2 and M have the same spectral norm. It follows that
Om==M"=
and
|(Q™)ij = T M g | < flua || M™ [
By Lemma E.2, ||u;||||u;]| < C||0]|~26;60;, and by the first part of the current lemma,
1M = |2 < Ol l16]]*.
It follows that
|(Q7)4] < Clda|™||6]*™~26;0;.

This proves the claim. O

E.3.6. Proof of Lemma E.6. Consider the first claim. By definitions,
1

—Ql,.
V1,01,

(35) Q=Q— ()",  where n* =
Recalling Dy, = di,||0]|? and E = [£1, &, .. ., £k], we have

K
0= D& =l6]* - EDE"
k=1
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It follows that

K
=161 di(17,6)%,
k=1

and

n* = 191 > dr(1,6) = 1] [f{ +§: ”5’“ ]
VEE 4 e S V(T +uo) e

where the vector in the big bracket on the right is Zv, if we let

B da(17,&2) dr(11€K) .,
=V ey Ve

Combining these gives

0 2
= ||8||*2DZ 1H+H Zvv'E.
up
Plugging it into (35) gives
2=per . MO1* = iz 2 1, N
(36) =6]|“= 1 +u0:vv E=0]FE(D — (1 +ug) vv')ZE".

By definitions,
D =diag(dy,dy,...,dx), and v=d; ' (dy, W D).
It follows

(14 uo)~'drug —(1+up)~'h'D

D—(1 o' = = S~
(1+uo) ™ wv [—(1+u0)_1DhD—(d1(1+u0))_1th’D ’

where we note that

1’ és /
diug = Z ds = h'Dh,
Combining these gives the claim.
Consider the second claim. By definitions,

M — N = ]2 [[(1 +ug) —_1]d1Nuo (1-(1+ uo):llh'f?N

(1— (1 +wup) Y YDh —(dy(1+ug)) ' Dhh' D
Note that

11— (1+uo)~'| < Clug| < C|Dal/ D,
and that by Lemma E.3,
[(15.86)] < C1381,
and so each entry of Dh does not exceed C'|dz|. It follows that for all 2 < i,j < K,
|My; — M| < C|16I*(1D2|/D1)d5 < CD3 /Dy,

and

|My; — Mi;| < C||0|%d; *d3 < CD3/Dx.
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Finally,
16
i = d (S dyUns)l v o g
o)
|Myy — My | < C||0)|?d2/dy < CD2/D;.
Combining these gives the claim. O

E.3.7. Proof of Lemma E.7. It is sufficient to show (20). In fact, once (20) is Eroved,
other claims follow by direct calculations, except for the first inequality regarding tr(Q%), we
have used

~ ~ ~ — — 1 ~ ~ ~
|(h' Dh)(h D3h)| < |h’Dh\\/ (W’ D2h) (k' D*h) < 3 (W' Dh)*(W D?h) + ' D*h|.

We now show (20). Since tr(Q™) = tr(Mm), for m = 3,4, it is sufficient to show
(37) tr(M3) — tr(M3)| < CAS/A1),  [tr(M?) — tr(MY)| < C| Ao/ A1
Since the proofs are similar, we only show the first one. By basic algebra,

tr(M® — M?) = tr((M — M)®) + 3tr(M (M — M)?) + 3tr(M>(M — M)).
By Lemma E.6, forall 1 <i,5 < K,
| Mij — My| < CA3/ A

Also, by Lemma E.3, all entries of i are bounded, so forall 1 <+¢,j < K,

| M;;] < [Az].
It follows
ltr((M — M)?| < C(A3/M)%,
lte(M (M — M)?)| < ClAa|(A2/A1)? < ClAol? /23
and

ltr(M?(M — M)| < CAZ(A2 /A1) < A3/

where we note that Ay /A; = o(1). Combining these gives the claim.

E.4. Proof of Lemmas 2.2 and 2.3. Lemma 2.2 follows directly from Lemma E.7 of
this appendix. Consider Lemma 2.3. The second bullet point is a direct result of (21), and the
other two bullet points follow directly from Lemma E.7 of this appendix.

APPENDIX F: LOWER BOUNDS, REGION OF IMPOSSIBILITY

We study the Region of Impossibility by considering a DCMM with random mixed mem-
berships. First, in Section F.1, we establish the equivalence between regularity conditions for
a DCMM with non-random mixed memberships and those for a DCMM with random mixed
memberships. Next, we prove Lemma 3.1, which is key to the construction of inseparable
hypothesis pairs. Last, we prove Theorems 3.1-3.5 in the main article.
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F.1. Equivalence of regularity conditions. Let 11, s, ..., i be the eigenvalues of P,
arranged in the descending order in magnitude. Recall that A1, Ao, ..., Ak are the eigenvalues
of Q. The following lemma is proved in Section F.5.

LEMMA F.1 (Equivalent definition of Region of Impossibility). Consider the DCMM
model (1.1)-(1.4), where the alternative is true and the condition (2.2) holds. Suppose 05 —
0 and ||6|| — oo as n — oo. Then, as n — oo,

2| _ Aol

=1 T P — 1| <C(|Aa|/A1).
pa =<1, e 1%???}(' i — 1 < C(IA2 /A1)

As a result, |\a|/v/A1 — 0 if and only if ||0]] - |2 (P)| — 0.

We now consider DCMM with random mixed memberships: Given (O, P) and a distribu-
tion F over V (the standard simplex in R¥), let

(38) Q=0IPI'e, I=[m,m,...,m], mSF

We notice that the conclusion of Lemma F.1 holds provided that the regularity condition
(2.2) is satisfied. The next lemma shows that (2.2) holds with high probability. It is proved in
Section F.5.

LEMMA F.2 (Equivalence of regularity conditions). Consider the model (38). Let h =
E[r;] and ¥ = E[m;7]. Suppose || P|| < C, minj<p<r{hr} > C and ||| < C. Suppose
Omax — 0, [|0]] — oo, and (||0]?/]10]11)+/log(||0]]1) — 0, as n — co. Then, as n — oo, with
probability 1 — o(1), the condition (2.2) is satisfied, i.e.,

maxi<p<ix{> .y Oimi(k)} 1
- — 721 S C ) G S C ’
miny<p<x { i Oimi(k)} ’ | H ’

for a constant Cy > 0 and G = ||0|| =2 (II'©211).

F.2. Proof of Lemma 3.1. Let M = diag(u1,u2, ..., i) Itis seen p = M1k and so
the desired result is to find a D such that

Since M AM has strictly positive entries, it is sufficient to show that for any matrix A (M AM
in our case; a slight misuse notation here) with strictly positive entries, there is a unique
diagonal matrix D with strictly positive diagonal entries such that

We now show the existence and uniqueness separately.
For existence, we follow the proof in [6]. Consider d’ Ad for a vector d € RE with strictly
positive entries. It is shown there that d’ Ad can be minimized using Lagrange multiplier:

K
1
5d’Ad Y ; e log(dy).

Differentiating with respect to d and set the derivative to 0 gives

K
(40) Ad=\>" g/ dy,
k=1
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where \ = d’Aal/(ZkK:1 k) > 0. Letting D = A\~ Y/2diag(dy,ds, . .., dg). Itis seen that (40)
can be rewritten as

DAD1g = p,

and the claim follows.

For uniqueness, we adapt the proof in [5] to our case. Suppose there are two different
eligible diagonal matrices D and D» satisfying (39). Let d; = D11k and dy = D21k, and
let M = diag(p1, po, ..., tx ). It follows that

DyD1Ady = Dy D1 AD 1 = Dap = Mda,

and so

M™'DyDyAdy = ds.
Now, for a diagonal matrix S with strictly positive diagonal entries to be determined, we have

ST'M™'DyD1ASS dy = S ds.

We pick S such that

S'M~'DyD, =8,
and denote such an S by Sy. It follows

SoASo(Sy td1) = Sy da.
or equivalently, if we let czl =5y 14, and CZQ =S5y Ld,,
(41) SoASod; = ds.
Similarly, by switching the places of D; and D5, we have
(42) SoASods = di .
Combining (41) and (42) gives
SoASo(dy +do) = (di +ds), and  SgASy(dy — do) = —(dy — do).

This implies that 1 and —1 are the two eigenvalues of SyASy, with dy + dy and CZI — @2
being the corresponding eigenvectors, respectively, where we note that especially, d; + do
has all strictly positive entries. By Perron’s theorem [2], since Sy ASy have all strictly positive
entries, the eigenvector corresponding to the largest eigenvalue (i.e., the Perron root) have all
strictly positive entries. As for any symmetric matrix, we can only have one eigenvector
that has all strictly positive entries, so 1 must be the Perron root of Sy ASp. Using Perron’s
Theorem again, all eigenvalues of SyASy except the Perron root itself should be strictly
smaller than 1 in magnitude. This contradicts with the fact that —1 is an eigenvalue of Sy A.Sy.
The contradiction proves the uniqueness. 0

F.3. Proof of Theorem 3.1. This theorem follows easily from Theorem 3.2 and Theo-
rems 3.3-3.5. Fix (O, P, F) such that § € M} (5,/2) and ||0|| - |u2(P)| > 2ay,. Consider a
sequence of hypotheses indexed by n, where 2 = 06’ under H(gn), and €2 follows the con-
struction in any of Theorem 3.2 and Theorems 3.3-3.5 under H™ . Let P{"” and P{" be the

probability measures associated with two hypotheses, respectively. By those theorems, the
x2-distance satisfy

DR, Py =0(1),  asn— .
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By connection between L!-distance and X2—distance, it follows that
”Pén)—Pl(n)\h:O(l), as n — 00.

We now slightly modify the alternative hypothesis. Let Iy be a non-random membership ma-
trix such that (6,I1y, P) € M,, (K, co, o, Br). In the modified alternative hypothesis H 1("),
H_{ﬁ, if(e,ﬁ,P)EMn(KyC(]vaTLaﬁn)a

~ did
) where m; ~ F.
IIy, otherwise,

Let ﬁl(") be the probability measure associated with H 1(n). By Lemmas F.1-F.2, II = II, ex-
cept for a vanishing probability. It follows that

”P1(n)—151(n)\|1=0(1), as n — 0o.

Under ﬁl(n), all realizations (6,11, P) are in the class M, (K, co,an,Bn). By Neyman-
Pearson lemma and elementary inequalities,

inf{ sup Py =1)+ sup P(y = O)}
Y LoeM: (8.) (0,11, P)eM., (K ,c0,0m,5n)

: (n) (1)
> P = + P =
= %f{ 0 (Yv=1) 1 (¥ 0)}
>1- HPén) — P~1(n)||1

>1—|B™ - PM)y — P — B,
>1- 0(1)7

where the second line is because all realizations in ﬁfn) are in the class M, (K, co, an, Bn),
and the third line follows from the Neyman-Pearson lemma. 0

F.4. Proof of Theorems 3.2-3.5. We note that Theorem 3.2, Theorem 3.4 and Theo-
rem 3.5 can be deduced from Theorem 3.3. To see this, recall that Theorem 3.3 assumes
there exists a positive diagonal matrix D such that
(43) DPDhp=1x,  min {hps}>C,
where hp = E[D~'m; /| D~ 7;|1]. We show that the condition (43) is implied by con-
ditions of other theorems. Theorem 3.2 assumes m; € {e1,e2,...,ex}. It follows that
D=7 /||D~ 7;||1 = 7, and so hp = h. By Lemma 3.1, there exists D such that DPDh =
1k, hence, (43) is satisfied. Theorem 3.4 constructs the alternative hypothesis using m; =
Dr; /|| D1 Equivalently, D~'%; /|| D~%; ||y = 7, and so hp becomes h. Since DPDh =
1k, condition (43) holds. Theorem 3.5 assumes Ph = ¢,lg. Let D = g, 2y k. Then,
ED =hand DPDh = q, ' Ph = 1. Again, (43) is satisfied.

We only need to prove Theorem 3.3. Let Pén) and Pl(n) be the probability measure associ-

ated with H[()n) and H 1(n), respectively. Let D(Po(n), Pl(")) be the chi-square distance between
two probability measures. By elementary probability,

(n) 72
p(p™, py = [|4_|"gpm
0 1 dP(n) 0
0
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It suffices to show that, when ||6|| - 2 (P) — 0,

(n)q2
o J |50 are =1+ o)
dF,

Let p;; and ¢;;(IT) be the corresponding §2;; under the null and the alternative, respectively.
It is seen that

ary” =Tp =p)' . dp{"” =En|[Jlas (1 [1 - ()],
i<j i<j

Let IT be an independent copy of II. Then,

] =[5 O T (R

ar™ i P 1—pj; i
gij (T1) i3 (1) \ 45 ¢ [1 = i (ID][1 — gig (ID]\ 1=A
=Epnq [H 2 :
’ i<j< Dij > ( [1—pij]? )
S(A,IIII)

It follows that

(n)q2 (n)q2
iz =2 g
ar™ ar"
= EAyH,f[[S(Av H7 ﬁ)]
=By g {Ea[S(AILIDILII },

where the distribution of A|(TI, f[) is under the null hypothesis. Under the null hypothesis, A
is independent of (II, IT), the upper triangular entries of A are independent of each other, and
A;; ~ Bernoulli(p;;). It follows that

i (D) i (T) \ 45 ¢ [1 = g3 (ID][1 — gy (ID]\ 14 | - =
E 4 [S(A, T, TT)TT, 1] EE {(pj) ( o] ) H,H]
QZJ QZJ H) [1— dij (ID][1 - qij (ﬁ)]
_g{ ij +(1 _pij) [1 _pij]2 }
B qi; (Mg () | [1 — gi;(TD][1 — gi; (ID)]
- g{ Pij " 1 —pij }

Let Ayj = ¢;;(IT) — pyj and Aij = qij (ﬁ) — pij. By direct calculations,

i; (11) g5 (IT) I il ) | g (] _ N AiAi
Dij L —pij pij (1 — pij)
Combining the above gives
dP(n) 2 (n) A; Al
(45) /[ L ]dP =E [ 1+”}
apm] 0 i E( pij(1— Pij))
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We then plug in the expressions of A;; and Aij from the model. Let D be the matrix in
(43). Introduce M = DPD — 1x1/. We re-write

DPD = 1,14 + M.

It is seen that Mh p = 0k The following lemma is proved in Section F.5.

(P)]-

Write for short 7rZ-D = MD_ITQ and y; = 7rl-D — E[ﬂ'iD |= 7TZ-D — hp. Under the alter-
native hypothesis,

LEMMA E.3.

i (I1) = 0:0; | D~ 7i||1 | D |1 - ) P
=0,0; - (rP) (DPD)(r})

=0,0; - (m; )(1K1’ + M)(n])
=0,0; - [1+ (xP) M(x])]

= 0,0, - [1+ hp + i) M(hp + ;)]
:910 (1+szyJ)

Here, the fourth line is due to 1’K7Ti — 1 and the last line is due to Mh p = Og. Under the
null hypothesis, p;; = 0;0;. As a result,

(2

Similarly, A;; = 0,0; - 4. M7, with §; = 7P — E[#P]. We plug them into (45) and use p;; =
0;0;. It gives

aP{"1? 0.0, -
(46) /[ 1(,1)} dP; )=E{H<1+M(szyg)(yéMyj))},
dP, i

where {y;, 7;}1" ; are iid random vectors with E[y;] = O
We bound the right hand side of (46). Since 1 4+ x < e* for all z € R,

D(Po(n)’Pl(n)) < Elexp(9)], where S = Z
1<j

Let M =5 le d;:biby, be the eigen-decomposition of M. Then,

(WiMy) GMg5) = Y Srde(Vhys) (V) () (V).
1<k <K
This allows us to decompose

Z Skg, where Skg = K26k562

1<k <K 1<j

2 (B (Og) (B0 ) (b 5)-

By Jensen’s inequality, exp( gz Yy » Ske) < 7z g0 €Xp(Ske). It follows that

aP" 12w
@) / [dpém] aP{") < Elexp(S)] < | ypax, Elexp(Sio)
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We now fix (k,¢) and derive a bound for E[exp(Ske)]. For n large enough, Opax < 1/2
and K*||M|?||0||* < 1/9. By Taylor expansion of (1 — 6;6;)~*

Ske=K 5k5ezzem9m ki) () (0 i) (Vy35)

i<j m=1

=Y Xp,  where Xy, =K25.0,) 0707 (i) (bhy;) (0di) ().

m=1 1<j

Since | X,| < C|[M|20]2™ < C||M||]|0] 262", where S°°_ 02" < oo, the ran-
dom variable >, X, is always well-defined. For m > 1, let a,, = 93&:}( 1)(1 — 62

max)

Then, Y °_ am = 1 By Jenson’s inequality,
oo oo oo
exp(Z Xm> = exp(Z A, - a;L1|Xm\> < Z am - exp(a,t Xp).
m=1 m=1 m=1
Using Fatou’s lemma, we have
(48) E[exp(Ske)] Z Qm, exp 1Xm)].

By definition of X,,,
Xm=K25k5Z{ [29 1Y) (i } Zezm (0% yi) zyi)Q}'

Note that max;{||y; ||, [|#:]|} < VK and maxy, |0;| = || M ||. Therefore,
2 2 m (1) / ~ 2 4 2 2m
Xl < KM S0 W) b+ 5100113
i

Write Y =Y. 67" (b,y:)(b;7;). We see that Y is sum of independent, mean-zero random
variables. Since |(b}.y;)(b,7;)| < K, by Hoeffding’s inequality,

12
P(]Y| >t)§2exp<—7), for any ¢ > 0.
K210 3

Since (|03 < [|6]20mat " < 2a. |0]%, we have a K[ MI|2|6]3m < 2K M|1[6]|2.
Note that K*||M||?||0||> < 1/9. By direct calculations,

E[exp(ag | Xml)] < e KIMIPIOIER . i [eorn KIMIPY?]

< 2KIMIPIBI | g KM
4 2 2 >
_ 2K M6 [1+/ e B(ag K2 MIPY? > 1) di]
0
oo t
< 2K M o] [1 n / o . e—mmwdt]
0

< SIMIPION (1 4 72K M |12 (10)%).
We plug it into (48) and notice that Y>>, a,, = 1. It gives
(49) Elexp(Ske)] < e M (14 727 M7 )0]%).
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Combining (47) and (49) gives

(n)72
dh dp{™ < SIMIPIOI® (1 1 7254 M| 12 )16)1%).
™
AP,

We recall that ||6]| - || M || < C||0]| - |u2(P)| — 0. Hence, the right hand side is 1 + o(1). This
proves (44).

F.5. Proof of Lemmas F.1-F.3.

ES5.1. Proof of Lemma F.1. The first claim follows by our assumptions on P, so we omit
the proof. Consider the second claim. Recall that G = ||0|| ~2II'©%II and dy,ds, . . .,dk are
the eigenvalues of G'/2PG'/2, arranged in the descending order in magnitude. By Lemmas
D.1 and D.2, A\, = ||6||?dx, 1 < k < K, and d; =< 1. Combining these, it suffices to show

2| < |da-

We now prove for the cases where P is non-singular and singular, separately. Consider the
first case. Since 1/dy, and 1/ are the largest eigenvalue of G~1/2P~1/2G~1/2 and P~ in
magnitude, respectively, and |G| < C and ||G~!|| < C, it is seen that |uf| < |dx|. To show
the claim, it sufficient to show that for any m > 2, if |ux| < |d| for k=m +1,..., K, then
|| = [dim]

We now fix m > 2, and assume |uy| < |di| for k=m + 1,..., K. The goal is to show
|ttm| < |dpn|. By symmetry, it is sufficient to show that

(50) |dim| < C|pim]-

Let P = Vdiag(dy,ds,...,dk)V' be the SVD of P, where V € REK is orthonormal, and
let V;,, be the sub-matrix of V' consisting the first m columns of V. Introduce

Py =VinDpVy,,  where Dy, = diag(dy, da, ..., d,).

Let p3, p15,. .., 1y, and dj,d5, ..., dy, be the first m eigenvalues of ISm and GY/2P,,GY/2,
respectively, arranged in the descending order in magnitude. Since ||G|| < C, we have

1P = Pl < Clpmsal,  IIGY2(P = P)GY?|| < Clitgnsa .
By Theorem [1, Theorem A.46],
(51) s — 115 < CIIP = Pt < P,
and
(52) ds — 3] < |GY2(P = P)G ) < Clptal.

At the same time, note that the nonzero eigenvalues of GY/ 2PmGl/ 2 are the same as the
nonzero eigenvalues of D, V;,, GV;,,, and also the same as those of (V,GV;,) /2D, (V! GVi,) /2.
Since ||G|| < C and ||G~Y|| < O, itis seen |V!,GVy,|| < C and ||V, GV;,) 7| < C. There-
fore, by similar arguments,
(53) ] = |3 .
Combining (51), (52), and (53) gives
[ tn | < b | + [pm — g | < C(ldp, | + | ])
SC[(|dm| + |dm = dyp|) + [dim1|] < Cldim].

This proves (50) and the claim follows.
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We now consider the case where P is singular, say, rank(P) =r < K, and the nonzero
eigenvalues are i, o, ..,u. Let P = UDU’ be the SVD, where U € R™" and D =
diag(p1, 2, . . ., 1, ). By similar argument, the nonzero eigenvalues of G'/2PG'/2 are the
same as (U'GU)'/?D(U'GU)'/?, where |[U'GU|| < C and ||(U'GU)~!|| < C. The remain-
ing part of the proof is similar so is omitted.

Consider the last claim. Let P = nn’, where 1) is the first eigenvector of P, scaled to have
a (%-norm of ,/711. Write

(54) |Pij — 1| = [Py — mims| + |minj — 1]
Now, first, by definitions and elementary algebra, for 1 <i,j < K,
(55) |Pij —ninj| < |Pyj — Pyj| <||P — P|| < o,

where by the second claim, pp = o(1). Note that for 1 <4,5 < K, P; =1 and Pj; > 0.
It is seen that |n;| = 1 4 o(1) and all 7; must have the positive sign. It follows |n; — 1| =
(1+n:)"1(1 —n?) < po, and so

(56) 1= nims| < (1 =na) (L =ny)| +[1 = mi| + [1 =15 < Cpaa.

Combining (54)-(56) gives the claim. ]
FE.5.2. Proof of Lemma F2. Consider the first claim about ) 60;m;(k). Write X =

oy 0i(mi(k) — hy). It is seen that X is sum of independent mean-zero random variables,

where 0;|m;(k) — hg| < COmax and > 1, Var(6;(m;(k) — hy)) < C||0||%. By Bernstein’s in-
equality, for any ¢ > 0,

12
P(IX|>t) < eXp(_CH9||2 n Cemaxt).

It follows that, with probability 1 — ||0]|;*,

| Gumitk) — hell0l1 | = 1] < C11811 /108 (TOI1) + CmaxLog(10]1):

Since [|0]] — 00, Omax — 0, and (||0]|2/]|0]|1)+/log(]|0]]1) — O, the right hand side is
o(]|0]1). Combining it with the assumption of ming{hs} > C, we have

> 0;mi(k) > C|10]ly,  with probability 1 — [|6]| ™' =1 — o(1).

Additionally, since m;(k) <1, >, 6;m;(k) < ||0||1. Therefore, with probability 1 —o(1), each
> 0imi(k) is at the order of ||0||1. This proves the first claim.

Consider the second claim about G. Let y; = m; — h. Then, m;w, = hh' + hy} + y; i/ + ;)
and ¥ = E[m;7]] = hh' + E[y;y.]. It follows that

n n
017G = 07mimi = 07 (S + hyj + yih’ + yayi — Elyiv])
=1 =1

n n n
= 101PS+ D 07 (viv; — Elyavl]) + Y 07hyi + Y 07y:h!
=1 =1 =1
= 101> + Zo + Z1 + Zo.

Here, Zj is the sum of independent, mean-zero random matrices. We apply the matrix Ho-
effding inequality [7] to bound its operator norm. Since 62 ||y;y. — E[y;v/]|| < C6?, the matrix
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Hoeffding inequality implies that P(|| Zo|| > t) < exp(—ﬁzm) for all ¢ > 0, where C* > 0
is a constant. Let (,, be a sequence such that ¢,, — co. With t = [|0]|31/C* log((,,), we have
1Zo|| < C|10)|3/10g(¢n),  with probability 1 — (.

Similarly, we can apply the matrix Hoeffding inequality to Z; and Z5. It gives
121 + Zo|| < C||0]124/10g((,),  with probability 1 — ¢,.

Since [|6]|2 < Omax||0] < ||0]|?, we can choose ¢, so that ||6]|21/log(C,) = o(||0]|?). Tt fol-
lows that, with probability 1 — o(1),

1Z0 + Z1 + Za|| = o(||6]1*).
At the same time, Ayin (||0]122) = ||0]|? || X1~ > C|6]|?. Therefore, with probability 1 —
o(1),
Ain([017G) 2 Auin (10172) — | Z0 + Z1 + 22| = C|16]*.
This guarantees ||G~1|| < C. O

E5.3. Proof of Lemma F.3. Let Q = P — 1x 1, and introduce d € RX such that D =
diag(d). By Lemma F.1, ||Q|| < C|u2|. With these notations,

(57) DPD — 11 =dd + DQD — 1 1%.

Using the same notations, the assumption DPD}VLD = 1k can be written as D(1 Kl’K +
Q)Dhp = 1k. It implies

(58) 1 = (d'hp)d + DQDhp.
We multiply ﬁ’D on both sides and notice that 1’Kﬁ p = 1. It gives
(59) (d'hp)? =1—hpDQDhp.
Combining (58)-(59) gives
dd — 11 =[1 = (d'hp)3dd — (d'hp)(DQDhpd + dhpDQD) — DQDhph', DQD
= (W, DQDhp) - dd — (d'hp)(DQDhpd + dhpDQD) — DQDhph', DQD.
Since ||hp|| < C and ||d|| < C, we immediately have
ldd’ — 11k || < ClIQI| < Clpal.

Plugging it into (57) gives

IDPD — 11| < Cl|Ql < Clual.

APPENDIX G: PROPERTIES OF SIGNED POLYGON STATISTICS

We prove Tables A.1-2 and Theorem A.1-4.3. The analysis of T}, and @), is very simi-
lar. To save space, we only present the proof for results of (),,. The proof for results of 7},
(Tables A.1, A.2, and Theorems A.1, A.2, A.3) is omitted.
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We recall the following notations:

a * * * 1
Q=0- (77 )(77 )/v where 7" = \/T»Ole Vo = 1;1Q1n;
3 N 1 !
i =mi(nj —nj) +n;(mi — M),  where n= %(EA)lm M= %Aln, v =1, (EA)1,;
- - V.. .
rij = (ming —ning) — (0 = 7:)(nj = 7j) + (1 = 37)mm, - where V= 1, AL,

Then, the Ideal SgnQ statistic equals to

Qn= > (Qj+Wi))( Qi + Wir) (e + Wie) Qi + W),
i,.k,U(dist)

the Proxy SgnQ statistic equals to
Q= Z (uj + Wij + 0i3) (e + Wik + 65) (e + Wie + o) (s + Wi + 801),
0,5,k 0(dist)
and the SgnQ statistic equals to
Qn= Z (Qij 4+ Wij 40655 4+7i5) (Ui + Wik + 05471 (e + Wit + ke +70) (Qus + Wi + 0pi +74).
i,j,k b (dist)

As explained in Section 4, each of @n, v, @Qn 1s the sum of a finite number of post-
expansion sums, each having the form

(60) > aibjkcrede,
i3,k (dist)

where a;; equals to one of {ﬁij,Wij,éz»j,rij}; same for b, c;; and d;;. Let Ng be the
(common) number of ) terms in each product; similarly, we define Ny, Ng, N,.. These
numbers satisfy Ng + Nw + N5 + N, = 4. For example, for the post-expansion sum

Zz’,j7k7£(dist) ﬁijokagng, (Ng, Nw, N5, N;) = (1,3,0,0). In Section G.1, we study Qn,
and it involves these post-expansion sums such that

Ns =N, =0,
In Section G.2, we study (Q; — @n), which involves post-expansion sums such that
Ngs >0, and N, =0,
In Section G.3, we study (Q,, — @), which is related to the sums such that
N> 0.

G.1. Analysis of Table 1, proof of Theorem 4.1. Define
Xi= > WyWpWeWe,  Xo= > QuWpWeWs,

1,3,k,£(dist) i,7,k,0(dist)
X3 = Z Qi QWi e W, X4= Z Qi Wik Qe Wi,
1,9,k 0(dist) i,9,k,0(dist)

X5 = Z ﬁijﬁjkﬁkewﬁiy X = Z Qz‘jﬁjkﬁkfﬁﬁ-
ivj.k,(dist) 0.4k (dist)
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We first consider the null hypothesis. Since () is a zero matrix, it is not hard to see that
Qvn = Xj.
The following lemmas are proved in Section G.4.

LEMMA G.1.  Suppose the conditions of Theorem 4.1 hold. Under the null hypothesis, as
n — 00, E[Qn] = 0 and Var(Q,) = 8||6]|® - [1 + o(1)].

LEMMA G.2. Suppose the conditions of Theorem 4.1 hold. Under the null hypothesis, as
n — oo,

Qn B E[Qn]
Var(Qn)

— N(0,1), in law.

We then consider the alternative hypothesis. By elementary algebra,

Qn=X1+4Xo +4X3+2X, +4X5 + Xo.
The following lemma characterizes the asymptotic mean and variance of X-Xg under the
alternative hypothesis. It gives rise to Columns 5-6 of Table 1.
LEMMA G.3 (Table 1). Suppose conditions of Theorem 4.1 hold. Write o = |X\a|/ 1.
Under the alternative hypothesis, as n — oo,
« E[X}] =0for 1 <k <5, and E[X¢] = tr(Q*) - [1 + o(1)].
CHO]® < Var(Xy) < C|0]I°.
Var(Xz) < Ca?[|0]|*]|0]1§ = o([|6]®).
Var(X3) < Cal[|6]°]|0]§ = o(a®[|6]1°]|6]]5)-
* Var(Xy) < Cal||6]5* = o([|0]]°).
* Var(Xs) < Ca®l|0]®]0]15.
As a result, E[Q,] ~ tr(Q*) and Var(Q,) < C(||0]|® + 50]|%]|0]|9).

Theorem 4.1 follows directly from Lemmas G.1-G.3.

G.2. Analysis of Table 2, proof of Theorem 4.2. We introduce U,, U, and U, such that
Qz_@n:Ua+Ub+UC7

where U,, Uy and U, contain post-expansion sums (60) with N5y =1, Ns =2, and Ns > 3,
respectively.
First, we consider the post-expansion sums with Ngs = 1. Define

(61) U, = 4Y1 +8Ys + 4Y3 + 8Yy + 4Y5 + 4Y5,
where
Y1 = Z 0i Wit WieWo, Yo= Z 0ij ﬁjkWMWé’i’
i,5,k,0(dist) 1,5,k £(dist)
Y = Z 5Z~jok(~2k4ng, Yi= Z 5ij§jk§k€W€iv
i,5,k,0(dist) 4,4,k L(dist)
Y5 = Z 5ij§jkaZ§£i7 Y6 = Z 5ij§jk§k€§£i-

1,5,k £(dist) i,5,k,£(dist)
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Under the null hypothesis, only Y; is nonzero, and
U, =4Y;.

LEMMA G.4. Suppose the conditions of Theorem 4.1 hold. Under the null hypothesis, as
n — oo, E[U,] = 0 and Var(U,) < C||0]|?/|10]|$ = o(]|0]|®).

Under the alternative hypothesis, the following lemma characterizes the asymptotic means
and variances of Y7-Yg. It gives rise to Rows 1-6 of Table 2 and is proved in Section G.4.

LEMMA G.5 (Table 2, Rows 1-6). Suppose the conditions of Theorem 4.1 hold. Let oo =
|A2|/A1. Under the alternative hypothesis, as n — oo,
s E[Yi] =0for k€ {1,2,3,5,6}, and |E[Y,]| < Ca?|0|° = o(a*|0]|®).
Var(Y1) < Cll0]7[|0]1§ = o([|6]®).

* Var(¥2) < Co?|0]1 1018 = o(|10])

* Var(¥s) < Co?|0]110]1§ = o(|10]).

» Var(v) < S = o(af o) 61,
» Var(¥s) < Sl = of10]®).

« Var(¥s) < SR — 0 a80]%10]9).

As a result, E[U,] = o(a*|0]|®) and Var(U,) < Cab|0]|3(10]1S + o(]|0]|®).

Next, we consider the post-expansion sums with N5 = 2. Define

(62) Upy=471+4279 + 875+ 474+ 475 + 27,
where
1= Z (5ij5jkagng, Ly = Z 5ijok5k:£WKi7
i,j,k£(dist) i,5,k,¢(dist)
Z3 = Z 5@]5jk§kZWZl) Z4 = Z 6z]§jk5k€W€27
i,j,k,0(dist) 1,5,k £(dist)
Zs5 = Z 801020 Zg = Z 81k Okt i
0,4,k 0(dist) 1,5,k 0(dist)

Under the null hypothesis, only Z; and Z> are nonzero, and
Uy=471 + 27;.
LEMMA G.6. Suppose the conditions of Theorem 4.1 hold. Under the null hypothesis, as
n — oo,
* E[Z] = 0] - [1 +o(1)], and Var(Z1) < C|0]*]|0]13 = o([16]I®)-

* E[Z5] =2/|6]|* - [1 + o(1)], and Var(Z5) < UL — o(Jj9)%).

As a result, E[Uy] ~ 8||0||* and Var(Uy,) = o(||0]|®).

Under the alternative hypothesis, the following lemma provides the asymptotic means and
variances of Z1-Zg. It gives rise to Rows 7-12 of Table 2:
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LEMMA G.7 (Table 2, Rows 7-12).  Suppose conditions of Theorem 4.1 hold. Write oo =
|A2|/A1. Under the alternative hypothesis, as n — oo,
* [E[Z1]] < Cl0]|* = o(a*|0]|*), and Var(Zy) < C||0]*]|0]1§ = o([|6]®).
[B[25]] < C[10]* = o(a]|6]]®), and Var(Zy) < CIGHlolE — o(|j0]J%).
EZ3 =0, and Var(Z3) < Ca?(0]|4)|0]S = o(]|0]®).

IE[Z4]| < Call0]|* = o(a*||0]|®), and Var(Zy) < ST — (|19 8).

10111
Ca’lo]**
* [E[Z5)| < Ca?|[6]|° = o(a™|0][*), and Var(Zs) < = = o(a®0]%[10]19).
Cao?||o Ca*||0]18]|10|8
* [B[Z]| < Sl = o(a0]1%), and Var(Z) <SG = o(|j0]%).

As a result, E[Uy] = o(a?||0||®) and Var(Uy) = o(||0]|® + a6||9\|8||9||g).

Last, we consider the post-expansion sums with Ns > 3. Define
(63) U.=4T, +4T2—|—F,
where

Ty= > 6i0kbuWai, Ty= Y 0i0in0uui,
i,,k,0(dist) .5,k (dist)

F= Y 6i0u6k0e;.
0,5,k (dist)
Under the null hypothesis, only 77 and F' are nonzero, and

U, =4Ty + F.

LEMMA G.8. Suppose the conditions of Theorem 4.1 hold. Under the null hypothesis, as
n — 00,

clelenen:
« E[T3] = —2/|6||* - [1 + o(1)], and Var(T}) < CUGEITE = o(]j0]®),

« [E[F]| = 2]0][* - [1 + 0(1)], and Var(F) < S = o([|0]%).

As a result, E[U,] ~ —6]0||* and Var(U.) = o(||0]|®).

Under the alternative hypothesis, the next lemma studies the asymptotic means and vari-
ances of 17, To and F'. It gives rise to Rows 13-15 of Table 2:

LEMMA G.9 (Table 2, Rows 13-15). Suppose conditions of Theorem 4.1 hold. Write
a = |A2|/A1. Under the alternative hypothesis, as n — oo,

« [E[T1]] < CJl6]|* = o(a0]®), and Var(Ty) < <UL — o(|j0®).

Call6 Co2| 0311613 _
- [E[T3]| < St = o(a]0]), and Var(Ty) < SR — o|g]®).

« [E[F)| < Cll0]* = o(a*[6]|*), and Var(F) < 5" = o(||6]*).

As a result, E|U.| = o(a*||0||®) and Var(U,) = o(||0||®).
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We now prove Theorem 4.2. Since ), — @n =U, + Uy, + U, we have
E[Q;, - Qu] = E[Ud] + E[U4] + E[U],
Var(Q% — Qn) < 3Var(U,) + 3Var(U,) + 3Var(UL).
Consider the null hypothesis. By Lemmas G.4, G.6, G.8,
E[Q;, — Qu] = 0+8]10]* — 6]16]* + o([16]*) ~ 2/10]*,
and

cleiciens , clo
16111 o113

Var(Q}, — Qu) < Cl10|7116]15 +

Using the universal inequality ||0||* < ||0||1]|0
Var(Qy, — @n) < Cl012[16]I5 = o([16]),

where [|0]|3 = 0(]|0]|?) and ||0|| — oo in our range of interest. This proves claims for the null
hypothesis. Consider the alternative hypothesis. By Lemmas G.5, G.7, G.9,

[E[Q;, — Qul| < Ca®|j0]I°,

where the main contributors are Y, and Z5. Since «||d|| — oo in our range of interest, the
above is o(a*(|0)|®). By Lemmas G.5, G.7, G.9,

Ca®10]*2]10113
[ P

where the main contributor is Yg. Using the universal inequality of ||0]|* < |0]|1]|0]3, the
above is O(a®(|0]|®|0]|$). This proves claims for the alternative hypothesis.

3, we further have

Var(Q; - @n) S

G.3. Analysis of (Q, — Q},), proof of Theorem 4.3. By definition, (Q, — Q;;) ex-
pands to the sum of 175 post-expansion sums, where each has the form (60) and satisfies
N, > 0. Recall that

- - V. .
rij = (55— ming) — (e = :) (0 = 15) + (L= 37)ifl.

Since d;5 = ni(n; — 1) +n;(n; — 7;), we have 7;7); = n;nj — 6ij + (7 —1:) (7 — n;) Inserting
it into the definition of 7;; gives
v v v

i = (1= 1700 = 3 (i = ma) (7 = 115)-

©4)  rig = (nnj —niny) + (1 v

Define
- v, - . v v
Fij = =5 0 =m0 = ni)s - eig = (iny —ming) + (1= g2)ming — (1= 17)0;.
Then, we can write
(65) rij = 771'3' + €.
Using this notation, we re-write
Qn= Y  MyMyMyMy, — where Mj = Qij+ Wij + ij + 7ij + €,
i,k 0(dist)
and
Qn= > MM MM, where M=y + Wij + 35,
0,3,k 0(dist)



34

We then introduce an intermediate variable:
(66) @; = Z M?]%*kﬁgémv where ]f\Z:; = ﬁij + Wi]‘ + 5ij + fl'j.
i.5,k0(dist)

As aresult, (Q,, — Q) decomposes into

(67) Qn— QL= (Qh— QL)+ (Qn— Q).

We note that (Q,, can be expanded to the sum of 5% = 625 post-expansion sums, each with
the form

> aibircreds,
i,5,k,0(dist)
where each of a;;, b;j, ¢;;, d;; takes values in {Qij, Wij, 0, Tij, €5 }. Let Ng be the (common)
number of €2 terms in each product and define Ny, Ns, Nz, N, similarly. Among the 625
post-expansion sums,

* 31 =81 of them are contained in Q},,
* 4% — 3% =175 of them are contained in (Q% — Q7),

n

« and 5% — 4% = 369 of them are contained in (Q,, — Q).

We shall study (Q* — Q%) and (Q,, — Q7 ), separately.
In our analysis, one challenge is to deal with the random variable V' that appears in the de-
nominator in the expression of r;;. The following lemma is useful and proved in Section G.4.

LEMMA G.10. Suppose conditions of Theorem 4.3 hold. As n — oo, for any sequence

@y, such that \/log(||0]]1) < =, < ||0
E[(Qn—Qn)* - I{|V —v| > [[0]12}] — 0.

1

The next two lemmas are proved in Section G.4.

LEMMA G.11. Suppose conditions of Theorem 4.3 hold. Write a = |X2|/A1. As n — oo,

* Under the null hypothesis, |[E[Q* — Q]| = o(||0]|*) and Var(Q* — Q*) = o(||0]|®).

n

* Under the alternative hypothesis, |E[Q% — Q%]| = o(a*||0]|®) and Var(Q¥ — Q%) =

o([10]1® + a®[l0]%]10]]5).

LEMMA G.12. Suppose conditions of Theorem 4.3 hold. Write o = |A2|/A1. As n — oo,

E[Qn — Q3 = o(10]1*) and Var(Q, — Q) = o([[0]]°).

* Under the alternative hypothesis, |E[Q, — Q]| = o(a*||0||®) and Var(Q¥ — Q¥) =
O([1611* + a®l10]®161]5).

* Under the null hypothesis,

Theorem 4.3 follows directly from (67) and Lemmas G.11-G.12.

G.4. Proof of Lemmas G.1-G.12.
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G.4.1. Proof of Lemma G.1. Under the null hypothesis,
Qn=X1= > WiWiWiW.
i,5,k,0(dist)

For mutually distinct indices (i, j, k,€), (Wij, Wk, Wie, Wy;) are independent of each other,
each with mean zero. So E[W;; W, W, W;] = 0. It follows that

We now calculate the variance of @n Under the null hypothesis, ();; = 0;0;; hence,
Var(Wij) = Qij(l - sz) = 010] - 0120]2 = 01‘0]‘[1 + 0(02 )] It follows that

Var(W;; Wi WieW;) = 9129]2‘91%9? 1406701
(68) = 076070707 - [1+ O(02,,,)]-

Note that each (i,7,k,¢) corresponds to a 4-cycle in a complete graph of n nodes. For
(i,9,k,0) and (7', 7', k', "), we can write W; W WieWe; - Wis s Wi Wiy e Wi in the form
of [[,(W;,;,)™, where {Wj,;, } are mutually distinct with each other and m; is the number
of times that 1;, ;, appears in this product. If the two 4-cycles corresponding to (4, j, k, ¢) and
(¢/,4', k', £') are not exactly overlapping, then at least two of m; equals to 1. As a result, the
mean of [[,(W;,;,)™ is zero. In other words, we have argued that

COV(WijokWMng, Wi/j/ j/k/Wk/gf Wg/i/) = 01if the
(69) two cycles corresponding to (i, 5, k,¢) and (¢, 5", k', ¢')
are not exactly overlapping.

In the sum over all distinct (i, j, k, £), each 4-cycle is repeatedly counted by 8 times
(i7j7 k7€)7 (]’ k’£7i)? (k7€7i7j)7 (€7i7j? k)?
(67 k’j7i)7 (l{:7j”i’€>’ (j7i7£’ k)? (Z."€7 k?]’)'
It follows that
Var(Q,,) = Var <8 > WijwjkWMng>

unique
4-cycles

:64-Var< > Wijokagng>
unique
4-cycles

=64 Z Var (Wi Wik Wi We;)

unique
4-cycles

=8 > Var(WyW;sWieWs:)
i,5,k,0(dist)
(70) =[1+0(6h.)]-8 Y 67636267,
i,5,k,0(dist)

where the third line is from (69) and the last line is from (68). We then compute the right
hand side of (70). Note that

S geRg-lor- Y Gend,
1,5,k,0(dist) 1,5,k,L(not dist)
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where
> aorger< (3) S e <cloiioli= oo (L)
1]]66_2” iVjVk = 4 H0H4
i,5,k,0(not dist) 4,5,k
Combining the above gives
0 4
(71) S 62626767 = ||6)|° - [1+O(—” ”j)].
r 161
i,J,k,0(dist)

We combine (70)-(71) and note that 0.5 = o(1) and ||0]|3/]10]1* < (10]1262,..)/10]I* = o(1).
So,

Var(Qn) = 8/|6]|* - [1 + o(1)]-
This completes the proof.

G.4.2. Proof of Lemma G.2. Under the null hypothesis,

Qn=X1= > WiWjWiW.
ij,k,b(dist)
In the proof of Theorem 3.2 of [3], it has been shown that X; //Var(X;) — N(0,1) in law

(in the proof there, X;/1/Var(X;) is denoted as S, ). Since E[X;] = 0, we can directly
quote their results to get the desired claim.

G.4.3. Proof of Lemma G.3. We shall study the mean and variance of each of X;-Xg
and then combine those results.

Consider X;. We have analyzed this term under the null hypothesis. Under the alternative
hypothesis, the difference is that we no longer have €);; = 0;0;. Instead, we have an upper
bound ;; = 6,0, (7 Pr;) < C6;6;. Using similar proof as that for the null hypothesis, we
can derive that
(72) E[X1]=0,  Var(X;) <C|6|®.

To get a lower bound for Var(X;), we notice that Var(W;;) = Q;;(1 — 45) > Q4;[1 —
O(602,.)] > Q;;/2; this inequality is true even when €2;; = 0. It follows that

max
1
Var (Wi Wi WigeWei) > EQiijkQMQZi'
Note that the second last line of (70) is still true. As a result,
Var(X1)=8 Y Var(Wi W, Wi W)

i.,7.k,£(dist)

Z Q5 008 p;
i.5,k,0(dist)

1 1
— itr(ﬂ4) — 5 Z Qijﬂjkﬂkgﬂgi

1,5,k,€(not dist)

>

N =

1
> 5tr(m) —-C Y 0060
1,5,k,£(not dist)
1
> Qtr(Q“) —o([161I®),



37

where the last inequality is due to (71). Recall that Ay, ..., Ax denote the K nonzero eigen-
values of . By Lemma E.2, \; > C~||0||. It follows that

K
() => A=At =C 9|5,
k=1

Combining the above gives
(73) Var(X;) > C716] 8.

So far, we have proved all claims about X .
Consider X5. Recall that

Xo = Z Qi Wi WieeWo;.
i,j.k b (dist)
It is easy to see that E[X3] = 0. Below, we bound its variance. Each index choice (i, j, k, )
defines a undirected path j-k-¢-i in the complete graph of n nodes. If the two paths j-k-£-i
and j'-k’-¢'-i are not exactly overlapping, then W, Wy Wy; - Wiy Wie Wiy have mean
zero. In the sum above, each unique path j-k-¢-i is counted twice as (4, j, k,¢) and (7,4, ¢, k).
Mimicking the argument in (70), we immediately have

Val"(Xz) =2 Z Var(ﬁijokagng)
i,j,k,(dist)
=2 Z ?212] . Var(ijWkgng).
i,4,k,£(dist)
By Lemma E.5, |§,]] < ])\QIHHH*QQl-Gj. In our notations, o = |A2|/A1; additionally, by
Lemma E.2, \; < C||0||?>. Combining them gives
(74) 2] < Cab;6;.
Moreover, Var(W,.WioWe;) < Qi Qi < C0;02620;. It follows that
Var(Xp) <C Y (abif;)” - 0,6,670;
i,k 0(dist)
<Ca® Y 0307630
okl
< ca?|6)|"(l6]l3-
Since |03 < Omax Y_; 07 = Omax||0]|, the right hand side is < Ca?||0||%62 .. Note that

max*

o <1 and Opay — 0. So, this term is o(]|0||®). We have proved all claims about X.
Consider X3. Recall that

Xg: Z ﬁijﬁjkaZWZi: Z ( Z ﬁijﬁjk>WkZWZi-
3,3,k 0(dist) i,k 0(dist) j¢{ik,C}

It is easy to see that E[X3] = 0. We then study its variance. We note that for Wy, W;; and
Wire Wy to be correlated, we must have that (K, ¢',4") = (k,£,i) or (K, 0',i") = (i,¢,k);
in other words, the two underlying paths k-¢-i and &’-¢’-i’ have to be equal. Mimicking the
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argument in (70), we have

Var(X3) <C Z Var[( Z ﬁz‘jﬁjk)wkﬁwfi}
ik, 0(dist) J¢{i.k.e}

<C Z ( Z Jk:) - Var(WieWy;).

i,k l(dist) j&{i,k,C}
By (74),
’ Z QZJQ k‘ <CZO[20 929k<ca2H0||2 90}‘3
J¢{i.k.e}

Combining the above gives
Var(X3) < C Y (o”|10]1*0:6,)° - 6,676
ikt
< Catlo]* S 630362
ikl
< Ca(|0]°]10]]5-
Since ||0|] — oo, the right hand side is o(a||6]|®||€]|$). We have proved all claims about X3.
Consider X,4. Recall that
Xy= Z ﬁijokﬁkKWKi = Z ﬁijﬁszjkW&-
i,4,k,£(dist) 1,5,k £(dist)
It is easy to see that E[X4] = 0. To calculate its variance, note that W;;,Wy; and W W
are uncorrelated unless (i) {7/, &'} = {j,k} and {¢',7'} = {¢,4} or (ii) {j',k'} = {¢,i} and
{¢',i'} = {4, k}. Mimicking the argument in (70), we immediately have
Var(X4) < C Z Var(ﬁijflkerngi)
0,5k, E(dist)
<C > QX0 Var(WipWy)
1,5,k,0(dist)
<C Y (abi0;)*(a0x0¢)* - 0;01000;
i\g ket
<Ca* Y 03030307
i,5,k,¢
< Ca'l|6]5”.

Since ||0]|5 < Omax|0]|> = o([|€]|?), the right hand side is o(||0]|®). This proves the claims of
Xy.
Consider X5. Recall that
X5 = Z Qi Qe W = 22( Z ﬁijﬁjkﬁké) Wi

i,4,k,0(dist) i<t j,k¢{il}
J#k

It is easily seen that E[X5] = 0. Furthermore, we have
<~ < N2
(75) Var(Xs) = 2 Z( 3 Qijszjksz@ Var(Wy,).

i<l j,k¢{il}
J7#k
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By (74),
3 Qijﬁjkﬁke‘ <O a®0,02620, < Ca®l|0]* - 0,6,
Gk it} ik
ik
We plug it into (75) and use Var(Wy;) < Qp; < C0,6;. It yields that
Var(Xs5) <C Y (a®[|6]]*6:6,)° - 6,6

Li(dist)
< Ca|6]* Y _ 676

0,0
(76) < Ca®||9)*16]l3-

This proves the claims of X5.
Consider Xg. Recall that

X6 = Z Qi Qe Qi = tr(2h) — Z Q45 Qe Qg5
i,J,k,0(dist) 1,4,k,€(not dist)
This is a non-stochastic number, so its variance is zero and its mean is Xg itself. By
Lemma E.5, |\o| < ||92]] < C|A2]. Since ||©2]|* < tr(Q*) < K|Q2||*, we immediately have

tr(Q4) = [|Q)* =< |A2/*. Additionally, [A2] = a\; in our notation, and A; = [|4]|2 by
Lemma E.2. It follows that

tr(QY) =< |Ao|* = a[|0)%.
At the same time, by (74), |§ij§jkﬁkg§gi| < C’a%?@?ﬁ%@%. We thus have

X —tr(QY)|<Cat > 07020707
1,5,k L(not dist)

<Ca*> 07670,
1,5,k
< Ca[|0]*[16]]3 = o(a*[10]"),

10|12 = o(||6||*). Combining the above gives

|
max

where the last equality is due to ||0]|] < 6

Xg = tr(Q4) - [L +o(1)].

This proves the claims of Xg. B
Last, we combine the results for X1-Xg to study @),,. Note that

Qn=X1 +4Xo +4X3 +2X, + 4X5 + Xg.
Only X¢ has a nonzero mean. So,
E[Qn] = E[Xe] = tr(Q") - [L + o(1)].

At the same time, given random variables Z1, Za, ..., Zyy,, Var(}_,o Z) = >, Var(Zy) +

> ko Cov(Zi, Zo) < 32y Var(Zg) + 3 pse V/Var(Zg)Var(Z,) < m?maxg{Var(Zy)}. We
thus have

0,) < X)) < (10118 + a8013110]%).
Var(Q )_Clrgg§6\far( k) < C(10]° + a®10]1°]16]13)

The proof of this lemma is now complete.
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G.4.4. Proof of Lemma G.4. Recall that U, = 4Y; = 4Zi’j’k’€(dist) 0ij Wik WieWy;. By
definition, 6;; = n;(n; — 1;) +n;j(n; — 7;). It follows that

Ua =4 Z 771'(77]' — ﬁj)ijWkgng +4 Z nj (77i - ﬁi)ijWkZWEi'
i,j,k,é(dist) i,j,k,g(diSt)

In the second sum, if we relabel (i, j, k,¢) = (5',4,¢', k'), it becomes

4> ey — ) WieWer Wy =4 > 30y — 7)) Wae W Wi,
i g ke (dist) 0.4,k l(dist)

which is the same as the first term. It follows that

U,=8 Z ni(n; — 1)) WitWieWe.
i,7,k,6(dist)
5 1
(77) =0 =—=>_ Wis.

We then re-write

1
U, =—8 Z )ni(ﬁngs>ijWk2Wzi

ivj.k,b(dist
8
:_ﬁ Z NiWis Wit WieWo;.

i,,k,£(dist)
s#j
In the summand, (7,j,k,¢) are distinct, but s is only required to be distinct from j. We
consider two different cases: (a) the case of s = k, where the summand becomes szk WieWoi,
and (b) the case of s # k. Correspondingly, we write

8 9 8
Ua==—= Z' mWEWkWe - = Z 1iWjs Wi Wike W
i,j,k,0(dist) 1,5,k,0(dist)
s¢ {4k}
(78) =Uq + Ua?-
It is easy to see that the summands in both sums have mean zero. Therefore,
E[U,] = 0.

Next, we bound the variance of U,. Since Var(U,) < 2Var(U,;) + 2Var(U,z), it suffices
to bound the variances of U,; and U,s. Consider U,;. Note that

64
(79) Var(Uat) = - > e BWEWeWu W, Wire We).

J
1,3,k 0(dist)
i’ 5 k' 0 (dist)

By definition, v = 1;,(EA)1,, = 1,Q1, — >, Q. Since Q; < 62, it implies v = 1/ Q1,, —

— Yq

O([1611*) = 17,21, + o(||6]|). Moreover, we note that 1,01, < C=, ;6;6; < C||6]7, and
by Lemma E.4, 1/,Q1,, > C~1||0||3. Combining these results gives

(80) CHo <v < Cllol3.
Moreover, 1; = % ZS# Qs < ﬁ > 0i0,. This gives
(81) 0<n <Co;, forall 1 <7 <n.
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We plug (80)-(81) into (79) and find out that

Var(Ugp ) <

STH > 06y EBWWieWu Wy Wiee W .

J
3,3,k 0(dist)
i’ 5k 0 (dist)

In order for the summand to be nonzero, all W terms have to be perfectly paired. By elemen-
tary calculations,

HQE[WJQkW,fveZW%k] if (¢ K, i")=(¢,k,7);

0,0, E[W2 W2 WW2 if (¢, k', i"=(¢,3,k);
005 E[W A WieWe W2 Wiop W] = 0 F (WjiWeeWeWial, 3 (€ K, i)=(0, k);
0, otherwise.

Here, (i, j, k, £) are distinct. In the second case above, (Wfk, W,?Z, Wfi, W]-Q,Z-) are independent
of each other, no matter j = j' or j # j' (we remark that j' # ¢, because j' ¢ {i', k', ¢'} =
{i,k,0}). It follows that E[WZ W2, WiW2] < QpQpeQuQji < CO70;07670;. In the
first case, when j # j/, E[WW: kaéW&WJQ/k] < Q20201 < C’Hﬂﬂ%@l%j/; when j =
4, it holds that [WkaMW&WJQ K = EWAW2WE] < C6;0,6767. In the third case,
(W3, Wi, W) are mutually independent, so E[W3 W2, W] < QxQxeQi < C0;0,6767.
We then have

005)9“70]%9%’ if (6/7]{:/72./) = (f) k;)/lf)7 .] j?
Ca?g]eie?e]” if (6/71{:,72‘/) = (67 k72)7 J #]7
0i9i/E[Wj2kaeWaW]2/k/Wk/ffWM] << CO0;03020,, if (0 K ,1')=(,4,k);
00?9?9%93, if (j/7 k/)=(’i,€)7 (i/,f,)Z(j7 ]{j)7
0, otherwise.
It follows that
Var( nan2 ( Z 930 ngg + Z 939 Qk(%ﬁ + Z 929291&%)
=T\ %, o Py
C
< W(||9||4||9||§H9||1 + 6121618116112 + 11611%)
1
(82) < ClloIP 015,

where we obtain the last inequality as follows: By Cauchy-Schwarz inequality, [|6]|* =
1/2
(X30;7%-0%/%)2 < (X, 0:)(3, 09) < [10]11]103; therefore, 0] < [[0]1*[16]31011 < 0]13]1613.
We then consider U,o. Define
Dr path ¢-¢-k-j-s in a complete : nodes ¢, j, k, £ are distinct,
5 7 ] graph with n nodes and node s is different from j, k

Fix a path ¢-¢-k-j-s in PZ. If s ¢ {i,£}, then this path is counted twice in the definition of
Ua2, as i-0-k-j-s and s-j-k-£-i, respectively. If s € {i,¢}, then it is counted only once in the
definition of U,o. Hence, we can re-write

Up=— Z 'r]z + ns)Wst kWieWei — Z nlWSJW kWieWei.
\[ path in Pz \[ path in P2

s¢{i, €} se{i, Z}

0:0; E[W 3, W2, W), if (5, K)=(4,0), (i, 0)=(j, k);
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For two distinct paths in P5, the corresponding summands are uncorrelated with each other.
It follows that

64
Var(Usg) = — > (1 +1s)> Var (W W Wie We)
v path in Pz
sg{if}
64 )
T > Var(We Wi Wi W)
path in P
se{i,l}

<9 S () 0020207,
v 1,5,k,4,8
C

IN

o > (036307070, + 0:607670767)
i,5,k,4,s

Clol°lIoN3
— el

By Cauchy-Schwarz inequality, [|0]|* < [|0]|1]|0]|3, so the right hand side of (83) is <
C|1011%110/|S. Combining it with (82) gives

Var(Ua) < C|10]710115 = o([16]%).

(83)

This proves the claim.

G.4.5. Proof of Lemma G.5. It suffices to prove the claims for each of Y;-Ys. Consider
Y1. We have analyzed this term under the null hypothesis. Using similar proof, we can easily
derive that

Evi]=0,  Var(¥1) < C|l6|*[|6]5 = o(||0]®).
Consider Ys. Using the definition of Y5 and the expression of 7); in (77), we have
Yy = Z 5ij§jka€WZz‘
0,9,k 0(dist)
= > miln = )UWeWa+ > ni(n— i)Wk We
3,5,k 0(dist) i,7.k,0(dist)
~ 1 ~
v Z ni (— Z st) Qi WieWes + 7 Z 1 <— Z Wis) Qi WieWii
i,J,k,0(dist) s#£j 1,7,k 0(dist) s#£i

1 ~ 1 ~
=7 Z NS WisWie Wi — 7 Z ( Z anjk)VVikuEWEi-
z,ch,E(c.hst) z,k,f(d.zst) Jj¢{i k. L}

SF#J SF#i

In the second sum above, we further separate two cases, s = £ and s # £. It then gives rise to
three terms:

1 ~
Yp=—— > 0 W Wi W
i,k 0 (dist)

s#j
= Y (X nt) Wi

ik (dist) jg{ik,0}
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_\}6 Z ( Z njﬁjk>W@-kuszéi

ik (dist) jg{ik.0}

s#{i,l}
(84) = You + Yop + Yac.
Since (3, j, k, £) are distinct, it is easy to see that all three terms have mean zero. We thus have
E[Ys] = 0.

Below, we calculate the variances. First, we bound the variance of Ya,. Each (i, j,k, ¢, s) is
associated with a length-3 path i-k-¢ and an edge j-s in the complete graph. For (i, j, k, ¢, s)
and (¢/,7', k', 0, "), if the associated path and edge are the same, then we group them to-
gether. Given a length-3 path i-k-£ and an edge j-s (such that the edge is not in the path),
they are counted four times in the definition of Ya,, as (i) i-k-£ and j-s, (ii) i-k-£ and s-7, (iii)
{-k-i and j-s, (iv) £-k-i and s-j, so we group these four summands together. After grouping
the summands, we re-write

1 - - - -
NG D> Sk + ik i A M) Wi Wit Wos.
length-3 ed,
“path  in the path

Y2a:_

In this new expression of Y., two summands are correlated only when the underlying
path&edge pairs are exactly the same. Additionally, by (74) and (81),

|9k + 16k + s + MQsi| < Col0; + 05)0;6).
It follows that

C
Var(Ys,) < " Z 042(9j + 05)2«9129% - Var(W;sWieW;)
1,5,k,0,s

% D QP8+ 6.)°6767 - 6:0,0,670,

Ca?

< T Z (676767670 + 070,6;6767)
1

Z‘?vj7k7€7s
Ca?|10]%116115

85
() =T el

Second, we bound the variance of Yo,. Write S5;1y = Zj%{i,k,é} n;€2;. By (74) and (81),
|Bike| < C 2,0 - ab;0) < Ca||6]|?0%. Using this notation,

1
V== S BuWiWe,  where |Sal < Call0)6;.

3,5,k 0(dist)

It follows that

C
Var(Yay) = E[Y] < o > BineBiwe - EWIWkeW W]
ik 0(dist)
i K/ 0 (dist)

Ca2|0|*
< Colol” Z 010k - EIWEWi W2, Wiws].

> 2 i
1913 i,k,6(dist)
it k0 (dist)
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The summand is nonzero only when the two variables Wy, and Wy, equal to each other or
when each of them equals to some other squared variables. By elementary calculations,

0Ok - BIWAW W2, Wiy

(2E[WAWZ,] < CO:6362, if (K,0) = (k,0), i’ =
O2E[WEWRW2,] < CO03030,, it (K, 0) = (k,0), i #
_ OB EWEWREWE] < CO,686030,, if (K, zf):(e,k;)
ORE[WEW) < C0:6367, if ¢ = ¢, (i',K') = (i, k);
0:0; E[W3W3,] < Co26262, it 0 =0, (i', k') = (k,i);
0, otherwise.
As aresult,
Ca?|0|*
Var(Yay) < —— ”2” (Ze 0207 + > 0:036760 +Ze2ek0€)
HHH i,k,0 i,k 0,1 i,k
Ca?|9]4
_H9'|'|2’(||9H§He||2\eul+\|er§||euf+ueu6>
1
(86) < Ca?(|0]1]|6]15,

where to get the last inequality we have used ||0]|% << [|0]|® < (||€]]1]|0]13)% and ||0]3|6]|%]|0]|1 <
1013161141611 < ([16]11116113)?. Last, we bound the variance of Yac. Let Bire = 3 a1 1.0y 15k
be the same as above. We write

Yo, = Z BitteWis Wie Wi, where  |Bire| < Car]|0]|*y.
i,k,0(dist)

s¢{i L}
For E[W;sWieW; - Wi g Wi g W3] to be nonzero, it has to be the case that (W;s, Wi, Wy;)
and (Wi g, Wirpr, Wy ) are the same set of variables, up to an order permutation. For each
fixed (i, k, ¢, s), there are only a constant number of (i’, k', ¢’, s") such that the above is satis-

fied. As we have argued many times before (e.g., see (70)), it is true that

1
Jo

V. Yc < Var(W;sWieW;
ar(Yae) e HZ(d: t)ﬁme ar( eWei)

sgé{z 0}

<7 HQ > (@ll61P6x)* - 9701670,

i,k,0,s
< Ca?|I01*11615

16111
We now combine the variances of Ya,-Ya.. Since ||6]|3 < 62,.1|0]l1 < ||€]]1, the right hand
side is (85) is o(a?|0]|%]10]1S) = o(a?(|0]|*]|0]|S)- Since H¢9||4 < |0111]|0]13, the right hand side
is (87) is < C'a?||0]|*]|0]|$. It follows that

Var(Y2) < Ca?||0]*[10]15 = o([10]%)-

This proves the claims of Y5.
Consider Y3. By definition,

Ya= > miln— ip)WireeWei+ > mi(mi — 7)) WinQue Wos.
i,j,k,0(dist) i,5,k,¢(dist)

(87)
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In the second sum, if we relabel (i, j, k,¢) = (5, i, ', k), it can be written as > ;. . 1 p(gise) M (1 —

ﬁj,)Wi,g/va@ kWi jr. This shows that the second sum is indeed equal to the first sum. As a
result,

Ya=2 Y milny — i) WikQueeWe
,7,k,0(dist)

=2 3 (- IZWJS) WineWes

i,J,k,0(dist) s#j

2 ~
=7 Z 0 Qe Wis Wi W,

i3,k 0(dist)

s
2 ~ 2
= _ﬁ Z anldW kWZ'L \/» Z ankEW]stkWh
1,9,k £(dist) 1,9,k ,£(dist)
s¢{j.k}
(88) = Y3q + Yap,

where the second line is from (77) and the second last line is from dividing all summands
into two cases of s = k and s # k. Both terms have mean zero, so

E[Y3] =0.
Below, first, we calculate the variance of Y3,,.

4 o
Var(Ys,) = - Z (i Qi Qeer) - EIW Wi W3 Wi ).

i,k E(dist)
i 5k 0 (dist)

The summand is nonzero only if either the two variables Wy; and Wy,; are the same, or each
of the two variables Wy; and Wy, equals to another squared W term. By (74), (81), and
elementary calculations,

(i Q%emir Qo) - BIW WG W 3 Wi
< Ca20i0k9g0i/0k/0@ . ]E[W-QngiWJ%k,Wg/i/]

j
Ca2626262 E[W A W2] < Ca2030,6367, if {0, = {0, (7, K) = (. k);
Ca07670x60; E[W, WE] < Ca®0}076767, if {¢,i'} = {£,1}, (7', k") = (k. j);
| Carea0,0. EDTAWEWS,) < Cai0,02020,0%, i (€)= [0 1K) £ k)
CaQQ?GﬁjQ% [I/ng’kWZ] < Ca2(9§9]2-9z’9%, it {0',i'}y ={j,k}, (4, k') = (£,9);
Ca?0;070,0; E[W3 W] < Ca?6767676}, if {¢/,¢'} ={j,k}, (), k') = (4,0);
0, otherwise.

There are only three different cases in the bounds. It follows that

Var(¥ia) < H2<Z 030,600% + 3 03026203 + Y eieje,zegej,e,i,)
i,5,k,L 1,5,k,0 i,5,k,4,5" k'
Ca?
< W(H@IM\@H% + 101116115 + ll011*[1117116113)
1

(89) < Ca?||6]1*161]3,
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where in the last line we have used ||| < [|0]|$(Omax|0]*) = o(||0]1*]10]|$) and ||0]]1 >
0L |10]]?> — oo. Next, we calculate the variance of Y3,. We mimic the argument in (85) and
group summands according to the underlying path s-j-k and edge ¢-i in a complete graph. It
yields

2 - - - -
Yoo =——= > > Qe+ 1%+ 0iut +1eQs) W Wi Wi,
NG
length-3 edge not
path  in the path
where
|73 + 00 + Qe + 0eCsi| < Car(B, + 05)0:8,.

It follows that

2
<CL‘2 S (020203070, + 03020,070%)

Ca)6)61
=Tl

Since [|0]|3 < [|0]S(Omax|0]]1) = o(||0]|110]]$), so the right hand side of (90) is much smaller
than the right hand side of (89). Together, we have

Var(Ys) < Ca?||0]1*10]15 = o([10]%).

(90)

This proves the claims of Y3.
Consider Y;. We plug in d;; = n;(n; — 7;) + nj(n; — 7;) and the expression (77). It gives

Y= Y om0 — ) eWe + > 0 — 1) Qe Wi

i, (dist) ik, 0(dist)
1 O 1 U

= > ni(—\ﬁzsz)gjkgkﬂwﬁi + > (_WZWiS)ijQMWZi

1,5,k £(dist) s#j 1,4,k £(dist) s#L

1 U 1 .
= > ( > mijle) WisWei — 7 > ( > 77ijka4> WisWei
i.d(dist) ke {ij.e} i0(dist) j.kg{i0}
S7J s#£1

=Yia + Yap.

First, we analyze Yj,. When (4, j, ¢) are distinct, W;,W; has a mean zero. Therefore,
E[Y4,] =0.
To calculate the variance, we rewrite

1 -~
Yia=—— > BieWisWe,  where Bije= > 0

i,5,0(dist) k¢{i,5,0}
s#j

By (74) and (81), |Bije] < C>, a20;0;020, < Ca?(|0]|20;0;0,. Also, for W;sW,; and
Wi s Wy to be correlated, there are only two cases: (Wjs, W) = (Wjig, Wyyr) or
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(Wi, Wei) = (Wi, Wjre ). Mimicking the argument in (85) or (90), we can easily obtain
that
Var(Ya) < ; > By Var(WWe)
1,7,0(dist)
s

> (@]61170:0;6¢)° - 6:0,6,0,

=912
||9|| =,

Ca|0]1* 16115
I

Next, we analyze Y4b. We re-write

oD

Yip=— f § BieWis W, where 3 = E njﬁjkﬁkﬁ-
i,0(dist) Jk¢{il}
Ss#i

By separating the case of s = ¢ from the case of s # ¢, we have
Y= f Z BMW& \/» Z BieWis Wi = Y4b + Y4b

i,0(dist) i,0(dist)
sé{z E}

Only }741, has a nonzero mean. By (74) and (81),
1Biel <C 03070, < Ca®|10]|*0,.

ik
It follows that
~ C
92) |E[Yap]| = [E[Yap]| < o > (@*[10]1*00)0:0, < Ca®||6]°.

y

We now bound the variances of }741, and Y ;. By direct calculations,

C 4 0 8 0 3
Var(Tu) == 30 G- Var(Wh) < QZ o2(0]10,)? - 6,0 _a||0||||||37
Y s i(dist) || 11 10]11
C 4 0 10 0 3
Var(Yg) < Z By - Var(WisWy;) < QZ (a?]|0]|*6,)? egegesgw.
Y i,(dist) HOH Lits He”l
s¢{i,l}
Together, we have
~ C 4 i 10 0 3
93) Var(Yy,) < 2Var(Yy) + 2Var(Yy) < O‘”W'H””B
1

We combine the results of Yy, and Y. Since [|6|S < (Omax||0]%)? = o(]|0]|*), the right hand
side of (92) dominates the right hand side of (91). It follows that

Cat||f]I" 16113
[E[Yi]| < Ca?[|0]|° = o(a®[|0]|%), Var(Ya) < W?) = o(a®||6][|6]]5).

Here, we explain the equalities. The first one is due to a?||#]|?> — oo. To get the second equal-

ity, we compare Var(Y;) with the order of a®||0||%]|0]|$. Note that ‘|9||||1;|I|9”3 = ”9” ”9”3 lo|I* <
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LWL )1 013 < (1611516115 Tt follows that Var(Ya) < Ca||6]%[6]|§ < Ca®|0]*0]3,

where the last inequality is due to a?||#]|?> — oo. So far, we have proved all claims about Y.
Consider Ys. Recall that

Ya= > mi(nj— i) WeeQa+ > (i — 7m0k WieQui.
i,j,k,0(dist) 1,5,k £(dist)

With relabeling of (i, j, k, €) = (j',7', €', k'), the second sum can be writtenas 3, i 1 or(aist) (N7 —

ﬁj/)m/ﬁi/ oW krﬁk, j+- This suggests that it is actually equal to the first sum above. Hence,

Ys=2 Y milny — i) WeeQu
.4 b(dist)

= Z (\[ZWJS) ]kaKQEZ

1,9,k é(dzst s#£j

-~ Z ( Z i Jka>Waku€

] kl(dist) i¢{j,k,C}

S#]
2 SO
= 7 Z BikeWis Wi, where B = Z 0i8 k5.
3k t(dist) i¢{j.k,e}
SF]
It is easy to see that E[IW;,W},,] = 0 when (j, k,¢) are distinct. Hence,

E[Ys] = 0.

By (74) and (81), |Bjre| < C Y, 0; - a?0;0,.0,0; < Cc?||0]|?0;01.6,. Similar to the argument
in (85) or (90), we can show that

C
Var(¥s) < — > B Var(W;sWi)
3k, 0(dist)
5]

3 (02116126;646,)%0;9.646,
Jrk,l,s

- ||9||2
Ca||0]*16]I3
- ok
Since [|0]5 = ([10113)* 10113 < (Pmax|0]1*)? (Oas]
o(||0]|®). This proves the claims of Yj.
Consider Yg. By definition and elementary calculations,
Yo=Y om0 —a)QuleQe+ D> ni(m — ) Qe
i,k £(dist) i,3,k,£(dist)
=2 > om0
i,7,k,€(dist)

=2 Z T}i(—\%zsz>§jk§kzéﬁéi

1,7,k €(dist) s#£j

Z ( Z Uiﬁjkﬁkeﬁei) Wis.

j,s(dist) i,kl(dist)¢{j}

10]]1) = o(]|0]|*||0||1), the right hand side is
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Here, to get the second line above, we relabeled (i, j, k,¢) = (j',4',¢', k") in the second sum
and found out the two sums are equal; the third line is from (77). We immediately see that

E[Yg] = 0.
By (74) and (81),

> Q| < CO; - aP0;07070; < Ca®(|6]%0;.
ik, 0(dist)¢{j} ikl

It follows that

o~ N2
Var(Yg) = Z < Z WinkaZQZi) - Var(Wjs)
j s(dist) i,k,(dist)¢{j}

< WZ(@PHMP%V@@
7,8

CaﬁHHHulleHg
- 10111

Since [|0]|* < [|0]|1|0]|3, the variance is bounded by Ca(|0]|3]|0||S. This proves the claims of
Y.

G.4.6. Proof of Lemma G.6. It suffices to prove the claims for each of Z; and Zs; then,
the claims of U}, follow immediately.

We first analyze Z;. Plugging d6;; = n;(n; — 7;) + n;j(n; — 7;) into the definition of Z;
gives

Zv=" > milgg =ik — ) WeeWei + Y milng — i) i Wae W

i,j,k,£(dist) i,5,k,¢(dist)
+ Z — i) (e — k) Wae Wos + Z (i = 13)n5(nj — 715) Wit Wei.-
5,k E(dzst) 1,5,k,0(dist)

In the last term above, if we relabel (i, j, k, £) = (K, j',¢', £'), itbecomes 37, i/ 1 o (gisty (M —
M )15 (150 — N7 )N Wise Wi . This shows that the last sum equals to the first sum. Therefore,
Z1 = Z ni(nj — 715)° e Wie Wi
4,7,k 0(dist)
+20> milny — i) (e — i) Wi Wi
1,9,k ,4( d'Lst)

+ > (f— 1) Gk — k) WaeWes
1,5,k E(dzst)
94) =Z1a+ Z1v + Zic

Below, we compute the means and variances of Z,-Z1..
First, we study Z1,. When (i, j, k, £) are distinct, Wy,W}; has a mean zero and is indepen-
dent of (7j; — n;j)%, so E[(n; — 7;)?*WieWe;] = 0. It follows that

E[Z14) = 0.
To bound the variance of Z1,, we use (77) to re-write

Zva = Z ni (-\}6 ; st) <—\}5 ;th)"?kWMWEi

3,5,k 0(dist)
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=5 Z i WisWiiWieWo;
3,5,k 0(dist)

st¢{s}
1
== > W WieWes + — > W Wi Wi W
v v
i,5,k,(dist) i,5,k,0(dist)
_ s¢{j} s, t(dist)¢{j}
EZla—{—Zfa.

We first bound the variance of Zla. It is seen that

Var(Zi,) = ;12 > itk - BIWEWieWei - W o Wi Were).
1,5,k 0(dist),s¢{j}
i G (dist),s' €05}
The summand is nonzero only if ¢ = ¢ and {k',i'} = {k,i}. We also note that, if we switch
i’ and k', the summand remains unchanged. So, it suffices to consider the case of ¢/ = ¢ and
(k',i") = (k,7). By (81) and elementary calculations,

NNk - BIW S, WieWei - WS Wine W]

ning W W2, W3] < CO%0,676070s, if (0K, 1) = k,4),{5,¢}=1{4,s}
=\ nkE[W2 WkZWEzWJQS’} < CGS)Q 9302980]"08’7 if (E/a kla Z,) = (£> ka 2)7 {j/7 sl} # {]7 S};
0, otherwise.

It follows that

c
Var(Z1a) < 5 H4( S o0tk S 630,00630,0,0,)
i,5,k,4,s i,5,k,0,s,5",s"
< ||9H4(H9|| 16115116117 + 191716115 11617)

< C|101*16113-

We then bound the variance of Z7,. Note that
Nk M - BIWs Wi Wiee Wi - Wi g Wiy Wige Werir]

iy E[WEWEWE Wi < CO360367670,6:, if (5/,¢') = (4, ) {0} = {s,t},{K,i'} = {k,i};
= MiMkNsMt [WfstthzWe%]SC@Z@?@%@?@@?, if (5, ¢') = (¢,5),{s", '} = {k, i}, {K',i'} = {s,t};
0, otherwise.

It follows that

Var(Z7,) < H9H4( Z 93929k050 0 + Z 92929k9§9§9§>
i,7,k,¢,s,t i,5,k,0,s,t

C
< W(H@H‘*H@H%H@H% +10]1'%)
1

Clol o118
- e

where the last inequality is because of [|6[|"* = [|0]|*(|]|*)* < [|6]|* (19 ]l 10]1)* = 611" |0 lISl61]3-
Combining the above gives

95) Var(Z14) < 2Var(Z14) + 2Var(Z5,) < C||0]12]16]S.
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Second, we study Zp. Since (n; — 7;), (nx — 7x) Wk and Wy; are independent of each
other, each summand in Z; has a zero mean. It follows that

E[Z1p] = 0.
We now compute its variance. By direct calculations,
1 1
Zip =2 - Z Ni <_\ﬁ Z st>77j <—% Z Wkt)WkEWEi
1,5k, 0(dist) s#£j t#£k
2
=5 Z NiniWis Wit WieWei
3,9,k 0(dist)

s#j#k
2 2
=35 Z niniWisWigWei + - Z 0N Wis Wit WieWes
i,5,k,0(dist) 1,5,k £(dist)
57] s#jtg{k,}

We first bound the variance of Z 1p- Note that

~ 4
Var(Zy,) = > Z ninniny - BWisWE Wi - Wi Wiy W]

i7j7k7£(di8t)7s7&j
7’ 7]‘/ 7k/ 78/ (diSt)’sl 75.],

For this summand to be nonzero, there are only two cases. In the first case, (Wj,, Wy;) are
paired with (Wj.s, Wy ). It follows that

ninminy - BIW;sWEWeWi e Wi e Wei) = nimgnamjr - EIW W2 WaWE ).

This happens only if (i) {j’,s'} = {j,s} and {¢',¢'} = {¢,i}, or (ii) {j',s'} = {¢,i} and
{¢',i"} = {4, s}. By (81) and elementary calculations,

ninminy - EWisWEWei - Wing W o W]

nin? - BWAWEWEWR,| < CO630,070,0,,  if (7/,5') = (4,5), (¢',¢') = (£,4);
ningne - E[WEWaEWEWE] < CO030:030:0,, i (§',8") = (4,5), (¢',i") = (i, 0);
ningns - EWEWEWEWE | < CO030,00020k,  if (5, 8") = (5,5), (¢, i) = (£,9);
ningnens - EIWEWaWEWE < CO050,00030,  if (5. 8') = (s,), (¢',i') = (i, 0);

= MiNNeNs 'E[W]-QSWg%W;?gW;?fj] < 0939]39k9?9§9k/, if (', 8") = (1), (¢",i") = (4, 8);
ningne - E(WZWEWRWE ] < CO070,07030,,  if (5, 8") = (€,1), (£,4') = (5,));
77@'277j775 : E[W]'QsWéZiWkQéWl?/j] < 09%591@939?@'7 if (j/7 S/) = (ivg)a (5/7 i/) = (]7 3)?
ning - EWZWEWEWE ] < CO7070,07030), if (j/,8') = (i,€), (¢',4") = (s, 4);
0, otherwise.

The upper bound on the right hand side only has two types C6;6701,6; 050, and C6;050,6;076)..
The contribution of this case to Var(Zy;) is

¢ 3039, 3 3020 p3p2
1,0,k 4,8,k .0,k L,8,k
C
<

=< W(IWII%IWII? + o1t elshe1)
1
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_clen
161

In the second case, {W;s, Wie, We; } and {Wjgr, Wip, Wy } are two sets of same variables.
Then,

ningminy - BIWssWEWeaWie Wi W] = ninjnan;e - E[W W2, W]

This can only happen if ¢ = ¢, {i',k'} = {i,k},and {j’, s’} = {j, s}. By (81) and elementary
calculations,

ninmim; - BIW;sWEWoi - Wiig Wi o W]

7]?77]2 -E[W3 WEWR,| < Co; 939k94957 it =10, (' k)= (i,k), (j/,s) = (J,);
772'277]778 : [W3 We?;sz] < 0939?6169%657 if ' = (2/7 kl) <Z7 k)a (.jla S/) = (87j>;

= q N5 - E[W3 WiWp] < COF02070705,  if =10, (i',k') = (k,0), (5',5") = (4, 5);
TR s ° [W‘°’ WiWil < 09292920292 if /=0, (¢, k') = (i,k), (7', s') = (5,5);
0, otherwise.

\
The upper bound on the right hand side has three types, and the contribution of this case to
Var(Z1p) is

g%( ST 02030,6020.+ > 62020,60202 + > 9292%9%0?)

i7j7k,£78 7] k‘f s 7] k Z )
- 10
- H6H4(”9” I61SN61% + e o1 el + 61™)
6
o

where we use ||0]|* < ||6]|1]|0]|3 (Cauchy-Schwarz) in the last line. It is seen that the contri-
bution of the first case is dominating, and so

~ 1012
Var(Zp) < I H3
10]1
We then bound the variance of Z i‘b. Note that
. 4
Var(Zy,) = 2 Z 0NNy - BIWis Wit Wi Wi - Wi g Wiy Wi o W]

1,5,k l(dist),s7#],t¢{k,C}
i3k O (dist),s’#5 ¢’ ¢{k' 0}
For the summand to be nonzero, all W terms have to be perfectly matched, so that the expec-
tation in the summand becomes

(W, Wit WaeWii - Wi Wios: Wieo W) = E[IW 2 WEWEWE] < C,6,626760,6;.
For this perfect match to happen, we need (¢ k', ¢,i') = (t,k,¢,i) or (', K, 0')i") =
(i,0,k,t), as well as {j’,s'} = {4, s}. This implies that, ¢’ can only take values in {i,t}
and j" can only take values in {7, s}. It follows that 7;7;7;/1;- belongs to one of the following
cases:

nini(ning) < CO303 ninj (mins) = C626,0,,

175

77277]( ) < 00 9 9257 77177]( ) < 09 9 9750
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Combining the above gives
Var(Z},) < % > (6767 +670,0, + 6,636, + 0:0,0,0,) - 0,0,07670.0,

ve
i,7,k,¢,s,t

C
< W(||9H4||9Hg||9||% +2(01B1013 0601 + [16]*2)
1
4119(6
 Clolfelg
16]]%

We combine the variances of Z;, and Z3,. Since [|0]|* < 16]|1]|6]|3. the variance of Zyp, dom-
inates. It follows that

(96) Var(Zy) < 2Var(Zy,) + 2Var(Z5,) <

Third, we study Z;.. It is seen that

Zie= (—\}E;MS)UJZ<_\%ZWM)WMW&

i,7.k,0(dist) t£k

. 2
v N5 ) WisWieWeeWo;
! i7kvlz(:dist) (jﬁ{gl;j} J ) ktWkeWy

s#£it#£k
1
= Z BikeWisWiatWieWei,
i,k,0(dist)
itk
where
97) Bre= Y. ni<Cd 02<Clo
je{i,k,0} J

We divide all summands into four groups: (i) s =t =/¢; (ii) s = £, t # ¢; (iii) s # £, t = £; (iv)
s# L, t# L. It yields that

1 1
Tie =~ W2 W2 4 = Wi Wi W2
1 " Z BikeWiy h—i_’u Z Bitee Wit WieeW 35

i e £(dist) i, e (dist)
1 (.0}
1 , 1
+ > BinWisWE W + . > BitWis Wi WieWai.
i o, (dist) i, ((dist)
s¢{i 0} s¢{i0},t¢{k.L}

In the third sum, if we relabel (i, k, €, 5) = (K', @', £/, t'), it has the form 3=, 1 v (aise) g (hr 0y Brrires Wiee Wiy Werg
This shows that this sum equals to the second sum. We thus have

1 2
Zie=— Y BwWEWi+> > BueWiWiWi,

i e {(dist) i, e (dist)
1k}
1
+ S BiktWis Wit Wee W
i ((dist)
s¢{i, 0}t {k.0}

=Z1+ 2.+ Z1..
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Among all three terms, only 7 1 has a nonzero mean. It follows that

E[Z1c] =E[Z1c] = ” Z BikeSee (1 — Q1) Qi (1 — Qi)
i,k l(dist)

> B[l + O(67,)]-
i,k,0(dist)

Under the null hypothesis, €2;; = 6;6;. It follows that 7; = % Doz i =11+ 0(1)]%

02 _ IHE .
and that Bire =3 a6, 10} 77]2 =[1+0(1)] I v“ > e {ik.t) J2 =[1+ o(l)]%. Addition-
ally, v=>3_,,,0:0; = 10112 - [1 + o(1)]. As a result,

lolilel”
v

IE[Zlc]z1 > [L4o(1)] - 01,070,

v
ik 0(dist)

lofz1e1” 5
=[1+40(1)] - 11)2 > 070

i,k,0(dist)
— (14 o()] - IO 02 — o011 < 1011 1012)]
N 1]+ ! HIPHS
(98) =[1+o(1)]-]0]*

where in the last line we have used ||0]|% = o(||€]|1). ||0]|3 = o(||@]|1) and ||0||; — co. We then
bound the variance of Z;. by studying the variance of each of the three variables, 7 les 27,
and ZL- Consider Z;.. first. For W2,W2 and W2, W2, to be correlated, it has to be the case
of either {k’, '} = {k, £} or {i',¢'} = {i,£}. By symmetry between k and 7 in the expression,
it suffices to consider {£’,¢'} = {k, £}. Direct calculations show that

E[Wy, Wil < COx070;, if (K, 0) = (k,0), i’ = i;
E[WELWEWZ] < CO030,6i, if (K, 0) = (k.0), i’ #1;
COV(WI?ZWZZia WIE’Z/WZQW) < E[W&ngwli] < 00]%9%0?7 if (k/7£/) — (E, /ﬁ), il = i
E[W,WiW | < CO070:0,, if (K, €)= (LK), i #1;
. 0, otherwise.

Combining it with (97) and the fact of v > C~1(|0||2, we have

Var(Z, |||t‘|)|||i (Zekege + 3 003000 + > 630202 + S 02030,0, )

i,k 0,1 i,k 0 i,k 0,1
Cl6/*
< Hm (617116115 + 113110115 + 1011° + lle11*[16117)
1
Cllol* o135
R ]

Consider Z7,. By direct calculations,

E[WiWie Wi Wioe Wive Wiy |
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E[W,?tW,@W;‘i] SCGiG,%G?Qt, if (K ¢/, 0))=(k,t,0),i=1"
E[WRWe,WiWi ] < CO07030,0:, if (K.t 0) = (k,t,0), i #1;
— {EW2W2W2W2] < CO,6202620,, if (K,t', ') = (k. ,t);
E[WAWa Wi < CO:02070:, if (K¢, 0,d') = (£, k, 1);
0, otherwise.
We combine it with (97) and find that
N 4
Var(ZlC) = 1}72 Z Bik@ﬁi’k"@’ . E[Wkth@WéWk/yWk/@IWZQ/Z'/]
ik, 0(dist) t£{k,0}
it k0 (dist) t ALK )
cle* 0202 02030 1. 0202027.
< =or D 067670+ D 0:6:070,0, + > 0:6767676;
16111 ik, 0t ik, 0t ik, 0t
clle)*
<HmFUWWWﬁ+WWW@Wﬁ+WWWﬁ)
1
SCWWW@'
16111
Consider ZI .- Re-write
1
ZL_ - Z BikeW, kaeWeﬂr; Z BikeWis Wit WieWii.
z kt(dist) i,k,0(dist)
s¢{i L} t¢{k, 0}
(s,t)# (ki)

Regarding the first term, by direct calculations,

]E [Wz2]§ WkZWEi . W%k/ Wk/g/ Wf’i’]

[WiW,?ZWZ] < 0920293, if ¢ =0, {i, K} = {z k:}
[WiWMWh] < 092029%, if (0 k)= (k,0),1
0, otherwise.

Combining it with (97) gives

1 o)
Var(; Z 5ikgWi2,€Wkgng) < ‘g”u Z 929k9€ <
i,k,0(dist)

Regarding the second term, for W; Wy, Wy, Wy; and Wy o Wiy Wi e Wi to be correlated,
all W terms have to be perfectly matched. For each fixed (i, k, ¢, s,t), there are only a con-
stant number of (i', k', ', s',t’) so that the above is satisfied. Mimicking the argument in (70),
we have

cloft
[

1 C
Var <; Z B@MWstktWMW&) p Z 520 - Var(Wis Wi, Wi We;)
ik 0(dist) ik 0(dist)
st {0}tk 0} st {i.l} bk 0}
(s,6) (k1) (5,6)#(k,0)

cllo)*
< ‘4§:Hmﬁ9%wﬁ9t s
101, 1011
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It follows that

Clle 10
var(7},) < Sl
1011
Combining the above results and noticing that ||0]|* < ||0]|1]|0]|3, we immediately have
= ; ry - Clol°lol3
(99) Var(Zi.) < 3Var(Zi.) + 3Var(Z7,) + 3Var(Z],.) < 0] )
1

We now combine (95), (96), (98), and (99). Since 7| = Z1, + Z1p + Z1., it follows that
E[Z)]=[0]"-[L+o(1)],  Var(Z1) <C|0]*(16]13 = o([|6]]®)-

This proves the claims of Z;.
Next, we analyze Z». Since 6;; = n;(n; — 7;) + nj(n; — 7:), by direct calculations,

Zo= > nilng =i Wiknke —i)Wea+ Y ni(ng — i) Wik (nk — 7ie)ne W

ij.k(dist) i,k E(dist)
+ Y = A Wiknk(ne — i)W+ > (i — T Wik (e — ) neWes.
1,5,k Z(dzst) 1,9,k £(dist)

By relabeling the indices, we find out that the first and last sums are equal and that the second
and third sums are equal. It follows that

Zo=2 > ni(ny — i) Wiknk (e — i) Wi
0.5k, 0(dist)
+2 > milny — i) Wik(ne — fie)neWe
i,k U(dist)
(100) = Zoq + Zop.

First, we study Zs,. It is seen that

Zoq =2 Z m(—\[ZWJS> glmk( \/»ZW&>WE1

i,J,k,0(dist) s#£j t#L

2
=5 Z i Wis Wik Wee W,

i3,k 0(dist)
s#G AL

We divide summands into four groups: (i) s = k and t =4, (ii) s = k and t # ¢, (iii) s # k and
t =1, (iv) s # k and ¢ # i. By symmetry between (7, k, s) and (¢,1,t), the sum of group (ii)
and group (iii) are equal. We end up with

2 4
Lo = E Z nlnkW]2kWZ21 + ; Z nlnkWJSW]kaz
i,5,k,0(dist) 1,5,k £(dist)
s¢{s.k}

2
+ > Z i Wis Wit Wee Wi
i3,k 0(dist)
s@{gk}tE{Li}
= Zoa+ Zay + 73,
Only Zga has a nonzero mean. It follows that

~ 2
E[Z2] = E[Za,] = " Z NSk (1 — Q) Qi (1 — Q).
i.j 6, 0(dist)
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Under the null hypothesis, €2;; = 0;6;. Hence, §;5(1 — §2;5)Q0 (1 — Q) = 0;0;,0,0; - [1 +
O(Q?nax)] Additionally, in the proof of (98), we have seen that v = [1 + o(1)] - ||0]|? and

=[1+o(1)] - 6;. Combining these results gives

2[1+o0(1
1,J,k,0(dist)
2[1+
HHI(I)Q [ sosin— > eosinl]
zgkﬁ J,k‘,é
(not dist)
2[1+o0(1
N [WH?()] {HQHA‘H@II% —O(lI61Z11611F + 11611311611 16112 + ||ey|6)}
1
2[1+o0(1
= 2L o ort + o)
1
(101) = [1+0(1)] 2H0H4

We then bound the variance of Z,. Consider Zga first. Note that Wj-QkWé and Wj2, k/Wf,i,
are correlated only if either {j',k'} = {j, k} or {j’,k'} = {¢,4}. By symmetry, it suffices to
consider {j',k'} = {j, k}. Direct calculations show that

Cov(nmkW%CWé, ni/nk/VVf,k, Wf,i,)

nknz E[W kW&] < 0039 639g, if (j,K)=(j,k),i=14, =1,
nkUQE[W4 WEWZ] < CO0,030,0,, it (4,K)=(j,k),i=1, 041,
nknmz [WJRW&W@' ] < CO20,030,0500,  if (5, K) = (j,k), i #1';

< 77j77k771 [ kWZ ] < 09?0]2013057 (]/7 k/) = (kvj)v 1= 2/7 (= 6/7
nMKn? [W;‘kW&W@ | < 09?9?02949@, if (j/,k' )= (k,j),i=14,0+1;
njnknmsz[Wka&Wg,l,] < 00?9]2-9,%9&1-2,9@, if (§,k")=(k,j),1#£7;
0, otherwise.

As aresult,

~ 4
Var(Zaa) = — > Cov(nmW Wi, nirmie Wi W)
i,5,k,0(dist)
i',5 k' €' (dist)

< ¢
~ el
+ oS0 161 + Io1zlo1*161F + llen®llel?)
Clol*iens
el
where the last line is obtained as follows: There are six terms in the brackets; since
1o1* < 116llx ||9 |3, the last three terms are dominated by the first three terms; for the first
three terms, since 0|3 < 02, 10]l1 = o(]|0]|1) and [|0]|1 < 02, 110]|> = o(]|0]|?), the third
term dominates. Consider Z3, next. We note that for
EW;sWiWi - Wire Wing Wi
to be nonzero, it has to be the case of either (W} g, Wji ) = (Wjs, Wji) or (Wi, Wing) =
(Wjk, Wjs). This can only happen if (5',s', k") = (j,s,k) or (j/,s',k") = (j,k,s). By ele-
mentary calculations,
ninir e - BIW;s Wi W - Wies Wi Wiy ]

(1OIS101F + No1zhenslens + llensel* ol

x|
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J

0,

It follows that

Var(Zs,) =

MR EWE W3 W] < CO303070.0s,

2R EWAW 2 WEWZ,] < COL02030,0,0,,
ey BIW2 W2 WEW2,] < CO202030,0,020,,
nemkns EWAW2 W] < C0362676,02,

menens EW2 W2 WEWZ | < CO102020,620,,

NN Mk s E[WJZSW]'QICW@%WEQW] < 0030?9,%61503 22/94/,

16

=AY

i,7.k,0(dist)
i3 k0 (dist)

if (5,8, k') = (4,8, k), i =i, ¢

if (', k') =(4,s,k), i =i, ' £;
if (5,5 ,k') = (4,8,k), i #7/;

if (5,8, k') = (4, k,s), i =i, ¢

if (', k') =(4,k,s), i =i, ' £;
if (5,5 ,k'") = (4,k,s), i #7/;
otherwise.

ninkni e - EWisWieWe - Wing Wi Wi ]

C
< W(WH?IW!\QII@H? +lolzlels ool + lolzNel° ol
1

+10131011°1611 + 1olZ101°1oNE + el 1611%)
2 Clol*hons

(L PO

where the last inequality is obtained similarly as in the calculation of Var(Zga). Last, con-

sider Z;r o Write

(102) Z

2

0,4k, 0(dist)

Regarding the first term, we note that

nineNi Mk - E

0,

It follows that

W2

J

Si
19113

Si
IIHH‘%(

2
[ijng . ‘/I/j/f’ Wj/k’We’i’]

(R E[WRWEW] < CO%030307,
e EW2WE2W2W2] < CO3636303,
nimne E(WEWEWE W] < C2036767,
ningnen; EIW 2, WaW2 W2 < CO36036367,

2
nime W3 W i Wei + "

Z Nk Wis Wi Wee Wi

i,j,k,E(dist)

s¢{j.k}t¢{L,i}
(5. ()
if (5, k") = (5,k), (7', £") = (i, 0);
if (jlv k/) = (]7 k)a (1,76/) = (677/)7
if (j/7k/) = (k7])7 (ilvgl) - (176)7
if (jlvk/) = (kvj)v (i/agl) = (Eai);
otherwise.

Val"(% > mnkaerkWei)

i,k 0(dist)
C
3,9,k 0
C

clielsen*
10113

> (03636307 + 63626707 + 07026707

1011511611 + 116115 + [1el1]101151011%)
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Regarding the second term in (102). We note that, for 7;1, W;s W, Wee We; and 01 Wi g Wi gt Wiy Wrir
to be correlated, all the W terms have to be perfectly paired. It turns out that
(W Wik W Wi - Wy Wity Wery Werir] = BIW W3, WEWE).

To perfectly pair the W terms, there are two possible cases: (i) (j/,¢) = (4,¢), {s',k'} =
{s,k}, {€,i'}y = {6,4}. G) (5, 0) = (4, )), {s,K'} = {3}, {€',i'} = {s,k}. As a result,
17:MKNy M only has the following possibilities:

Nk (Nink) = ming, nink(Nins) = nfnzzms, nink(eny) = nénim, NNk (NeNs) = MiNkNens,
ik (M) = 105 Mk (Mkne) = minene, 1amk(Msmi) = 05 1M6Ms, MMk (NsTe) = NiMnens-

By symmetry, there are only three different types: 771-2 77,%,, U?Ukﬁs, and n;m,nens. It follows that
2
Var (* Z i Wis Wik WZtWEi)

v i,3,k,(dist)
s {4k} t¢{L,i},(s,t)#(C,5)

C
<Tol D (6767 + 67640 + 0:0,0,65) - 030.6,070,0;
L gk b,s,t
§H90|y4 Z (07070,070,0, + 07626707620, + 6767070;620,)
1

i7j7k7£7s7t
S z(osnentens +nelslensel.) S ez
16111 16117
It follows that
Cl10]1*110)1
vzl < CIOLOIE

Comparing the variances of Zga, Z5, and Zg
As a result,

.» we find out that the variance of Z3, dominates.
z " iy < ClIOI°lols
(103) Var(Za,) < 3Var(Zy,) + 3Var(Z;,) + 3Var(Z,,) < 0] .
1

Second, we study Zy;. It is seen that

1 1
Zgp =2 N Z ni <_\ﬁ Z st> Wik <_\ﬁ > Wkt) neWei
1,5,k 0(dist) s#£j t£k

2

=5 > Wi W Wi W
0,5,k (dist)
s#jt#k

We divide summands into four groups: (i) s=k and t = j, (ii) s=k and t # 7, (iii) s # k
and ¢ = j, (iv) s # k and t # j. By index symmetry, the sums of group (ii) and group (iii) are
equal. We end up with

2 . 4
Zn =" > Wi Wei + - > nineW 7. Wit Wei
2
+ - Z NieWis Wik Wi Wi

U gkt dist) s ok 1A Gk

= Zoy + Zy, + Zgb'
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It is easy to see that all three terms have mean zero. Therefore,

(104) E[Z2) = 0.

We then bound the variances. Consider 221, first. By direct calculations,
ninenine - BIW; Wi - Wi We]

77377% ' E[WJGI{)WZQ’L] < Car?ejeke?a if {j,a k/} = {]7 k}a {Elai/} = {572}7
minenim - BIW W] < CO20502607, it {5/, k'} = {€,4}, {£,i'} = {5, k};
0, otherwise.

It follows that

\ o

Var Z2b <

(Z 620;0,07 + > 92029&%)

i,5,k,¢ i,7,k,0

>
=

\ Q

0115101+ 191%)

H4(

1
Cliolls
= ez

Consider Z3, next. By direct calculations,

ninenine - EIW 3 WieWes - Wi Wiy W]

<

(772 W E[WkaktW&] < 0039 92939,5, if (K',t")=(k,t),{l,i'}={¢i}, j/ =
771 un E[W WktW&WQk} < 0939 939391693 , if (K',t")=(k,t),{¢,i'}={¢,i}, j 75 7;
U?”z?E[WgszktW&Wﬁt] < C0;0,0707070;, if (K,¢") = (t,k), {¢',i"} = {€,};
NinenkNt [Wfkwigtwf] < C070;6;0;67, if (K, ') = (€,3), {¢',i"} = {k,t}, j' =1
= nnem EIWZWEWEWE | < CO70;0700070;, if (K,t') = (£,0), {€',i"} = {k.t}, j 751
ik [W]kaWeKC@?@j@ﬁ@?@?a if (K,¢') = (i,0), {¢',i'} = {k, 1}, j' =
77277677k77t [WkaktW&WQ ] < 0939 92939?93-/, if (K',t")=(i,0), {¢',i'} ={k,t}, j ;ﬁf
772 un E[W WktW&] < 0939 9k9?9t, if (K',t',7") = (k,j,t), {i',0'} ={i,¢};
0, otherwise.

\

There are only two four types on the right hand side. It follows that

C
< o o 030;08030.0, + > 030;0703070;
3,9,k 0,t,5" ,7,k,0,t,5

+ 3 020,63630, + > 93@-9}’;9393)
1,5,k 0t 4,5k, 0,¢

Var(ZQb)

C
< W(IWII?H@II? +o1sIo1* 101 + lensel* el + le131el°1el)
1

clon
161

Last, consider Z;fb. By direct calculations,

nineni e - BIWie Wi Wie Wi - Wi g Wi Wiy W]
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77@ n E[W2 W2  WEWE < 0936]20,%02950t, if (5',8') = (4,), (K, ') = (k,t), {¢',i'} = {{,i};
= 77@ un IE[W2 W2 WktWh] < 09303.0,395’05@, if (5,8 = (k,t), (K',¢')=(3,9), {¢',i'} ={¢,i};

0, otherwise.

It follows that
clolels

Var(Z},) < > 6303070000, < e
1

) < o
16 H s
Since [|6]|1]|0]|3 > |0]|* — oo, the variance of Z3, dominates the variances of Zop and Z;b.
We thus have
Clo115
191,

We now combine (101), (103), (104), and (105). Since [|0]|$ < 62,,.]|0]|* < [|0]|°, the right

hand side of (105) is much smaller than the right hand side of (103). It yields that

clol el _
0
o, = el

(105) Var(Zay) < 3Var(Zap) + 3Var(Z3,) + 3Var(Z1,) <

E[Zs] =2[|0|I- [1+o(1)],  Var(Zz) <
This proves the claims of Z5.

G.4.7. Proof of Lemma G.7. It suffices to prove the claims for each of Z;-Zz. We have
analyzed Z1-Z> under the null hypothesis. The proof for the alternative hypothesis is similar
and omitted. We obtain that

[E[Z1]| <ClOII*,  Var(Zy) < ClI)[10115 = o([10]%),

C|l8]|°|@
2] < Cl0]1, Var<Z2>§W’ o(16]®).

First, we analyze Z3. Since 6;; = 1;(n; — ;) + 1;(n; — 7;), we have

Zs="> " ni(n; — )i (e — k) Qe Wei + D mi(ny — i) > Qe W
ikl ikt

(dist) (dist)
+ > i — )0} e — k) Qe Wer + Y (05— 70 (0 — 7)1 Qe W
i,7,k,L i,5,k,L
(dist) (dist)
(106) EZ3a+Z3b+ZSC+ZSd-

First, we study Z3,. By direct calculations,

Zaa= Y ( Z ]8) g< szkt)QuW&

i,J,k,0(dist) s;é] t#£k

1 ~
=- Z BijkeWis Wi W, where B;jke = 1 Qe

v
3.5,k (dist)
s#jt#k

Since (4, j, k, ¢) are distinct, all summands have mean zero. Hence,

(107) E[Z34) = 0.
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To bound its variance, re-write

1 1
Z3a =" > BikeWiWa + " > BijkeWs Wi Wes
i,k (dist) i, L(dist)
s#gt#k,(s,t)#(k.5)
= Zga + Zg’:a'

We note that |3;x¢| < Cab;0;0,0, by (74) and (81). Consider the variance of Zga. By direct
calculations,

2 2
BijkeBirjrirer - Cov(W Wiy W Wenir )

j
Ca202020202 B[WA W2] < Ca2030%0303, 0,y = {00, (KDY = (k)
| Ca2620,0,620,,0, EIW3 W2, W2) < Ca®036202030%6%, it {7} = {£,i}, {5'.K'} # {4 k}:
Ca202020202 B[W3, W3] < Ca2030%0303, iKY = {0,0), {0, = [, k):
0, otherwise.

It follows that

~ Ca?
Var(Zs) < W(} NGRS 939]20,3930;/9,3,)
1

i’j’k’e i:jzkyzmj,yk/
Ca?
< o (19113% + 161711613)
16113
Ca?l6]3®
- e

Consider the variance of Z3,. For W; Wy, Wy; and W o Wi Wi to be correlated, all W
terms have to be perfectly paired. By symmetry across indices, it reduces to three cases: (i)

(¢,') = (6,0), (5',8") = (4, 8), (K, 1) = (K, 2); Gi) (£,) = (4, 9), (5',8) = (€,0), (K1) =
(k,t); Git) (¢',3") = (4,9), (7', 8") = (k,t), (K',t") = (¢,1). It follows that

BijkeBirjrrer - BIW ;s Wi Wi - Wir g Wiy W]
< Ca?(0;0;6,0¢)(0::05: 04 ) - E[W W2, W]
Ca?0203020FE[W 2 WEW ] < Ca?030303030.0;, case (i)
Ca(0:0;010¢) (0500010, ) E[W LWL W3] < Ca?076360;03020;, case (ii)
Ca?(0:0;010¢) (0501000, ) EIWZWZEW 3] < Ca®07030303020;,  case (i)
0, otherwise.

As a result,

C
Var(Z3,) < [ S Q2030%030%0.0, + a29§9§.‘029§0§9t>
L% gk st 1,5,k 0,8t
Ca?

< W(\IHH%,QH@I!? +o1*els1e1)
1

< Callolg?
for?
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Combining the variance of Z3, and Z3, gives

2|19/|12

(108) Var(Z3,) < CW’.
1

Second, we study Zsp. It is seen that

Z3p = Z ( Z Wgs) (-\% Z th) Qe Wi
t#j

1,7,k 0(dist) s;é]

Z ( Z m%ﬁu>stthWei

i,5,0(dist) k¢{ij,l}

SEJLFE]
1
= Z BijeW;is Wi W,

1,5,0(dist)

s#j b
where by (74) and (81),
(109) Bigel < D InmQuel < Cabibife < Call0]* - 0,6,

k¢{i.j.C} k
We further decompose Z3p into

1 ~
Zagp = = Z BitWiWai+ = Y BigeWis Wi Wei = Zay + Z3,
z ,J,0(dist) 1,7,0(dist)
s#j s,t(dist)¢{j}

It is easy to see that both terms have mean zero. It follows that
(110) E[Z3] = 0.

To calculate the variance of Zgb, we note that
BijeBirje - EIWE Wi - WS Weri]
< Ca?||0)*0:04 0,0, - EIW Wi - W2, Weri]

Ca?||0[|*6707 - E[W W] < Ca?(|0]1070,070 it {¢,i'y ={¢,i}, {j', s} = {4, s}
Co |0]16262 - BIWEWEIVE,) < Ca2 04630,680,0,0, 10} = 0.0}, (7'} # L. s):
Ca?||0[|*0:00;0s - E{WfsWeJ < Ca?|0||*67630763, it {¢,i'} = {4, s}, {§',s'} ={4,i};
0, otherwise.

It follows that
_ 211914
Var(Zs) < Co” |0l (Z 030;030,+ > 070;050,0,00 + > 92629£9§>

T pl4d
HHH 1,7,0,8 4,5,4,8,7",8" 4,5,4,8,7",8"
Ca?|0]|*
S (lesiens + leusiels + 1el®)
1

< ca?|6]*]61I5.
To calculate the variance of Z3,, we note that E[W;,W;;Wy; - W g Wiy Wyri] is nonzero
only if 7/ =4, {s',t'} = {s,t} and {¢', '} = {¢,4}. Combining it with (112) gives
C
Var(Zy) < 5 Y B EIWAWRWE]

v2
1,5,0(dist)
s;t(dist)¢{j}
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> (all6]20:0,)? - 020,0,0,6;

= g4
=T u =,

_ Co?ljo)t

32
ST > 6203650,0,

1,5,4,8,t
Ca?]16]°116115
B 16113

Since [|0]|8 < [|0]1*[10]| < [|6]|4]|6]1. the variance of Zs;, dominates the variance of Z3.
Combining the above gives

(111) Var(Zsy) < 2Var(Zsy) + 2Var(Z2,) < Ca?||0]|*[101S.
Third, we study Zs.. It is seen that

Zae= Y (—\[ZWZS)WJ< WZWkt)QMW&

4,5,k £(dist) s#£i t#k

Z ( Z njzﬁké)mSWktW&

v
ik f(dist) ¢ {ik,0}

s#i,t#k
1
= > BiWisWiuWai,
ik, 0(dist)
s#it#£k
where by (74) and (81),
(112) Birel < D> i el <D Cat20,:0, < Ca||0] 60,
Je{i k. J
There are two cases for the indices: ¢ = £ and ¢ # £. We further decompose Z3. into
1 1 ~
Zse =" > BiWiWi + " > BireWisWiWei = Zse + Z3,.
ik, ¢(dist) ik, 0(dist)
£k s¢{i,0} t£k
It is easy to see that both terms have zero mean. Hence,
(113) E[Z3.] =0.

To calculate the variance of 230, we note that ngWkt and Wﬁg, Wi are correlated only
when (i) {¥',t'} = {k,t} or (i) {k',t'} = {i,¢} and {¢', ¢'} = {k,t}. By direct calculations,

BZ]C[/BZ 'k [ zZWkt W’L?’f/Wk't/]
< Ca®||0]1*0x0k 0000 - E[W Wiy - Wi Wi



Ca?(0][* 263 EIWAWR] < Ca?|6]*0:67030,, if (k1) = (k.t), (i',0
Ca? (6] *620,6; E]WAWZ] < Ca?[6]*6263626), if (1) = (k, 1), (7,0
Ca?||6]1*6,620, EIWAWZ] < Ca?||0]*6,620367, if (K, #) = (8, k), (&',
C’a2||6\|49k9t9g9iE[W Wkt] < Coz2H0H402«920§«9t, if (K',t")=(t,k), (i',¢
CoﬂHHH‘lﬁzﬁwy E[Wi%WktWﬁ@] < Ca2]]0|]4910g9§0t0¢/9§,, if (K, t") = (k,t), {7/, 0

< < Ca?||0||*010:0,0, E[erWthWﬁé,] < Ca2|]9||49i9,%9§939¢/9%,, if (K, t")=(t,k), {i/, 0
Co?||0]*0,0,000, EIWW) < Ca?|0]462676307, if (K, #) = (i, 0), (i',)
Coz2||6\|49,%92-9gE[W Wkt] < Coz2||9H492039£0t, if (K',t")=(i,0), (¢',¢)
Ca?(6]' 04630, EIW W3] < Ca|l0]'6,62667. it (1) = (4,4), (7', 0)
Ca? (6] 40262 E[WWE] < Co||6]|*0:63636,, if (1) = (4,0), (i',)
0, otherwise.

There are only five types on the right hand side. It follows that

- 2 0 4
Var(Zs.) < %( S 063030, + > 0263030, + > 62636767
11l ik,0,t ik,0,t ikl
+ 3 0030300,05 + S 0#,%93939@-,93,)
ikt ikt 0
Ca?|0]*
< W(IWH?HHH% 9141613101 + N1011° + 6I* 101310115 + 01 ]6117)
1
< COéZHQHSIW\\%’
16111

where the last inequality is obtained as follows: Among the five terms in the brackets, the
first and third terms are dominated by the last term, and the second term is dominated by the
fourth term; it remains to compare the fourth term and the last term, where the fourth term
dominated because ||0H4 < |10]|1]|0||3. To calculate the variance of Z., we write

" 1
Z3. = Z BireW i Wei + 5 > BikeWisWitWe;.
'L k,¢(dist) i,k,0(dist)
s@{i,0} t#£k,(s,t)# (ki)

Regarding the first term, we note that
BikeBiwe - EWLWei - Wi W]
<Ca?|0)|* 01000k 00 - E[WAWo; - W2, Weir]

Ca2||9\|49%9§E[WﬁCWZQZ] < C’a2|\0||492939§’, if (¢,d")=(¢,i), K =k;

Ca?||6][46,626, EIWAWEWE,] < Ca?|0I1*0362636%,,  if (¢,) = (i), K #
<< Ca?|0]|*0;01040, E[WiW&WKk,] < Caz\\0]]40392039k,, f(0,i") = (i,0);

Ca? (6] 40262 E[WAIWE] < Co||0]|*626367, if (,7) = (kyi), K =

0, otherwise.

It follows that

Var(% > BuWiWe) _CMT‘ (Ze%keﬁ > 6oz} )

i,k,0(dist) 1,k,0 i,k 0,k
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Co?|0]*
< -

Ca?[|0]*161I5
— el

(lelliels + lel*iels) < .
16113

Regarding the second term, we note that

BikeBirkrer - EIWisWie Wi - Wing Wiy Wi

< Ca?(|0)|* 00k 000p - E[W;is Wiy Wi - Wir s Wirys Wit

IN

(Ca2||0]*62602 EIW2 W2 W2] < Ca?||6]*6263636,6;, f(i, 8, 0) = (i,s,0), (K,t') = (k,t);
Ca?||0||46,0,602 E[W2W2W2] < Ca||0][462626030,62,  if (i',s',0') = (i, 5,0), (K,t') = (¢, k);
Ca?||0||620,0, E[W2WEW2] < Ca?|6]|4626362626,, i (i',s',0') = (i, 4, ), (K,t') = (k,1);
Ca2||0||*610,0,0, EIW2W2W2] < Ca?||0]*62626026262, if (i, s, 1) = (i, L, ), (K',t') = (t, k);

0, otherwise.

It follows that

1 Ca2||0|*
Var<; Z 5iszz‘kutW£i) < HH‘\4H 2(9392’%’&% +0707070:07 + 0707070267)
ik, 0(dist ik,
sgé{i,f(},tyé)k, >t
(s,t)# (ki)
Ca2|0|*
< w'|'|4”(ue||2ueu§ueu%+ lolelI0 131101 + [16]"°)
1
=76l

Ca?|10]*]160]5

We plug the above results into Z3,. Since [|6]|? < [|0]]10max < ||0]|3, we have —E <

w. It follows that

1017
Ca?|6]10]|$
Var(Z5,) < M.
16113
Since [|0]|S < ||0]12]|6]|1. the variance of ZZ, is dominated by the variance of Zs.. It follows
that
~ Ca2 0 8 0 3
(114) Var(Zse) < 2Var(Zse) + 2Var(Z,) < HHB
1

Last, we study Zsg4. In the definition of Z34, if we switch the two indices (j, k), then it

becomes

Zsa="Y_ (i = i)me (e — 7 )n; Qe Wei = (mieny o) (i — 736) (e — k)
/Z:7j7k7€ i7j7k7z
(dist) (dist)

At the same time, we recall that

Zae=">_ (=) (e — ) e Wei = > () (mi = 736) (0 — ) -
Z’7j7k7€ i?j7k7e
(dist) (dist)

Here, Z34 has a similar structure as Z3.. Moreover, in deriving the bound for Var(ZSC) we
have used \77] de < Cou926kc9[ In the expression of Z3, above, we also have |n;n; ]Z| <
Ca9]29k9g Therefore, we can use (113) and (114) to directly get

(115) E[Z34) =0, Var(Zsq) <

Co? |01 116113
16111
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Now, we combine (107), (110), (113) and (114) to get
E[Z5] = 0.

We also combine (108), (111), (114)-(115). Since ||0]|* < ||0]|1]|0]|3, the right hand side of
(114)-(115) is dominated by the right hand side of (111); since ||0]|$ < ||0]|3, the right hand
side of (108) is negligible to the right hand side of (111). It follows that

Var(Z3) < Co?||6]|]10]]5-

This proves the claims of Z3.
Next, we analyze Z4. Since 6;; = n;(n; — 75) + 0 (n; — 1),

Zy= Y milny = i) — i0We + Y mi(nj — 1) Qe (0 — k) me W

i,k (dist) i,k E(dist)
+ > i A Qe —i)Wa + > (i — )0 k(e — 7k )neWes.
1,7,k Z(dzst) 1,5,k,0(dist)

If we relabel (i, 7, k,¢) as (¢, k', j’,4) in the last sum, it is equal to the first sum. Therefore,

Zy=2 > ni(nj — i) Qi (ne — i) Wi
i,k (dist)

+ ) miny = i)k (e — )W
i3,k 0(dist)

+ D (i — ) ke (ne — i) W
1,7,k K(dzst)
(116) =Zug + Zap + Zac.

First, we study Z,, and Z,;,. We show that they have the same structure as Zs. and Z3,,
respectively. In Zy,, by relabeling (i, j, k,¢) as (¢, k, j, 1), we have

Zia =2 nelne — i) gm0 — 1) Wie=2> _ (nine€g) (mi — i3i) (e — 771) Woi-
1,5,k,¢ i,5,k,0
(dist) (dist)

At the same time, we recall the definition of Z3. in (106):

Zae="Y_ (i — 7)n} (e — ) eWes = D (07Qe) (mi — ) (e — ) Wi
i,4,k0 i,3,k,0
(dist) (dist)
It is seen that 7, has a similar structure as Z3. does. Also, by (74) and (81), in the expression
of Zya, we have |1;m,8;| < Ca&?@kﬁg, while in the expression of Z34, we have |77J le| <
C oz9]2- 0r0,. As aresult, if we use similar calculation as before, we will get the same conclusion
for Z4, and Z3,4. Hence, we use (113)-(114) to conclude that

Ca?[10[*161I3

117) E[Z44]) =0, Var(Z4,) < 1]
1

For Z,;,, we note that

Zyy="Y_ mi(n; — i) n(mk — )neWei = Y (mime) (0 — 1) (0 — 77) Wi,
. .
(dist) (dist)
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where \nmgfljﬂ < Cab;0;01,0,. At the same time, we recall the definition of Z3, in (106):

Zsa =Y mi(nj — ;)i (mk — i) e Wy = > (i Qe) () — 717) (i — ) Wi,
7:7‘7‘7k:7Z Z‘?j?k?Z
(dist) (dist)

where |77mj5~)kg| < Cab;0;0;0,. Therefore, we can quote the results for Z3, in (107)-(108)
to get
C 2 0 12
(118) E[Zu) =0,  Var(Zp) < w
1

Second, we study Zy.. It is seen that

Zse = Z (_\%ZWis)njﬁijk:(_\}EZWét)Wéi

i.5,k(dist) si t£0

b ( > i ﬁjk) WisWeWei

v
i0(dist)  j,k(dist)¢{i, 0}

sohi tA 0
1
= > BuWisWuWa,

1,0(dist)

shitAl
where
(119) Biel < D ekl <) Cati6 < Calld]".

Gok(dist) ¢ {i,0} ik

We divide the summands into four groups: (i) s =¥, t =; (ii) s = ¢, t #£ 4; (iii)) s # L, t = 1;
(iv) s # £, t # i. By symmetry, the sum of group (ii) and the sum of group (iii) are equal. It
yields that

1 2 1
Zje =~ Wi+ = W WisWE + = WisWaWei
4o =" > Bu it > Bu it > Bu «We

i,0(dist) 1,0(dist) i,0(dist)
s@{i 0} sg{i,0} t¢ €.}

=Zaet Zi + 7).

Only 246 has a nonzero mean. By (80) and (119),
= C
(120) [BlZucl| = [BlZsc)| < 75r2 > allfl*6i6i < Cal]".
T e
We now compute the variances of these terms. It is seen that
C’a2 9 Cao?| 9|3
Var Z4c < Z BMV 3 < 0”4” Ze 9[ < HHQH )
) e I EE

For Zj, by direct calculations,
BitBie - E[Wis Wit - Wirg Wiy]

< Co®|9|f® - E[Wis W3 - Wig WE,]

Ca?||0||® - E[WAWS] < Ca?(|6]|8620,65, ifi'=1i,¢=s0=1¢
< Ca?||0||® - EWEWEWE] < Ca?||0]8030,050,, ifi' =i, s’ =s, €' £
) Ca?|0)]B - EWRWE] < Ca?||0)12626,0,, ifi'=i,s'=4¢, 0 =s;

0, otherwise.
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It follows that

_ CallIF
Va (Z4c = |9H4 (29 9@0 + Z 9 9@0 94/)
1,0,8 i,0,8,0"

Ca?llo

_He’H4H(\\9!2|!9H¥+H9H§!0H§’)
1

Ca?llo]3 0]

S en

where, to get the last line, we have used [|0]|? < [|0]|* < ||0]|1]|0||3. Regarding the variance

of Z);C, we note that W; Wy, Wy, and Wi/ o Wy Wy are correlated only when the two undi-
rected paths s-i-¢-t and s'-i’-¢'-t’ are the same. Mimicking the argument in (85) or (90), we

can derive that
C
DY

i,4(dist)
s¢{il},te{l,i}

2 8
00,8t

Ca2||9||12
- e

Var(Z},) < 2 Var(WisWu W)

Since [|0]|* < [|0]|1]|0]|3, the variance of Zlc is dominated by the variance of Z},. Since
10]] — oo, we have ||0]|3 > 1/]|0||1; it follows that the variance of Zy. is dominated by the
variance of Zj .. Combining the above gives

Ca?|10][10115

Var(Zs.) < 3Var(Zs.) + 3Var(Z},) + 3Var(Z],) < 7l
1

(121)

We combine (117), (118) and (120) to get
[E[Z4]] < Calf]|* = o(a|6]|*).
We then combine (117), (118) and (121). Since [|0]|S < (62, [10111) (Omax||011?) = o(]|0]11110]1),
the variance of Zy;, is negligible compared to the variances of Zy, and Zy.. It follows that

Co?|I01P116115 _

Var(23) < =G = ofJ0]F)

This proves the claims of Zj.
Next, we analyze Z5. By plugging in the definition of ¢;;, we have

> — ) Qe + Y 717) 1 ke Qe
1,5,k 0(dist) i,9,k,0(dist)

Zs = ni(nj — 1;)m5 (M ni(n; —

+ > = e — )i+ Y O — i)y (0 — 715 ke e
5.k, E(dzst) 1,5,k 0(dist)
=2 > nin = A — ) e+ Y My — 7)1 Qe

i,k 0(dist)

DI

5.k, E(dzst)

— )02 (s — k) Qe Qe

i,k 0(dist)
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(122)
= Zsa + Zsp + Zse-
First, we study Z5,. By definition, (7; — 7;) has the expression in (77). It follows that

Lsq =2 Z i (-\% ; st>77j (-\}5 #Zk Wkt)ﬁkeﬁéi

3.5,k (dist)

Z ( Z 115 leﬁzi) W;sWit

Y jk(dist) i 0(dist)g ik}
e

> BiEWi Wi,
J,k(dist)
s#jtk

SN

where

123)  1Bul < D I QeeQul < (CO:0,)(Ca’0,070;) < Co||0]*0;0%.
i,0(dist)¢{j,k} il

In Z5,, the summand has a nonzero mean only if (s,t) = (k, 7). We further decompose Z5,,

nto

Z5a—— Z ngWk-F* > BiuWi Wiy = Zsa + Z3,.

j,k(dist) J,k(dist)
s#Jt#k,
(s,t)#(k.5)
Only the first term has a nonzero mean. By (80) and (123), we have
jd C Ca2 0 8
(124) }E[ZSaH = ‘E[ZSaH < W Z(a2||9“49j9/€)(9j0k) < HQ‘||2||
Lk 1

We then compute the variances. In each of Zs, and Z%,, two summands are uncorrelated

unless they are exactly the same variables (e.g., when (j/,k') = (k,j) in Zs,). Mimicking
the argument in (85) or (90), we can derive that

< CAllO) 5~ o _ Catlo|*101
Var(Zsq) < . Var(W2 ) < 626%) < Z@ I T9Ms
k%> et Z 2k 161
Ca“H@HB Cal|o]®|16]
Var(Zi,) < — > B Var(W;sWiy) < T > (6262)0,0,0,0, < WP)
]k(dzst) 1 gk 1
s#£j,t#£k,
(s,6)#(k,5)
It immediately leads to
~ 4 8 6
(125) Var(Zs,) < 2Var(Zs,) + 2Var(Z3,) < CW’"
1

Second, we study Z5;. It is seen that

Zsp= Y ( 7 > st) <—\}5 > th) ke

1,5,k 0(dist) S#7J t#£j
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Z ( Z nznkﬁuﬁgi) W;isWijt

J sEJtET ik L(dist)¢{5}

1
=5 > BiW Wi,
7,575t #]
where
(126) Bil< Y I QueQul < (CO:0)(Ca’0:0,07) < Ca®[10]°.
ik,0(dist)¢{j} ikl

In Z5, the summand has a nonzero mean only if s = t. We further decompose Z5; into

1 1 7 *

Ty = . E : 5jo23 + - E BiW;isWit = Zsp + Zg,
J,s(dist) J

s,t(dist)¢{j}

Only Zsb has a nonzero mean. By (80) and (126),

~ C
(127) |E[Z5p)| = |E[Z5]| < TR > (@?]6]1°)6,05 < Ca?[0]°.
1 j,s

To compute the variance, we note that in each of Z5b and ZZ;, two summands are uncorrelated
unless they are exactly the same random variables (e.g., when {j,s'} = {s,;} in Zsp, and
when j' = j and {¢',t'} = {s,t} in Z%). Mimicking the argument in (85) or (90), we can
derive that

41191112 419112
Var Z5b Z [3’2 Var(W. M 20]08 < M,
11T 4 1611
js(dzst) 7,8
C C 4 0 12 C 4 0 14
Var(Z3) < Z B3 Var(W;sWip) < Oh H||4H Y 6%6,6, < O‘| 9|H2H .
7,8,t
s,t(dzst)é{j}
Combining the above gives
- C 4 0 14
(128) Var(Zsy) < 2Var(Zs) + 2Var(Z2,) < W.
1

Third, we study Zs.. If we relabel (i, j, k,¢) = (j,i,k, ), then Z5. becomes

Zse=>_ (nj —iij)n; (. — i) ey = > 20602) (nj — 715) (M — k),
i,5,k,¢ i,5,k,¢
(dist) (dist)

where \n2§kg§g | < Ca?6?0 -Gké’%. At the same time, we recall that

Z5q =2 Z 1 (5 = )5 (e — ) Qe = > (0 Q) (mj — 715) (M — )
i,7,k,0 i,5,k.0
(dist) (dist)

where |7;; ﬁkgﬁm < Coz20i2¢9j 9;49?. It is easy to see that Zs. has a similar structure as Zs..
As aresult, from (124)-(125), we immediately have

2 8
(129) E(Zs.)] < S0

Cat|0]*l161l3
—olenE

Var(Zs.) <
16113
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We now combine the results for Zs,-Zs.. Since ||0|? < Omax||0]l1 < 10113, E[Z54] and
IE[Z5C] are of a smaller order than the the right hand side of (127). Since ||0]|§ < 02,,..110]|* <
6, Var(Zs,) and Var(Zs.) are of a smaller order than the right hand side of (128). It
follows that

Colo||™
10112
We briefly explain why Var(Zs) = o(a®(|0]|%|0]|$): since ||0]|* < [|0]|1]|0]|3, we immediately
have [|0]|14 < [|0]/5(||0]1|6]|3)?; it follows that the bound for Var(Zs) is < Cat||6]|%]10]|$;
note that «||]| — oo, we immediately have a?(|0]/|0]|$ = o(a®(|0(/®|6]|$). This proves the

claims of Z5.
Last, we analyze Zg. Plugging in the definition of d;;, we have

Zo= > ni(ni— i) emee — 70Qu + > mi(ny — i)k (e — i) 16

[E[Z5]] < Co?||0]|° = o(a™[|6]),  Var(Zs) < = o(a®[|0]]161]3)-

i, 0(dist) i, e, 0(dist)
+ > = A Qe = )R+ Y (= )k — k) neen
5,k Z(dzst) i,k 0(dist)
=2 Y mi(n —a)rme(me — ) +2 > mi(ny — ) Qe (7 — k) neCes
i, 0(dist) i 0(dist)
= Zga + Zob-
By relabeling (i, j, k,¢) as (i, 7,4, k), we can write
Zea=2 Y i Ve (e — )i = Y (136256 Qi) (0 — ) (0 — 77,
7] k g 7j7k7£
(dist) (dist)

where \nmgﬁjgﬁki\ < C’a29i29j9k0?. Also, we write

Zep =2 ni(n; — i)k — i) nees =2 Y (mimeu%:) (0 — 75) (76 — 7).
1,9,k 0 1,7,k 0
(dist) (dist)

where |17mg§jkﬁ~2g,-| < Ca?020,;0x0%. At the same time, we recall that

Zsq =2 E i (0 — 715 (1 — 77k) Qe 2s = E (i Qe:) (5 — 70) (e — )
i,5,k,¢ i,k
(dist) (dist)

where |11, Q| < Ca020;0,,07. 1t is clear that both Zg, and Zg, have a similar structure
as Zs,. From (124)-(125), we immediately have

Co?|0|I°
013

This proves the claims of Zg.

Cal|0]*]10115

|[E[Z6]| < = o(a™[|6]), Var(%KW o(ll0]®).

G.4.8. Proofs of Lemmas G.8 and G.9. Recall that A1, Ao, ..., Ag are all the nonzero
eigenvalues of (2, arranged in the descending order in magnitude. Write for short o =
|A2|/|A1|. We shall repeatedly use the following results, which are proved in (74), (80), and
(81):

’UXHQH%, 0<’I’}i<09¢, |S~)U\§C’a0z9j
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Recall that U, = 477 + F', under the null hypothesis; U, = 47 4 415 + F' under the alterna-
tive hypothesis. By definition,

T, = g 0iyisOiniy Oigia Wiy »
il,iz,ia,i4(di8t)

Ty = E 0i1in0inis Oigin igiy
11712713714(dl’8t)

F = § 0iisOiniy Oigin Oigiy »

il ,iQ ,ig ,i4 (dZSt)

where 6;; = n;(n; — n;) +n;(n; — ), for 1 <i,j <n, i # j. By symmetry and elementary
algebra, we further write

(130) Ty =211 + 2T + 2T + 2714,
where
Tla = Z Nix iz iy [(7711 - ﬁ’bl)(nh - 7712)(7713 - 77]’53)] ’ Wi4i17
i1,92,13,04(dist)
Ti= > munp [ = 70) i = i) (0 — 71i)| - Wi,
i17i27i37i4(dl’5t)
Tie=" Y 0t [ = 70)> iy — i)] - Wi,
i1,92,13,04(dist)
Tld = Z 77117’223 [(7722 - ﬁi2)2(n’i4 - f/h)} : VViu'l-

il 71'2 ,Z’g 72'4 (d’LSt)

Similarly, we write

(131) To =215, + 215y + 2T5. + 2Ty,
where
Toq = Z NixMis My [(7721 - 7721)(7712 - 7722)(7713 - ﬁ%)] : Qi4i17
i177;27i37i4(di8t)
Ty = Z i, [y — i) Wi — Tlia) iy — i) |+ Qi
i17i27i37i4(di8t)
Te = Z Ny Mis iy [(7722 - ﬁiz)2(77i3 - 77/7«3)] : Qi4i1’
i177;27i37i4(di8t)
TQd = Z iy 77223 [(nlz - ﬁiz)Q(nM - 771'4)] ' Qi4i1'

i1,i2,i3,i4(dist)
Also, similarly, we have
(132) F=2F,+12F, + 2F,,
where

Fa = Z iy MixMis My [(7711 - ﬁll)(n’bz - ’F}i2)(77’i3 - ﬁlx)(nu - ﬁi4)] )

il ,iz ,ig ,i4 (dZSt)
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Fy= > om0 — i) (i — 712,) iy — 71,)]
il,iz,ig,i4(di5t)
Fo= Y nimd [ —710) Oy — )%

il ,iz ,ig ,i4(di5t)

To show the lemmas, it is sufficient to show the following 11 items (a)-(k), corresponding to
Tra, T, Thcy T1d, Toa, Toy, Toc, Tog, Fy, Fy, Fe, respectively. Item (a) claims that both under
the null and the alternative,

(133) [E[T]| < CIOIS/I013,  Var(Tia) < Cll01*618/11013-
Item (b) claims that both under the null and the alternative,
(134) E[Tw)| < Cl01°/1611F,,  Var(Tw) < Cl16]°(613/(16]]1-
Item (c) claims that both under the null and the alternative,
(135) E[Ti]=0,  Var(Ti) < C|[6]I3/]6]]1,
Item (d) claims that
E[T14] < —||0]|* under the null,
(136) |E[T14]| < C||6]|* under the alternative,
and that both under the null and the alternative,
(137) Var(Tig) < C|16]°(16113/116]1-

Next, for item (e)-(h), we recall that under the null, 75 = 0, and correspondingly T5, = T, =
Ts. = T = 0, so we only need to consider the alternative. Recall that o = [\2/A1]. Item (e)
claims that under the alternative,

(138) E[T3] =0,  Var(Tz) < Ca®-[|0]*[0]15/10]5.
Item (f) claims that under the alternative,
(139) E[Ty]=0,  Var(Tw) < Ca®-[|0][|0]3/]16]3,
Item (g) claims that under the alternative,
(140) E[Ta]| < Calldl°/1017,  Var(Tae) < Ca®- |0]°]10113/1]]:-
Item (h) claims that both under the null and the alternative,
(141) E[Tod)| < Call0]°/1161F,  Var(Tog) < Co®- |16]1°(10]13/116]11-
Finally, for items (i)-(k). Item (i) claims that both under the null and the alternative,
(142) E[F] < Cll0IF/lI011T,  Var(Ea) < Cll6]ls*/116]l7-
Item (j) claims that both under the null and the alternative,
(143) E[E] < Cl01°/1013,  Var(F) < Cll0]*|0113/1161]3-
Item (k) claims that

E[F.] =< ||0||* under the null,
(144) |E[F.]| < C||0||* under the alternative,
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and that under both under the null and the alternative,
(145) Var(F3) < C|16]]*°/]10]17.

We now show Lemmas G.4 and G.5 follow once (a)-(k) are proved. In detail, first, we note
that [|0]/%//10]|3 = o(||]|*). Inserting (136) and the first equation in each of (133)-(135) into
(130) gives that

E[T}] =< —2||0||* under the null, |E[T}]| < C||0]|* under the alternative,

and inserting (137) and the second equation in each of (133)-(135) into (130) gives that both
under the null and the alternative,

Var(T1) < ClIOIMO1IS/101F + 101°1015/ 1011 + 101l3/1161] + 101°1615/1101]1],
where since [|0]|3/]/0]|? = o(1) and [|0]|?/||6||1 = o(1), the right hand side
< ClIO1°1o13/11013 + 191116115/ 19111] < CllelI° 1115/ 1161l

Second, inserting the first equation in each of (138)-(141) into (131) gives that under the
alternative (recall that 75 = 0 under the null),

E[T2]] < Call9]°/116113,
and inserting the second equation in each of (138)-(141) into (131) gives
Var(Tz) < Ca?[[01°[1013/11011 + 101111013/11013] < Ca?[101°110113/1161]1,

where we have used ||0||% = o(]|0||?). Third, note that ||0]|®/||0||1 = o(||€||*) and ||0]|°/||6]|? =
o(||0||*). Inserting (144) and the first equation in each of (142)-(143) into (132) gives

E[F] ~ 2||0||* under the null, |E[F]| < C||0||* under the alternative,

and inserting (145) and the second equation in each of (142)-(143) into (132) gives that both
under the null and the alternative,

Var(F) < C[l101% /1011 + leI1*10115/101F + 191 /10111 < o)™ /1163,

where we have used ||0]|3 < (|2 < ||0]|1 and ||0]]3/]/0]|? = o(1).
We now combine the above results for 77, 15 and F'. First, since that U, = 477 + F' under
the null, it follows that under the null,

E[U.] ~ —6]|0]|*,
and
Var(Ue) < C[[101°16113/11611 + 161 /1161131 < Cl1611°116113/116]l1,

where we have used |0 < [|0]|1]|0]|3 (a direct use of Cauchy-Schwartz inequality). Second,
since U. = 414 + 415 + F under the alternative, it follows that under the alternative,

IE[U]| < C|8]|*,
and
Var(Ue) < C[l101°10113/11611+<21611%10113/11611: + 161" /161131 < ClION° (16113 (]16]1>+1) /[16]]1,

where we have used [|0||* < |6]|1]|0]|3 and basic algebra. Combining the above gives all the
claims in Lemmas G.4 and G.5.
It remains to show the 11 items (a)-(k). We consider them separately.
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Consider Item (a). The goal is to show (133). Recall that
T, = Z NixMis iy [(7711 - 7711)(7722 - 7712)(77@3 - ﬁ’l%)] ’ Widl’
i17i27i37i4(di5t)
and that

(146) —n=0v"12w1,.

Sl

Plugging (146) into T7; gives

Tla:_# Z 77@'2771'37714( Z Wm’l)< Z 2]2)( Z 3]3) iy

11,02,83,04(dist) Ji,J17% J2,j2Fia Ja,JaFis

1
- _W Z MNiaMis iy mljl Wi2j2 WiSjSmli”*'

7:1 77;2 77;3 77;4 (d’LSt)

J17i1,J2 72, J3 73

By basic combinatorics and careful observations, we have
Wz2124W122 i3) lfjl = 14, (]27]3) = (Z3yi2)7
Wz2114W WZ&Js? ifjl:i4 ( 2?]3)7é( 72‘2)7
W2, Wi i Wi, if 71 # i, (j2,73) = (i3,12),

(147) WiljlWi2j2Wisj3Wi1i4 — 7,2213 2171 VYV 1114 . ]1 7& 4 (]2 ]3) ( 2)
W1112W13]3VVZ114’ if (]la]?) — (12’ 1)’
Wz2123W12]2m1l47 if (j17j3) (13721)
Wi, i WisioWigjs Wiyi,,  otherwise.

This allows us to further split 777 into 6 different terms:
(148) Tio = Xo+ Xp1 + Xpo + Xp3 + Xpa + X,

where

1
X, = _m Z 77’52"77:37714W/z1l4w7f2223’

’il ,’L'z ,1:3,1:4 (dlst)

1
Xbl - — m Z Z Mg MisTiy Wzlz4 Wh]z WZ3]37
i1,i2,i3,i4(dl‘8t) j27j3
(J2:J3)#{13i2}
1
Xb2 = _W Z z 77i277i37h4W1213 W11J1W11247
i1,02,i3,%4(dist) j1(j17%4)
1
Xb3 - - m Z Z NiyMisMiy Wll’Lz vVZ3]3 W7«124?
i1,i2,03,04(dist) ja(ja7ia)
1
Xb4 = _m Z Z NixNizMiy W7,113 leh W’Lllu
i1,02,i3,04(dist) j2(j2742)
1
Xc - — % Z Z niz 7h‘3 7]24 WZ1]1 Wl2]2 mS]s W1114
v i17i27i37i4(di8t) 7] 7]

]1%{11 14} (]2,]3)#(’531’52)
(J1:32)#(F2,51),(J1,J3) #(i5,501)

We now show (133). Consider the first claim of (133). It is seen that out of the 6 terms on
the right hand side of (148), the mean of all terms are 0, except for the first term. Note that
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forany 1 <i,j <n,i#j, IE[VVEJ} = ;;(1 — Q;5), where Q;; are upper bounded by o(1)
uniformly for all such ¢, 5. It follows

E[Xa] = _U_3/2 Z 77@'2771'3771'4E[W‘2 ]E[W2

1114 Zzig]

il ,iz,’ig,’i4(di$t)
=—(L4o01)- 0™ 3" 07, i, i
i1,l2,i3,54(dist)

Since forany 1 <i,5 <n,i#j,0<n; <CO;, Q;; <CO;0; and v < H9||%,

EXGl<cUol)™ Y 6,656767 < Clol°/ 165

117197137 14
i1,i2,i3,i4(di$t)
Inserting these into (148) gives
(149) E[T14]| < Cl16]°/10113,

and the first claim of (133) follows.
Consider the second claim of (133) next. By (148) and Cauchy-Schwartz inequality,

Var(Ty,) < CVar(X,) + Var(Xp1) + Var(Xpe) + Var(X,3) + Var(Xpy) + Var(X,))
(150) < C(Var(Xa) + E[Xi] + E[X5] + E[X5] + E[X3,] + E[X?)).

We now consider Var(X,), E[X} |+ E[X?] + E[XA] + E[X?], and E[X?], separately.
Consider Var(X,). Write Var(X,) as

U_S Z Mio iz Mig i, iy iy
il,"' ,’L4(d’LSt)
et (dist)
(151) E[(W?, Wi, —EW7,, Wih])(Wingizg - E[Wizgwfgzg])]

In the sum, a term is nonzero only when one of the following cases happens.

o (A). {Wiis Wisiy, Wirir, Wiz i1 } has 2 distinct random variables.
* B). {Wiis, Wi, i, Wit Wi, } has 3 distinct random variables. This has 4 sub-cases:

Ll
B1) Wi, = Wi, (B2) Wi, = Wiz, (B3) Wiyi, = Wiy, and (B4) Wiy, = Wi

194
For Case (A), the two sets {i1,42,3,74} and {7}, i,45, 7} are identical. By basic statistics
and independence between W;,;, and W;;..,

E[(W};, Wi, —EWS, W2 ])(Wz’gigWéig —E[Wi%wézg,])]

:E[(WiuWiig - E[m%i4Wi22i3])2]
:E[Wéu]E[WiA‘Qig] - (]E[W22114])2(E[Wz2213])2
(152) <E[W;, JEW;,],

where by basic statistics and that €2;; < C6;0; for all 1 <4, j <n, i < j, the right hand side
< OG0, 5, < C0;,0;,0;,0;, .

Combining these with (151) and noting that v ~ ||0||? and that 0 < 7; < C#; forall 1 <i <,
the contribution of this case to Var(X,) is no more than

(153) C(||9H1)—6 Z 2931+10?22+20Z3+29Z4+27

V14t ,’114 (dlSt) a
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where a = (a1, a2,a3,a4) and each qa; is either 0 and 1, satisfying a; + a2 + ag + a4 = 3.
Note that the right hand side of (153) is no greater than
C(1011)~ max{ |01 1013, [011*[101IS} < ClOlI5/110]7,
where we have used ||0]|* < [|0]|1]/6]]3.
Next, consider (B1). By independence between W ;,, Wi,;,, and Wy, ;» and basic algebra,
E[(W2 W2, — E[szmwzzzg])(Wz;ngZzg _E[Wingizg])]

=E[(W2, Wi, —EW2, W2 W2, Wi, —EW2, Wi, )

Z1i4 22'i3 Z1i4 22'i3 Zli4 122‘3

=E[W;,,, JEW., JEWE, ] — (EW],, )’ EWE, JE[WE, |
(154) :Var(Wiu)E[W/iig]E[WiZig]7

where by similar arguments, the last term

<Oy, Qiyiy iy, < C0;,0;,0;,0;,0:,0;,.
Combining this with (151) and using similar arguments, the contribution of this case to
Var(X,)

(155) <c(lof)=t Y. certer ez 0070,

12713714
il ,iz ,ig ,i4 (d’LSt)
it i, (dist)

where similarly b1, bz are either O or 1 and b; + b = 1. By similar argument, the right hand
side

< Clloll 011015/ 10115 = CleI 0115/ l16115-

The discussion for (B2), (B3), and (B4) are similar so is omitted, and their contribution to
Var(X,) are respectively

(156) <Clo|®1613/11613,
(157) <Clol®015/1015,
and

(158) <cle)'1e15/11611

Finally, inserting (153), (155), (156), (157), and (158) into (151) gives
(159) Var(X,) < C[101I5/116113 + 101116113 /11617 + 1116115/ 116111] < Cllel*19113/116117

where we have used ||]|3 < [|6]|* and [|0]|* < [|0]|11|6]I3.
Consider E[X?] +E[X2,,] + E[XZ] + E[X2]. We claim that both under the null and the
alternative,

(160) E[X7] < Cllof*1013/10113,
(161) E[Xj] < CllofP1013/10113,
(162) E[Xi5] < Cll0]°1613/10113,
(163) E[X7,] < C|10]°/16115/110111,

where the last two terms are seen to be negligible compared to the other two. Therefore,

(164)  E[Xp] +E[XG5] + E[X55] + E[Xp] < Cllol*1els/ 1017 + 101°1915/116117),
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where since [|0]|* < ||0]]1]|0]|3 (Cauchy-Schwartz inequality) the right hand side
< Cllol*els/11els.

We now prove (160)-(163). Since the study for E[X?], E[X3], E[XZ] and E[X}?,] are
similar, we only present the proof for E[X? ]. Write E[X?] as

-3 2 2
v > > > Mia M Mia Wity ity ity Wity W s Wi s Wit in Wi s Wi i
i1,inis,ia(dist)  J2.js J3:05
i) yibyib,ih (dist) (G2:03)F (i3,82) (55,55)7(i5,15)
Consider the term

2 2
Wi1i4 Wizjz WiSjs VVZ{Z@ Wllzjé Wlé]é :

In order for the mean to be nonzero, we have two cases

* Case A. The two sets of random variables {W; ;,, Wi, j,, Wi, j, } and {W; s, Wi 50, Wis i }
are identical.
* Case B. The two sets {W;_;,, Wi,;, } and {W;, j;, Wi, . } are identical.

Consider Case A. In this case, {i5,45,4)} are three distinct indices in {i1, i2,%3, 14, j2, J3 }.
and for some integers satisfying 0 < aq,as,...,a6 <1,a1 + a2+ ...+ ag =3,
14as, 14as, 1+
Mo Mis M Mit Mi My = sy Wiy My oMy, 1 0
and for some integers satisfying 0 < b1,b2,b3 <1, and by + by + b3 =1,
W2, WirisWisis Wit Wi

1114 373 YV aqdl YV ay

Wi = WhiEsyyhet2yybs +2
2

22 3J3 91%4 12]2 i3jz °

Similarly, by v ~ ||0]|2, 0 < n; < C6;, and uniformly for all by, by, b3 above,
0< E[Wb1'+3W‘I)2+2W'b3+2] < CQilM Qiz]é Qi3j3 < CeilgiQ 013 0i4‘9j2 Hjs‘

114 Z2j2 lsj3

Therefore under both the null and the alternative, the contribution of Case A to the variance
18

(165)

- 1 2 2 2 has
< C(H0H1> 6 Z Z [Z 9;1114- 9;122-"- 0%34- QZ:H- 0}12 +19;};+1]’
il,iQ,i3,i4(diSt) j2,j3 a
JaFia,J37F13,(J2,3) #(i3,12)
where a = (a1, as,...,as) and a; satisfies the above constraints. Note that the right hand size
< C([10111)7° - max{[|0[IF (16113, 11 11611* 10113, 1911 161* 10113, 11611} < ClI61I3/116113-

Here in the last inequality we have used [|6]|> < /||0]|1]|0]]3.
Consider Case B. In this case, {i2, 13, jo,j3} = {5,144, j5, j5 }. and for some integers 0 <
c1,¢9,03,c4 <1, cr+cat ezt =2,

e e s m., — CitLl ca+l o c3ca,
MioMisMia iy i iy = ", Ty Mia5, 75,700
and
W2 W - W W2, W W = W2, W2. W2. W2.
Gdg 'V 222 YV 2393 VY 14, VY o5 YV 555 T YWigiy W i2j2 szs iy

where the four TV terms on the right are independent of each other. Similarly, by v ~ [|6]|2,
0<n; <CO;,
0<E[W?, W2, W2. W2

= 7 .
114 1272 1373 172y

] < Oi, Qi gy Qi Qiiy, < C0;,0;,0,0:,05,05,0;, 04,
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we have that under both the null and the alternative, the contribution of Case B to the variance

—6 . pcit2pca+2p2 pest+lpcat+lp. p2
SR DR DN ol s A
il,iQ,i3,i4(diSt) j2,j3
#,i, (dist)  (J2,J3)#(i3,32)
where the right hand size
(166)
<C(lol)=° - 1olT1oN* - max{ (1316113, 161l 1611* 16113 1611} < Cliel*(1e1IS/ 16117

Here we have again used [|0]|2 < +/[|0]|1]|0]]3.
Finally, combining (165) and (166) gives

E[Xp] < C(I0l5/1915 + l011*10115/1101) < Cllel*|lelis/ 1913,

which proves (160).
Consider E[X2]. Consider the terms in the sum,

NioMisMia Wiy WinjaWisis Wivis,  and  mig i i, Wiy s Wig s Wiz i Wi

Each term has a mean 0, and two terms are uncorrelated with each other if only if the two
sets of random variables {W;, ., Wi,j,, Wi j,, Wi i, } and {Wi 50, Wi 0, Wi o, Wis 0 } are

2 3

identical (however, it is possible that W;, ;, does not equal to W;_ j: but equals to W, ;. , say).
Additionally, the indices 45, 14,4 € {i1,12,13,%4, J1, j2, j3}, and it follows

Bx<ot Y S
i1,02,03,04(dist) J1,J2,73
Jr@{in,ia},(d1,03)#(i3,81)
(J2,d8)F#(i3,52),(J2,91) 7 (i2,i1)

ai, a2+1, _as+1_as+1, as, as, a 2 2 2 2
[Z 771'11 nizz ni; 771'44 77]'1577]'2677]'37] ’ E[vvilﬁ Wi2j2 WiSjs Wiljl]’
a
where a = (a1, a2, -+ ,a7) and the power 0 < ay,as, -+ ,ay <1l,and a1 +as +---+ a7y =3.

Note that W; ;,, Wi,j,, Wi, and W; ;, are independent and IE(VVZQJ) < <0005, 1<
6hJ <n, i F j,
E[W3 5, W5, Wi, Wik < Qi gy Qs Qi Qv < O, 03,0:,0:,0,,05,0,.

111 i2]2 1373 1114 1

Also, recall that both under the null and the alternative, v < ||§]|? and 0 < n; < C0;, 1 <i <
n. Combining these gives

ExZ<c(o® Y 2

Q10,0304 (dist)  J1,J2,Js o
Gr¢{inia},(G1.ds) # (is,i1)
(92,J3)#(13,02),(d2,51) #(32,%1)

ar1+2 ax+2, as+2 _as+2 as+1, as+1 ar+1
[ E :771'1 My g g g
a

where the last term

2 2 2 2 1
=N 1] e 1] e e e[ e e
a

Since aj,as,- - ,a7 have to take values from {0, 1} and their sum is 3, the above term
<Cloll1613/16113 = o([19113),

where we have used ||0]|3 < [|0]|3 < ||0]|1. Combining these gives

(167) E[XZ] < Cll0]*[16115/11011F-
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Finally, inserting (159), (164), and (167) into (148) gives that both under the null and the
alternative,

Var(Ti1) < ClI0F/1915 + 10111015/ 101F + Iol7l1ell5/10113] < Cllel*10115/116113,

where we have used ||0]|* < [|0]|1]|0]|3 and [|0]|3 /|01 = o(1). This gives (133) and completes
the proof for Item (a).
Consider Item (b). The goal is to show (134). Recall that

le = Z iy 77123 [(Tlll - ﬁll)(n’bz - ﬁig)(ni4 - ﬁi4)} . Wi4i17
il 7i27i3,i4(di8t)
and that
—n= v V2w,

Sl

Plugging this into 77, gives

Ty = —v 32 Z i3, ( Z Wi1j1> (Z Wi2j2) ( Z VVi4j4>Wi1i4

i1,02,33,14 (dist) Ji1 i JaFiz JaFia
1 2
- _US/Q Z Mix i Wiljl I/Vizjz Wi4j4 Wi1i4'
il,ig,i3,i4 (d’LSt)

J1#i,J2 A2, jaF s

By basic combinatorics and careful observations, we have

(W3 Wi if j1 =4, Ja = i1,
Wi21i2Wi21i47 ifj1:i2,j2:i1,j4:i17
Wi Wi if 1 = i, jo = 4, j1 = 2,
_ W Wi Wi, if j1 = dg, jo = i1,
(108 W Waasa Waaid Vot = gy "y if j, =i
i1dq 0101 Y 02]20 J4 =11,
Wi Wi Wi if j1 =4, {42, J2} # {i4,Ja},
W2 Wi i Wi, if jo =14, ja = ia,
Wi, js Wiz 3o WisisWini,,  otherwise.

This allows us to further split 77, into 8 different terms:

(169) Ty =Ye1 +Yao + Yoz + Y1 + Yio + Vi3 + Yiu + Yo,
where
1
Yo1 = Y] Z Z 772'2771'23 Wiuwz‘zjz’

11,92,13,04 (dZSt) J2 (JQ ¢Z2)

1 2 1172 2

i1 ,ig ,i3 ,i4 (dzst)

1 2 1172 2
Ya3 = _W Z iy M Wi1i4 Wi2i4’

7,'1 77,'2 77,'3 77,'4 (d’LSt)

1
}/bl - _m Z Z i, 777423 Wl2112 Wi4j4 Wi1i47

7;1 ,ig 77;3 7i4 (dZSt) j4 (]4 #ZAL)
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}/;)2 = _m Z Z 771'2771‘23 Wi21i4 Wiljl Wi2j27
Q1,402,304 (dist) j1(j1701),J2(J2702)
{i1,51}# (42,52}
1
va3 = - m Z Z U 777,23 W221 i Wi2j2 Wi4j4 )
i1,i2,i3,04(dist) jo(joFi2),ja (JaFia)
{i2,52}#{4a,4a}
1
}/b4 = _W Z Z i 777,23 W’L'22i4 Wi1j1 Wi1i47
11,82,13,14 (diSt) Ji (]1 #i1)
1 2
}/C = _m Z Z U 77i3 Wiljl Wiz]é Wi4j4 Wi1i4'

i1,42,83,04(dist) J1,J2,J4
jli{i27i4}7]’2¢{il7i4}7j4¢{7;177;2}
We now show the two claims in (134) separately.

Consider the first claim of (134). It is seen that out of the 8 terms on the right hand side
of (196), the mean of all terms are 0, except that of the Y,2 and Y,3. Note that for any
1<i,j<n,i#7, E[ij] = Q;;(1 — Q;5), where €2;; are upper bounded by o(1) uniformly
for all such i, j. It follows

ElYal =35 O mandEWZJEWZ,)

w32 = el
11,02,03,04 (dist)

=—(1+o0(1)) v 32 Z Mig M, i i

’il,’iz,’i3,’i4(di5t)
Since forany 1 <i,5 <n,i#7,0<n; <CO;, Q;; <CO;0; and v < H9||%,

EYall <C(6ll)™ > 6763670, <Cl16]°/[16]3.

2171273 —
’il ,’iQ ,’i3 ,’i4 (d’LSt)

Therefore,
(170) E[Yaz]| < C16]°/[10113.
By symmetry, we similarly find
(171) E[Yas]| < C16]°/ 119113
Combining (170) and (171) gives

E[| Tl < C116]1°/110]17.

This completes the proof of the first claim of (134).
We now show the second claim of (134) . By Cauchy-Schwartz inequality,

4
Var(T1p) < C(Var(Yy:) + Var(Y,e) + Var(Yes) + ZVar(Ybs) + Var(Y.))
s=1

4
(172) < C(Var(Ya1) + Var(Yaz) + Var(Yas) + > E[V;2] + E[V7)).

s=1

We now show Var(Y,;), Var(Yys), Var(Yys), S20_ E[V;2], and E[Y?], separately.
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Consider Var(Yj1). Recalling E[Y;1] = 0, we write Var(Yy;) as

(173) vy D i EWE Wi, Wik Wiy
i1,82,05,14 (dist) j2(j2712) J5 (J5745)
il il %14 (dist)

In the sum, a term is nonzero only when one of the following cases happens.

o (A). {Wiyiys Wiy, Winin, Wiz i } has 2 distinct random variables.

* B). {Wiyiys Wiyjos Winir, Wi js } has 3 distinct random variables. While it may seem we
have 4 possibilities in this case, but the only one that has a nonzero mean is when W;
W

575"

2j2 —

For Case (A), the two sets {i1,i2,%4,72} and {é},i5,i}, 75} are identical, and so for two
integers 0 < by,be < land by + by =1,

3 4+4+2by T172+2b
W; WWQW,,WZ/ZJQ_W YW

1104 1174 1272

and so

E[W3,, Wiy, Wy, Wiy y] = E[WH 20 724 20] — B 20 [yy2420:)

1104 1124 1272 1174 1272

Note that for any integer 2 < b < 6,

where note that §2;; < C6;0; for all 1 <4,j <n, i < j. Recall that v ~ 10|12, and that 0 <
n; < C0; for all 1 < i <n.Combining these that, the contribution of Case (A) to Var(Y,;) is
no more than

(174) C(||9||1)_6 Z ZZGG1+19a2+29336Z3+102 9a4+1

ia(dist)is,j2 @

where a = (a1, az,as3,a4) and each qa; is either 0 and 1, satisfying a; + a2 + ag + a4 = 1.
Note that the right hand side of (174) is no greater than

C(10111)~  max{ [0 1011* 1613, 1011161} < Cllel*|e113/11613,

where we have used [|0]|* < [|0]|1]/6]]3.
Next, consider Case (B). In this case, {iz2, jo} = {7}, j5} and

Wi Wi, Wit Wiy = Wi, Wi Wi,

1174 1545 — YWiria "Viaga

and by similar argument,

(175) 0<E[W};, W2, Witi] < Oy, Qg Qg

114 12J2

Recall that ;; < C6,;0; for all 1 <i,j <n, i< j, that v ~ ||0]|3, and that 0 < n; < C¥; for
all 1 <4 < n. Combining this with (173), the contribution of this case to Var(Yg1)

—6 24+b1 pn2 2 140,
(176) <C(||9]l) > Zcezlaz 02 0:,0:,6% 0,01,

’le

i1,l2,i3,54(dist) Jo
i1, (dist)
where similarly b1, by are either O or 1 and b; + b, = 1. By similar argument, the right hand
side
<O - TIelTIoN* 16113 + 1611101 < Clo*1o13/101l1,

where we’ve used Cauchy-Schwartz inequality that ||0]|* < [|0]1]6]]3.
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Now, inserting (174) and (176) into (173) gives
(177) Var(Yar) < ClII0]1*10113/ 1013 + 10119113/ 11611] < Cllel*|6113/1101]1,
where we have used ||0]|1 — oo and ||@]|* < [|0]|1]|@]|3. This shows
(178) Var(Yar) < Cl10I1*10115/110]]1-

Next, we consider Var(Y,2) and Var(Y,3). The proofs are similar to that of Var(X,) of
Item (a), so we skip the detail, but claim that

(179) Var(Ya2) < C1011*10113/ 116111,
and

(180) Var(Yaz) < C[1011*10113/ 116111
Combining (178), (179), and (180) gives

(181)

Var(Ya1) + Var(Yoz) + Var(Yas) < C[|01416113/116]| + 1011015/ 10113] < Cllel*10113/11611:,

where we have used the universal inequality that [|0]|3 < ||0]|3.
Next, consider >%_ E[V;2]. For each 1 < s < 4, the study of E[Y;2] is similar to that of
E[X ,)21] in Item (a), so we skip the details. We have that both under the null and the alternative,

(182) E[Y3] < C[l6]"2/16113,
(183) E[Y3) < Cl161°10113/16111,
(184) E[Yy3] < ClI0]°(16113/16111,
(185) E[YZ] < Cllo]"/116]l3-
Therefore,

4
(186) S ER < Cllloll1613/ 161l + 161 /16111 < Clol° 116113/ 116]]-
s=1

Third, we consider E[Y;2]. The proof is very similar to that of E[X?] and we have that both
under the null and the alternative,

(187) E[Y2] < Cl611%19113/ 116113
Finally, combining (181), (186), and (187) with (172) gives
(188)

Var(Tip) < ClIOI1013/11011 + 101°1013/1011: + 101°1015/1013] < Clol 16113/ 1111:,

where we have used ||0]| — oo and ||0||> < ||0]|1. This completes the proof of (134).
Consider Item (c). The goal is to show (135). Recall that

Tie= Z Mia i Mia [(Mia — i )* My, — Tlia) |+ Wiy
i1 ,iz,ig,i4(di8t)
and that
7—n=v"2w1,.
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Plugging this into 77, gives

The= —UTl/Q Z MixMisMia ( Z Wm’z) ( Z Wm@> ( Z Wigjg)Wilu

i17i27i37i4(di8t) jz?éiz 623é7;2 jS?ﬁiS

1
=—n > Mis Mig Mia Wis jo Wi 0, Wia js Wiy -

il ,iQ ,i3 ,i4 (dzst)

JaFiz,laFiz, jsFls

By basic combinatorics and careful observations, we have

(W3, Wi, if jo = £y = i3, j3 = ia,
W25, Wiy, Wi, if jo = Lo, (j3, j2) # (i2,13),
(189) Wiy j, Wine, Wi s Wivi, = § Wi Wiye, Wi, if jo =13, jg =iz, 2 # i3,
W2 Wisia Wiy, if o = i3, jg = i2, j2 # i3,
( Wizjo Wise, Wiy j, Wiyi,, - otherwise.

This allows us to further split 77, into 5 different terms:
(190) Tie=Za+ 21+ Za + Zp3 + Ze,

where

1
Zg = _M Z ni177i377i4Wi32i3Wi1i4’

7;1 ,iz ,ig ,i4 (d’LSt)

1
Zbl = _m Z Z Niy MisMiy W’L22]2 W’szs Wi1i47
2‘172‘272‘372‘4((11.515) jg,(j;;,jz)?é(iz,ig)
1 2
Zb2 = _W Z Z iy Mis My Wigig VVizﬁz Wi1i47
11,02,03,54 (dist) Ja=i3,j3=12
laFis
1 2
Zpg = 3 Z Z i iz Mia Wi ia Wingo Wiriss
11,02,03,54 (dist) Lo=i3,j3=1>
JoFia
1
ZC = _m Z Z i1 iz iy Wi2j2 Wizf2 W’i3j3 Wi1i4 .
1,i2,13,i4(dist) J2,l2,53

JaFl2,j2 LlaFis,JsFiz
We now show the two claims in (135) separately. The proof of the first claim is trivial, so

we only show the second claim of (135).
Consider the second claim of (135). By Cauchy-Schwartz inequality,

Var(Ty.) < C(Var(Z,) + Var(Zy; ) + Var(Zyz) + Var(Zp3) + Var(Z.))

3
(191) <C(E[ZZ]+ > E[Z3]+E[Z2)).
s=1
Note that
* The proof of Var(Z,) is similar to that of Var(Y,) in Item (b).

* The proof of 32 E[Z2] is similar to that of >5_, E[X2] in Item (a).
* The proof of E[Z?] is similar to that of E[X?] in Item (a).
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For these reasons, we omit the proof details and only state the claims. We have that under
both the null and the alternative,

(192) Var(Z,) < C||6]|*[16115/1161l5,
3

(193) > E[Z5) < Cll6]3/110]]1,
s=1

and

(194) E[ZZ] < C61210113/1615.

Inserting (192), (193), and (194) into (191) gives
Var(T1e) < ClI101*110115/11011F + 10113/ 1011 + 10117116115/116115] < ClIo115/ 11011,

0[|* < |0]11]10113 and [|0]]; — oo. This proves

where we have used ||0]|3 < [|0]|* < [|0]]1,

(135).
Consider Item (d). The goal is to show (136) and (137). Recall that

Tiqg= —# Z 7711772-23 [(mi, — i )2 (M3 — Tin) ] - Wi, -
i1 ia,isyia (dist)
and that
n—n=v"2W1,.
Plugging this into 714 gives

Tha= —1}3% Z i, ( Z Wigjg) ( Z Wi242> ( Z Wi4j4)Wili4

i1,i2,i3,i4(dist) JaFiz LaFis JaFia

1
— E 2T T T
- U3/2 iy 771‘3 W’L2]2 le@ Wl4]4 VV1114 .
il,iz,ig,i4 (dzst)
JaFiz,laFiz, jaFls

By basic combinatorics and careful observations, we have

(195)
(W3 Wi, if jo = ly =14, j4 = i2,
WijQWﬁw if jo =la, js =11,
WijQWuﬁWima if jo = o, ja # i1, (2, Ja) # (i4,12),
Wiris Winea Wi Wisis = § Wiaja W2 Wisigs if U9 =4, 4 = io, ]2 # i4,
Wioe, W2 Wi if jo =4, ja = iz, {2 # ia,
WisisWine, W25 if jy =11, 2 # Lo,
Wi, isWiseo Wi juWivi,,  otherwise.

This allows us to further split 774 into 7 different terms:
(196) T1g=Uq1 + Us2 + Up1 + Upz + Upz + Upg + U,

where

1 2 1173
Ua=—"37 > Wi, Wi,

il ,iz ,ig ,i4 (dZSt)
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2 2
Uw2 = _W Z ZmlnhWth Wll“’

i1,02,i3,04(dist) J2

1
Un=-am 2. > WL Wi Wi,
i1,12,3,04 (dist) jo(j27Fi2),Ja(JaFia)
JaFin,(J2,52) #(iayi2)

Un=-5m 2. > Wiy, Wi Wi,
i1,92,03,04(dist) j2(j271a)
1
Uss = 03/2 Z Z il Winea Wi Wiy
1,02,13,14(dist) Lo (L2 7i4)
1

— § E 2 W - W 2
Ub4 - 3/2 Niv My lejQ lefz Wi1i47
v
il,ig,ig,i4(di3t) j27£62

1
- E E P W Wos W s W
UC__U3/2 Min Mg Wizga Wiglo Wiaga Winis-
il,iz,ig,i4(di8t)j2,€2,j4,WdiSt

We now show (136) and (137) separately.

Consider (136). It is seen that out of the 7 terms on the right hand side of (190), all terms
are mean 0, except for the second term U,o. Note that for any 1 <i,j <mn, i # j, E[Wé] =
Q;;(1 — €45), where €;; are upper bounded by o(1) uniformly for all such 4, j. It follows

E[UGQ] = _113% Z anl 7715 1232 [W12114]

i1,02,i3,84(dist) J2

_(1 + 0(1)) : '1)73/2 Z mlT]i’Qiz]‘QQilu.
i17i27i31i4(di5t)
J2

Under null, forany 1 <4i,5 <n,i#j,n;, = (1+0(1))0;, Qi = (1 +0(1))0;0; and v < ||0]|3,
E[Ua) = (I1010)7* Y 292 0:,07,0:,6, = —(1+o(1))]|6],
i1,02,03,04(dist) Jo
and under alternative, a similar arguments yields
(197) E[Uall < Clo]1*

This proves (136).
We now consider (137). By Cauchy-Schwartz inequality,

4
Var(Tyg) < C(Var(Ua1) + Var(Uaz) + Y _ Var(Uss) + Var(U,.))

s=1
4

(198) < C(Var(Ua) + Var(Uag) + Y E[UZ] +E[UZ)).
s=1

Note that

* The proof of U, is similar to that of Y,; in Item (b).
* The proof of U, is similar to that of X,; in Item (a).
* The proof of Ups, 1 < s <4, is similar to that of Xp; in Item (a).
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* The proof of U, is similar to that of X, in Item (a).

For these reasons, we omit the proof details, and claim that

(199) Var(Ua1) < Cll0]1*10115/110111,

(200) Var(Uqz) < C|16]|*[16113/1161]1,
4

(201) > E[UR] < Cllo|®l6113 /11611,
s=1

and

(202) Var(Ue) < C||0]1*(10]13/11013,

Inserting (199), (200), (201), and (202) into (198) gives

(203)

Var(Tia) < C[I0*10115/110111 + 101116113 /11611 + eI 10113/1161l + e[ 613/116115]
(204) < Clle]I°I6115/1101]1

where we have used ||0]| — oo and [|]|3 < ||€]|3. This proves (137).
We now consider Item (e) and Item (f). Since the proof is similar, we only prove Item (e).
The goal is to show (138). Recall that

(205) Toa= Y Wiy [0 — ) (Wi = 7ii2) (M, — 70iz) ]+ Qi
01,402,034 (dist)

and

(206) 7—n=v""?W1,.

Plugging (206) into (205) gives

Toq = _113% Z Tiy Mis i ( Z Wi1j1> ( Z Wi2j2) ( Z Wi3j3>§i4i1

i1,i2,03,i4(dist) J1 71 JaFia JsFis
1 ~
= U3/2 E : NixMis iy Wiljl Wi2j2 Wisjs Qi1i4 :

’il 77:2 ,ig,i4 (dzst)
J1#i1,J2F02,J3F s

By basic combinatorics and careful observations, we have

2 . L L

Wi1i2m3j37 1fjl_l[’2’j2_lll)

(207) Wi s We s Wi s = Wiz Wisjas if j1 =13,J3 =11,
21177 1272 7V 1373 W2 W if G = i da =i

iadg Y 1J10 J2 = 13,73 =12,

Wi, 5. Wiyj.Wiyj,, otherwise.
This allows us to further split 75, into 4 different terms:

(208) T2a = Xal + Xa2 + Xa3 + va



&9

where

1 ~
Xal = 7@ Z Z 77i277i377i4Wz‘21i2 mSjSQiliAL’

i1,92,13,i4 (dist) jaFis

1 ~
Xaz2 = _m Z Z NiaMisThia W12113 mzjz Qi1i47

i1 ,iz ,ig ,’i4 (d’lSt) j2 #ZZ

1 ~
. Z 2 : 2
Xag — _T/Q 772‘2772'3771'4Wi2i3m1j19i1i47
v

i1,92,13,i4 (dist) j1711

1 ~

Xp = _W § E Nia M Mia Wi js Wiz jo Wi, i iy -
11,02,i3,04 (dist) J1,J2,73
Juiek 6=1,2,3

We now consider the two claims of (138) separately. Since the mean of X1, X492, X3, Xp
are all 0, the first claim of (138) follows trivially, so all remains to show is the second claim
of (138).

We now consider the second claim of (138). By Cauchy-Schwartz inequality,

Var(Ty,) < CVar(X,1) + Var(X,2) + Var(X,s3) + Var(Xy))
(209) < C(E[Xz1] + E[X5] + E[X 3] + E[X{)).

We now consider E[X2 ] + E[X2)] + E[X?2], and E[X?], separately.
Consider E[X?2,] +E[X2,] + E[X2]. We claim that both under the null and the alternative,

(210) E[X2,] < Ca?|6)1"(16113/116113,
(211) E[Xz] < Ca?[0]]1015/19117,
(212) E[Xa5] < Ca?|6]1"]16]3/116113-
Combining these gives that both under the null and the alternative,
(213) E[Xo1] + E[X3] + E[XZ] < Ca?(|0]*[16]13/116117-
It remains to show (210)-(212). Since the proofs are similar, we only prove (210). Write
EXZ]=0v"? Z Z i i Mia i Mt i BIWE 1, Wi s Wit Wi Q1. Qi
i1,i2,i3,i4(di8t) jS»jé

i i1, (dist) Ja7is, 5715
Consider the term

W2 W s

; ’
373 "Vl i YV 1303

W2. W;

iliz
In order for the mean is nonzero, we have three cases

e Case A. Wy, = Wiy and Wy, = Wi, .
e Case B. Wy, j, = Wy, and Wy 3, = Wiy
 Case C. Wi, , = Wi, and W 4, # Wiy,

Consider Case A. In this case, {i},15, 15} are three distinct indices in {i1,42,43,j3}. In this
case,

w3

1337

W2, Wi =W3

. , .
3J3 175 1373 1102

W2, W;

Z1i2
where by similar arguments as before

0< E[W3 W3 : ] < CQZ'”'Q Q¢3J’3 < 09“ 9120“%3

2112 13731 —
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At the same time, recall that that 0 < 7; < C#0; for any 1 < i < n, and that ]ﬁml < Coadb;0;
for any 1 <i,j <n, i # j, where a = |A\2/\1| with A being the k-th largest (in magnitude)
eigenvalue of 2, 1 < k < K. By basic algebra,

1953 i M i, i, i, i, iy | < C®0;,0,,0,,02. 0,0, 0,10

i3 i4 374"
Note that in the current case, {i1,i2} = {45, j5} and {i3, j3} = {4}, 15}, so for some integers
0<b,bp<1land by + by =1,

0:,0,0:,07 01, 0,0

i3 14

J07% = 0,100 10202 0,07 07

1371y 3703714 1"

Recall that v =< ||0||3. Combining these, the contribution of Case (A) to E[X?2,] is no greater

than
cot(lof=t Y Y Y > 0Fez07 02 07,07

i17i27i37i4(di5t) iix j3(j3¢i3)b17b2(b1+b2:1)

where the right hand side < C'a? - ||6]|®|6]|$/]/0]|$. This shows that the contribution of Case
(A) to E[X?2] is no greater than

(214) ca?- ||0lFlle113/11915-
Consider Case B. By similar arguments,

2 2 _ 1176 2
Wi, Wi js Wiy Wi e = Wi, Wi

1172 112 © 7 13737

where

E[WE, W2, 1< CQ,i, ., < CO;,0;,0:,6;

1112 ’ngg 37

Also, by similar arguments,

193 i M i, i, i, i, iy | < C®0;,0,,0,,02. 0,0, 0,107

14 Ty’

where as W ;, = Wiry, and W, ;, = W, ;. , the right hand side
< Ca6;,67.6, 76526707

’
117 %2 713 J3 14 Z47

where 0 < c1, ¢z < are integers satisfying ¢; + c2 = 1. Recall v ~ ||#]|2. Combining these,
the contribution of Case (B) to E[X2]

LSV DD D DD DR UL A AU
i1,02,03,04(dist) iy Ga(jazia) br,ba(bi+bo=1)
where by [|0]|% < ||6]]1]|6]|3, the above term
< ca?[|o1* 1015/ 1913, 116110115 /116115] < Ca® |01 *16ll5/ 10113
This shows that the contribution of Case (B) to E[X?2] is no greater than
(215) cloltlens/nels.
Consider Case (C). In this case,
Wi, Wiy Wi, Wiy = W W2 Wik,
where by similar arguments,
E[W’ilz Wl%jg Wz2’lz/2] < CQiliz Qiz’,jc«s Ql/ﬁ’z < Ceileizeis 0j3 01/1 elé
Also, by similar arguments,

193 i M i, i, i, i, iy | < C®0;,0,,0,,02. 0,0, 0,107

14 3 1,47
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where as W, ;, = W, ., the right hand side
< Ca’6;,0;,0 7662 62

13 J3 a7 ty)

with the same ¢, ¢o as in the proof of Case B. Combining these and using v < |62, we have
that under both the null and the alternative, the contribution of Case (C) to E[X2]

<ca’(lof)" > > 020707011207 07 07 07,

11 712713 147
i],iz,ig,iz;(d’ist)j3(j37£7;3)

i) yib,il (dist)
where the right hand size
(216) < Co? - [||0]]"]10115/110117 + 101110115/ 1101151 < Ca® ([0l 16115/ 110113 -
Here we have again used [|0]|* < ||6]|1/|0]3.
Combining (214), (215), and (216) gives
E[XZ] < Ca®([l01%]10115/11011% + el 185/ 1611+ 101 10115/101°] < Ca2 16116115/ 1913,

where we have used ||0]|* < [|0]|1]|0]|3 and ||€]|| — oc. This proves (210).
We now consider E[X?]. Write

2 -3
E[Xb] =v Z Z Mia Mis Mia i 1l
7,'177,'2,2'372'4(d2'8t) ‘731]3
i} i i1 (dist) JaFis,J5 7
E[Wi, 5, Wiy jo Wiy s Wi 33 Wiy j3 Wiy 3 1€, 8, Qg
Consider
Wi Wiy i, Wiygy,  and Wi Wy Wi
Each term has a mean 0, and two terms are uncorrelated with each other if and only if the
two sets of random variables {W;, ;,, Wi, j,, Wi j, } and {Wy, 51, Wi, 5, Wi ;. } are identical
(however, it is possible that W, ;, does not equal to W ; but equals to W;, ;,, say). When
this happens, first, {i1,i2,73,71,72, 43} = {i1,%5, 15,1, J5, 3} Recall that |[Q;;] < Caf;6);
forall 1 <i,j <m,i#j,and that 0 <n; < C#; for all 1 <1i <n. For integers a; € {0,1},
1 <4 <4, that satisfy Z?:l a; = 3, we have

A o ai a» l+as a4 l1+as a P o
|7 i Wi Mig My ity i Qi | < Oy o T m o i | iy ||t

2nl4+a;  as, 1+as. a4, 14as, ae, 2 2
< Can0;, g, g -

3
Second,

E[Wi, j, Wiy jo Wiy Wit jt Wi i Wi o] = E[W2 . W2 W7

2J2 3J3 i1J1" " 1G22 ’szs]’
where by similar arguments, the right hand side
< O, iy o iy, < C03,05,04,05,0,0,,.
Recall that v ~ ||#]|2. Combining these gives
- 2tar 1+as, 24as, 1+as, 2+as, l+ag
RS LD DD DI DEED B A A A N A A G

G1,00,03,0a(dist) @4 Jij2ds @
J1#i1,J2 A2, s F s

where a = (a1, a2,...,as) as above. By the way a; are defined, the right hand side

4 2 1 2 1 2 1
<Ca®|[0)* O N011@ L3 0Nty - lelets - ol el alene /el
a



92

which by [|0|* < ||0]|1]|0||3, the term in the bracket does not exceed
Cmax{|[0]1*2, 101 101° 10113, 101101116115, 11110115} < ClelIz|1e]]5.
Combining these gives
(217) E[X7] < Ca?||0l1*|61I5/ 11915
Finally, inserting (213)-(217) into (209) gives
Var(Tza) < C?[|91P10113/10113 + 1011 16115/116115] < Ca®|l6]|* |15/ 16117
2a) S 3 1 3 1= 3 15

and (138) follows.
Consider Item (g) and Item (h). The proof are similar, so we only show Item (g). The goal
is to show (140). Recall that

(218) Toe = Z Ny iz Mis [(7712 - 77/7,2)2(7713 - 7713)] ' Qiﬂu
il,iQ,ig,i4(diSt)
and
n—n= v V2w,
Plugging this into 75, gives (note symmetry in fv))
1 ~
Toe = BT Z Miy MisMia ( Z Wm’z) ( Z Wi2€2> ( Z Wi3j3)Qi4i1
11,l2,i3,54(dist) JoFi2 LoFis JaFis

1 ~
= 0372 E Niy MisThis Wi2j2 Wi2g2 Wisjs Q1'11'4 :
il ,i2 ,ig ,i4 (dzst)
101,02 702,J3 713
By basic combinatorics and careful observations, we have

Wiy if j1 = 0y = i3, j3 = i2,
W i Wisias if j1 = Lo, (j2, js) # (is, ia),
(219) WisjosWise, Wisjs = S Wi Wise,, if jo = i3, j3 = 12, {2 # i3,
Wi Wisja. if by = i3, j3 = 12, jo # 13,
\ Wi, joWine,Wi,j,, otherwise.

This allows us to further split 75, into 4 different terms:
(220) Toe=Ya+ Yp1 + Yio + Vi3 + Yo,

1 ~
Yo= 7@ Z Z 77i177i377i4Wzii39i1i4’

i1,i2,03,i4(dist) jaFis

1 ~
)/i)l = _m Z Z 7711771377@4W12232 Wi3j3ﬂi1i47

i1,i2,93,i4(dist) JaFis

1 ~
YEJQ = _W Z Z 77i177i377i4Wi22z‘3 i2€2Qi1i47

il ,ig ,i3 ,i4 (dlSt) j2 #12

1 ~
Yis=—"3 S i Wi Wiaga Qi

i1,02,03,i4(dist) j1 701

1 ~
ch = _’U3/2 E § iy MisMiy Wi2j2 Wi2£2 Wisjs Qi1i4‘
i1,inis,ia(dist)  Jalosgs
JaFialaFiz,JaFis
JaFis,laFis, jaFls
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We now show the two claims in (140) separately. Consider the first claim. It is seen that out
of the 5 terms on the right hand side of (220), the mean of all terms are 0, except for the
first one. Note that for any 1 <i,5 < n,i # j, E[WZ‘?] < CQy;. Together with ;; < C6,6;,

Qi < Cabi;,0 < 1; < C; and v ~ ||0

1, it follows

1 ~
EHYGH < m Z 77i177i377i49i2i39i1i4

’il 7i2 7i3 7i4 (dzst)

1
<Ca- W Z 01'21 0@'291'23771'24;
1

il ,ig ,ig,i4 (dzst)

where the last term is no greater than C'v - [|0]|9/]|0||3, and the first claim of (140) follows.
Consider the second claim of (140). By Cauchy-Schwartz inequality,

Var(Ts.) < C(Var(Yy,) + Var(Ys) + Var(Yye) + Var(Yss) + Var(Y;))
(221) < C(Var(Ya) + E[V1] + E[Vy3] + E[Yy3] + E[Y7]).
We now study Var(Y;). Write

Var(Yo)=v™® Y nunaminignigng BIOVE,, — BV, DOV, —EWE D] - Qi Q.
il,iQ,i3,i4(diSt)

PRSI S
1} ,1%,1%,3) (dist)

Fix a term (W2, —E[W2, 1) (W3, —E[W3,]). When the mean is nonzero, we must have
203 23 2%3

1213

{ig,i3} = {i5,45}, and when this happens,
E[(Wzg - E[Wi3 ])(sz; - E[szzg])] = Var(Wi?’ )-

213 213 213
For a random variable X, we have Var(X) < E[X?], and it follows that
Var(W2, ) <E[WP, ] <E[W?2,.],

1213 i2l3 1213
where we have used the property that 0 < W2, < 1. Notice that E[W2; ] < C0;,60;,, and

recall that v < ||6]|3, §~2¢j < Cab;0; and 0 < n; < C0; for all 1 <4 < n. Combining these
gives

(22)  Var(Yo) <Ca’(I6IT%)- D0 OL0u0L0L0%67 < Ca?ll0) o1/ ol
i17i27i3,i4(di8t)
i), (dist)
Additionally, note that

* The proof of Yy, Y52, and Y33 is similar to that of X,; in Item (e).
* The proof of Y, is similar to that of X} in Item (e).

For these reasons, we skip the proof details, but only to state that, both under the null and the
alternative,

(223) E[YA] < Co?|0)°(10115/110]]1,
(224) E[Y3] < Ca?|0)*2)10]13/110]13,
(225) E[Y3] < Ca?|0)2110]13/110]13,

and therefore,

(226) E[YA] +E[Yi] + E[Yiz] < Ca?|10]%[10113/16]1-
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At the same time, both under the null and the alternative,

(227) E[YZ] < Ca?-|0]|16113/116113-

Inserting (226) and (227) into (221) gives

E[T5.] < Ca?[||0]1*10113/116113 + 10110113 /11011 + 101 1013/116115) < Ca?(|0]1®(16113/116 11

This proves (140).
Consider Item (i). The goal is to show (142). Recall that
(228) Fo= > 0umiaiais |6 — fin) (i — i) iy — 73i3) (0, — )]

il 7i2 ,ig ,i4 (d’LSt)

and that for any 1 <7 <n,

n
=o'/ Z Wij.
J#i
Inserting it into (228) gives
Fa = Z iy Mix iz iy [(nll - 7721)(7712 - ﬁlz)(n’ba - ﬁis)(n’iz; - ﬁ’u)] ’
i17i27i3,i4(di8t)

By basic combinatorics and basic algebra, we have

W; Wz;zu if (Zhjl) = (j2722>7 (237J3> <J47Z4 s
Wi, Wi if (i1, 1) = (43, 13), (i2, J2) = (Ja, ia),
Wé Zé:lg if (i17i4) = (j47i1)7 (127]2) = (]3,13 s
WiiZQW13]3W7f4]4’ if Eihjlg = E]27i2;7 EM,JS% i 523714
L . . L — W W1232W24]47 if il)jl =\J3,13),\J4, ]2 12,

Wh]l sz]2 M/Z3]3WZ4J4 - Wj W12j2 W’Ls]u lf (Z-l,jl) — (j4,i4), (]37]2) 7& (22,13 ,
Wé W1131W14J4’ if (iZ,j2) - (j3>i3>> (347]1) 7é (Zh 14),
Wﬁ Wi s Wisja if (42, j2) = (ja,14), (43, J1) # (i1,13),
W1324W11J1W1212’ if (Z3 ]3) (]4724)7 (]23]1) 7& (Zlv'LQ
Wi isWisisWisisWisias otherwise.

By symmetry, it allows us to further split F; into 3 different terms:
(229) F =3X,+6X,+ X,
where

Xa = U72 Z Ny Mix Nz My WZ2112 W12314’

il ,iQ,ig ,i4 (dzst)

-2
Xb =0 Z Z Nis Mig iz iy Wzlzz W13]3 VVMJM
11,400,034 (dist) Js:Ja
(J3,44)#(14,33)
and
Xe=v?  }] Yo i Wi, Wi Wiaju Wi

i1,02,08,0a(dist)  J1,J2,Js,J4
JrFie,k£=1,2,3,4
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We now show the two claims in (142) separately. Consider the first claim of (142). Note
that E[X}] = E[X.] = 0. Recall that both under the null and the alternative, for any i # j,
E[W2] = Q;(1 — Qij) < C;6;, and that 0 < n; < C6;, and that v < [|6]|7, Therefore,

0<E[XJJ<v™? Y 0,0:,0:,0:,0:,0:,0:,0;, < C|6]°/]0].
i17i27i37i4(di8t)
Inserting into (229) gives
E[|F1]] < Cl191°/116]11,

and the first claim (142) follows.
Consider the second claim (142) next. By (229) and Cauchy-Schwarz inequality,

(230) Var(F;) < C(Var(X,) + Var(Xy) + Var(X,)) < C(Var(X,) +E[X?] + E[X?]).
We now consider Var(X,), E[X?], and E[X?], separately. Note that

* The proof of Var(X,) is similar to that of Var(X,) in Item (a).
* The proof of E[X?] is similar to that of Z§:1 E[XZ,] in Item (a).
* The proof of E[X?2] is similar to that of E[X?] in Item (a).

For these reasons, we omit the proof details and only state the claims. We have that under
both the null and the alternative,

(231) Var(X,) < C|10]®10115/116]1%.
(232) Var(X7) + Var(Ya3) < C[|0]*10115/110]11,
(233) E[XZ] < C|l6]5*/110]|1,

Finally, inserting (231), (232), and (233) into (229) gives that, both under the null and the
alternative,

Var(F1) < ClI01°10115/110115 + 10110115/ 1911F + 19115%/116111] < Cllel®|lol15/191]3,

where we have used ||0]| — oo and ||0]|3 < [|0]|? < ||]]1. This gives (142) and completes the
proof for Item (i).
Consider Item (j). The goal is to show (143). Recall that

Fo= > manimi [0 — in)* (i — 7i) 00y — 7))
i1,ia,i3,ia(dist)
and that
n—n= v V2w,
Plugging this into F}, we have
F=v? Y > Mia i, i W s Wi o, Wi Wi

11,02,i3,14(dist) J1,81,52,5a

J170 b F i, Je Fin, JaF s
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By basic combinatorics and basic algebra, we have

(W32, Wi if j1, 01 =iz, jo = i1,
Wi§i4Wi2j27 if j1,01 =14, js = 11,

32 if (j1,J2) = (i2,41), (€1, ja) = (44,11),
Wj Wj if (61,72) = (i2, 1), (j1,7a) = (ia, 1)
Wiéuvvzézz if (j17j4) = (i4’i1)a (61 ]2) (szil)
WiéuWiéig’ if (617j4) 7 (i4)7;)1)) (.71 .72) (ZQvil)v
Wi Wi, if j1 =01, (j2,Ja) = (ia,72),

Wi1j1 Wilfl Wizjz Wi4j4 = W?Zg W;;] WZ4]47 if ] = B9, jo = i1, 1 75 io, iy,
W2, Wio Wi, if 1 = d9, jo = i1, f1 7 ia, i,
Wzi“W“]lWth, if€1 :i4,j4:i1,€1 75@'2,14,
ng Wi 0, Wi if j1 =4, ja =1, 51 # i2, 14,
Wf Wi s Wiie,s if j1 # 01, (J2,ja) = (ia,172).
Wthszzuw if j1 = 01, (j1,J2) # (i2,11), (1, Ja) # (ia,i1),
Wi isWie, Wiz io Wi otherwise.

By these and symmetry, we can further split F}, into 7 different terms,
We decompose

(234) Fy=2Y3 +4Ya2 + Ye3 +4Yy + Yo + Y3 + Yo,

where

Yal = U_2 Z Z 7722 777;23,,714 Wll’lg W7’4.]47

i1,00,i3,i4(dist) ja,jaFia

_ 2 Z 9 2 1172
Ya? =v Mis My iy Wzlzz Wzlu’

il 72'2 72'3 72'4 (dzst)

Yas=v2 > > mumim Wi, Wi,

i1,99,13,i4 (dist) J1,J170

Y}ﬂ = U_Q Z Z 77@'2772'237714‘/‘/1112 Wlljl Wl4]47

’il,’ig,’i3,i4(d’ist) . ]:1,,7:4 .
J1#i1,JaF s

YE)Q = U_2 Z Z 7]@'277537724W1214W11]1W bys

i1,i2,03,d4(dist)  J1,01

jl7‘€17£7:1
Voo — 2 e W2 Wi Wi
3 =" Nix iy Niy i1g1 VY 82J2 YV iagas
11,42,43,54 (dist) J1,J2,J4

J1F01,Je F 2, JaF b

= 72 2 . . . .
YVC =v Z z : ni?ni3ni4 Wi1j1 Wi1£1 I/Vlzjz W7«4]47
i1,92,13,i4(dist) J1,81,52,Ja
J1l1¢{i1 02,04}
Jo@{i1,04},5a ¢ {i1,0a}

We now consider the two claims in (143) separately. Consider the first claim. It is seen that
only the second and the third terms above have non-zero mean. Recall that both under the
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null and the alternative, for any ¢ # 7, IE[W%] =01 — Q) <CH;0;, 0 <n; < CH;, and
that v < ||6]|2. Tt follows

1370 =

(235) 0<E[Ya]<v™? Y 0:,670i,-6;6:,0,, <C|6]*/[I6]7.

i1,09,i3,i4 (dist)
and
(236) 0<E[Yas)<v™ Y > 605,670, 6:,6.,050,, <Cl6]°/|16]3.
i1,00,i3,04(dist) J1
Combining (235), (236) with (234) gives
E[| B[] < ClI61°/19111 + 1611°/ 16113 < Cllel° /11611,

where we’ve used the universal inequality that ||0||2 < ||6]|1. It follows the first claim of (143).
We now show the second claim of (143). By Cauchy-Schwarz inequality,

Var(F,) < C(Var(Ya1) + Var(Ya2) + Var(Yas) + Var(Yy) + Var(Yye) + Var(Yys) 4+ Var(Ye))

(237)
< O(Var(Yar) + Var(Yag) + Var(Yas) + E[V2] + E[Y3] + E[YZ] + E[V2]).

We now consider Var(Y,1), Var(Yas) + Var(Yas), E[Y2] + E[YA] + E[Y,3], and E[Y?2],
separately. Note that

* The proof of Var(Y,;) is similar to that of Var(Y,) in Item (b).

* The proof of Var(Y,2) and Var(Y,3) are similar to that of Var(X,) in Item (a).
* The proof of 3_3_, E[Y;*] is similar to that of 3°7_, E[X2] in Item ().

s The proof of E[Y?] is similar to that of E[X?] in Item (a).

For these reasons, we omit the proof details and only state the claims. We have that under
both the null and the alternative,

(238) Var(Ya1) < C|10]1*[10113/110113-
(239) Var(Ya2) + Var(Ygs) < C|10]1*110]15/110]11,
3
(240) ZE[Yi] <CloN*e15/1613,
s=1
(241) E[Y,2] < C|6]°)|6]15/116]/1-

Finally, inserting (238), (239), (240), and (241) into (237) gives
Var(Fz) < C[10]1613/110113 + 1116115/ 16111 + 161111613/ 1611F + l1611°l1e115/11e1l1]
(242) < clol*iens/1els,

where we have used ||0]|3 < [|0]|2 < [|0]]1, |0]] = oo and [|0]|* < [|0]|1]|0]|3. This completes
the proof of (143).
Consider Item (k). The goal is to show (144) and (145). Recall that

FC = Z 7722277124 [(7711 - ﬁi1)2(ni3 - ﬁia)Q] )

1;1 ,ig ,ig ,i4 (dlst)
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and that 7 — n = v~ Y/2W1,,. Plugging this into F} gives

_ 2 2271, . . . .
F.=v E E 77@'277@'4W11]1 Wi e, W13J3W2343‘
i1,l2,i3,54(dist) J1,81,2,]a
J1741 1701, J3F 03 03 Fis

By basic combinatorics and basic algebra, we have

Wi, if j1 =01 = 11,73 = {3 =11,
L@an if Gy = by = i1, 01 = i3,
Wiéigwilﬁla if j3 =43 =11,j1 =13,
Wi§i3Wisjg, if j1 =41 =13,03 =14,
ngSWisew if j1 =6y =13, j3 = i1,
WZ’UIWZZJJ if j1 =1, js = {3,

Wi1j1 Wilfl Wi3j3 Wiafs - W’Lljl WZ3]3W3437 if = b 7é 13,73 7é {3,
W Wi W, if g = £5 £ i1, 1 £ 01,
Wé Wi e, Wi, if j1 =13,J3 =11,
We, WHJIVV%M, if {1 =i3,03 =14,
IV?QMQHJV@&, if 01 = i, j3 = i1,
W2, Wi Wi, i 1 =g, 03 = i),
Wi Wit Wi is Wit otherwise.

By these and symmetry, we can further split F3 into 6 different terms:
(243) Fc = Za + 4Zb1 + Zb2 + 2ch + 4Zc2 + Zd)
where

Zy=0v"2 Z 77127714W:§W

i1 ,iz ,ig ,i4 (dZSt)

.2
Zbl_v E E 7712777,4 2113 lsjs’

i1 ,iQ ,ig ,i4 (dZSt) ]47]47914

Zbg = ’U_2 Z Z 77127714 VVZ21]1 Wlijs’

i1,02,13,04 (dist) J1,J1701,73,03 703

— 2 Z 2 { 2
Jel =0 77127714‘/1/11]1 W13J3W3€a’
il,i27i3,i4(di5t) . ]1 7j‘37£3‘
J1 ¢{11 713}7J37£3

) 2
Zep =10 g E 77227714 W’LllgWil‘el Wisfw
7:1,7:2,7:3,7:4((17;St) 417Z3

L1F#41 L3 Fig

) 2.2
Zg=v E E Niy iy Wiljl Wilfl Wisjs Wiafs'
i1,02,03,04(dist)  J1,01,73,¢3
171,537 s

J1 76 Fi3,j3,037%1

We now show (144) and (145) separately. Consider (144) first. It is among all the 6 Z-
terms, only Z, and Z;5 have non-zero means. We now consider E[Z,] and E[Z;»] separately.
First, consider E[Z,]. By similar arguments, both under the null and the alternative,

E[WH, ] < COQ;,i, < CH;, 065,

2113
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Recalling that 0 < 7; < C0; and v < ||0||?, it is seen that
(244) E(Z)<C(l0)™ > 62676:,0, < ClOI/II6IIF.

19714
in i yis,ia (dist)
Next, consider E[Zys]. First, recall that under the null, Q = 06’, v =1/, (Q — diag(2))1,,, and
n=v"12(Q — diag(Q)1,. It is seen v ~ ||0]|2, 7; = (1 + 0(1)8;, 1 < i < n, where o(1) = 0
uniformly for all 1 <7 < n, and for any i # j, E[W7] = (1 + 0(1))6:6;, where o(1) — 0
uniformly for all 1 <4, 5 < n. It follows

(245) E[Zp)=v? ) > mEniEWE W,
i1,02,03,04(dist) j1,J1711,]3,43F s

which
~(olt Y > 04670,07.0,,05, ~16]|".

i1,02,i3,04(dist) J1,51701,J3,J3 713
Second, under the alternative, by similar argument, we have that v < ||0|2, 0 < n; < C0; for
all 1 <¢<n,and E[WZ] < C0;0; forall 1 <i,j <n,i# j. Similar to that under the null,
we have
(246) 0 < [E[Zy]| < C||6]*.
Inserting (244), (245), and (246) into (243) and recalling that the mean of all other Z terms
are 0,

E[F3] ~ ||0]|4, under the null,

and

E[F3] < C||6||*, under the alternative,

where we have used ||0||; — oo. This proves (144).
We now consider (145). By Cauchy-Schwarz inequality,

Var(F,) < C(Var(Z,) + Var(Zy ) + Var(Zy2) 4+ Var(Ze1) + Var(Ze) + Var(Zy))
(247) < C(Var(Z,) + E[Z})] + Var(Zy) + E[Z2] + E[Z5,] + E[Z]]).
Consider Var(Z,). Write
Var(Zo)=v™ > mg g g BIOVEG, — EWR D (Wi, — WD)

a4k i
il,iz,ig,i4(di5t)
1} ,1%,1%,3) (dist)
Fix a term (W}, — E[Wﬁm])(Wizs - E[Wfl‘fle‘]) When the mean is nonzero, we must have
{i1,13} = {i}, 45}, and when this happens,
E[(Wiys, — EIWi, D (Wi, — E[W ;1)) = Var(W;

1113 A 7,11'3)'
For a random variable X, we have Var(X) < E[X?], and it follows that
Var(Wi, ) <E[WE, | <E[W?, ],

2113 1103 1113
where we have used the property that 0 < Wi21i3 < 1; note that E[I/Vilg] < (C0;,0;,. Recall
that v < ||]|? and 0 < 1; < C¥; for all 1 < i < n. Combining these gives

(248)  Var(Z,) <C(lOI%)- ) 65.67.67,676:.6, < ClIOI°/ 1615

1271474 Vi) i3 =
7:1,7:2,Z'3,Z'4(d’i8t)
i0,i%, (dist)

We now consider all other terms on the right hand side of (247). Note that
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¢ The proof of E[Zgl] is similar to that of Y, in Item (b).

* The proof of Var(Zys) is similar to that of X, in Item (a).

s The proof of E[Z?] and E[Z2)] are similar to that of X}, in Item (a).
¢ The proof of E[Zfl] is similar to that of X in Item (a).

For these reasons, we skip the proof details. We have that, under both the null and the alter-
native,

(249) E[ZA) < Cl0)*10113/116113,
(250) Var(Zy) < C|0]%/116]/3,
(251) E[Z3] +E[Z3) < C|0]I*°/)10]3,
and

(252) E[Z3] < C|0]*%/116]]1-

Inserting (248), (249), (250), (251) and (252) into (247) gives
Var(E.) < Cl6]%/16115 + 161 /1611% + 161° /116113 + 11611 /11614
<Cllo)*/10113,
which completes the proof of (145).

G.4.9. Proof of Lemma G.10. Define an event D as

D={[V—o|l<[0]l1 -2},  for log(0]1) <zn<[|0]]1.
We aim to show that
(253) E[(Qn —Q5)% - Ipe] = o(||0]]%).
First, we bound the tail probability of |V — v|. Write
V—-v= QZ(AU — QU)
i<j
The variables {Aij — Qij}1§¢<j§n are mutually independent with mean zero. They satisfy

|Aij — QU| S 1 and Zi<j Var(Aij — Qz]) S Ei<j Qij S 1%91n/2 S ||9||%/2 Applylng the
Bernstein’s inequality, for any ¢ > 0,

2
P<‘2 ;(Aij - Qw)‘ > t) < 26Xp<—2|wﬁ%/it/3>.

We immediately have that, for some positive constants C,Cs > 0,

2exp(—”(9)ﬁt2), when z,[|0]]1 <t <[|6]]1,

(254 PV —v| >t) <

) ( >%) 2exp(—Cat),  whent > ||0]3.
Especially, letting ¢t = x,,||0]|1, we have
(255) P(D°) < 2exp(—C1z2).

Next, we derive an upper bound of (Q,, — Q})? in terms of V. Recall that V is the total
number of edges and that @), = Ei,j,k:,@(dist) M My Mo My;, where M;; = A;; — ;0. If
one node of 7, j, k, £ has a zero degree (say, node 7), then A;; = 0 and 7); = 0, and it follows
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that M;; = 0 and M;; M, MyM,; = 0. Hence, only when (4,7, k, /) all have nonzero de-
grees, this quadruple has a contribution to @),,. Since V' is the total number of edges, there
are at most V' nodes that have a nonzero degree. It follows that

Qn| <CV™.
Moreover, Q) = > . ok 0(dist) M;;M;,CM,;}M&, where M{;' = ﬁij + Wi; + 0;;. Re-write

M} = Aij —minj + ni(n; — 7;) + n;(nj — 7). First, since n; < C0; and n; < CO; (see
(81)) |M*| < Aj; + CO0; + CO;|n; — ;| + COj|n; — 14|. Second, note that 7; equals to

v~ 1/2 times degree of node 4, where v = ||0]|? according to (80). It follows that |r; — 7;| <
(0 + 10]|71V). Therefore,

|M5] < Aij 4+ CO:0; + C|l0)|T'V (0; + 6).

We plug it into the definition of @}, and note that there are at most V' pairs of (7, j) such that
A;; # 0. By elementary calculation,

Qnl < C(VE+l0]3).

Combining the above gives
(256) (Qn = Qr)* <205 +2(Qn)* < C(VE+[0]1D).

Last, we show (253). By (256) and that V8 < Cvd + c|\V — v\g, we have

E[(Qn — Q;,)% - Ip:] < CE[|V —vf* - Ip:] + C(v* +[|6]]}) - P(D°)

(257) < CE[|V —v[®- Ip:] + C||0]]1° - P(D°),
where the second line is from v < ||6]|2. Note that x,, > +/log(||f]|1). For n sufficiently
large, 22 > 17C; *1og(]|0||1). Combining it with (255), we have
(258) 16]13° - P(D€) < [[0]11° - 2¢= = < 0116 - 2¢ 1719 = o(1).

We then bound E[|V — v|® - Ipe]. Let f(t) and F(t) be the probability density and CDF of
|V , and write F'(t) =1 — F(t). Using integration by part, for any continuously differen-
tiable function g(t) and = > 0, [>° g(¢) f(t)dt = )+ [g t)dt. We apply the
formula to g(t) = t® and & = 2,,||0||1. It yields

[e.9]

E[[V — of* - Ipe] = (2 ]0]]1)° - P(DC) + /0 $¢7- PV —o| > t)dt

=I+11.
Consider I. By (258) and x,, < ||0]]1,
I<[|6]3° - P(D°) = o(1).
Consider I1. By (254), (258), and elementary probability,
IT <861} - P(wnllll < [V — 0| < [10]7) + / 8t7-P(|V —v| > t)dt

[F

< Cljo|* - B(De) + /” B2
=o(1),
where in the last line we have used (258) and the fact that [>° tTe=C2tdt — 0 as © — oo.
Combining the bounds for [ and I gives
(259) E[|V —v[® - Ip:] =0(1).
Then, (253) follows by plugging (258)-(259) into (257).
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TABLE G.4 _
The 34 types of the 175 post-expansion sums for (Q5, — Qy,).

Notation # N; (N, Nﬁ: Ny/)  Examples Ny
Ry 4 1 0,0,3) 2 e t(dist) Tig Wik WieWei 5
Ry 8 1 0,1,2) 2, ke l(dist) Tig Lk WeeWes 4
R3 4 2 e t(dist) Tig Wik eeWes 4
Ry 8 1 0,2,1) 2 ik, 0(dist) Tig Lk e Wei 3
R; 4 2 i gk 0(dist) Tig Lk WieSei 3
Rg 4 1 (0,3,0) 20,5,k e(dist) Tig koS 2
Ry 8 1 (1,0,2) 2.4,k e(dist) Tig Ok WrkeWoi 5
Ry 4 igike,t(dist) Tig WikOkeWei 5
Ry 8 1 (1L, 1 2.,k dist) Tij Ok teeWes 4
Ry 8 22,k dist) Tig Lk Wiees 4
Ry 8 2 i, k,0(dist) i WikOkeSei 4
Ryo 8 1 (1,2,0) 2 i,k 0(dist) Tij Ok e Ses 3
Ry3 4 >0,k 0(dist) Tig 2k Okee; 3
Ry 8 1 (2,0, 1 2.4k, b(dist) TiiOjkOkeW i 5
Ry5 4 .5 k,0(dist) Tij Ok Wredei 5
Ryg 8 1 (2.1,0) 2.,k b dist) Tij Ok OkeS2ei 4
Ry7 4 20,5,k 0(dist) Tk ke00i 4
Rig 4 (3,0,0) 24,k 0(dist) Ti70jkOkeOt 5
Ryg 4 2 0,0,2) 2 ik (dist) Tig Tk WeeWei 6
Rag 2 ijk,0(dist) Tig Wik TkeWer 6
Ro1 4 2 (0,2,0) 2.kt dist) Tig Tk oS 4
Rao 2 D gk e(dist) Tig YikTreQei 4
Rog 4 2 (2,0,0 22,5,k b(dist) TiiTjkOkeOr: 6
Ry 2 i e,b(dist) TigOjkThedti 6
Ros 8 2 O, 1,1) 2 ik, 0(dist) Tig Tk e Wei 5
Rag 4 2 ik, 0(dist) Tig kT Wei 5
Ro7 8 2 (1, 1,0 2,k b(dist) Ti T ikOkeS2i 5
Rog 4 2.,k 0(dist) TigOjkTke e 5
Rag 8 2 (1,0, 1) 2.5,k b(dist) TisTikOkeWei 6
R3p 4 i ik 0(dist) Tig Ok TeWei 6
R3; 4 3 (0,0, 1) 2.kt dist) TigTikTReWes 7
R3o 4 3 0, 1,0 2,5,k 0(dist) Tig T kTR i 6
R33 4 3 (1,0,0) 2,k 0(dist) Tig TikTkede 7
R34 14 (0,0,0) 2 ik b(dist) TisTikTRET L 8

G.4.10. Proof of Lemma G.11. There are 175 post-expansion sums in (Q* — Q7). They
divide into 34 different types, denoted by R;-R34 as shown in Table G.4. It suffices to prove
that, for each 1 < k < 34, under the null hypothesis,

(260) B[R] =o(6]1"),  Var(Ry) = o(|[6]),
and under the alternative hypothesis,
(261) E[Ry]| = o(a(|60]*),  Var(Ry) = O(||6]|° +a°[|6]1%10]13)-
We need some preparation. First, recall that 7;; = —{>(7; — 1;)(7}; — n;). It follows that
each post-expansion sum has the form
v\ N#
(262) (V> Z a;jbjkCredy;,

3,5,k 0(dist)
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where a;; takes values in {ﬁij, Wij, 0ij, — (i — mi)(nj — n5)} and bj, cre, dg; are similar.
The variable % has a complicated correlation with each summand, so we want to get rid of
it. Denote the variable in (262) by Y. Write m = N; and

(263) Y:(%)mx, where X = S aybjrced.
i3k, 0(dist)

We compare the mean and variance of X and Y. By assumption, /log(||6]]1) < ||0]|1/]|6]/?.
Then, there exists a sequence x,, such that

Viog([l0]l) <z < [10]11/]10]?,  as n— oc.
We introduce an event
D={|V ~v| < [6]zn}.

In Lemma G.10, we have proved E[(Q,, — Q)2 - Ip<] = o(1). By similar proof, we can show:
as long as |Y — X| is bounded by a polynomial of V" and ||0||1,

(264) E[(Y — X)%-Ip] =o(1).

Additionally, on the event D, since v < |02 > ||6]|12,,, we have |V — v| = o(v). It follows
that @ < W—;U' < C||0|| 7'z, = o(1). For any fixed m > 1, (1 +2)™ <1+ Cx for =
being close to 0. Hence, |1 — | < C|1 — 3| < C||0[|; '2n = o(||6]|72). It implies

(265) Y — X|=o0(]|0]|7?) - |X], on the event D.
By (264)-(265) and elementary probability,
E[Y - X]| < [B[(Y — X) - Ip]| + [E[(Y - X) - Ip:]

<o(6]7*) - E[IX| - Ip] + VE[(Y — X)? - Ip]
<o([19]7*)VE[X?] + o(1),
and
Var(Y) < 2Var(X) + 2Var(Y — X)
Var(X) + 2E[(Y — X)?]
Var(X) 4 2E[(Y — X)%- Ip] +2E[(Y — X)?- Ip.]
< 2Var(X) +o([[6] ) - E[X?] + o(1).

<2
<2
=2
2

Under the null hypothesis, suppose we can prove that
(266) E[X?] = o([0]%).

Since E[X?] = (E[X])? + Var(X), it implies |E[X]| = o(]|0]|*) and Var(X) = o(||0]|®).
Therefore,

E[Y]| < [E[X]| + [E[Y — X]|=o(|l6]*),
Var(Y) < CVar(X) + o(||0]| ™) - E[X?] 4+ o(1) = o(||0]|®).
Under the alternative hypothesis, suppose we can prove that

(267) E[X])|=0(?0]I°),  Var(X) =o(]|6]|° + a®||0]*||0]]3).
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Since E[X?] = (E[X])? + Var(X), we have E[X?] = O(a*||6]|*?). Then,
E[Y]] < O@@?]|0]°) + o(161I7%) - O(a?[10]1%) = o(a™[|6]%),
Var(Y) < o([|0]|° + a°[l0]*]16115) + o(161I7*) - O(a*[10]]*%) = o([|6]* + ®[|0]1°[101]3)-

In conclusion, to prove that Y satisfies the requirement in (260)-(261), it is sufficient to prove
that X satisfies (266)-(267). We remark that (267) puts a more stringent requirement on the
mean of the variable, compared to (261).

From now on, in the analysis of each Ry of the form (262), we shall always neglect the
factor (%)N"‘, and show that, after this factor is removed, the random variable satisfies (266)-

(267). This is equivalent to pretending
Fij = — (0 — i) (75 — 1)
and proving each Ry satisfies (266)-(267). Unless mentioned, we stick to this mis-use of

notation 7; in the proof below.
Second, we divide 34 terms into several groups using the intrinsic order of W defined

below. Note that 7;; = —(7; — 1:)(7]; — 1) dij = ni(nj — 7j) +n;(ni — i), and 7; — n; =
% ZS# W;,. We thus have

Fij = —% (Z Wis) (%: th>, 0ij = —\}6772‘ (; th) - \%m‘ <; Wz‘s)-
t#] t#£] s#i

s#i

Each 7; is a weighted sum of terms like W;Wj;, and each §;; is a weighted sum of terms
like Wj;. Intuitively, we view 7-term as an “order-2 W-term" and view d-term as “order-1
W-term." It motivates the definition of intrinsic order of W as

(268) Ny = Nw + N5 + 2N;.
We group 34 terms by the value of N}, ; see the last column of Table G.4.

G.4.10.1. Analysis of post-expansion sums with Ny, < 4. There are 14 such terms, includ-
ing Ra-Rg, Ro-R13, R16-R17, and Ra1-Roo. They all equal to zero under the null hypothesis,
so it is sufficient to show that they satisfy (267) under the alternative hypothesis. We prove
by comparing each Ry to some previously analyzed terms. Take Rg for example. Plugging
in the definition of 7;; and 0;; gives

Ro= > (i — )i — )iy — n3)mw + 15 (ke — 7)) Qe W
i,j.k,E(dist)
= Rogq + Rop,
where

Roa= > melhe- [ — 1) (7 — 1;)* Wi,
0.4k (dist)

(269) Roy=" > 0%~ [ — m) Gy — ) (i — i) W),
i,k 0(dist)
At the same time, we recall that 77 in Lemmas G.8-G.9 is defined as

Ti= Y 0iluouWu= > 0000k Wie
i,4,k,0(dist) 1,5,k 0(dist)
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In the proof of the above two lemmas, we express 17 as the weighted sum of 77,-714; see
(130). Note that 77, and 774 in (130) can be re-written as

Tig= Y [eliy =) = ng)mw) e (7 — 1:)] Wie
ivj.k,E(dist)

= > mme [ — ) (7 — 1) * W),
ivj.kE(dist)

Tia= 3 ey — )]G — 0|l G — ) W
4,5,k L(dist)

(270) = > mmene - [ — mi) (i — 1) (ke — me) Wae).
4. E(dist)

Compare (269) and (270). It is seen that Rg, and Tlthave the same structure, where the
non-stochastic coefficients in the summand satisfy |7, Qpe| < C’a@,%ﬂg and ’771%775‘ < 09205,
respectively. This means we can bound |E(Ry,)| and Var(Ry,) in the same way as we bound
|E[T14]| and Var(T14), and the bounds have an extra factor of v and o2, respectively. In
detail, in the proof of Lemmas G.8-G.9, we have shown

Cle)°16113
BTl <o, Var(ria) < GRS,
It follows immediately that
Co?[19]1°1613
[E[Rga]| < Cal|6]|* = o(a?6]|°),  Var(Tia) < W‘% =o([l0]®).
Similarly, since we have proved
C|61° cleltels
< 08 var(n,) < PEIE
16117 16117
it follows immediately that
Cal|6]° Ca?||6]1*1|9]$
Bl < S = o(al6l). Var(Ror) < SHEEIS ool
1 1

This proves (267) for X = Rg,.

We use the same strategy to bound all other terms with Nj;, < 4. The details are in Ta-
ble G.5. In each row of the table, the left column displays a targeting variable X, and the
right column displays a previously analyzed variable, which we call X™, that has a similar
structure as X . It is not hard to see that we can obtain upper bounds for |E[X]| and Var(X)
from multiplying the upper bounds of [E[X*]| and Var(X*) by o™ and o™, respectively,
where m is a nonnegative integer (e.g., m = 1 in the analysis of Rg). Using our previous
results, each X ™ in the right column satisfies

(X[ =0(?(10]%),  Var(X*) = o(||0]* + a°||6]*]6]3)-
So, each X in the left column satisfies (267).

G.4.10.2. Analysis of post-expansion sums with Ny;, = 5. There are 10 such terms, includ-
ing Ry, R7-Rg, R14-R15, Ris, and Ros-Rag. Using the the notation

Gi =1 — i,
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TABLE G.5
The 14 types of post-expansion sums with Nf;V < 4. The right column displays the post-expansion sums defined
before which have similar forms as the post-expansion sums in the left column. Definitions of the terms in the
right column can be found in (94), (100), (106), (116), (122), (130), (131), and (132). For some terms in the right
column, we permute (i, j,k, ) in the original definition for ease of comparison with the left column. (In all
expressions, the subscript “i, 3, k,£(dist)" is omitted.)

Expression Expression
Ro 225 = mi) (5 = 1) WieeWei Z1p > = m)n; (5 — ) WieWes
R3 > (T — 1) (74 77]) Wik We; Z9q 22 (5 = 1) Wiieni (i — 13)Wie
Ry >0 = mi) (A5 — ;) ]kaZWh Z3q 225 = ma)nj (75 = n3) Lo Wi
Ry 20 = ni) (A — ) JkaeQez Zap 22 825(05 =0 Wieene (7 — i)
Rg 27 =) (75 — 1) 002 Zsq 23 (75 — 1)L Qpeene (7l — ;)
Ry > (0 —mi) (R — g)Zﬂkae‘iV& T1q > ne(i; —nj) 03 (71 — 1) Wig
320 = mi) (5 = n)n; (g — ng) e W Tiq 2ome(7l5 = n5)m5 T — np)ng (T — 1) Wig
Rio (7 — i) (7 — 1) Wkene T1c S5 — 0 Wiene (7 — n;)*n;
22 = mi) (5 = n5) 2 Wie (7le — ng)mi T1q 225 =) Wiee (e — me)m; (1 — mi)n;
R11 227 = 1) (5 = 1) Wknk (g — 10)2e; T1q 2T — i)W (5 — nj)ne (e — mg)n;
(7 —mi) (R —nj )W]k(nk - nk)neﬂﬁ Typ 2213 (g = M) Wi (71 — i) (7 — 1i)
Ry (71 — 771)(77] ) nkaZQZz _ Toc o (ﬁ] ) nkQMW(ﬁz 7;)
> (7 = i) (0 — )717(7% _"lk)QkZQ& Toq > — n])nl(nk nk)ﬂkm@(m n;)
Ri3 S (1 = 03) (15 — 1)k (e — 11 )6 Ty, >omi(iy — )Q]k(nk 77k)”]g (71 —mi)
Rig (i — i) (7 — 77;)2%(% — 1) F, Sy — 773) (7 ) (7 — ;)
S (7 — i) (77 — 1) (g — ﬂe)sz Fy S ni (g — )07 (g — ne)ng (77 — ;)
S — i) (g — 0 (g — k) 210820 Fy >oni(flj — nj)nj (T — ) 2 (7 — )
(1 = i) (75 = 1) i = )i (g = ne) Qi | Fa (il = ng)mg (e — mie )i (g — ) me (g — i)
Ryz (0 —mi) (@5 — 05 g — mi) Qe G —ne)mi | Fa i (g — i) (i, — ng)me (e — me)me (i — ;)
S = m3) (7 — 1) 2o (g — o) Fy >oniliy — nj)Qn;%(ﬁz = ng)ne(7; — ;)
> (0 —mi) " (A5 — )Q%ka Fe S (7 — mi) 0 (7 — i) g
Ro1 > (7 —mi) (7 17;) (77k — 1) Qe Fy S (7 — )20k (g — mp)g (i — i)
Rog (i — ma) (5 — n) Q5 Ui — mi) Gie = m0)Qs | Fa  Somiiyy — ?7])?7] (nk — )0 (e — ne)ne (s — 1)

we get the following expressions (note: factors of (7)™ have been removed; see explanations
in (266)-(267)):

Ry = Z GiG Wi Wi eWei,
i,k 0(dist)

R; = Z GiGjT]ijWkgng + Z GiGJZ‘UkaEWZi

i,5,k,0(dist) i,5,k,¢(dist)
= Y w(GGGWWu) + Y (GG Wi W),
i.jk,E(dist) gk E(dist)
Rs=2 Y  GiGWumGWu=2 >  m(GiGiGWiWa),
ik E(dist) i,k E(dist)
Ru= )Y GGEmGWu+2 ) GGEmGunWu+ Y GiGinGrmGiWe
ikl ikl ikl
(dist) (dist) (dist)
=Y (GGG Wr) +2 > memu(GiGGeWa) + Y njmi(GiGGRG W),
ik, ik, ikl

(dist) (dist) (dist)
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Ris= Y GiGnGiWiGemi+2 Y | GiGimWiGmi+ Y GiGimWimiGi

1,7,k 0 1,9,k 0l 1,9,k 0
(dist) (dist) (dist)
=Y i (GiGiGRG W) +2 > nimp(GiG3G W) + > mime( GG W),
ij,k,0 3,7,k 0 i,k 0
(dist) (dist) (dist)
Ris=4 Y mmm(GiGiGxGo) +4 Y meni (GIGIGy),
i,5,k,£(dist) i,5,k,£(dist)
R25 = Z GlG?Gkﬁkgng = Z ﬁké(GzG?GkW&)>
0,3k, 0(dist) i,9,k,L(dist)
Rog = Z GiGijkaGKWZi = Z ﬁjk(GiGijGéwﬁ)v
i,5,k,£(dist) 1,5,k £(dist)
Ry= > GGGmGQu+ > GGGy,
0,3,k 0(dist) i,3,k,£(dist)
= > wmu(GGGG)+ > mu(GiGIGE),
i,5,k,0(dist) i,5,k,£(dist)
Rgg =2 Z GiGjanngﬁgi =2 Z njﬁgl(GZG]GZGg)
i,j,k,é(dist) i?jakzz(diSt)

Each expression above belongs to one of the following types:

J1= Z GiGjokagng, Jo = Z Uj(GiGijWkZWEi)a
i,5,k,0(dist) i,5,k,£(dist)

Ts= > GGG Wi W), Ji= Y (GG W W),
i,j,k,f(dist) iajak’g(diSt)

= > mm(GiGiGGWa),  Jh= D Qu(GiGiGrG W),
i,j,k,£(dist) i,5,k,£(dist)

o= > mmu(GiGiGWa), o= > Qu(GiGiGWa),
i,j,k,f(dist) iajak’e(diSt)

o= ) GGG W), Js= > mm(GIGTWiy),
i,5,k,0(dist) i,5,k,¢(dist)

Jo= > mQu(GiGIGKGY), Ju= Y 1Qa(GiGiGR).
i,j,k,f(dist) ivjvkvé(disﬂ

Since |n;n;| < C;0), and |§~2Jk| < Cab;by, the study of J5 and J; are similar. Also, the study
of Jg and Jé are similar. We now study .J;-.J19. Consider J;. It is seen that

h=o > (Z Wi8> (Z th) Wik WieWes = % > WiWe Wy Wi Wi
[z

v
0,3k, 0(dist) s i3,k 0(dist)
s#itF£]
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Since s can be equal to ¢ and ¢ can be equal to k, there are three different types:

1 1
Ja = - Z 4% Wkae, Jip=— Z WEW;: W Wi,

v
i,k (dist) bk idisn)
t j7

1
Jie=— WisWigW5e Wi Wi,
v i,j,k,éz(dist)
s¢{i,0},t¢ {4k}
We now calculate E[JZ,]-E[J2,]. Take J1, for example. In order to get nonzero E[ngWfk WieW?2, WJ-Q, o Wi,
we need either Wy = Wy, or each of the two variables (Wj,, Wy ) equals to another
squared-W term. The leading term of E[.JZ,] comes from the first case. In this case, we have
Wie = Wi but allow for Wy, # Wi and Wy, # Wi It has to be the case of either
(k' 0) = (k,0) or (K',¢') = (¢,k). Therefore, we have E[WMW kWMW%,WJ«%k,Wk/@] =
[W Wka, o W]-Q, " sze]. Using similar arguments, we have the following results, where

details are omitted, as they are similar to the calculations in the proof of Lemmas G.4-G.9.

E[JZ] < = Z E[WAW23W2,W2,WE] < > 0:0,63070,0, < C[9]15,

=E
it 16 || i
7] 7]
911411613
E[J2] < % > EWIWERWEWRWE < —— > 0:056076360,0; < M,
L 10 H Wy 16111
2 202022 clol®
chg > > EWEAWAWAWAWR < —= Y 020207030.6, < R
,],k:fst H H z]kﬁst H ”1
The right hand sides are all o(]|#||®). It follows that
E[JE] = o(||0]]®), under both hypotheses.
Consider J2-J4. By definition,
1 1
h= ZA 1 Wis Wit WigWie Wi, =0 Z e Wis Wit Wi W Wi,
4,7,k £(dist) 1,5,k €(dist)
s#i,t#£],q#k s#ELt£]qAL

1
Jy= oo Z MWis Wit WigWieeWe;.
i,J,k,0(dist)

si,17),q7]

The analysis is summarized in Table G.6. In the first column of this table, we study dif-
ferent types of summands. For example in the expression of Jo, VVZSI/quWMVVgZ have
four different cases: (a) WMW&, (b) WMWngZS or WkgWZ Wi, (©) Wlethk’ and (d)
WieWiWisWig. In cases (b) and (d), W5 or Wy, may further equal to W);. Having explored
all variants and considered index symmetry, we end up with 6 different cases, as listed in the
first column of Table G.6. In the second column, we study the mean of the squares of the sum

of each type of summands. Take the first row for example. We aim to study

E K > Uj(ngszQi)thﬂ :
i, j,kt,i(;list)
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The naive expansion gives the sum of n;n; E[W2,W2W; W2 , W2, W) over (i,7,k,¢,t,7', j' k', 0/, ).
However, for this term to be nonzero, all single-WW terms have to be paired (either with an-
other single-W term or with a squared-W term). The main contribution is from the case of
Wj+ = W, . This is satisfied only when (5, s") = (j,s) or (j/,s') = (s, 7). By calculations
which are omitted here, we can show that (5, s") = (4, s) yields a larger bound. Therefore,
it reduces to the sum of 7 E[(W3)W2, Wi W2, W5, | over (i,5,k,£,t,i', k', ¢'), which is
displayed in the second column of the table. In the last column, we sum the quantity in the
second column over indices; it gives rise to a bound for the mean of the square of sum. See
the table for details. Recall that the definition of J5-.J4 contains a factor of f in front of

the sum, where v =< ||0]|3 by (80). Hence, to get a desired bound, we only need that each row
in the third column of Table G.6 is

o(lel*1e19)-
This is true. We thus conclude that
max {E[J3], E[J3], E[J{]} = o(]|0]®), under both hypotheses.
TABLE G.6
Analysis of Jo-Jy. In the second column, the variables in brackets are paired W terms.
Types of summand Terms in mean squdred Bound
0 (WigWi) W 2 E[(W )Wuwhwk/e/w@ 1] < 0030407010101, 07, EREHER
0 (Wig W Wi, ) Wi [(WMWW W, 1<092036k950t l61° 161116111
Ty mj (W WeiWis) Wit 5 E[(WW; Wt)WMWk/g] <092039k9g080t6k/ o> lel3nent
i (Wi We) W ngn]/EKWeZ)WM SWi Wi }<003029k0502 O lel*ien§ el
15 (Wit Wi Wi Wis) Wit [(Wkgwgzwkqvv?vv >1<092939k9geset9q lol°liel3 1ol
nJ(Wqul)quW?j njn]/EKW;?gWéwkq)w W }<003920k0m92 ol lo13110111
nkWhW]k nknk/ﬂa[w& Wi ,W,k,]<09 ;070003101070 lo1tyeNs
nkWez(W Wijr) g E[(W; ngw&wgf < o7 9keeote Oy o121z o1
e (Wi, is>w2k i B, BIWEW AW W W] < CO20,670,050,,0%,0p 116]* 10131613
/3 nk(ng W) W Wi nkE[(WQW WQ)Wth/ | < code? 2030,050,0, (R
e WEWEW ik R E[(W k)wgl w/_,, ,WZ J<002030302020@ le1* 1615116113
nk(whwwwm nknk/EKWh Weq> /k/1<0926 07070s040;,0%  101° 10117
(Wi WisWeg )V nkwwh Wéqw me <ce2929kegeseteq lelCien3 el
eWe W, Weqwjk nkE[(Wﬁwgq ]k)w4]<092929k9g9q l61° 1013116111
nk(WMWzZ) nkE[(WM Wh QﬂW&/ 711) < C0;0;0707010;10 10, longle1s
nk(WkZWzl) ]q Wk ]E[(sz W Wleh 1<Co; 92939597&9(191/ HHHZHHIIQIIGII%
Ja e (WiWei w> nkE[(WMW&W >W W/t,}<0929 072070501016y 611 1ol 6113
MWW W R E[(WE, W)W W3,1 < CO30;63676;, (R
(Wt WeiWis) W n,%E[(W,?ZWhWQWtW%<062929kegeseteq lo1°lennen?
nkwkewezwuqu i E[(Wi Wi W )W“} <092020,§79@0q lo1° o131
Consider Js5-Jg. It is seen that
Js :% Z N WisWieWigWemWei,  Js :Uiz Z MNeWis Wi WigWim Wi,
4,7,k £(dist) 1,5,k 0(dist)
Fm o S W Wi WeuWe, = S men W WalWig Wi Wi,

i,7.k,0(dist)

3,5,k 0(dist)
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The analysis is summarized in Table G.7. We note that J; can be written as

1
Jr=3 > BipWisWiiWjgWemWei,  where Bije= > nj.
i.7,6(dist) k¢{i,j,0}
Although the values of /3;;, change with indices, they have a common upper bound of C||6]|2.
We treat /3¢ as ||6]|* in Table G.7, as this doesn’t change the bounds but simplifies notations.
Recall that the definition of J5-.Js contains a factor of -5 in front of the sum, where v < ||0||?

by (80). Hence, to get a desired bound, we only need that each row in the third column of
Table G.6 is

o(l0]*[1611%).
This is true. We thus conclude that
max {E[JZ], E[JZ], E[J?], E[J3]} = o(||0]|®), under both hypotheses.

Consider Jy-J19. They can be analyzed in the same way as we did for J;-Jg. To save
space, we only give a simplified proof for the case of [|0]| > a[log(n)]*/2. For 1 < ||| <
Calog(n)]’/?, the proof is similar to those in Tables G.6-G.7, which is omitted. For a con-
stant Cy > 0 to be decided, we introduce an event

271) E= ﬂn 1E2, where EIZ{\/E’GJ SCO\/HiHﬁHllog(n)}.

Recall that \/vG; = /v(7; — n;) = E#i(A,-j — EA;;). The variables {A;;};-; are mutu-
ally independent, satisfying that |A;; — EA;;[ <1 and }_; Var(A;;) < 3, 0:60; < 6;]|0]1.
By Bernstein’s inequality, for large 7, the probability of Ef is O(n~C°/41). Applying
the probability union bound, we find that the probability of E¢ is O(n~/201) Recall
that V=3, ;.. Aij. On the event £, if V =0 (i.e., the network has no edges), then

@7, = Q;,=0; otherwise, V > 1 and |Q, — Q| < n*. Combining these results gives
IEU@Z — Qm? ]E} <nt. O(n—co/z(n)‘

With an properly large Cy, the right hand side is o(||0||®). Hence, it suffices to focus on the
event E. On the event F,

1ol < > €6l | GiG2G Gyl
1,7,k

c Z( 00,0 )\/9i6?9k92||9|§[log(n)]5
< 0;0,,0,

Callo

< R () (o) (S o) (S o)

_ Collog(n )]/ <Z 9$/z>3

o %"
Callog(m]? (= 2\ V2 (5= 5 |2
< (=) ()

< Caflog(n)”||6]I%,
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TABLE G.7

Analysis of J5-Jg. In the second column, the variables in brackets are paired W terms.

Types of summand Terms in mean- squared Bound
njnkwhwjk njnkn]/nk/mw& kaguw/kmce 07070¢01105/03:0 lo1% 1117
n]nkwgl( tWig) g B[V, quwhwe, ,]<cee 030,01040,0 o8 nens
njmwhwzs)w gy ELOVS )thé Wi W/k/1<ce3920 0,6565,67,0,  |I61°l0]1316]13
5 n]nmw& Wis) (W5 Wig) njnk E[(W2)W twkq)whwz/ ]<06303ekeeosoteqew (I
Wi Wi Wi njnkn],EKqu)W& We" /]<C9292939eeq9 05,00 el o113
Ujﬂk(WészsWKm) ﬁgﬂkﬂg’ﬁk/E[(W& Wem)W k;W /k/}<092929k95959m9 9k/ ||'9H12H9H%
15 (Wi Wi W) (. thq> W?U%E[(ngW2ngW2qu)]<09293939g959t9q9m o115 017
nﬂszzW WomWig njnznj’E[(WeiWekaq)WQ‘/Vz }<003629k9g0q9m9 l6l1° 1613017
Ww&w]twkm n,%nmE[(W,?m)Wz Wguwwkceo ekegetemezfe 050y 10110131017
ﬂkWW&WJ}C nknmk/ne/E[ngW]kWy i W5 ’k’} <080 9k920 10 /ak,az, H6°||8||9HA11
nka&(W 0 Whm ninene B(W5 WS, ka)wﬁwy /] < 00, 92939g9t9qeme 0 le1°hel3ons
nkwwglekw nknenk’ne/E[( )W&WQ] Wi W k/1<00 039,€9@0qe/6k/0@ lol® o131l
Jo W WEWi) Wi Wi nen; [(W@ZWka)W t/1<092e 0207 050:0m0,16, (R
meneWei Wi Wi nieng E(WEWE, )W w3 ]<0630 ekegeme le13ne1s
e Wi Wis W nknenkfww&w?)w W] < CO70;07207050,107, le1°hel3ons
MeneWe W5 Wi nkngnk,mw&)w kawft,1<co3e e%gete 070y o1 1611S 116111
e (WesWis) (W 5t W jo) Wi neng E(WaWEW?, W2 ka)]<092929k94959t9q9m lel*lenglens
mengWe Wi W ka neng E(WEWS, ka>w4]<0620203050q0m ll*1e1gnens
MeneWei Wis W5 Wi nknmk:EKWhW?W YW W 4<092959k9f0 eqek/ ol lio1S 116117
W Wi WV W,q nkn%nk,Euw&W )W W2, < codo 56767010407 ll°engnens
o1 waw?, lof* E[WE; Wz”W’t/}<CH9H49 %0/0 1000y R
1017 W3 (W Wjg) 161 LW W3 ) Wi Wik < Clle]1*; e%eteqe O lof1ie
1011 (W7 Wis )Wy l6]* E((W; >W&W2We/ W/t/}<cneu4e 0695010710010y lel*le13nent
o)Wz w; ol B Wgu 312 Cllol 20, 9z9 0j:0p (NI
Jr OIP(WEW) (W5 Wjg) |\9H4E[(W2W Wi W, 5w£,1<c||0|\40 070,050:0q0, le1®hel3ons
6112 WE W2 Wi l011* B{(W 2 )W UW@, ,}<cueu402039z9q0 0 o1 1611311611
1611 (W Wis W)W, HHH“E[(W& WEW 3 W5 W t,1<0||9||4920 107050¢9m 0,10 l6)1®16)1§
0117 We; W3 Wy, Heu“E[(WZWEm)W W3 ]<CH9II4939 [070m0, 0111111311011
||0H2(W&Wisvvem>( WjiWig) 101 ELWE W, W,gmw >1<cu0||4920204059t9q0m le1*Oneiit
||9H2W& ngm Heu‘*wwzwgm 2IW, ]<cu0||402926@9q0m el 013
le)? WiV, W H9H4E[(W&) W@W2 Wm<cneu 0303070% l1® 16113
W Wu nen; [(vaWV‘*vv4 1< C0;067670,10;0 lo18ho11{
Js M (W3 Wig) Wi n,%n,_; E[(W, WM>W3W3 }<ce3e e%esej/ o3 o1
Mo (W5 WisWig) Wie Wkﬁg E[(W2 w2 wkg)w‘*} < ca%zekeif’eseq el 1elS 1161
e (Wis Wit Wjq W jn) Wie nm E[(W2 W2 WfqumWw] <002920 203050,040m o1 1011S 11611
nkTIZW Wy Wi Wie nen; [(WfqW]mWwWQW/ ]<00; 929kegeseq9me Oy lol>1e1§nen?
MWW Wi M E(WE)WEW 2 Wi W 1] < C8;0;676365040,10,:0504 1osels

where the second last line is from the Cauchy-Schwarz inequality. Since ||| > a[log(n)]?/2,
the right hand side is o(||@||*), which implies that | Jo|? = o(||6|®). Similarly, on the event F,

[0l < > [me8%i]| GGG

1,9,k,¢

SCZ alz

i,5,k,¢

W 6207613 1og (n))?
Vo
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< CUH (SA) (0) (2 o) (S0

alogin 2
< Colos®IPR o /Ty o2 012
1

< Callog(m)*? 611
again, the right hand side is o(]|0||*). Combining the above gives
max {E[JQQ], IE[J%O]} =o(]0®), under both hypotheses.

So far, we have proved: for each Ry with Ny, = 5, it satisfies E[R7] = o(||0||®). This is
sufficient to guarantee (266)-(267) for X = Ry.

G.4.10.3. Analysis of post-expansion sums with Ny, = 6. There are 7 such terms, including
Ri9-Rao, Ra3-Ro4, Rag-R30, and R33. We plug in the definition of 7;; and J;; and neglect
all factors of {; (see the explanation in (266)-(267)). It gives (G; = 7); — 1;):

Rig= Y  GiGGWuWe,
ivj.k,E(dist)

Rao = Z GiGiWirGrGWy;,
ivj.k,b(dist)

Roz = Z GiG3GL(mGini + 2GneGen; + G Gi)
i,7.k,0(dist)

= Y mmGGGGI+2 Y mmGiGGG+ Y GGG

i,5,k,0(dist) i,5.k,0(dist) 4,5,k 0(dist)
2 2 22 2 2
=3 Z ninkGiG; GGy + Z n;G; GGy,
i,5,k,£(dist) i,9,k,(dist)

Rouu= Y GGG+ Gim)GrGe(mGi + Gemy)
i, (dist)

=4 ) nmGIG;GiG,
i,9,k,0(dist)

Ryg= Y GiGGk(mGe+ Grn)We
i,k E(dist)

= > mGGEGEWLi+ Y mGiGiGWy,
i,5,k,0(dist) i,j,k b (dist)
R3p=2 Z GiG;(njGr)GrG Wy =2 Z n;GiGiGRG Wy,
1,5,k 0(dist) i,9,k,£(dist)
Ryp= Y QuGiGIGiGy.
0,5,k 0(dist)
Each expression above belongs to one of the following types:

Kl = Z GZGJQG]CW]C(W[“ KQ = Z GszGkGEW]kau
Z’,j,k,f(d’ist) ivjvkvé(diSt)
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K3= ) mGiGiGGWa, Ki= ) mGGGWe,
i,4,k,0(dist) 1,5,k £(dist)

Ks= Y mimGiG;GyGY, Ki= Y QuGiGiGGE,
ik, 0(dist) gk, E(dist)

Ke= > mGiGGE.
4.5,k 0(dist)
Since |n;ni| < CH;0; and |§,k| < Cabb, the study of K5 and K7 are similar; we thus omit

the analysis of K. We now study K-Kg.
Consider K. Re-write

1
Kl = ﬁ E WlsWJtW]qukafW&
Z,],k‘,e(d’LSt)
sAUt£],qFJm#k

Note that Wi, ,WireWp;W;s has four different cases: (a) WMW&, (b) WMW& is» (c)
WMWme, and (d) WyeWy;WiWis. At the same time, W;;Wj, has two cases: (i) W.

and (i) W;;W,,. This gives at least 4 x 2 = 8 cases. Each case may have sub-cases, e. g,
for (W2,WeWis)W3, if (s,t) = (j,4), it becomes W2, W;;W}. By direct calculations, all
possible cases of the summand are as follows:

(WEWi)Ws,  WEWi)(WuWg),  (WiWaWis) W7,
WI?EWZZ Wz%? (ngeWZiWis) (thqu), WMW&WQ Wiq,
WeWaWi Wi, (WieWa W) (WieWig),

(WieWeiWimWis) W3, WieWeWem W,

159

(WieWesWimWis) WitWig),  WieWssWim Wi Wig,
(272) WieWeiWis Wi

Take the second type for example. We aim to bound E[(3=; ;1. 1., Wi W5 Wit Wiq)?], which
is equal to

2 v172 2 172
Y. EWRWEWuWiWee Wi Wi Wig].
i7j7k7£7t’q
i,’j,)k/7£,’t/7q/
For the expectation to be nonzero, each single W term has to be paired with another term.
The main contribution comes from the case that Wj, W, = W W, It implies (5/,¢,¢") =
(4, t,q) or (§/,t',¢') = (j, q,t). Then, the expression above becomes

> E[( COWEWEWE Wi < C > 0,050,070,0,0, 01,67
1,7,k,,t,q i,5,k,4,t,q
ik e ik e

<Cllel°[ellf.

There are a total of 9 indices in this sum, which are (4, j, k,¢,t,q,i', k', ¢"). Similarly, for each
type of summand, when we bound the expectation of the square of its sum, we count how
many indices appear in the ultimate sum. This number equals to twice of the total number
of indices appearing in the summand, minus the total number of indices appearing in single
W terms. For the above example, all indices appearing in the summand are (i, j,k,¢,t,q),
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while indices appearing in single W terms are (j,t¢,q); so, the aforementioned number is
2 x 6 — 3 =9. If this number if mg, then the expectation of the square of sum of this type is
bounded by C/|0||7"*. We note that K has a factor 2 in front of the sum, which brings in a
factor of ﬁ in the bound. Therefore, for any type of summand with mg < 8, the expectation
of the square of its sum is O(1), which is o(||#||®). As a result, among the types in (272), we
only need to consider those with mg > 9. We are left with

(WEWHWE,  (WEWR(WiWiq),  (WEWuWi) W3

We have proved that the expectation of the square of sum of the second type of summands is
bounded by C||6]]2|6]|$ = o(||€]|®||0]|$). For the other two types, by direct calculations,

> WMW&WQ) ] > EWRWEWWE W Wiy

1,5,k 0(dist) 1,5,k
t#] i/vj,’k/72/7t/
< E 9i0j9k9§9t0i/leekﬂf,&t/
i,5,k,€t
i/7j/7kl7£/,tl

< Cllo*1611T = o(lo1%110119).

2
B[ X wawanan)’| < ¥ moviwzmiwiwzavi)
i,j,k,@(dist) i:jvkvévs’t

s¢{i,l}t#£7, Kt
(s,)#(5:3)
<C Y 070;01070,0,0,:0,0p
1,5,k,2,8,t
]/,kl,t/

< Cl912 10115116117 = o(Io1*[1911%)-
Combining the above gives
E[K?] = o(]|0]|®), under both hypotheses.

Consider K. Re-write

1
Ky =— Z WisWiiWigWern Wi W

2
i3k, 0(dist)
sFEULF£],qFEk, mFAL
Note that W, Wy;Wj, has three cases: (a) W,fj, (b) W,fj Wi (or quW,fj), and (c)
W, Wij Wit Simiarly, W,,e W, Wi has three cases: (a) W, (b) W2Wis (or W,,,,W2), and
(¢) WieWe; Wis. By index symmetry, this gives 3+ 2 + 1 = 6 different cases. Some case may
have sub-cases, due to that (s,t) may equal to (j,1), say. By direct calculations, all possible
cases of the summand are as follows:

WiiWe, Wis(WiWis), Wi (WineWeWis), (Wi Wie) (Wi Wis),
WEWiW5, (WEW) WineWeiWis),  WEWEWeWes,
(WareWiiWit) (WineWeiWis),  WauWigWiWeWei, Wi W3 WE,Wo;.

As in the analysis of (272), we count the effective number of indices, mg, which equals
to twice of the total number of indices appearing in the summand minus the total number
of indices appearing in all single-W terms. For the above types of summand, mg equals to
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8,8,8,8,8,8,7,8,6,4, respectively. None is larger than 8. We conclude that the expectation
of the square of sum of each type of summand is bounded by C/||0||$. We immediately have

1
E[K3] = i Cl10)13 =0(1) = o(||0]|®), under both hypotheses.

Consider K3. Re-write

1
NG > M Wis Wi Wi g Wi W W
i,7,k,€(dist)
s#i,t£],q7# ] m#k,p#L

Note that W;; W, Wy, has four cases: (a) Wfk, (b) Wkajt (or Wkajq), (c) W]%ka, and
(d) WjW;qWi. At the same time, W;sWy,Wy; has three cases: (a) W3, (b) W2W;s (or
WKQZ-ng), and (c) Wy W;sWy,. This gives 4 x 3 = 12 different cases. Each case may have
sub-cases. For example, in the case of nk(Wkajt)(WZWiS), if (s,t) = (J,%), it becomes

Nk W]-Qk W]%- Wé. By direct calculations, we obtain all possible cases of summands as follows:

Nk W]?’k WK?; Tk ngk (W€21, Wis) I ngk (Wéi Wis ng) , Mk (Wfk th ) W@?; ,

Wi Wi ) WiWis),  mWaWiWe, (W W) (WeWisWep),

WEWEWeWep, i (WiWin) Wi, (Wi Win) WEWis),  meW Wi Wi,
(Wi Wim) WeWisWep), W iAWEWaWep, (Wi WjqWim )W,
M (WiiWigWem) WiWis),  mWiWiWem Wi, meWiWig Wi Wi,
M WiWigWim) WeWisWep), - meWieWiWimWeWep, Wi WieWEWuWoy.

Same as before, let m( be the effective number of indices for each type of summand, which
equals to twice of number of distinct indices appearing in the summand minus the number of
distinct indices appearing in single-W terms (see (272) and text therein). By direct calcula-
tions, mo < 10 for all types above. It follows that, for each type of summand, the expectation
of the square of their sums is bounded by

1 m mo—10 8
—_— 0L 0 = 1) = .
o GO < Clol = 0(1) = ofI6)

We immediately have
E[K32] = o(||0]|®), under both hypotheses.

Consider K4. Re-write

1
/o Z NeWis Wit Wiq Wi Wiy W

1,5,k 0(dist)
s,t,q,m,p

K, =

Note that W;sWy; has two cases: (a) WZ and (b) Wy;W,s. Moreover, there are a total of
six cases for Wy WjgWimWip: (@) Wi, (b) W3, Wi, (¢) WA WjWim, () WAWE . (e)
WiiW;WE  and () Wi WjqWi Wi, It gives 2 x 6 = 12 different cases. Each case may
have some sub-cases. It turns out all different types of summand are as follows:

e W€2z Wfk? HEWEQZ' (ngk Wﬁ)v WWZ (Wj2k th ka)’ anEQi (Wj2t szm)v

W WiWigWi), Wi (WiWigWim W), ne(WeiWis) Wi,

e (WeiWis) Wi Wie),  meWeaWiWe, ne(WeaWis) (Wi Wit Wim),
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NWeWaRWiWian,  e(WeWis) WiAWE,),  neWaWEWE,,
e (WeiWis) WiWigWitn),  neWaWiWigWi L neWeWie Wi Wi,
Ne(WeiWis) (Wi WigWimWip), WWez‘W%qukaWkp-

Same as before, for each type, let mg be the effective number of indices. It suffices to focus
on cases where mg > 11. We are left with

nWa(WEWE), Wi (WiWigWi ), ne(WaWis)(WEWE).

By direct calculations,

B|( X amawing)|s X e BVAWRWEWEWEWE,

i,J,k,0(dist) 1,7,k L,t,m
t#],m#k i’,j’,k’,@’,t',m’
<SC S 00,00020:0,10:0; 000701 O
i,3,k,4,t,m
"5k m!

< ClloI*191:° = o0 1°1011°),

(5 amimnat)| < X e BOVIWEWANE, W,
1/7J7k7e(d15t) ivjvkvezt’q7m
L#5,q7m#k ik 0 m!
t#q

SC Y 0:020:070,040,m0: 04070

i7j7k7£7t?q7m

< ClI°101F = o(llOl1611:°).

(X wwmamwing)|sc X evAWRWAWEWEWE,
’l,],k‘,[(dlSt) i7j7k7‘€737t7m
s;éz,t;é],myﬁk jlvk/7t/7m/

(5,7 (s.m)  (k.d)
<C Y 070;64070,0,0,,00010p 0,y

< Cllo10l1510115 = o(1o11*[19111°)-

It follows that

1
E[K2] < ——— - o([|0]13]10]11°) = o(]|0]|®), under both hypotheses.

(v2\/v)?

Consider K5-Kg. To save space, we only present the proof for the case of |6 >
[log(n)]*/2. When 1 < ||0]| < Clog(n)]*/2, we can bound E[K?] and E[KZ] in the same way
as in the study of J;-Js, so the proof is omitted. Let F' be the event defined in (271). We have
argued that it suffices to focus on the event E. On this event, |G;| < C'\/6;]|0||11og(n)/v. It
follows that

00300711013 [log(n)]®

v3

K5/ <C ) (0:0r)
3,5,k 0
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< A () (Se) (S a) (S0)
< D8I oy Torh) o

< Cllog(n)]°||6]?,
where we have used the Cauchy-Schwarz inequality (D, 93/ )< 1011/ 110]|1. Similarly,

0;0;05|0||7 1
Ko< Y op. AP og(o)?
3,9,k 0

< 1“|)g’3 S 6:0,0067
ik t
< Cllog(n)]||0]*.
When ||| > [log(n)]?/2, both right hand sides are o(||#||*). We immediately have
max{E[K3], E[K§]} = o([|0]]%).

We have proved: Each Ry, with Nj;, = 6 satisfies E[R?] = o(]|0||®). This is sufficient to
guarantee (266)-(267) for X = Ry.

G.4.10.4. Analysis of terms with Ny, > 7. There are 3 such terms, R3;, R33 and R3q.
Consider R3;. By definition,

1
Ru= Y GZ.G;(;%GL)W&:;S > WisWWigWam Wi Wey Wes.

i,5,k,0(dist) 1,5,k 0(dist)
s#4t#£],q# ],
m#k,pF#k,y#L

We note that Wy, W;s Wy, has three cases: (a) W&, (b) W& is, and (c) WgZWZSWgy More-
over, W W Wiym Wi, has six cases: (a) W]4k, (b) W] Wi, (©) W] WitWem, (d) W ka,
(e) Wi W; W2, and (f) Wi W Wiem Wi, This gives 3 x 6 = 18 different cases. Since each
case may have sub-cases, we end up with the following different types:

WiWie, WEWaW5), Wa(WiAW;Wim), WEWAWE,),
Wﬁi(thqung)a Wei<thqukaWkp)a (WZW )W]Iw
(WeWis) (Wi Wie),  WEWZW, (WiWis) (W3R W5 W),
WEW AW Wim,  (WaWi)(WiWE,),  WaWiWE,,

)( tWJqum) Wein‘%‘qukay Wijthqufm
is)( Jthqukap) WZWZ.qukaWkp,

WeiWisWe )W, (WeiWisWey ) (W Wye),  WeWe, W W2,
WeiWisWey)(WAWjiWim),  WeWo, WA Wi Wi,  WaWaWEWE,
WuWisWey ) (WiWE ), WaWe, WaWE,, WeWiWy,
)

WZZWway( tWJqum) WfiWZyVVjinqumv WZiW[ijthqui,

ﬂ’
WZ'L
WZ’L

(
(
(
(
(
(
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WeuWEWiqgWis,  (WaWisWay) (Wit WigWim W),
WeWe, WiWiqWiemWip,  WesW Wi Wi Wip.

For each type, we count m, the effective number of indices. It equals to twice of the number
of distinct indices in the summand, minus the number of distinct indices appearing in all
single-W terms. It turns out that mg < 12 for all types above. By similar arguments as in
(272), we conclude that

1
E[R3;] < 06 Clo)7e < 0|2 =0(1) = o(||0]|®), under both hypotheses.

Consider R33-R34. We only give the proof when [|0]|% > [log(n)]7, as it is much simpler.
In the case of 1 < [|0]|% < C[log(n)]”, we can follow similar steps above to obtain desired
bounds, where details are omitted. On the event E (see (271) for definition),

|Rss| < D el |GFG3GRGy
.

0763626, [log(n)]”
<C Z 96\/ ’

e (Vo)7
A (20) (Zo0) (S o) (S)
gc“og,(;,)lm CRUED

< Cllog(n)]?6,

where we have used the Cauchy-Schwarz inequality ), 92/ ’< 10]]+/]|€]|1 in the second last
line. When ||0]|° > [log(n)]”, the right hand side is o(||]|*). Similarly,

|Rss| < D |GIGEGRGY|
Z‘)j7k7e

<C Z 0:0; 9k94\|9|| [log(n)]*
i,5,k,¢
< C[log(n)]*.

When ||0]|% > [log(n)]”, the right hand side is o(||@||*). As we have argued in (271), the event
E€ has a negligible effect. It follows that

max{E[R3,], E[R3;], E[R3,]} = o(||0]®), under both hypotheses.
This is sufficient to guarantee (266)-(267) for Ry.

We have analyzed all 34 terms in Table G.4. The proof is now complete.

G.4.11. Proof of Lemma G.12. Consider an arbitrary post-expansion sum of the form

(273) > aibjecredy,  where a,b,c,d € {Q,W,0,7,€}.
i,j,k£(dist)
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Let (Ng, Nw, N5, N, N¢) be the number of each type in the product, where these numbers
have to satisfy N + Ny + Ns + N; + Ne = 4. As discussed in Section G.3, (Q, — Q)
equals to the sum of all post-expansion sums such that /N, > 0. Recall that
. % v v
eij = (5 = ming) + (1= 7)ming — (1= 37)di.

Define

1 * % 2 v 3 v
ez(j) =N — Ny, egj) =(1- V)nmj, egj) =—(1- V)éij'

Then, €;; = ez(jl ) + eg-) + eg’) . It follows that each post-expansion sum of the form (273) can
be further expanded as the sum of terms like

(274) > aibjecredys,  where a,b,c,d € {Q,W,5,7 eV €@ ),

0,5,k 0(dist)
Let (Ng, Nw, Ns, N7) have the same meaning as before, and let Ne(m) be the number of (™)
term in the product, for m € {1,2, 3}. These numbers have to satisfy Ng + Ny + N5 + N5 +
Ne(l) + NE(Q) + Ne(g) = 4. Now, (Q,, — Q) equals to the sum of all post-expansion sums of
the form (274) with
(275) Ne(l) + N€(2) + N€(3) > 1.

Fix such a post-expansion sum and denote it by Y. We shall bound |E[Y]| and Var(Y).
We need some preparation. First, we derive a bound for |e£]1)| By definition, n; =

(L/V) 325 g and 7 = (1/1/v0) _; ;. It follows that
f_ Vv 1

= My
,’71 ’UO 777/ \/% (i3

We then have

ox U Vv 1

nin; = —nin; + —— M5 + 1) + — Q.
Vo Vo Vo

Note thatv =3, Qjj and vo = 3, Qi < [|0]|. It follows that vo —v = =, Qi < 37, 67 <
10|%. Therefore,

x, % v (% 1
[ninj —ninj| < ‘1 — —|mn; + i(mﬂjj + 1) + — Qi
Vo Vo V0
Clol”? C e o . C oo
< 0i0; + ——(0;05 4+ 0,07) + —— - 0;0;
o el e
1012 6;+6; 0;0;
<080, - ( + + )
S I PO [T
Since ||0]|? < Omax]||0]|1, the term in the brackets is bounded by Cfpax/||0]]1. We thus have
(276) D] < C['Zfﬁ 0.0, foralll<itj<n.
1

Second, in Lemmas G.1-G.11, we have studied all post-expansion sums of the form

Z= Y aibjrcweds,  where a,b,c.d € {Q,W,4,7},
i,j,kL(dist)
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where (Ng, Nw, N5, N7) are the numbers of each type in the product. We hope to take ad-
vantage of these results. Using the proved bounds for |E[Z]| and Var(Z), we can get
(277) E[Z%) < C(a®)No - f(0; Ng, Nw, N5, Ni),

where a = |A\a| /A1 and f(0; mq,ma,m3,my) is a function of § whose form is determined
by (m1, ma, ms, my4). For example,

~

f(6;0,4,0,0)=10|]®, by claims of X in Lemmas G.1&G.3;
f(6;4,0,0,0)=10|'S, by claims of Xg in Lemma G.3;
£(0;3,1,0,0)=10]1®]|0]lS, by claims of X5 in Lemma G.3;
f(0;1,2,1,0)=10]|*||6]lS, by claims of Y2, Y3 in Lemma G.5;
f(6;1,1,1,1)=10|®, by claims of Rg-R;; in the proof of Lemma G.11.

If there are more than one post-expansion sum that corresponds to the same (Ng, Ny, Ns, N7),
we use the largest bound to define f(6; Ng, Nw, Ns, Nj). Thanks to previous lemmas, we
have known the function f(6;mq,mga,ms, my) for all possible (mq,ma, ms, my).

We now show the claim. Recall that Y is the post-expansion sum in (274). The key is to
prove the following argument: For any sequence z;, such that \/log(]|0]|1) < z,, < ||0]/1,

2 2

B2\ NV 22 \NOND
2 2 Nﬁ max n
BY?) < (%)™ x (o) (i)

(278) x f(0;m1,ma, ms3, my)

mi1=Ng+NY+N® ms=Ny,
3=Ns+N®, ms=Ny,

where (Ng, Nw, Ns, Nf, Ne(l), N€(2) , NE(3)) are the same as in (274)-(275), and f(6;m1,ma, m3, my)
is the known function in (277).
We prove (278). Let D be the event

D={|V —v| < 6] 1a}.

In Lemma G.10, we have proved E[(Q,, — Q)2 - Ip<] = o(1). By similar proof, we can show:
when |Y'| is bounded by a polynomial of V' and ||#]|; (which is always the case here),

E[Y? - Ip.]=o(1).

It follows that

(279) E[Y?] <E[Y?-Ip]+o(1).
We then bound E[Y2- Ip]. In the definition of Y, each €(?) term introduces a factor of (1— %)
and each ¢ term introduces a factor of —(1 — ). We bring all these factors to the front and

re-write the post-expansion sum as

Ne(2)+NE(3)
Y= ()M (1- )

% X, X = Z aijbjkckgdgi.

i,7.k,0(dist)

After the factor (1 — %) is removed, ¢2) becomes 1;7;; similarly, ¢®3) becomes 0i;. Therefore,
in the expression of X,

5 G
aij, bij, cij, dij € {8245, Wz‘j,@'jﬂ’ijﬁgj)ﬂh'nj},
(280) number of 7;7; in the product is NE(Q),

number of §;; in the product is N5 + Ne(?’)7

number of any other term in the product is same as before.
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On the event D, |1 — | < mcﬂ\wfl = O(jgtr; ). Hence,
Tp \NE+NE
Y] gC(‘wﬁl) |X], on the event D.
It follows that
x2 \NO+NE
(281) E[Y2 - Ip) SC(HHHQ) E[X2].
1

To bound E[X?], we compare X and Z. In obtaining (277), the only property of Q we have
used is

|§~2U’ <a- 0919]
In comparison, in the expression of X, we have (by (276) and (81))

- O max
(282) Q< a-CO6;, e} < ”f;ﬁl -CO:05,  |mins| < CO:0;.
If we consider (a/Vo - (ﬁeﬁ) AN =1 and (o)1 Z, we can derive the same upper
bound for the second moment of both variables, except that the effective N5 in X should be

N5 + N2 and the effective N in X should be N + N + N). Tt follows that

02,0\ N
E[X?] < C(a?)™o x (7225)
1611
(283) X f(e;m17m27m37m4) ml:N§+NE(1)+N€(2>7 S—

m3:N5+N6(3), m4:N7:.
We plug (283) into (281), and then plug it into (279). It gives (278).
Next, we use (278) to prove the claims of this lemma. Under our assumption, we can

choose a sequence x;,, such that /log(||0]|1) < z,, < [|0]|1/]|0]|*. Also, note that ||0]|; >
101> > ||0]|*. Then,

—1
gmax
TIn

[

9
(284) B — o(]|60]|72),
10111 (e

o([l0]7%).
As a result, since Ne(l) + N€(2) + NE(?’) > 1, (278) implies
(285) E[Y? =o(||8]|7%) - f(8;m1, mg,m3,my),

for m; = Ng + Ng(l) + Ne(z), mo = Ny, mg = Ng + Nﬁ(g) and m4 = N;. We then extract
f(0;mq,ma, ms3, my) from previous lemmas. Recall the following facts:

* Under the null hypothesis, for any previously analyzed post-expansion sum Z, |E[Z]| <
C||0||* and Var(Z) < C||0||8.

* Under the alternative hypothesis, except ZZ J e, (dist) €2;€21821082y;, for all previously an-
alyzed post-expansion sum Z , |E[Z]| < Ca?||0||% and Var(Z) < C||0||® + Ca8||6]|8]|0]|$.

Therefore, under both hypotheses, except for (my, ma, ms, m4) = (4,0,0,0),

(286) F(0;m1,ma,ms,ma) < C(I0]° + 101" + 9]°]19113) < Cl6]|™.

Consider two cases for Y. The first case is Ng + Ne(l) + N€(2) = 4. Combining (285)-(286)

gives

E[Y?] = o(0]7*) - Cll0lI"* = o([10]®).
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The claims follow immediately. The second case is Nﬁ + Ne(l) + N€(2) = 4. In this case,
f(0;my, ma,m3,my) = £(:;4,0,0,0) = ||9]|*°.
1t N+ N? > 2, then by (278) and (284),
E[Y?]=o(/|0]7%) - Cl19]"° = o(]|6]|*).

The claims follow. It remains to consider Ne(l) + Ns(z) =1 (and so Nﬁ = 3). Write for short
S =1- 7. By (280),
Y = SN‘(2) : X, where X = Z aijbjkzck:éd&',
i,5,k,0(dist)

and a;j;, b;j,c;j,d;; can only take values from {ﬁij,ez(jl-),nmj}. So, X is a non-stochastic
number. Using (282), we can easily show

O \ N
< Nﬁ( max 8'
X] < Ca (1) el

When (N, N{) = (1,0), we have Y = X. By (284), 5= = o([|0]]~2). It follows that

Var(Y) =0,  [E[Y]|=[X|<Ca®-o([0]72) - [10]° = o(a0]]%).

This gives the desired claims. When (Nﬁ(l), N6(2)) =(0,1), wehave Y =S - X. So,
V[ =|X]-[S| < Ca?|I0]*-|S].

Note that S =1 — &, where v = E[V]. Using the tail bound (254), we can prove E[S?] <
C||0]|72. Therefore,

6 0 16
]E[Y2] < Ca H ”

= ||9||2 < 0046H9||8H9||ga
1

where the last inequality is due to [|0]|* < [|0]|1]|0||3 (Cauchy-Schwarz). The claims follow
immediately. O

APPENDIX H: ADDITIONAL SIMULATION RESULTS

In Section 5 of the main article, we investigated the numerical performance of SgnT and
SgnQ tests and compare them with the EZ and GC tests. Due to space limit, we only reported
the sum of the percent of type I errors and the percent of type II errors. It does not show
the contribution of each type of errors. We now report separately the percent of each type of
errors.

Figures H.1-H.3 here are supplement to Figures 3-5 of the main article, corresponding to
Experiments 1-3, respectively. Below is a brief summary of the settings in three experiments:

e Experiment 1. In this experiment, K = 2, and the degree parameters are iid generated from
a uniform distribution (Experiment 1a), a two-point mass (Experiment 1b), and a Pareto
distribution (Experiment 1c), respectively.

 Experiment 2. In this experiment, K is larger (K € {5,10}) and P is more complicated,
and the community sizes are either balanced (Experiment 2a) or unbalanced (Experiment
2b).

* Experiment 3. In this experiment, we allow for mixed memberships, where the percent
of mixed nodes is 0% (Experiment 3a), 10% (Experiment 3b), and 25% (Experiment 3c),
respectively.
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FIG H.1. Experiment 1 (from top to bottom: Experiment la, 1b, and Ic). The z-axis is ||6

I error (left), type II error (middle) and the sum (right).
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For each parameter setting, we generate 200 networks under the null hypothesis and 200
networks under the alternative hypothesis, run all the four tests with a target level o = 5%,
and record the percent of type I errors, the percent of type II errors, and their sum. In each
figure, the plots in the third column are those already shown in the main article.

The results confirm our claims in Section 5. In terms of the type I error, the EZ and GC
tests fail to control it at the target level when ||6|| is large. It is because the biases of these tests
are non-negligible for less sparse networks (the bias of GC is comparably larger). The SgnT
and SgnQ tests successfully control the type I error for both sparse and less sparse networks.
In terms of the type II error, the order-4 graphlet counting tests have uniformly better power
than the order-3 graphlet counting tests. E.g., the type II error of GC is smaller than that of

EZ, and the type II error of SgnQ is smaller than that of SgnT.
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FIG H.2. Experiment 2 (from top to bottom: Experiment 2a and 2b). The x-axis is ||0

error (left), type Il error (middle) and the sum (right).
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FIG H.3. Experiment 3 (from top to bottom: Experiment 3a, 3b, and 3c). The x-axis is ||0||, and the y-axis is type
1 error (left), type I error (middle) and the sum (right).
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