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Given a symmetric social network, we are interested in testing whether
it has only one community or multiple communities. The desired tests should
(a) accommodate severe degree heterogeneity, (b) accommodate mixed mem-
berships, (c) have a tractable null distribution and (d) adapt automatically to
different levels of sparsity, and achieve the optimal phase diagram. How to
find such a test is a challenging problem.

We propose the Signed Polygon as a class of new tests. Fixing m ≥ 3,
for each m-gon in the network, define a score using the centered adjacency
matrix. The sum of such scores is then the mth order Signed Polygon statistic.
The Signed Triangle (SgnT) and the Signed Quadrilateral (SgnQ) are special
examples of the Signed Polygon.

We show that both the SgnT and SgnQ tests satisfy (a)–(d), and especially,
they work well for both very sparse and less sparse networks. Our proposed
tests compare favorably with existing tests. For example, the EZ and GC tests
behave unsatisfactorily in the less sparse case and do not achieve the optimal
phase diagram. Also, many existing tests do not allow for severe heterogene-
ity or mixed memberships, and they behave unsatisfactorily in our settings.

The analysis of the SgnT and SgnQ tests is delicate and extremely te-
dious, and the main reason is that we need a unified proof that covers a wide
range of sparsity levels and a wide range of degree heterogeneity. For lower
bound theory, we use a phase transition framework, which includes the stan-
dard minimax argument, but is more informative. The proof uses classical
theorems on matrix scaling.

1. Introduction. Given a symmetrical social network, we are interested in the global
testing problem where we use the adjacency matrix of the network to test whether it has only
one community or multiple communities. A good understanding of the problem is useful for
discovering nonobvious social groups and patterns [5, 14], measuring diversity of individual
nodes [15], determining stopping time in a recursive community detection scheme [33, 44].
It may also help understand other related problems such as membership estimation [43] and
estimation of the number of communities [40, 42].

Natural networks have several characteristics that are ubiquitously found:

• Severe degree heterogeneity. The distribution of the node degrees usually has a power-law
tail, implying severe degree heterogeneity.

• Mixed memberships. Communities are tightly woven clusters of nodes where we have more
edges within than between [17, 39]. Communities are rarely nonoverlapping, and some
nodes may belong to more than one community (and thus have mixed memberships).

• Sparsity. Many networks are sparse. The sparsity levels may range significantly from one
network to another, and may also range significantly from one node to another (due to
severe degree heterogeneity).
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Phase transition is a well-known optimality framework [13, 22, 34, 38]. It is related to the
minimax framework but can be more informative in many cases. Conceptually, for the global
testing problem, in the two-dimensional phase space with the two axes calibrating the “spar-
sity” and “signal strength,” respectively, there is a “Region of Possibility” and a “Region of
Impossibility.” In the “Region of Possibility,” any alternative is separable from the null. In
the “Region of Impossibility,” any alternative is inseparable from the null.

If a test is able to automatically adapt to different levels of sparsity and separate any given
alternative in the “Region of Possibility” from the null, then we call it “optimally adaptive.”

We are interested in finding tests that satisfy the following requirements:

(R1) Applicable to networks with severe degree heterogeneity.
(R2) Applicable to networks with mixed memberships.
(R3) The asymptotic null distribution is easy to track, so the rejection regions are easy to set.
(R4) Optimally adaptive: We desire a single test that is able to adapt to different levels of

sparsity and is optimally adaptive.

1.1. The DCMM model. We adopt the Degree Corrected Mixed Membership (DCMM)
model [24, 43]. Denote the adjacency matrix by A, where

(1.1) Aij =
{

1, if node i and node j have an edge,
0, otherwise.

Conventionally, self-edges are not allowed so all the diagonal entries of A are 0. In DCMM,
we assume there are K perceivable communities C1,C2, . . . ,CK , and each node is associated
with a mixed-membership weight vector πi = (πi (1),πi (2), . . . ,πi (K))′ where for 1 ≤ k ≤
K and 1 ≤ i ≤ n,

(1.2) πi (k) = the weight node i puts on community k.

Moreover, for a K × K symmetric nonnegative matrix P , which models the community
structure, and positive parameters θ1, θ2, . . . , θn, which model the degree heterogeneity, we
assume the upper triangular entries of A are independent Bernoulli variables satisfying

(1.3) P(Aij = 1) = θiθj · π ′
iPπj ≡ #ij , 1 ≤ i < j ≤ n,

where # denotes the matrix $%P%′$, with $ being the n×n diagonal matrix diag(θ1, . . . ,
θn) and % being the n × K matrix [π1,π2, . . . ,πn]′. For identifiability (see [24] for more
discussion), we assume

(1.4) all diagonal entries of P are 1.

When K = 1, (1.4) implies P = 1, and so #ij = θiθj , 1 ≤ i, j ≤ n.
Write for short diag(#) = diag(#11,#22, . . . ,#nn), and let W be the matrix where for

1 ≤ i, j ≤ n, Wij = Aij − #ij if i '= j and Wij = 0 otherwise. In matrix form, we have

(1.5) A = # − diag(#) + W, where # = $%P%′$.

DCMM includes three models as special cases, each of which is well known and has been
studied extensively recently.

• Degree Corrected Block Model (DCBM) [29]. If we do not allow mixed memberships (i.e.,
each weight vector πi is degenerate with one entry being nonzero), then DCMM reduces
to the DCBM.

• Mixed-Membership Stochastic Block Model (MMSBM) [1]. DCBM further reduces to
MMSBM if θ1 = · · · = θn(= √

αn). In this special case, # = αn%P%′, and for identi-
fiability, (1.4) is too strong, so we relax it to that the average of the diagonals of P is 1.
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• Stochastic Block Model (SBM) [20]. MMSBM further reduces to the classical SBM if
additionally we do not allow mixed memberships.

Under DCMM, the global testing problem is the problem of testing

(1.6) H
(n)
0 : K = 1 vs. H

(n)
1 : K ≥ 2.

The seeming simplicity of the two hypotheses is deceiving, as both of them are highly com-
posite, consisting of many different parameter configurations.

1.2. Phase transition: A preview of our main results. Let λ1,λ2, . . . ,λK be the first K
eigenvalues of #, arranged in the descending order in magnitude. We can view (a)

√
λ1 both

as the sparsity level and the noise level [23] (i.e., spectral norm of the noise matrix W ), (b) |λ2|
as the signal strength, so that |λ2|/

√
λ1 is the Signal-to-Noise Ratio (SNR) and (c) |λ2|/λ1

as a measure of dissimilarity between different communities (Example 1 below illustrates
why it measures “dissimilarity”). We note that [12, 19] also pointed out that |λ2|/

√
λ1 is a

reasonable metric of SNR.
Now, in the two-dimensional phase space where the x-axis is

√
λ1, which measures the

sparsity level, and the y-axis is |λ2|/λ1, which measures the community dissimilarity, we
have two regions.

• Region of Possibility (1 ) √
λ1 ) √

n, |λ2|/
√

λ1 → ∞). For any alternative hypothesis in
this region, it is possible to distinguish it from any null hypothesis, by the Signed Polygon
tests to be introduced.

• Region of Impossibility (1 ) √
λ1 ) √

n, |λ2|/
√

λ1 → 0). In this region, any alternative
hypothesis is inseparable from the null hypothesis, provided with some mild conditions.

See Figure 1 (left panel). Also, see Sections 2 and 3 for our main theorems on Possibility
and Impossibility, respectively. Note that the figure is only for illustration purposes, where
the cases of |λ2| = c0

√
λ1 for some constant c0 > 0 are compressed in the separating the

boundary of two regions (red curve). The Signed Polygon test satisfies all requirements (R1)–
(R4) above. Since the test is able to separate all alternatives (ranging from very sparse to less
sparse) in the Region of Possibility from the null, it is optimally adaptive.

REMARK 1. A stronger version of the phase transition is that for a constant c0 > 0,
the Region of Possibility and Region of Impossibility are given by |λ2|/

√
λ1 > c0 and

|λ2|/
√

λ1 < c0, respectively. For the broad setting, we consider, this is an open problem,
though for some special cases, there are some interesting works (e.g., [19]); see Remark 11.

It is instructive to consider a special DCMM model, which is a generalization of the sym-
metric SBM [37] to the case with degree heterogeneity.

EXAMPLE 1 (A special DCMM). Let e1, . . . , eK be the standard basis of RK . Fixing a
positive vector θ ∈ Rn and a scalar bn ∈ (0,1), we assume

(1.7) P = (1 − bn)IK + bn1K1′
K, πi are i.i.d. sampled from e1, . . . , eK.

In this model, (1 − bn) measures the “dissimilarity” between different communities (it quan-
tifies how well we can tell whether two nodes i and j are from the same community or
not; note that bn = 1 corresponds to the null case where all communities are indistinguish-
able) and ‖θ‖ measures the sparsity level. In this model, λ1 ∼ (1 + (K − 1)bn)‖θ‖2 and
λk ∼ (1−bn)‖θ‖2, 2 ≤ k ≤ K . The sparsity level is

√
λ1 / ‖θ‖, the community dissimilarity

is characterized by λ2/λ1 / (1 − bn), and the SNR is |λ2|/
√

λ1 / ‖θ‖(1 − bn). The Region
of Possibility and Region of Impossibility are given by {1 ) ‖θ‖ ) √

n,‖θ‖(1 − bn) → ∞}
and {1 ) ‖θ‖ ) √

n,‖θ‖(1 − bn) → 0}, respectively. See Figure 1 (right panel).
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FIG. 1. Left: Phase transition. In the Region of Impossibility, any alternative hypothesis is indistinguishable
from a null hypothesis, provided that some mild conditions hold. In the Region of Possibility, the Signed Polygon
test is able to separate any alternative hypothesis from a null hypothesis asymptotically. Right: Phase transition
for the special DCMM model in Example 1, where

√
λ1 / ‖θ‖, |λ2|/λ1 / (1 −bn) and |λ2|/√λ1 / (1 −bn)‖θ‖.

REMARK 2. As the phase transition is hinged on λ2/
√

λ1, one may think that the statistic

λ̂2/

√
λ̂1 is optimally adaptive, where λ̂k is the kth largest (in magnitude) eigenvalue of A. This

is however not true, because the consistency of λ̂2 for estimating λ2 cannot be guaranteed in
our range of interest, unless with strong conditions on θmax [23].

1.3. Literature review, the signed polygon and our contribution. Recently, the global
testing problem has attracted much attention and many interesting approaches have been pro-
posed. To name a few, Mossel et al. [37] and Banerjee and Ma [3] (see also [4]) considered a
special case of the testing problem, where they assume a simple null of Erdős–Renyi random
graph model and a special alternative which is an SBM with two equal-sized communities.
They provided the asymptotic distribution of the log-likelihood ratio within the contiguous
regime. Since the likelihood ratio test statistic is NP-hard to compute, [3] introduced an ap-
proximation by linear spectral statistics. Lei [32] also considered the SBM model and studied
the problem of testing whether K = K0 or K > K0, where K0 is a prespecified integer. His
approach is based on the Tracy–Widom law of extreme eigenvalues and requires delicate ran-
dom matrix theory. Unfortunately, these works have been focused on the SBM (which allows
neither severe degree heterogeneity nor mixed membership). Therefore, despite the elegant
theory in these works, it remains unclear how to extend their ideas to our settings.

Along a different line, graphlet counts (GC) have been frequently used for hypothesis
testing in nonparametric and parametric network models. This includes the EZ test [16] and
GC test [25]. Other interesting works include [6, 7, 36]. In particular, [25] suggested a general
recipe for constructing test statistics and showed that both GC and EZ tests have competitive
power in a broad setting. Unfortunately, it turns out that in the less sparse case, the variance
of the GC test statistic is much larger than expected, which largely hurts the power of the test.
The underlying reason is that GC tests use noncentered cycle counts. If, however, we use
centered cycle counts, we can largely reduce the variances and have a more powerful test.
A similar phenomenon was discovered by Bubeck et al. [10] for the SBM setting.

This motivates a class of new tests, which we call Signed Polygon, including the Signed
Triangle (SgnT) and the Signed Quadrilateral (SgnQ). The Signed Polygon statistics are re-
lated to the Signed Cycle statistics, first introduced by Bubeck et al. [10] and later generalized
by Banerjee [2]. Both the Signed Polygon and Signed Cycle recognize that using centered-
cycle counts may help reduce the variance, but there are some major differences. The study
of the Signed Cycles has been focused on the SBM and similar models, where under the null,
P(Aij = 1) = α, 1 ≤ i '= j ≤ n, and α is the only unknown parameter. In this case, a natural
approach to centering the adjacency matrix A is to first estimate α using the whole matrix
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A (say, α̂), and then subtract all off-diagonal entries of A by α̂. However, under the null of
our setting, P(Aij = 1) = θiθj , 1 ≤ i '= j ≤ n, and there are n different unknown parameters
θ1, θ2, . . . , θn. In this case, how to center the matrix A is not only unclear but also worrisome,
especially when the network is very sparse, because we have to use limited data to estimate a
large number of unknown parameters. Also, for any approaches we may have, the analysis is
seen to be much harder than that of the previous case. Note that the ways how two statistics
are defined over the centered adjacency matrix are also different; see Section 1.4 and [2, 10].

In the Signed Polygon, we use a new approach to estimate θ1, θ2, . . . , θn under the null, and
use the estimates to center the matrix A. To our surprise, data limitation (though a challenge)
does not ruin the idea: even for very sparse networks, the estimation errors of θ1, θ2, . . . , θn

only have a negligible effect. The main contributions of the paper are as follows:

• Discover the phase transition for global testing in the broad DCMM setting by identifying
the Regions of Impossibility and Possibility.

• Propose the Signed Polygon as a class of new tests that are appropriate for networks with
severe degree heterogeneity and mixed memberships.

• Prove that the Signed Triangle and Signed Quadrilateral tests satisfy all the requirements
(R1)–(R4), and especially that they are optimally adaptive and perform well for all net-
works in the Region of Possibility, ranging from very sparse ones to the least sparse ones.

To show the success of the Signed Polygon test for the whole Region of Possibility is very
subtle and extremely tedious. The main reason is that we hope to cover the whole spectrum of
degree heterogeneity and sparsity levels. Crude bounds may work in one case but not another,
and many seemingly negligible terms turn out to be nonnegligible (see Sections 1.4 and 4).
The lower bound argument is also very subtle. Compared to work on SBM where there is only
one unknown parameter under the null, our null has n unknown parameters. The difference
provides a lot of freedom in constructing inseparable hypothesis pairs, and so the Region of
Impossibility in our setting is much wider than that for SBM. Our construction of inseparable
hypothesis pairs uses theorems on nonnegative matrix scaling, a mathematical area pioneered
by Sinkhorn [41] and Olkin [35] among others (e.g., [9, 28]).

1.4. The signed polygon statistic. Recall that A is the adjacency matrix of the network.
Introduce a vector η̂ by (1n denotes the vector of 1’s)

(1.8) η̂ = (1/
√

V )A 1n, where V = 1′
nA1n.

Fixing m ≥ 3, the order-m Signed Polygon statistic is defined by (notation: (dist) is short for
“distinct,” which means any two of i1, . . . , im are unequal)

(1.9) U(m)
n =

∑

i1,i2,...,im(dist)

(Ai1i2 − η̂i1 η̂i2)(Ai2i3 − η̂i2 η̂i3) . . . (Aimi1 − η̂im η̂i1).

When m = 3, we call it the Signed-Triangle (SgnT) statistic:

(1.10) Tn =
∑

i1,i2,i3(dist)

(Ai1i2 − η̂i1 η̂i2)(Ai2i3 − η̂i2 η̂i3)(Ai3i1 − η̂i3 η̂i1).

When m = 4, we call it the Signed-Quadrilateral (SgnQ) statistic:

(1.11) Qn =
∑

i1,i2,i3,i4(dist)

(Ai1i2 − η̂i1 η̂i2)(Ai2i3 − η̂i2 η̂i3)(Ai3i4 − η̂i3 η̂i4)(Ai4i1 − η̂i4 η̂i1).

For analysis, we focus on Tn and Qn, but our main results are extendable to general m.
The key to understanding and analyzing the Signed Polygon is the Ideal Signed Polygon.

Introduce a nonstochastic counterpart of η̂ by

(1.12) η∗ = (1/
√

v0)#1n, where v0 = 1′
n#1n.
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Define the order-m Ideal Signed Polygon statistic by

(1.13) Ũ (m)
n =

∑

i1,i2,...,im(dist)

(
Ai1i2 − η∗

i1
η∗

i2

)(
Ai2i3 − η∗

i2
η∗

i3

)
. . .

(
Aimi1 − η∗

im
η∗

i1

)
.

We expect to see that η̂ ≈ E[η̂] ≈ η∗. We can view Ũ
(m)
n as the oracle version of U

(m)
n , with

η∗ given. We can also view U
(m)
n as the plug-in version of Ũ

(m)
n , where we replace η∗ by η̂.

For implementation, it is desirable to rewrite Tn and Qn in matrix forms, which allows us
to avoid using an for-loop and compute much faster (say, in MATLAB or R). For any two
matrices M,N ∈ Rn,n, let tr(M) be the trace of M , diag(M) = diag(M11,M22, . . . ,Mnn),
and M ◦N be the Hadamard product of M and N (i.e., M ◦N ∈ Rn,n, (M ◦N)ij = MijNij ).
Denote Ã = A − η̂η̂′. The following theorem is proved in the Supplementary Material [26].

THEOREM 1.1. We have Tn = tr(Ã3)−3 tr(Ã◦ Ã2)+2 tr(Ã◦ Ã◦ Ã) and Qn = tr(Ã4)−
4 tr(Ã ◦ Ã3) + 8 tr(Ã ◦ Ã ◦ Ã2) − 6 tr(Ã ◦ Ã ◦ Ã ◦ Ã) − 2 tr(Ã2 ◦ Ã2) + 2 · 1′

n[diag(Ã)(Ã ◦
Ã)diag(Ã)]1n+1′

n[Ã◦Ã◦Ã◦Ã]1n. The complexity of computing both Tn and Qn is O(n2d̄),
where d̄ is the average degree of the network.

Compared to the EZ and GC tests [16, 25], the computational complexity of SgnT and
SgnQ is of the same order.

REMARK 3. The computational complexity of U
(m)
n remains as O(n2d̄) for larger m.

Similarly as that in Theorem 1.1, the main complexity of U
(m)
n comes from computing Ãm.

Since we can compute Ãm with Ãm = Ãm−1Ã and recursive matrix multiplications, each
time with a complexity of O(n2d̄), the overall complexity is O(n2d̄).

REMARK 4 (Connection to the Signed Cycle). In the more idealized SBM or MMSBM
model, we do not have degree heterogeneity, and # = αn1n1′

n under the null, where αn is
the only unknown parameter. In this simple setting, it makes sense to estimate αn by α̂n =
d̄/(n − 1), where d̄ is the average degree. This gives rise to the Signed Cycle statistics [2,
10]: C

(m)
n = ∑

i1,i2,...,im(dist)(Ai1i2 − α̂n)(Ai2i3 − α̂n) . . . (Aimi1 − α̂n). Bubeck et al. [10] first

proposed C
(3)
n for a global testing problem in a model similar to MMSBM. Although their

test statistic is also called the Signed Triangle, it is different from our SgnT statistic (1.10),
because their tests are only applicable to models without degree heterogeneity. The analysis
of the Signed Polygon is also much more delicate than that of the Signed Cycle, as the error
(α̂n − αn) is much smaller than the errors in (η̂ − η∗).

It remains to understand (A) how the Signed Polygon manages to reduce variance, and (B)
what are the analytical challenges.

Consider Question (A). We illustrate it with the Ideal Signed Polygon (1.13) and the null
case. In this case, # = θθ ′. It is seen η∗ = θ , Aij − η∗

i η
∗
j = Aij − #ij = Wij , for i '= j

(see (1.5) for definition of W ), and so Ũ
(m)
n = ∑

i1,i2,...,im(dist) Wi1i2Wi2i3 . . .Wimi1 . Here, each
term is an m-product of independent centered Bernoulli variables, and Wi1i2Wi2i3 . . .Wimi1
and Wi′1i

′
2
Wi′2i

′
3
. . .Wi′mi′1

are correlated only when {i1, i2, . . . , im} and {i′1, i ′2, . . . , i′m} are the
vertices of the same polygon. Such a construction is known to be efficient in variance reduc-
tion (e.g., [10]).

In comparison, for an order-m GC statistic [25], N(m)
n = ∑

i1,i2,...,im(dist) Ai1i2Ai2i3 . . .Aimi1

is the main term. Since here the Bernoulli variables are not centered, we can split N
(m)
n into

two uncorrelated terms: N
(m)
n = Ũ

(m)
n + (N

(m)
n − Ũ

(m)
n ). Compared to the Signed Polygon,

the additional variance comes from the second term, which is undesirably large in the less
sparse case [30].
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REMARK 5. The above also explains why the order-2 Signed Polygon does not work
well. In fact, when m = 2, Ũ

(m)
n = ∑

i1 '=i2
W 2

i1i2
under the null, which has an unsatisfactory

variance due to the square of the W -terms.

Consider Question (B). We discuss with the SgnQ statistic. Recall that η∗ is a nonstochastic
proxy of η̂. For any 1 ≤ i, j ≤ n and i '= j , we decompose η∗

i η
∗
j − η̂i η̂j = δij + rij , where

δij is the main term, which is a linear function of η̂i and η̂j , and rij is the remainder term.
Introduce

(1.14) #̃ = # − η∗(
η∗)′

.

We have Aij − η̂i η̂j = #̃ij + Wij + δij + rij . After inserting this into Qn, each 4-product
is now the product of 4 bracketed terms, where each bracketed term is the sum of 4 terms.
Expanding the brackets and reorganizing, Qn splits into 4 × 4 × 4 × 4 = 256 post-expansion
sums, each having the form

∑
i1,i2,i3,i4(dist) ai1i2bi2i3ci3i4di4i1 , where a is a generic term, which

can be equal to either of the four terms #̃, W , δ and r ; same for b, c and d . While some of
these terms may be equal to each other, the symmetry, we can exploit is limited, due to (a)
degree heterogeneity, (b) mixed memberships and (c) the underlying polygon structure. As a
result, we still have more than 50 post-expansion sums to analyze.

The analysis of a post-expansion sum with the presence of one or more r-term is the
most tedious of all, where we need to further decompose each r-term into three different
terms. This requires analysis of more than 100 additional post-expansion sums. We may think
most of the post-expansion sums are easy to control via a crude bound (e.g., by the Cauchy–
Schwarz inequality). Unfortunately, this is not the case, and many seemingly negligible terms
turn out to be nonnegligible. Here are some of the reasons:

• We wish to cover most interesting cases. A crude bound may be enough for some cases but
not for others.

• We desire to have a single test that achieves the phase transition for the whole range of
interest. Alternatively, we may want to find several tests, each covering a subset of cases
of interest, but this is less appealing.

As a result, we have to analyze a large number of post-expansion sums, where the analysis
is subtle, extremely tedious and error-prone, involving delicate combinatorics, due to the
underlying polygon structure. See Section 4.

REMARK 6. In Signed Polygon (1.9), we estimate # by η̂η̂′ = (1′
nA1n)

−1A1n1′
nA for

the null. Alternatively, we may use a spectral approach and estimate # by λ̂1ξ̂1ξ̂
′
1, where λ̂1

and ξ̂1 are the first eigenvalue and eigenvector of A, respectively. Unfortunately, even in the
more idealized SBM case, this estimate may be unsatisfactory for sparse networks (e.g., [11],
Section 2.2). In fact, for our main results to hold, we need to have |λ̂1 − λ1| ≤ C‖θ‖ with
large probability, but the best concentration inequality we have is |λ̂1 − λ1| ≤ C

√
θmax‖θ‖1

with large probability ([24], Lemma C.1). In the presence of severe degree heterogeneity,
we often have

√
θmax‖θ‖1 3 ‖θ‖. Also, unlike η̂η̂′ in our proposal, λ̂1ξ̂1ξ̂

′
1 is not an explicit

function of A, so the alternative version of the Signed Polygon statistic is much harder to
analyze.

1.5. Organization of the paper. Section 2 focuses on the Region of Possibility and con-
tains the upper bound argument. Section 3 focuses on the Region of Impossibility and con-
tains the lower bound argument. Section 4 presents the key proof ideas, with the proof of
secondary lemmas deferred to the Supplementary Material. Section 5 presents the numerical
study, and Section 6 discusses extensions and connections.
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For any q > 0 and θ ∈ Rn, ‖θ‖q denotes the +q -norm of θ (when q = 2, we drop the
subscript for simplicity). Also, θmin and θmax denote min{θ1, . . . , θn} and max{θ1, . . . , θn},
respectively. For any n > 1, 1n ∈ Rn denotes the vector of 1’s. For two positive sequences
{an}∞n=1 and {bn}∞n=1, we write an ∼ bn if limn→∞ an/bn = 1, and we write an / bn if for
sufficiently large n, there are two constants c2 > c1 > 0 such that c1 ≤ an/bn ≤ c2. We use∑

i1,i2,...,im(dist) to denote the sum over all (i1, . . . , im) such that 1 ≤ ik ≤ n and ik '= i+ for 1 ≤
k '= + ≤ m. We use C > 0 as a generic constant that may vary from occurrence to occurrence.
For constants that need to be more specific, we use c0, c1, etc.

2. The signed polygon test and the upper bound. For reasons aforementioned, we fo-
cus on the SgnT statistic Tn and SgnQ statistic Qn, but the ideas are extendable to general
Signed Polygon statistics. In this section, we study the upper bound. In detail, in Section 2.1,
we establish the asymptotic normality of both test statistics. In Sections 2.2–2.3, we discuss
the power of the two tests. We show that if |λ2|/

√
λ1 → ∞ and some mild regularity con-

ditions hold, then for each of the two tests, the sum of Type I and Type II errors tends to 0
as n → ∞. The lower bound is studied in Section 3, where we show that for an alternative
hypothesis setting with |λ2|/

√
λ1 → 0, we can always pair it with a null setting so that two

hypotheses are asymptotically inseparable.
In a DCMM model, # = $%P%′$, where $ = diag(θ1, . . . , θn), and % is the n × K

membership matrix [π1,π2, . . . ,πn]′. We assume as n → ∞,

(2.1) ‖θ‖ → ∞, θmax → 0, and
(‖θ‖2/‖θ‖1

)√
log

(‖θ‖1
) → 0.

The first condition is necessary. In fact, if ‖θ‖ → 0, then the alternative is indistinguish-
able from the null, as suggested by lower bounds in Section 3. The second one is mild
as we usually assume θmax ≤ C. This is due to that under DCMM, P has unit diagonal
entries and θiθj (π

′
iPπj ) is a probability for all i '= j . The last one is weaker than that

of θmax
√

log(n) → 0, and is very mild. It is assumed mostly for technical reasons and is
not required in many cases (e.g., the dense case where all θi = O(1)). Moreover, introduce
G = ‖θ‖−2%′$2% ∈ RK×K . This matrix is properly scaled and it can be shown that ‖G‖ ≤ 1
(Appendix E, Supplemental Material). When the null is true, K = P = G = 1, and we do not
need any additional condition. When the alternative is true, we assume

(2.2)
max1≤k≤K{∑n

i=1 θiπi (k)}
min1≤k≤K{∑n

i=1 θiπi (k)} ≤ C,
∥∥G−1∥∥ ≤ C, ‖P‖ ≤ C.

Here, C > 0 is a generic constant; see Section 1.5. The conditions are mild. Take the first
two, for example. When there is no mixed membership, they only require the K classes to be
relatively balanced.

2.1. Asymptotic normality of the null. Theorems 2.1–2.2 are proved in the supplement.

THEOREM 2.1 (Limiting null of the SgnT statistic). Consider the testing problem
(1.6) under the DCMM model (1.1)–(1.4), where the condition (2.1) is satisfied. Sup-
pose the null hypothesis is true. As n → ∞, E[Tn] = o(‖θ‖3), Var(Tn) ∼ 6‖θ‖6 and
(Tn − E[Tn])/

√
Var(Tn) −→ N(0,1) in law.

THEOREM 2.2 (Limiting null of the SgnQ statistic). Consider the testing problem
(1.6) under the DCMM model (1.1)–(1.4), where the condition (2.1) is satisfied. Suppose
the null hypothesis is true. As n → ∞, E[Qn] = (2 + o(1))‖θ‖4, Var(Qn) ∼ 8‖θ‖8 and
(Qn − E[Qn])/

√
Var(Qn) −→ N(0,1) in law.
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Note that under the null, the limiting distributions of Tn/
√

Var(Tn) and Qn/
√

Var(Qn)

are N(0,1) and N(1/
√

2,1), respectively. To appreciate the difference, recall that the Signed
Polygon can be viewed as a plug-in statistic, where we replace η∗ in the Ideal Signed Polygon
by η̂. Under the null, the effect of the plug-in is negligible for SgnT but not for SgnQ, so the
two limiting distributions are different. See Section 4 for details.

2.2. The level-α SgnT and SgnQ tests. By Theorems 2.1 and 2.2, the null variances of
the two statistics depend on ‖θ‖2. To use the two statistics as tests, we need to estimate ‖θ‖2.
For η̂ and η∗ defined in (1.8) and (1.12), respectively, we have η̂ ≈ η∗ and η∗ = θ under the
null. A reasonable estimator for ‖θ‖2 under the null is therefore ‖η̂‖2. We propose to estimate
‖θ‖2 with (‖η̂‖2 − 1), which corrects the bias and is slightly more accurate than ‖η̂‖2. The
following lemma is proved in the Supplementary Material.

LEMMA 2.1 (Estimation of ‖θ‖2). Consider the testing problem (1.6) under the DCMM
model (1.1)–(1.4), where the condition (2.1) holds when either hypothesis is true and con-
dition (2.2) holds when the alternative is true. Then, under both hypotheses, as n → ∞
(‖η̂‖2 − 1)/‖η∗‖2 → 1 in probability, where ‖η∗‖2 = (1′

n#
21n)/(1′

n#1n). Furthermore,
‖η∗‖2 = ‖θ‖2 under H

(n)
0 and ‖η∗‖2 / ‖θ‖2 under H

(n)
1 .

Combining Lemma 2.1 with Theorem 2.1 gives

(2.3) Tn/

√
6
(‖η̂‖2 − 1

)3 −→ N(0,1), in law.

Fix α ∈ (0,1). We propose the following SgnT test, which is a two-sided test where we reject
the null hypothesis if and only if

(2.4) |Tn| ≥ zα/2
√

6
(‖η̂‖2 − 1

)3/2
, zα/2: upper (α/2)-quantile of N(0,1).

Similarly, combining Theorem 2.2 and Lemma 2.1, we have

(2.5)
[
Qn − 2

(‖η̂‖2 − 1
)2]

/

√
8
(‖η̂‖2 − 1

)4 −→ N(0,1), in law.

With the same α, we propose the following SgnQ test, which is a one-sided test where we
reject the null hypothesis if and only if

(2.6) Qn ≥ (2 + zα

√
8)

(‖η̂‖2 − 1
)2

, zα : upper α-quantile of N(0,1).

As a result, for both tests we just defined, the levels satisfy

P
H

(n)
0

(Reject the null) → α, as n → ∞.

Figure 2 shows the histograms of Tn/
√

6(‖η̂‖2 − 1)3 (left) and (Qn − 2(‖η̂‖2 − 1)2)/

(
√

8(‖η̂‖2 − 1)4) (right) under a null and an alternative simulated from DCMM. Recall that
in DCMM, # = θθ ′ under the null and # = $%P%$, where $ = diag(θ1, . . . , θn). For the
null, we take n = 2000 and draw θi from Pareto(12,3/8) and scale θ to have an +2-norm of
8. For the alternative, we let (n,K) = (2000,2), P be the matrix with 1 on the diagonal and
0.6 on the off-diagonal, rows of % equal to {1,0} and {0,1} half by half, and with the same
θ as in the null but (to make it harder to separate from the null) rescaled to have an +2-norm
of 9. The results confirm the limiting null of N(0,1) for both tests.
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FIG. 2. Left: histograms of the SgnT test statistics in (2.3) for the null (blue) and the alternative (yellow).
Empirical mean and SD under the null: 0.04 and 0.94. Right: same but for SgnQ test statistic in (2.5). Empirical
mean and SD under the null: −0.02 and 0.92. Repetition: 1000 times. See setting details in the main text.

2.3. Power analysis of the SgnT and SgnQ tests. The matrices # and #̃ play a key role in
power analysis. Recall that # is defined in (1.3) where rank(#) = K , and #̃ = # − η∗(η∗)′

is defined in (1.14) with η∗ = #1n/
√

1′
n#1n as in (1.12). Recall that λ1,λ2, . . . ,λK are the

K nonzero eigenvalues of #. Let ξ1, ξ2, . . . , ξK be the corresponding eigenvectors. The fol-
lowing theorems are proved in the Supplemental Material.

THEOREM 2.3 (Limiting behavior the SgnT statistic (alternative)). Consider the testing
problem (1.6) under the DCMM model (1.1)–(1.4). Suppose the alternative hypothesis is
true, and the conditions (2.1)–(2.2) hold. As n → ∞, E[Tn] = tr(#̃3) + o((|λ2|/λ1)

3‖θ‖6) +
o(‖θ‖3) and Var(Tn) ≤ C[‖θ‖6 + (λ2/λ1)

4‖θ‖4‖θ‖6
3].

THEOREM 2.4 (Limiting behavior of the SgnQ statistic (alternative)). Consider the test-
ing problem (1.6) under the DCMM model (1.1)–(1.4). Suppose the alternative hypothesis is
true and the conditions (2.1)–(2.2) hold. As n → ∞, E[Qn] = tr(#̃4) + o((λ2/λ1)

4‖θ‖8) +
o(‖θ‖4) and Var(Qn) ≤ C[‖θ‖8 + (λ2/λ1)

6‖θ‖8‖θ‖6
3].

We conjecture that both Tn and Qn are asymptotically normal under the alternative. In
fact, asymptotic normality is easy to establish for the Ideal SgnT and Ideal SgnQ. To establish
results for the real SgnT and real SgnQ, we need very precise characterization of the plug-in
effect. For reasons of space, we leave them to the future.

Consider the SgnT test (2.4) first. By Theorem 2.3 and Lemma 2.1, under the alternative,

(2.7) the mean and variance of
Tn√

6(‖η̂‖2 − 1)3
are

tr(#̃3)
√

6‖η∗‖6
and σ 2

n , respectively,

where σ 2
n denotes the asymptotic variance, which satisfies that

(2.8) σ 2
n ≤





C, if |λ2/λ1| )

√
‖θ‖/‖θ‖3

3,

C(λ2/λ1)
4 · (‖θ‖6

3/‖θ‖2)
, if |λ2/λ1| 3

√
‖θ‖/‖θ‖3

3.

If we fix the degree heterogeneity vector θ and let (λ2/λ1) range, there is a phase change in
the variance. We shall call:

• the case of |λ2/λ1| ≤ C
√

‖θ‖/‖θ‖3
3 as the weak signal case for SgnT.

• the case of |λ2/λ1| 3
√

‖θ‖/‖θ‖3
3 as the strong signal case for SgnT.

It remains to derive a more explicit formula for tr(#̃3). Recall that λk and ξk are the kth
eigenvalue and eigenvector of #, 1 ≤ k ≤ K , respectively. Define - ∈ R(K−1)×(K−1) and
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h ∈ RK−1 by - = diag(λ2,λ3, . . . ,λK) and hk = (1′
nξk+1)/(1′

nξ1), 1 ≤ k ≤ K − 1. It can be
shown that 1′

nξ1 '= 0 and ‖h‖∞ ≤ C so the vector h is well defined. In the special case of
‖h‖∞ = o(1) (this happens when the angle between 1n and ξ1 is small):

• We can show that tr(#̃3) ≈ ∑K
k=2 λ3

k .
• Motivated by these, we say “signal cancellation” happens when | tr(#̃3)| ) ∑K

k=2 |λk|3.

Therefore, “signal cancellation” may happen if the (K − 1) eigenvalues λ2,λ3, . . . ,λK have
different signs. In fact, in the extreme case, we can have

∑K
k=2 λ3

k = 0, though
∑K

k=2 |λk|3
is very large (e.g., [25], Section 3.3). Normally, the “signal cancellation” is found for odd-
order moment-based statistics (e.g., 3rd , 5th, . . ., moment), but not for even-order moment
methods (in fact, the SgnQ test will not experience such “signal cancellation”).

Fortunately, “signal cancellation” is only possible when λ2,λ3, . . . ,λK have different
signs, and can be avoided in some special cases. We propose the following conditions.

CONDITION 2.1. (a) λ2,λ3, . . . ,λK have the same signs, (b) K = 2 and (c) |λ2|/λ1 →
0, and | tr(-3) + 3h′-3h + 3(h′-h)(h′-2h) + (h′-h)3| ≥ C

∑K
k=2 |λk|3.

In (a)–(b), λ2, . . . ,λK have the same signs. Condition (c) is based on more delicate analy-
sis; see the proof of Lemma 2.2 for details.

While the above discussion is motivated by the case of ‖h‖∞ = o(1), the idea continues
to be valid for more general cases. The following is proved in the Supplementary Material.

LEMMA 2.2 (Analysis of tr(#̃3)). Suppose conditions of Theorem 2.3 hold. Under the
alternative hypothesis,

• If |λ2|/λ1 → 0, then tr(#̃3) = tr(-3) + 3h′-3h + 3(h′-h)(h′-2h) + (h′-h)3 + o(|λ2|3).
• If λ2,λ3, . . . ,λK have the same signs, then

∣∣tr
(
#̃3)∣∣ ≥






K∑

k=2

|λk|3 + o
(|λ2|3

)
, if |λ2/λ1| → 0,

C|λ2|3, if |λ2/λ1| ≥ C.

• In the special case where K = 2, the vector h is a scalar, and

∣∣tr
(
#̃3)∣∣

{
= [(

h2 + 1
)3 + o(1)

] · |λ2|3, if |λ2|/λ1 → 0,

≥ C|λ2|3, if |λ2/λ1| ≥ C.

As a result, when either one of (a)–(c) holds, | tr(#̃3)| ≥ C
∑K

k=2 |λk|3.

It can be shown that ‖η∗‖ / √
λ1 / ‖θ‖. We combine Lemma 2.2 with (2.7)–(2.8).

In the weak signal case, E[Tn]√
Var(Tn)

≥ C(
∑K

k=2 |λk |3)
‖θ‖3 ≥ C(λ

− 3
2

1
∑K

k=2 |λk|3). In the strong sig-

nal case, since (λ2/λ1)
2 ≤ λ−2

1 (
∑K

k=2 |λk|3)
2
3 , we have E[Tn]√

Var(Tn)
≥ C(

∑K
k=2 |λk |3)

λ−2
1 (

∑K
k=2 |λk |3)

2
3 ‖θ‖3

3‖θ‖2
≥

C‖θ‖3

‖θ‖3
3

(λ
− 3

2
1

∑K
k=2 |λk|3)

1
3 , where it should be noted that in our setting, ‖θ‖3/‖θ‖3

3 → ∞. As

a result, in both cases, the power of the SgnT test → 1 as long as λ
−3/2
1

∑K
k=2 |λk|3 → ∞.

This is validated in the following theorem, which is proved in the Supplemental Material.

THEOREM 2.5 (Power of the SgnT test). Under the conditions of Theorem 2.3, for any
fixed α ∈ (0,1), consider the SgnT test in (2.4). Suppose one of the cases in Condition 2.1
holds. As n → ∞, if λ

−1/2
1 (

∑K
k=2 |λk|3)1/3 → ∞, then the Type I error → α, and the Type II

error → 0.
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Next, consider the SgnQ test (2.6). By Theorem 2.4 and Lemma 2.1, under the alternative,

the mean and variance of [Qn − 2(‖η̂‖2 − 1)2]/
√

8(‖η̂‖2 − 1)4 are tr(#̃4)/
√

8‖η∗‖8 and σ 2
n ,

respectively, where σ 2
n denotes the asymptotic variance and satisfies

σ 2
n ≤

{
C, if |λ2/λ1| ) ‖θ‖−1

3 ,

C(λ2/λ1)
6 · ‖θ‖6

3, if |λ2/λ1| 3 ‖θ‖−1
3 .

Similar to the SgnT test, if we fix the degree heterogeneity vector θ and let (λ2/λ1) range,
there is a phase change in the variance. We shall call:

• the case of |λ2/λ1| ≤ C‖θ‖−1
3 as the weak signal case for SgnQ.

• the case of |λ2/λ1| 3 ‖θ‖−1
3 as the strong signal case for SgnQ.

We now analyze tr(#̃4). The following lemma is proved in the Supplementary Material.

LEMMA 2.3 (Analysis of tr(#̃4)). Suppose the conditions of Theorem 2.4 hold. Under
the alternative hypothesis,

• If |λ2|/λ1 → 0, then tr(#̃4) = tr(-4) + (q ′-q)4 + 2(h′-2h)2 + 4(h′-h)2(h′-2h) +
4h′-4h + 4(h′-h)(h′-3h) + o(λ4

2)!
∑4

k=2 λ4
k .

• If |λ2|/λ1 ≥ C, then tr(#̃4) ≥ C
∑K

k=2 λ4
k .

• In the special case of K = 2, h is a scalar and tr(#̃4) = [(h2 + 1)4 + o(1)] · λ4
2.

As a result, the SgnQ test has no issue of “signal cancellation,” and it always holds

that tr(#̃4) ≥ C
∑K

k=2 λ4
k . Then, in the weak signal case, we have E[Qn]√

Var(Qn)
≥ C(

∑K
k=2 λ4

k)

‖θ‖4 ≥
C(λ−2

1
∑K

k=2 λ4
k). In the strong signal case, since (λ2/λ1)

3 ≤ λ−3
1 (

∑K
k=2 λ4

k)
3
4 , we have

E[Qn]√
Var(Qn)

≥ C(
∑K

k=2 λ4
k)

λ−3
1 (

∑K
k=2 λ4

k)
3
4 ‖θ‖3

3‖θ‖4
≥ C‖θ‖3

‖θ‖3
3

(λ−2
1

∑K
k=2 λ4

k)
1
4 , where ‖θ‖3/‖θ‖3

3 → ∞. So, in

both cases, the power of the SgnQ test goes to 1 if λ−2
1

∑K
k=2 λ4

k → ∞. This is validated in
Theorem 2.6, which is proved in the Supplemental Material.

THEOREM 2.6 (Power of the SgnQ test). Under the conditions of Theorem 2.4, for any
fixed α ∈ (0,1), consider the SgnQ test in (2.6). As n → ∞, if λ

−1/2
1 (

∑K
k=2 λ4

k)
1/4 → ∞, then

the Type I error → α, and the Type II error → 0.

In summary, Theorem 2.5 and Theorem 2.6 imply that as long as

(2.9) |λ2|/
√

λ1 → ∞,

the levels of SgnT and SgnQ tests tend to α as expected, and their powers tend to 1. The
SgnT test requires mild conditions to avoid “signal cancellation,” but the SgnQ test has no
such issue (such an advantage of SgnQ test is confirmed by numerical study in Section 5).

REMARK 7. Practically, we prefer to fix α, say, α = 5%. If we allow the level α to
change with n, then when (2.9) holds, there is a sequence of αn that tends to 0 slowly enough
such that |λ2|/(zαn/2 ·

√
λ1) → ∞. As a result, for either of the two tests, the Type I error

→ 0 and the power → 1, so the sum of Type I and Type II errors → 0.

EXAMPLE 1 (contd). For this example, λ1 ∼ (1 + (K − 1)bn)‖θ‖2, and λk ∼ (1 −
bn)‖θ‖2, k = 2,3, . . . ,K . The condition (2.9) of |λ2|/

√
λ1 → ∞ translates to (1−bn)‖θ‖ →

∞. See Section 1.2 and also Section 3 for more discussion.
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3. Optimal adaptivity, lower bound and region of impossibility. We now focus on
the region of impossibility, where |λ2|/

√
λ1 → 0. We first present a standard minimax lower

bound, from which we can conclude that there is a sequence of hypothesis pairs (one alter-
native and one null) that are asymptotically indistinguishable. However, this does not answer
the question whether all alternatives in the region of impossibility are indistinguishable from
the null. To answer this question, we need much more sophisticated study; see Section 3.2.

3.1. Minimax lower bound. Given an integer K ≥ 1, a constant c0 > 0, and two positive
sequences {αn}∞n=1 and {βn}∞n=1, we define a class of parameters for DCMM (recall that # =
$%P%′$, G = ‖θ‖−2%′$2% and is properly scaled, and λk is the kth largest eigenvalue of
# in magnitude):

Mn(K, c0,αn,βn)

=






(θ,%,P ) : θmax ≤ βn,‖θ‖−1 ≤ βn,‖θ‖2‖θ‖−1
1

√
log(‖θ‖1) ≤ βn,

maxk{
∑n

i=1 θiπi (k)}
mink{

∑n
i=1 θiπi (k)} ≤ c0,‖G−1‖ ≤ c0, |λ2|/

√
λ1 ≥ αn





.

For the null case, K = P = πi = 1, and the above defines a class of θ , which we write for
short by Mn(1, c0,αn,βn) = M∗

n(βn).

THEOREM 3.1 (Minimax lower bound). Fix K ≥ 2, a constant c0 > 0 and any sequences
{αn}∞n=1 and {βn}∞n=1 such that αn → 0 and βn → 0 as n → ∞. Then, as n → ∞,

inf
ψ

{
sup

θ∈M∗
n(βn)

P(ψ = 1) + sup
(θ,%,P )∈Mn(K,c0,αn,βn)

P(ψ = 0)
}

→ 1,

where the infimum is taken over all possible tests ψ .

Theorem 3.1 says that in the region of impossibility, there exists a sequence of alternatives
that are inseparable from the null. This does not show what we desire, that is any sequence in
the region of impossibility is inseparable from the null. This is discussed in the next section.

3.2. Region of impossibility. Recall that under DCMM, # = $%P%′$ and % =
[π1,π2, . . . ,πn]′. Since our model is a mixed-membership latent variable model, in order
to characterize the least favorable configuration, it is conventional to use a random mixed-
membership (RMM) model for the matrix %, while ($,P ) are still nonstochastic. In detail,

• Let V = {x ∈ RK,xk ≥ 0,
∑K

k=1 xk = 1}.
• Let V0 = {e1, e2, . . . , eK}, where ek is the kth Euclidean basis vector.

In DCMM–RMM, we fix a distribution F defined over V and assume πi
i.i.d.∼ F where

h ≡ E[πi]. If we further restrict that F is defined over V0, then the network has no mixed
membership, and DCMM–RMM reduces to DCBM–RMM.

The desired result is to show that, for any given P and F , there is a sequence of hypothesis
pairs (a null and an alternative)

(3.1) H
(n)
0 : # = θθ ′, and H

(n)
1 : # = $̃%P%′$̃,

where $̃ = diag(θ̃1, θ̃1, . . . , θ̃n) and θ̃i can be different from θi , such that the two hypotheses
within each pair are asymptotically indistinguishable from each other, provided that under
the alternative |λ2|/

√
λ1 → 0.
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Here, since # depends on πi , λk is random, and it is more convenient to translate the
condition of |λ2|/

√
λ1 → 0 to the condition of

(3.2) ‖θ‖ · ∣∣µ2(P )
∣∣ → 0,

where µk(P ) is the kth largest eigenvalue of P in magnitude. The equivalence of two condi-
tions are justified in Section F.1 of the Supplementary Material. Condition (2.2) can also be
ensured with high probability, by assuming that all entries of E[πi] are at the order of O(1).

Under the DCBM, the desired result can be proved satisfactorily. The key is the following
lemma, which is in the line of Sinkhorn’s beautiful work on scalable matrices [41] (see also
[9, 28, 35]) and is proved in the Supplementary Material.

LEMMA 3.1. Fix a matrix A ∈ RK,K with strictly positive diagonal entries and nonneg-
ative off-diagonal entries, and a strictly positive vector h ∈ RK , there exists a diagonal matrix
D = diag(d1, d2, . . . , dK) such that DADh = 1K and dk > 0, 1 ≤ k ≤ K .

In detail, consider a DCBM–RMM setting where πi
i.i.d.∼ F and F is supported over V0

(with possibly unequal probabilities on the K points). Recall h = E[πi]. By Lemma 3.1,
there is a unique diagonal matrix D such that DPDh = 1K . Let

(3.3) θ̃i = dk · θi , if πi = ek,1 ≤ i ≤ n,1 ≤ k ≤ K.

The following theorem is proved in the Supplementary Material.

THEOREM 3.2 (Region of impossibility (DCBM)). Fix K > 1 and a distribution F de-
fined over V0. Consider a sequence of DCBM model pairs indexed by n:

H
(n)
0 : # = θθ ′ and H

(n)
1 : # = $̃%P%′$̃,

where πi
i.i.d.∼ F and $̃ = diag(θ̃1, θ̃2, . . . , θ̃n) with θ̃i defined as in (3.3). If θmax ≤ c0 for

a constant c0 < 1, min1≤k≤K{hk} ≥ C, and ‖θ‖ · |µ2(P )| → 0, then for each pair of two
hypotheses, the χ2-distance between the two joint distributions tends to 0, as n → ∞.

To generalize this to RMM–DCMM, we fix a distribution F defined over V . Given a set

of ($,P ,%) with $ = diag(θ1, θ2, . . . , θn) and πi
i.i.d.∼ F , let h̃D = E[D−1πi/‖D−1πi‖1] for

any diagonal matrix D ∈ RK×K with positive diagonals. We assume that there is a D such
that

(3.4) DPDh̃D = 1K, min
1≤k≤K

{h̃D,k} ≥ C.

When such a D exists, we let

(3.5) θ̃i = θi/
∥∥D−1πi

∥∥
1, 1 ≤ i ≤ n.

When the support of F is restricted to V0, all realizations of πi are degenerate (i.e., one
entry is 1, and other entries are 0), so h̃D = h, θ̃i is the same as that in (3.3), and (3.4)
holds by Lemma 3.1. Under DCMM–RMM, πi ’s are not degenerate. We conjecture that (3.4)
continues to hold generally (we can show it for the cases of K = 2,3; the proof is elementary
so is omitted). The following theorem is proved in the Supplementary Material.

THEOREM 3.3 (Region of Impossibility (DCMM)). Fix K > 1 and a distribution F
defined over V . Consider a sequence of DCMM model pairs indexed by n:

H
(n)
0 : # = θθ ′ and H

(n)
1 : # = $̃%P%′$̃,
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where πi
iid∼ F and $̃ = diag(θ̃1, θ̃2, . . . , θ̃n) with θ̃i defined as in (3.5). If (3.4) holds, θmax ≤

c0 for a constant c0 < 1, and ‖θ‖ · |µ2(P )| → 0, then for each pair of two hypotheses, the
χ2-distance between the two joint distributions tends to 0, as n → ∞.

One of the main strengths of Theorems 3.2–3.3 is that this lower bound is valid for an
arbitrary choice of θ ∈ Rn

+. This is stronger than the standard minimax lower bound.
In Theorem 3.3, we try to be as general as we can so % is given (and we are not allowed

to change it in our construction). For any P and F , by Lemma 3.1, there is a unique positive
diagonal matrix D such that DPDh = 1K where h = E[πi]. We now consider a special case
where we allow % to depend on D in our construction. In this case, Condition (3.4) can be
removed. Let %̃ = [π̃1, π̃2, . . . , π̃n]′ and $̃ = diag(θ̃1, θ̃2, . . . , θ̃n), with

(3.6) π̃i = Dπi/‖Dπi‖1, θ̃i = ‖Dπi‖1 · θi .

THEOREM 3.4 (Region of impossibility (DCMM with flexible %)). Fix K > 1 and a
distribution F defined over V . Consider a sequence of DCMM model pairs indexed by n:
H

(n)
0 : # = θθ ′ and H

(n)
1 : # = $̃%̃P %̃′$̃, where %̃ and $̃ are defined as in (3.6). If θmax ≤

c0 for a constant c0 < 1, min1≤k≤K{hk} ≥ C, and ‖θ‖ · |µ2(P )| → 0, then for each pair of
two hypotheses, the χ2-distance between the two joint distributions tends to 0, as n → ∞.

Finally, we consider the case where we require that the null and the alternative have per-
fectly matching $ matrix (up to an overall scaling). This is especially of interest when we
consider SBM or MMSBM models where we have little freedom in choosing the $ matrix.
In this case, in order that the two hypotheses are indistinguishable, the expected node degrees
under the alternative have to match those under the null. For each 1 ≤ i ≤ n, conditional
on πi and neglecting the effect of no self-edges, the expected degree of node i equals to
‖θ‖1 · θi and ‖θ‖1 · (π ′

iP h) · θi under the null and under the alternative, respectively, where

{πj }j '=i
iid∼ F and h = E[πj ]. For the expected degrees to match under any realized πi , it is

necessary that

(3.7) Ph = qn1K, for some scaling parameter qn > 0.

THEOREM 3.5 (Region of impossibility (DCMM with matching $)). Fix K > 1 and a
distribution F defined over V . Consider a sequence of DCMM model pairs indexed by n:

H
(n)
0 : # = qn · θθ ′ and H

(n)
1 : # = $%P%′$, where $ = diag(θ1, θ2, . . . , θn), πi

iid∼ F , and
(P,h, qn) satisfy (3.7). If θmax ≤ c0 for a constant c0 < 1, min1≤k≤K{hk} ≥ C and ‖θ‖ ·
|µ2(P )| → 0, then for each pair of two hypotheses, the χ2-distance between the two joint
distributions tends to 0, as n → ∞.

Theorems 3.4–3.5 are proved in the Supplementary Material.

EXAMPLE 1 (continued). In Example 1, πi is drawn from e1, e2, . . . , eK with equal prob-
abilities, and P = (1 − bn)IK + bn1K1′

K . Therefore, h = E[πi] = (1/K)1K . In this case, all
conditions of Theorem 3.5 hold. Note qn = (1/K) + (K − 1)bn/K and µ2(P ) = (1 − bn).

REMARK 8 (Least favorable configuration of LDA-DCMM). The Dirichlet model is
often used for mixed memberships [1]. Consider the model pairs H

(n)
0 : # = qnθθ ′ and

H
(n)
1 : # = $%P%′$ and where πi

iid∼ Dir(α) (Dir(α): Dirichlet distribution with parameters
α = (α1, . . . ,αK)′). By Theorem 3.5, as long as Pα ∝ 1K , the null and alternative hypothe-
ses are asymptotically indistinguishable if (1−qn)‖θ‖ → 0. One can easily construct P such
that Pα ∝ 1K . For example, P = (1−qn)MM ′ +qn1K1′

K , where M ∈ RK×(K−1) is a matrix
whose columns are from Span⊥(α) and satisfy diag(MM ′) = IK .
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3.3. Optimal adaptivity. Recall that
√

λ1, |λ2|/λ1, and |λ2|/
√

λ1 can be viewed as a
measure for the sparsity, community dissimilarity and SNR, respectively. Combining Theo-
rems 2.1–2.4, Theorems 3.2–3.5 and Remark 7 in Section 2.3, in the two-dimensional phase
space where the x-axis is

√
λ1 and the y-axis is the |λ2|/λ1, we have a partition to two

regions, the region of possibility and the region of impossibility.

• Region of impossibility (1 ) √
λ1 ) √

n, |λ2|/
√

λ1 = o(1)). In this region, any DCBM
alternative is asymptotically inseparable from the null, and up to a mild condition, any
DCMM alternative is also asymptotically inseparable from the null.

• Region of possibility (1 ) √
λ1 ) √

n, |λ2|/
√

λ1 → ∞). In this region, asymptotically,
any alternative is completely separable form any null.

The SgnQ test is optimally adaptive: for any alternative in the region of possibility, the test
is able to separate it from the null with a sum of Type I and Type II errors tending to 0. The
SgnT test is also optimally adaptive, provided that some mild conditions hold to avoid signal
cancellation. To the best of our knowledge, the Signed Polygon is the only known test that is
both applicable to general DCMM (where we allow severe degree heterogeneity and arbitrary
mixed memberships) and optimally adaptive. The EZ and GC tests are the only other tests
we know that are applicable to general DCMM, but their variances are unsatisfactorily large
for the less sparse case, so they are not optimally adaptive. See [30] for details.

REMARK 9. Most existing lower bound results [2, 16, 37] are within the standard min-
imax framework, where they focus on a particular sequence of alternative (e.g., the off-
diagonals of P are equal). In our case, the standard minimax theorem only implies that in
the region of impossibility, there is a sequence of alternative that are inseparable from the
null. Our results (Theorems 3.2–3.5) shed new light on the region of impossibility, saying
that for each alternative, we can pair it with a null such that two hypotheses are asymptoti-
cally inseparable.

REMARK 10. Existing minimax lower bounds [2, 4, 37] are largely focused on the SBM.
Though a least favorable scenario for SBM is least favorable for DCMM, the former does
not provide much insight on how the least favorable configurations and the phase transition
depend on the degree heterogeneity and mixed memberships. Moreover, our results (see also
[19]) suggest that ‖θ‖, not ‖θ‖1, determines the separating boundary. In the SBM case, θ1 =
· · · = θn and ‖θ‖1 = √

n‖θ‖, so it is hard to tell which of the two norms decides the boundary.
In DCMM, there is no simple relationship between ‖θ‖1 and ‖θ‖, and we can tell this clearly.

REMARK 11. A sharper version of the phase transition is that there exists a constant
c0 > 0 such that the region of possibility and region of impossibility are given by |λ2|/

√
λ1 >

c0 and |λ2|/
√

λ1 < c0, respectively. In some special cases, these kinds of results exist for
community detection (a related but different problem). For example, [19] considered a setting
where (i) there is no mixed membership, (ii) for some constants a, b > 0, P(k,+) = a if
k = + and b otherwise, (iii) the communities have equal size and (iv) for a constant φ > 0,
{√nθi}ni=1 are i.i.d. drawn from a fixed distribution supported in [φ,∞). They showed that,
when (a − b)2E‖θ‖2 < K(a + b), it is impossible to reconstruct the community label matrix
%. Moreover, in the special case of K = 2, [18] (also, see [12]) showed that when (a −
b)2E‖θ‖2 > 2(a + b), it is possible to construct an estimate of % that is positively correlated
with the true community labels. By connecting (a, b,E‖θ‖2) with eigenvalues, it is seen that
these results give a sharp phase transition at c0 = 1, in the special case where K = 2 and (i)–
(iv) hold. For more general settings, whether such a sharp phase transition exists is unclear:
a slight change in conditions (i)–(iv) may affect the lower bounds, and the optimal tests (for
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the sharp phase transition) are hard to find as they usually need to adapt to specific features
of the model. Also, technically, allowing for mixed memberships makes the lower bound
much harder to study, and allowing for unequal community sizes and unequal off-diagonal
entries in P requires an application of DAD theorem in lower bound construction (which is
not needed in [19]). Moreover, [12, 18, 19] are for community detection and our paper is on
global testing. For general DCMM settings, it is unclear whether the phase transitions for two
problems are the same.

4. The behavior of the SgnQ test statistics. In this section, we study the SgnQ test
statistic Qn and explain how to prove Theorems 2.2, 2.4 and 2.6. We introduce a proxy SgnQ
test statistic Q∗

n and an Ideal SgnQ test statistic Q̃n. Writing Qn = Q̃n + (Q∗
n − Q̃n) +

(Qn − Q∗
n), we study the three terms on the RHS in Sections 4.1–4.3, respectively. Given

these results, the proofs of Theorems 2.2, 2.4 and 2.6 are straightforward and contained in
Section B of the Supplementary Material. The study of the SgnT test statistic Tn is similar
and contained in Section A of the Supplementary Material, where we also prove Theorems
2.1, 2.3 and 2.5.

Recall that the SgnQ statistic Qn is defined as

Qn =
∑

i1,i2,i3,i4(dist)

(Ai1i2 − η̂i1 η̂i2)(Ai2i3 − η̂i2 η̂i3)(Ai3i4 − η̂i3 η̂i4)(Ai4i1 − η̂i4 η̂i1),

where η̂ = A1n/
√

V , with V = 1′
nA1n. In Section 1.4, we have introduced the following

nonstochastic proxy of η̂: η∗ = #1n/
√

v0, where v0 = 1′
n#1n. We now introduce another

(stochastic) proxy η̃ by

(4.1) η̃ = A1n/
√

v, where v = E[1′
nA1n] = 1′

n(# − diag(#))1n.

Denoting the mean of η̃ by η, it is seen that

(4.2) η = ([
# − diag(#)

]
1n

)
/
√

1′
n

(
# − diag(#)

)
1n.

Here, η and η∗ are close to each other but η∗ has a more explicit form. For example, under
the null hypothesis, # = θθ ′, and it is seen that η∗ = θ . Recall that A = # − diag(#) + W
and #̃ = # − η∗(η∗)′. Fix 1 ≤ i, j ≤ n and i '= j . First, we write

Aij − η̂i η̂j = (
Aij − η∗

i η
∗
j

) + (
η∗

i η
∗
j − η̂i η̂j

) = #̃ij + Wij + (
η∗

i η
∗
j − η̂i η̂j

)
.

Second, we write η∗
i η

∗
j − η̂i η̂j = δij + rij , where

(4.3) δij = ηi (ηj − η̃j ) + ηj (ηi − η̃i )

is the linear approximation term of (η∗
i η

∗
j − η̂i η̂j ) and rij ≡ (η∗

i η
∗
j − η̂i η̂j ) − δij is the re-

mainder term. By definition and elementary algebra,

(4.4) rij = (
η∗

i η
∗
j − ηiηj

) − (ηi − η̃i)(ηj − η̃j ) +
(

1 − v

V

)
η̃i η̃j .

It is shown that rij is of a smaller order than that of δij . The remainder term can be shown to
have a negligible effect over Tn and Qn, in terms of the variances of Tn and Qn, respectively;
see Theorem 4.3.

Let X be the symmetric matrix where all diagonal entries are 0 and for 1 ≤ i, j ≤ n but
i '= j , Xij = Aij − η̂i η̂j , or equivalently,

(4.5) Xij = #̃ij + Wij + δij + rij .

If we omit the remainder term, then we have a proxy of X, denoted by X∗, where all diagonal
entries of X∗ are 0, and for 1 ≤ i, j ≤ n but i '= j ,

(4.6) X∗
ij = #̃ij + Wij + δij .



OPTIMAL ADAPTIVITY OF SIGNED-POLYGON 3425

If we further omit the δ term, then we have another proxy of X, denoted by X̃, where all
diagonal entries of X̃ are 0, and for 1 ≤ i, j ≤ n but i '= j ,

(4.7) X̃ij = #̃ij + Wij .

With the above notation, we can rewrite Qn as Qn = ∑
i1,i2,i3,i4(dist) Xi1i2Xi2i3Xi3i4Xi4i1 . We

introduce the Proxy SgnQ test statistic and Ideal SgnQ test statistic by

Q∗
n =

∑

i1,i2,i3,i4(dist)

X∗
i1i2

X∗
i2i3

X∗
i3i4

X∗
i4i1

, Q̃n =
∑

i1,i2,i3,i4(dist)

X̃i1i2X̃i2i3X̃i3i4X̃i4i1 .

The Ideal SgnQ test statistic Q̃n is the same as that defined in (1.13). Using these notation,
we partition Qn as Qn = Q̃n + (Q∗

n − Q̃n) + (Qn − Q∗
n). In Sections 4.1–4.3, we study the

three terms on the right-hand side, respectively.

4.1. The behavior of the ideal SgnQ test statistics. In view of (4.7), the Ideal SgnQ test
statistic Q̃n is written as

(4.8) Q̃n =
∑

i1,i2,i3,i4(dist)

(#̃i1i2 + Wi1i2)(#̃i2i3 + Wi2i3)(#̃i31i4 + Wi3i4)(#̃i4i1 + Wi4i1).

Under the null, # = θθ ′ and η∗ = θ . By definition, #̃ij = 0, and the statistic reduces to
Q̃n = ∑

i1,i2,i3,i4(dist) Wi1i2Wi2i3Wi3i4Wi4i1 . The right-hand side is the sum of a large number
of uncorrelated terms, with each term being a 4-product of independent centered-Bernoulli
variables. It can be shown that the statistic is asymptotically normal, with E[Q̃n] = 0 and
Var(Q̃n) ∼ 8‖θ‖8.

Consider the alternative hypothesis. In the right-hand side of (4.8), expanding the bracket
and rearranging, we have 2 × 2 × 2 × 2 = 16 post-expansion sums, each having the form of∑

i1,i2,i3,i4(dist) ai1i2bi2i3ci3i4di4i1 , where a is a generic notation which may either equal to #̃

or W ; same for b, c and (d). For example,
∑

i1,i2,i3,i4(dist) Wi1i2#̃i2i3Wi3i4Wi4i1 is one of the
16 post-expansion sums, corresponding to b = #̃, and a = c = d = W . Note that each of 16
post-expansion sums is the sum of many 4-product, where the number of the #̃ factors in
each product is the same; denote this number (which can be 0, 1, 2, 3 or 4) by N#̃. Similarly,
the number of the W factors in each product are also the same. Denote it by NW , we have
N#̃ + NW = 4. For the example above, (N#̃,NW) = (1,3).

According to (N#̃,NW), we can group the 16 post-expansion sums into 6 different types.
Table 1 presents the mean and variance of each type (Recall that λ1, . . . ,λK are the K eigen-
values of #, arranged in descending order in magnitude. In Table 1, α = |λ2|/λ1. In the
alternative, we assume |λ2|/

√
λ1 → ∞, which translates to α‖θ‖ → ∞ since

√
λ1 / ‖θ‖).

TABLE 1
The 6 different types of the 16 post-expansion sums of Q̃n (‖θ‖q is the +q -norm of θ (the subscript is dropped

when q = 2). In our setting, α‖θ‖ → ∞, and ‖θ‖4
4 ) ‖θ‖3

3 ) ‖θ‖2 ) ‖θ‖1

Type # (N#̃,NW ) Examples Mean Variance

I 1 (0, 4)
∑

i,j,k,+(dist) WijWjkWk+W+i 0 / ‖θ‖8

II 4 (1, 3)
∑

i,j,k,+(dist) #̃ijWjkWk+W+i 0 ≤ Cα2‖θ‖4‖θ‖6
3 = o(‖θ‖8)

IIIa 4 (2, 2)
∑

i,j,k,+(dist) #̃ij #̃jkWk+W+i 0 ≤ Cα4‖θ‖6‖θ‖6
3 = o(α6‖θ‖8‖θ‖6

3)

IIIb 2 (2, 2)
∑

i,j,k,+(dist) #̃ijWjk#̃k+W+i 0 ≤ Cα4‖θ‖12
3 = o(‖θ‖8)

IV 4 (3, 1)
∑

i,j,k,+(dist) #̃ij #̃jk#̃k+W+i 0 ≤ α6‖θ‖8‖θ‖6
3

V 1 (4, 0)
∑

i,j,k,+(dist) #̃ij #̃jk#̃k+#̃+i ∼ tr(#̃4) 0
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From the table, among all 16 post-expansion sums, the total mean is ∼ tr(#̃4), and the
total variance ≤ C‖θ‖8 +C(|λ2|/λ1)

6‖θ‖8‖θ‖6
3, with Type I sum and Type IV sum being the

major contributors. The following theorem is proved in the Supplementary Material.

THEOREM 4.1 (Ideal SgnQ test statistic). Consider the testing problem (1.6) under the
DCMM model (1.1)–(1.4), where the condition (2.2) is satisfied under the alternative hy-
pothesis. Suppose θmax → 0 and ‖θ‖ → ∞ as n → ∞, and suppose |λ2|/

√
λ1 → ∞ un-

der the alternative hypothesis. Then, under the null hypothesis, as n → ∞, E[Q̃n] = 0,

Var(Q̃n) = 8‖θ‖8 · [1 + o(1)], and (Q̃n − E[Q̃n])/
√

Var(Q̃n) −→ N(0,1) in law. Fur-
thermore, under the alternative hypothesis, as n → ∞, E[Q̃n] = tr(#̃4) + o(‖θ‖4) and
Var(T̃n) ≤ C[‖θ‖8 + (|λ2|/λ1)

6‖θ‖8‖θ‖6
3].

4.2. The behavior of (Q∗
n − Q̃n). The Proxy SgnQ test statistic is defined as Q∗

n =∑
i1,i2,i3,i4(dist) X

∗
i1i2

X∗
i2i3

X∗
i3i4

X∗
i4i1

. Inserting X∗
ij = #̃ij + Wij + δij and expanding every

bracket, we similarly obtain 3 × 3 × 3 × 3 = 81 different post-expansion sums, where 15
of them do not involve any δ term. The sum of the remaining 65 terms is (Q∗

n − Q̃n). For
each of these 65 post-expansion sums, we are summing over many 4-products, where each
of them has the same number of #̃ factors, W factors, and δ factors, which we denote by
N#̃, NW , and Nδ , respectively. According to (N#̃,NW,Nδ), we divide the 65 post-expansion
sums into 10 different types. See Table 2, where we recall that α = |λ2|/λ1.

We now analyze Q∗
n − Q̃n. Consider the null hypothesis first. Under the null, #̃ is a zero

matrix, so the nonzero post-expansion sums only include Type Ia, Type IIa, Type IIIa and
Type IV. It is seen that |E[Q∗

n − Q̃n]| ≤ C‖θ‖4 and Var(Q∗
n − Q̃n) = o(‖θ‖8). Note that ‖θ‖8

is the order of Var(Q̃n) under the null. The difference between the variance of Q∗
n and the

variance of Q̃n is negligible, but the difference between the mean of Q∗
n and the mean of Q̃n

is nonnegligible. With lengthy calculations (see the Supplementary Material), we can show
that E[Q∗

n − Q̃n] ∼ 2‖θ‖4. Therefore, (Q∗
n − 2‖θ‖4) and Q̃n have a negligible difference

under the null.
Consider the alternative hypothesis next. From Table 2, |E[Q∗

n −Q̃n]| ≤ C(|λ2|/λ1)
2‖θ‖6,

where the major contribution is from Type Ic and Type IIc post-expansion sums. Un-
der our assumptions for the alternative, |λ2|/

√
λ1 → ∞ and λ1 / ‖θ‖4. It is easy to see

that |E[Q∗
n − Q̃n]| = o(λ4

2), where λ4
2 is the order of tr(#̃4) and E[Q̃n]; see Lemma 2.3

and Theorem 4.1. Additionally, ‖θ‖4 = O(λ2
1) = o(λ4

2), which is also of a smaller or-
der of E[Q̃n]. We conclude that |E[Q∗

n − Q̃n − 2‖θ‖4]| = o(E[Q̃n]). From the table,
Var(Q∗

n − Q̃n) ≤ C(|λ2|/λ1)
6‖θ‖12‖θ‖3

3/‖θ‖1 + o(‖θ‖8), with the major contribution from
Type Id. Here, the second term is smaller than Var(Q̃n), and the first term is upper bounded
by C(|λ2|/λ1)

6‖θ‖8‖θ‖6
3 (using the universal inequality of ‖θ‖4 ≤ ‖θ‖1‖θ‖3

3), which has a
comparable order as Var(Q̃n). It follows that Var(Q∗

n − Q̃n − 2‖θ‖4) = Var(Q∗
n − Q̃n) ≤

CVar(Q̃n). Combining the above, we obtain that the SNR of (Q∗
n − 2‖θ‖4) and Q̃n are at the

same order.
These results are summarized in Theorem 4.2 and proved in the Supplementary Material.

THEOREM 4.2 (Proxy SgnQ test statistic). Consider the testing problem (1.6) under the
DCMM model (1.1)–(1.4), where the condition (2.2) is satisfied under the alternative hypoth-
esis. Suppose θmax → 0 and ‖θ‖ → ∞ as n → ∞, and suppose |λ2|/

√
λ1 → ∞ under the

alternative hypothesis. Then, under the null hypothesis, as n → ∞, E[(Q∗
n −2‖θ‖4)−Q̃n] =

o(‖θ‖4) and Var(Q∗
n − Q̃n) = o(‖θ‖8). Furthermore, under the alternative hypothesis,

E[(Q∗
n − 2‖θ‖4) − Q̃n] = o((|λ2|/λ1)

4‖θ‖8) and Var(Q∗
n − Q̃n) ≤ C(|λ2|/λ1)

6‖θ‖8‖θ‖6
3 +

o(‖θ‖8).
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TABLE 2
The 10 types of the post-expansion sums for (Q∗

n − Q̃n). Notation: same as in Table 1

Type # (Nδ , N#̃, NW ) Examples Abs. Mean Variance

Ia 4 (1, 0, 3)
∑

i,j,k,+
(dist)

δijWjkWk+W+i 0 ≤ C‖θ‖2‖θ‖6
3 = o(‖θ‖8)

Ib 8 (1, 1, 2)
∑

i,j,k,+
(dist)

δij #̃jkWk+W+i 0 ≤ Cα2‖θ‖4‖θ‖6
3 = o(‖θ‖8)

4
∑

i,j,k,+
(dist)

δijWjk#̃k+W+i 0 ≤ Cα2‖θ‖4‖θ‖6
3 = o(‖θ‖8)

Ic 8 (1, 2, 1)
∑

i,j,k,+
(dist)

δij #̃jk#̃k+W+i ≤ Cα2‖θ‖6 = o(α4‖θ‖8) ≤ Cα4‖θ‖10‖θ‖3
3

‖θ‖1
= o(α6‖θ‖8‖θ‖6

3)

4
∑

i,j,k,+
(dist)

δij #̃jkWk+#̃+i 0 ≤ Cα4‖θ‖4‖θ‖9
3

‖θ‖1
= o(‖θ‖8)

Id 4 (1, 3, 0)
∑

i,j,k,+
(dist)

δij #̃jk#̃k+#̃+i 0 ≤ Cα6‖θ‖12‖θ‖3
3

‖θ‖1
= O(α6‖θ‖8‖θ‖6

3)

IIa 4 (2, 0, 2)
∑

i,j,k,+
(dist)

δij δjkWk+W+i ≤ C‖θ‖4 = o(α4‖θ‖8) ≤ C‖θ‖2‖θ‖6
3 = o(‖θ‖8)

2
∑

i,j,k,+
(dist)

δijWjkδk+W+i ≤ C‖θ‖4 = o(α4‖θ‖8) ≤ C‖θ‖6‖θ‖3
3

‖θ‖1
= o(‖θ‖8)

IIb 8 (2, 1, 1)
∑

i,j,k,+
(dist)

δij δjk#̃k+W+i 0 ≤ Cα2‖θ‖4‖θ‖6
3 = o(‖θ‖8)

4
∑

i,j,k,+
(dist)

δij #̃jkδk+W+i ≤ Cα‖θ‖4 = o(α4‖θ‖8) ≤ Cα2‖θ‖8‖θ‖3
3

‖θ‖1
= o(‖θ‖8)

IIc 4 (2, 2, 0)
∑

i,j,k,+
(dist)

δij δjk#̃k+#̃+i ≤ Cα2‖θ‖6 = o(α4‖θ‖8) ≤ Cα4‖θ‖14

‖θ‖2
1

= o(α6‖θ‖8‖θ‖6
3)

2 ≤ ∑
i,j,k,+
(dist)

δij #̃jkδk+#̃+i
Cα2‖θ‖8

‖θ‖2
1

= o(α4‖θ‖8) ≤ Cα4‖θ‖8‖θ‖6
3

‖θ‖2
1

= o(‖θ‖8)

IIIa 4 (3, 0, 1)
∑

i,j,k,+
(dist)

δij δjkδk+W+i ≤ C‖θ‖4 = o(α4‖θ‖8) ≤ C‖θ‖6‖θ‖3
3

‖θ‖1
= o(‖θ‖8)

IIIb 4 (3, 1, 0) ≤ ∑
i,j,k,+
(dist)

δij δjkδk+#̃+i ≤ Cα‖θ‖6

‖θ‖3
1

= o(α4‖θ‖8) ≤ Cα2‖θ‖8‖θ‖3
3

‖θ‖1
= o(‖θ‖8)

IV 1 (4, 0, 0)
∑

i,j,k,+
(dist)

δij δjkδk+δ+i ≤ C‖θ‖4 = o(α4‖θ‖8) ≤ C‖θ‖10

‖θ‖2
1

= o(‖θ‖8)

4.3. The behavior of (Qn − Q∗
n). Recall that Qn = ∑

i1,i2,i3,i4(dist) Xi1i2Xi2i3Xi3i4Xi4i1 ,
where Xij = #̃ij +Wij + δij + rij for any i '= j . Similar to Sections 4.1–4.2, we first expand
every bracket in the definitions and obtain 4×4×4×4 = 256. Out of the 256 post-expansion
sums in Qn, 3 × 3 × 3 × 3 = 81 of them do not involve any r term and are contained in
Q∗

n; this leaves a total of 256 − 81 = 175 different post-expansion sums in (Qn − Q∗
n). In

the Supplementary Material, we investigate the order of mean and variance of each of the
175 post-expansion sums in (Qn − Q∗

n). The calculations are very tedious: although we ex-
pect these post-expansion sums to be of a smaller order than the post-expansion sums in
Sections 4.1–4.2, it is impossible to prove this argument rigorously using only some crude
bounds (such as the Cauchy–Schwarz inequality). Instead, we still need to do calculations for
each post-expansion sum; details are in the Supplementary Material.

THEOREM 4.3 (Real SgnQ test statistic). Consider the testing problem (1.6) under the
DCMM model (1.1)–(1.4), where the condition (2.2) is satisfied under the alternative hypoth-
esis. Suppose θmax → 0 and ‖θ‖ → ∞ as n → ∞, and suppose |λ2|/

√
λ1 → ∞ under the

alternative hypothesis. Then, under the null hypothesis, as n → ∞, |E[Qn −Q∗
n]| = o(‖θ‖4)

and Var(Qn −Q∗
n) = o(|θ‖8). Under the alternative hypothesis, as n → ∞, |E[Qn −Q∗

n]| =
o((|λ2|/λ1)

4‖θ‖8) and Var(Qn − Q∗
n) = o((|λ2|/λ1)

6‖θ‖8|θ‖6
3) + o(‖θ‖8).
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5. Simulations. We investigate the numerical performance of two Signed Polygon tests,
the SgnT test (2.4) and the SgnQ test (2.6). We also include the EZ test [16] and the GC test
[25] for comparison. For reasons mentioned in [25], we use a two-sided rejection region for
EZ and a one-sided rejection region for GC.

Given (n,K), a scalar βn > 0 that controls ‖θ‖, a symmetric nonnegative matrix P ∈
RK×K , a distribution f (θ) on R+, and a distribution g(π) on the standard simplex of RK , we
generate two network adjacency matrices Anull and Aalt, under the null and the alternative,
respectively, as follows: (i) Generate θ̃1, θ̃2, . . . , θ̃n i.i.d . from f (θ). Let θi = βn · θ̃i/‖θ̃‖,
1 ≤ i ≤ n. (ii) Generate π1,π2, . . . ,πn iid from g(π). (iii) Let #alt = $%P%′$′, where $ =
diag(θ1, . . . , θn) and % = [π1,π2, . . . ,πn]′. Generate Aalt from #alt according to Model (1.1).
(iv) Let #null = (a′Pa) ·θθ ′, where a = Egπ ∈ RK is the mean vector of g(π). Generate Anull

from #null according to Model (1.1). The pair (#null,#alt) is constructed in a way such that
the corresponding networks have approximately the same expected average degree. This is
the most subtle case for distinguishing two hypotheses (see Section 3).

It is of interest to explore different sparsity levels and also focus on the parameter settings
where the SNR is neither too large nor too small. Therefore, for most experiments, we let
βn = ‖θ‖ range but fix the SNR at more or less the same level. See details below. For each
parameter setting, we generate 200 networks under the null hypothesis and 200 networks
under the alternative hypothesis, run all the four tests with a target level α = 5% and then
record the sum of percent of type I errors and percent of type II errors. For space limit, we
do not report separately the percent of each type of errors but relegate these results to the
Supplementary Material.

5.1. Experiment 1. We study the role of degree heterogeneity. Fix (n,K) = (2000,2).
Let P be a 2 × 2 matrix with unit diagonal entries and all off-diagonal entries equal to bn.
Let g(π) be the uniform distribution on {(0,1), (1,0)}. We consider three subexperiments,
Exp 1a–1c, where respectively we take f (θ) to be the following: (a) Uniform(2,3), (b) two-
point distribution 0.95δ1 + 0.05δ3, where δa is a point mass at a and (c) Pareto(10,0.375),
where 10 is the shape parameter and 0.375 is the scale parameter. The degree heterogeneity
is moderate in Exp 1a–1b, but more severe in Exp 1c. In such a setting, SNR is at the order of
‖θ‖(1 − bn). Therefore, for each subexperiment, we let βn = ‖θ‖ vary while fixing the SNR
to be ‖θ‖(1 − bn) = 3.2. The sum of Type I and Type II errors are displayed in Figure 3.

First, both the SgnQ test and the GC test are based on the counts of 4 cycles, but the
GC test counts noncentered cycles and the SgnQ test counts centered cycles. As we pointed
out in Section 1, counting centered cycles may have much smaller variances than counting
noncentered cycles, especially in the less sparse case, and thus improves the testing power.
This is confirmed by numerical results here, where the SgnQ test is consistently better than
the GC test, significantly so in the less sparse case. Similarly, both the SgnT test and the

FIG. 3. From left to right: Experiment 1a, 1b and 1c. The y-axis are the sum of Type I and Type II errors (testing
level is fixed at 5%). The x-axis are ‖θ‖ or sparsity levels. Results are based on 200 repetitions.
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EZ test are based on the counts of 3 cycles, but the EZ test counts noncentered cycles and
the SgnT test counts centered cycles, and we expect that SgnT significantly improves EZ,
especially in the less sparse case. This is also confirmed in the experiment.

Second, SgnQ and GC are order-4 graphlet counting statistics, and SgnT and EZ are order-
3 graphlet counting statistics. In comparison, SgnQ significantly outperforms SgnT, and GC
significantly outperforms EZ (in the more sparse case; see discussion below for the less
sparse case). A possible explanation is that higher-order graphlet counting statistics have
larger SNR. Investigation toward this direction is interesting, and we leave it to future study.
Note that SgnQ is the best among all four tests.

Last, GC outperforms EZ in the more sparse case but underperforms EZ in the less sparse
case. The reason for the latter is as follows. The biases of both tests are negligible in the more
sparse case, but are nonnegligible in the less sparse case, with that of GC much larger. In [30],
we propose a bias correction method, where the performance of GC is significantly improved.
However, GC continues to underperform SgnQ, because even with the bias corrected, it still
has a variance that is unsatisfactorily large.

5.2. Experiment 2. We study the cases with larger K and a more complicated matrix of
P . For some bn ∈ (0,1), let εn = 1

6 min(1 − bn, bn), and let P be the matrix with 1 on the
diagonal and the off-diagonal entries i.i.d. drawn from Unif(bn − εn, bn + εn); once the P
matrix is drawn, it is fixed throughout different repetitions. We consider two subexperiments,
Exp 2a and 2b. In Exp 2a, we take (n,K) = (1000,5), f (θ) to be Pareto(10,0.375), and g(π)
to be the uniform distribution on {e1, . . . , eK} (the standard basis vectors of RK ). We let βn

range but fix ‖θ‖(1 − bn) at 4.5, so the SNR will not change drastically. In Exp 2b, we take
(n,K) = (3000,10), f (θ) to be 0.95δ1 +0.05δ3, and g(π) = 0.1

∑2
k=1 δek +0.15

∑6
k=3 δek +

0.05
∑10

k=7 δek (so to have unbalanced community sizes). Similarly, we let βn range but fix
‖θ‖(1 − bn) = 5.2. The sum of Type I and II errors are shown in Figure 4.

In these examples, EZ and GC underperform SgnT and SgnQ, especially in the less sparse
case, and the performances of SgnT and SgnQ are more similar to each other, compared
to those in Experiment 1. In these examples, we have larger K , more complicated P and
unbalanced community sizes, and the performance of SgnT and SgnQ test statistics suggest
that they are relatively robust.

5.3. Experiment 3. We investigate the role of mixed membership. We have three sub-
experiments, Exp 3a–3c. where the memberships are not mixed, lightly mixed and signifi-
cantly mixed, respectively. For all subexperiments, we take (n,K) = (2000,3) and f (θ) to
be Unif(2,3). For Exp 3a, we let g1(π) = 0.4δe1 +0.3δe2 +0.3δe3 . In Exp 3b, we let g2(π) =
0.3

∑3
k=1 δek + 0.1 · Dirichlet, and in Exp 3c, we let g3(π) = 0.25

∑3
k=1 δek + 0.25 · Dirichlet,

FIG. 4. From left to right: Experiment 2a and 2b. The y-axis are the sum of Type I and Type II errors (testing
level is fixed at 5%). The x-axis are ‖θ‖ or sparsity levels. Results are based on 200 repetitions.
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FIG. 5. From left to right: Experiment 3a, 3b and 3c. The y-axis are the sum of Type I and Type II errors (testing
level is fixed at 5%). The x-axis are ‖θ‖ or sparsity levels. Results are based on 200 repetitions.

where Dirichlet represents the symmetric K-dimensional Dirichlet distribution. In Exp 3a–
3b, we let βn range while (1 − bn)‖θ‖ is fixed at 4.2 so the SNR’s are roughly the same. In
Exp 3c, we also let βn range but (1 − bn)‖θ‖ = 4.5 (the SNR’s need to be slightly larger to
counter the effect of mixed membership, which makes the testing problem harder).

The sum of Type I and Type II errors are presented in Figure 5. First, the results confirm
that mixed memberships make the testing problem harder. For example, the value of ‖θ‖(1 −
bn) in Exp 3c is higher than that of Exp 3a–3b, but the testing errors are higher, due to
that the memberships in Exp 3c are more mixed. Second, SgnQ consistently outperforms
EZ and SgnT. Third, GC is comparable with SgnQ in the more sparse case, but performs
unsatisfactorily in the less sparse case, for reasons explained before. Last, in these settings,
SgnT is uniformly better than EZ, and more so when the memberships become more mixed.

5.4. Experiment 4. We vary the size of network and study its impact on testing errors.
We fix K = 2 and let P be a 2 × 2 matrix with unit diagonals and off-diagonals equal to bn.
Let g(π) be the uniform distribution on {(0,1), (1,0)} and let f (θ) be Pareto(8,0.375). We
let n ranges from {100,300,1000,3000}. Note that in our data generating process, βn = ‖θ‖
controls the sparsity level and (1 − bn)‖θ‖ is the SNR. As n varies, we fix βn = 4 and change
bn accordingly so that the SNR is fixed at 3. The results are in Table 3. This is a sparse setting,
therefore, the biases in EZ and GC are negligible and they both control the Type I error well.
The SgnT and SgnQ tests also control the Type I error well. In terms of the Type II errors,
GC and SgnQ are better than EZ and SgnT. The results are relatively stable as n varies.

6. Discussions. A closely related idea is to use ‖A − η̂η̂′‖ as the test statistics. To see
why this is a reasonable choice, consider the proxy test statistic ‖A − η∗(η∗)′‖, where we
recall that η∗ = θ under the null; see (1.12). Therefore, A − η∗(η∗)′ is equal to W and
(# − (η∗(η∗)′) + W , under the null and the alternative, respectively. The test has reason-
able power, as ‖A − η∗(η∗)′‖ is expected to be bigger in the alternative than in the null. An-
other related idea is to extend the Signed Polygon to address the problem of testing whether

TABLE 3
Experiment 4. Numbers in each cell are Type I error, Type II error and their sum

n 100 300 1000 3000

EZ (0.025, 0.22, 0.245) (0.055, 0.26, 0.315) (0.05, 0.27, 0.32) (0.06, 0.275, 0.335)
GC (0.02, 0.02, 0.04) (0.06, 0.02, 0.08) (0.04, 0.005, 0.045) (0.04, 0.005, 0.045)
SgnT (0.01, 0.15, 0.16) (0.04, 0.14, 0.18) (0.065, 0.175, 0.24) (0.06, 0.14, 0.2)
SgnQ (0.05, 0.015, 0.02) (0.04, 0.005, 0.045) (0.04, 0, 0.04) (0.02, 0.005, 0.025)
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K = k0 versus K > k0, where k0 > 1 is a prescribed integer. Let #̂ = ∑k0
k=1 λ̂k ξ̂k ξ̂

′
k , where

λ̂k are the kth eigenvalue of A, arranged in the descending order in magnitude and ξ̂k is
the corresponding eigenvector. The Signed Polygon test statistic can then be extended to
U

(m)
n,k0

= ∑
i1,i2,...,im(dist)(Ai1i2 − #̂i1i2)(Ai2i3 − #̂i2i3) . . . (Aimi1 − #̂imi1). See [27] for more

discussion. It remains unclear whether these test statistics are optimally adaptive, and we
leave the study to the future.

Another testing idea would be using the first eigenvalue of Ã = θ̂−1Aθ̂−1 − b̂1n1′
n, for a

reasonable estimate θ̂ for θ and a proper b̂. Unfortunately, even if θ̂ = θ , the distribution of
the test is unknown for general cases. In fact, this is essentially the approaches proposed in
[8, 32]). Both papers showed that in the dense case of θ1 = θ2 = · · · = θn = O(1), the largest
eigenvalue of Ã (when standardized) converges to the Tracy–Widom law. Unfortunately, the
approaches have been focused on the more idealized SBM model and the less sparse case
where θ1 = θ2 = · · · = θn = √

αn ≥ O(n−1/6), and the limiting distribution remains unknown
for other cases.

The testing problem is also closely related to the problem of estimating K . In fact, we can
cast the estimation problem as a sequential testing problem where we test K = k0 vs. K > k0
for k0 = 1,2,3, . . ., and estimate K to be the smallest k0 where we accept the null.

Note also the lower bound argument for the global testing problem sheds useful insight
for many other problems (e.g., estimating K , community detection, mixed membership).
Take the problem of estimating K , for example. Given an alternative setting, if we cannot
distinguish it from some null setting, then the underlying parameter K is not estimable.

In a high level, these ideas, together with the Signed Polygon, are related to the ideas in
[21] on testing K = k0 versus K > k0, in [32] on goodness-of-fit, and in [31] on estimating
K . However, the focus of these works are on the more idealized model where we do not have
degree heterogeneity, and how to extend their ideas to the current setting remains unclear.
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SUPPLEMENTARY MATERIAL

Additional results and technical proofs (DOI: 10.1214/21-AOS2089SUPP; .pdf). The
supplemental material contains the results not reported in the main article due to space limit
and the proofs of all theorems and lemmas.
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APPENDIX A: THE BEHAVIOR OF THE SGNT TEST STATISTIC

We now discuss the behavior of the SgnT test statistic and prove Theorems 2.1, 2.3, and
2.5. The discussion is similar to that of SgnQ in Section 4, and so we keep it brief.

Recall that the SgnT test statistic is defined by

Tn =
X

i1,i2,i3(dist)

(Ai1i2 � ⌘̂i1 ⌘̂i2)(Ai2i3 � ⌘i2 ⌘̂i3)(Ai3i1 � ⌘̂i3 ⌘̂i1).

Similarly, define the Ideal SgnT test statistic eTn and the Proxy SgnT test statistic and T ⇤
n , and

write

(1) Tn = eQn + (Q⇤
n � eQn) + (Qn �Q⇤

n).

We have the following observations.

• eQn is the sum of 8 different post-expansion sums, divided into 4 types. See Table A.1.
• Q⇤

n � eQn is the sum of 19 different post-expansion sums, divided into 6 different types.
See Table A.2.

• Qn �Q⇤
n is the sum of 37 different post-expansion sums.

The following lemmas are proved in the supplementary material.

TABLE A.1
The 4 types of the 8 post-expansion sums for eTn (k✓kq is the `

q
-norm of ✓ (the subscript is dropped when

q = 2). In our setting, ↵k✓k!1, and k✓k44 ⌧k✓k33 ⌧k✓k2 ⌧k✓k1.

Type # (Ne⌦,NW ) Examples Mean Variance
I 1 (0, 3)

P
i,j,k(dist)WijWjkWki 0 ⇣ k✓k6

II 3 (1, 2)
P

i,j,k(dist)
e⌦ijWjkWki 0 C↵

2k✓k2k✓k63 = o(k✓k6)
III 3 (2, 1)

P
i,j,k(dist)

e⌦ij
e⌦jkWki 0 C↵

4k✓k4k✓k63
IV 1 (3, 0)

P
i,j,k(dist)

e⌦ij
e⌦jk

e⌦ki ⇠ tr(e⌦3) 0

THEOREM A.1 (Ideal SgnT test statistic). Consider the testing problem (1.6) under the

DCMM model (1.1)-(1.4), where the condition (2.2) is satisfied under the alternative hypoth-

esis. Suppose ✓max ! 0 and k✓k !1 as n!1, and suppose |�2|/
p
�1 !1 under the

alternative hypothesis. Then, under the null hypothesis, as n!1,

E[eTn] = 0, Var(eTn) = 6k✓k6 · [1 + o(1)],

and

eTn �E[eTn]q
Var(eTn)

�! N(0,1), in law.

Furthermore, under the alternative hypothesis, as n!1,

E[eTn] = tr(e⌦3) + o(k✓k3), Var(eTn)Ck✓k6 +C(|�2|/�1)4k✓k4k✓k63.

THEOREM A.2 (Proxy SgnT test statistic). Consider the testing problem (1.6) under

the DCMM model (1.1)-(1.4), where the condition (2.2) is satisfied under the alternative

hypothesis. Suppose ✓max ! 0 and k✓k!1 as n!1, and suppose |�2|/
p
�1 !1 under

the alternative hypothesis. Then, under the null hypothesis, as n!1,

E[T ⇤
n � eTn] = o(k✓k3), Var(T ⇤

n � eTn) = o(k✓k6).
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TABLE A.2
The 6 types of the 19 post-expansion sums for (T ⇤

n � eTn). Notations: same as Table A.1.

Type # (N� ,Ne⌦,NW ) Examples Abs. Mean Variance

Ia 3 (1, 0, 2)
P

i,j,k

(dist)

�ijWjkWki 0 C
k✓k4k✓k33

k✓k1 = o(k✓k6)

Ib 6 (1, 1, 1)
P

i,j,k

(dist)

�ij
e⌦jkWki C↵k✓k4=o(↵3k✓k6)  C↵

2k✓k6k✓k33
k✓k1 = o(k✓k6)

Ic 3 (1, 2, 0)
P

i,j,k

(dist)

�ij
e⌦jk

e⌦ki 0  C↵
4k✓k8k✓k33
k✓k1 =O(↵4k✓k4k✓k63)

IIa 3 (2, 0, 1)
P

i,j,k

(dist)

�ij�jkWki Ck✓k2=o(k✓k3) Ck✓k63 = o(k✓k6)

IIb 3 (2, 1, 0)
P

i,j,k

(dist)

�ij�jk
e⌦ki  C↵k✓k6

k✓k21
=o(k✓k3)  C↵

2k✓k10
k✓k21

= o(k✓k6)

III 1 (3, 0, 0)
P

i,j,k

(dist)

�ij�jk�ki  Ck✓k4
k✓k21

=o(k✓k3)  Ck✓k4k✓k33
k✓k1 = o(k✓k6)

Furthermore, under the alternative hypothesis,

E[T ⇤
n � eTn] = o((|�2|/�1)3k✓k6),

Var(T ⇤
n � eTn)C(|�2|/�1)4k✓k4k✓k63 + o(k✓k6).

THEOREM A.3 (Real SgnT test statistic). Consider the testing problem (1.6) under the

DCMM model (1.1)-(1.4), where the condition (2.2) is satisfied under the alternative hypoth-

esis. Suppose ✓max ! 0 and k✓k !1 as n!1, and suppose |�2|/
p
�1 !1 under the

alternative hypothesis. Then, under the null hypothesis, as n!1,

|E[Tn � T ⇤
n ]|= o(k✓k3), and Var(Tn � T ⇤

n) = o(|✓k6).

Under the alternative hypothesis, as n!1,

|E[Tn � T ⇤
n ]|= o((|�2|/�1)3k✓k6),

Var(Tn � T ⇤
n) = o((|�2|/�1)4k✓k4|✓k63) + o(k✓k6).

Combining Theorems A.1, A.2, and A.3, Theorems 2.1, 2.3, and 2.5 follow by similar
arguments as in Appendix B.

APPENDIX B: THE BEHAVIOR OF THE SGNQ TEST STATISTIC

We prove Theorems 2.2, 2.4, and 2.6. We use the same notations as those in Section 4 of
the main article, and the proof here relies on Theorems 4.1-4.3 in the main article.

Consider Theorem 2.2. In this theorem, we assume the null is true. First, by Theorems 4.2
and 4.3 and elementary statistics, E[Q⇤

n� eQn]⇠ 2k✓k4, |E[Qn�Q⇤
n]|= o(k✓k4), Var(Q⇤

n�
eQn) = o(k✓k8), and Var(Qn �Q⇤

n) = o(k✓k8). It follows that

(2) E[Qn]�E[ eQn] = (2 + o(1))k✓k4, Var(Qn � eQn) = o(k✓k8).

By Theorem 4.1.

(3) E[ eQn] = o(k✓k4), Var( eQn)⇠ 8k✓k8,
eQn �E[ eQn]q
Var( eQn)

!N(0,1).

Since for any random variables X and Y , Var(X+Y ) (1+an)Var(X)+(1+ 1
an
)Var(Y )

for any number an > 0, combining the above and letting an tend to 0 appropriately slow,

(4) E[Qn]⇠ 2k✓k4, Var(Qn)⇠ 8k✓k8.
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Moreover, write

Qn �E[Qn]p
Var(Qn)

=

s
Var( eQn)

Var(Qn)
·

(Qn � eQn)q
Var( eQn)

+
eQn �E[ eQn]q
Var( eQn)

+
E[ eQn]�E[Qn]q

Var( eQn)

�
.

On the right hand side, by (2)-(4), as n!1, the term outside the bracket ! 1, and for the
three terms in the bracket, the first one has a mean and variance that tend to 0 so it tends to 0
in probability, the second one weakly converges to N(0,1), and the last one ! 0. Combining
these,

(5)
Qn �E[Qn]p

Var(Qn)
!N(0,1), in law.

Combining (4) and (5) proves Theorem 2.2.
Next, we consider Theorem 2.4, where we assume the alternative is true. First, similarly,

by Theorems 4.2 and 4.3,

E[Q⇤
n � eQn] = (2 + o(1))k✓k4 + o((|�2|/�1)4k✓k8),

Var(Qn � eQn)C(�2/�1)
6k✓k8k✓k63 + o(k✓k8).

Second, by Theorem 4.1,

E[ eQn] = tr(e⌦4) + o(k✓k4), Var( eQn)C[k✓k8 + (�2/�1)
6k✓k8k✓k63].

Combining these proves Theorem 2.4.
Last, we consider Theorems 2.5-2.6. Since the proofs are similar, we only show Theorem

2.6. First, by Theorem 2.2 and Lemma 2.1, under the null, Qn�2(k⌘̂k2�1)2p
8(k⌘̂k2�1)4

!N(0,1), so the

Type I error is

P
H

(n)
0

✓
Qn � (2 + z↵

p
8)(|⌘̂k2 � 1)2

◆
= P

✓
Qn � 2(k⌘̂k2 � 1)2p

8(k⌘̂k2 � 1)4
� z↵

◆
= ↵+ o(1).

Second, fixing 0< ✏< 1, let A✏ be the event {(k⌘̂k2 � 1) (1 + ✏)k⌘⇤k2}. By Lemma 2.1
and definitions, on one hand, over the event A✏, (k⌘̂k2� 1) (1+ ✏)k⌘⇤k2 Ck✓k2, and on
the other hand, P(Ac

✏) = o(1). Therefore, the Type II error

P
H

(n)
1

✓
Qn  (2 + z↵

p
8)(k⌘̂k2 � 1)2

◆

P
H

(n)
1

✓
Qn  (2 + z↵

p
8)(k⌘̂k2 � 1)2,A✏

◆
+ P(Ac

✏)

P
H

(n)
1

✓
Qn C(2 + z↵

p
8)k✓k4

◆
+ o(1),

where by Chebyshev’s inequality, the first term in the last line

(6)  [E(Qn)�C(2 + z↵
p
8)k✓k4]�2 ·Var(Qn).

By Lemma D.2 of the supplementary material and our assumptions, �1 ⇣ k✓k2, |�2|/
p
�1 !

1, and k✓k ! 1. Using Lemma 2.3 E[Qn] � C�42 � �21, and it follows that E(Qn) �
C(2 + z↵

p
8)k✓k4, so for sufficiently large n,

E(Qn)�C(2 + z↵
p
8)k✓k4 � 1

2
E[Qn]�C�42.
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At the same time, by Theorem 2.4,

Var(Qn)C(k✓k8 + (�2/�1)
6k✓k8k✓k63).

Combining these, the right hand side of (6) does not exceed

(7) C
k✓k8 + (�2/�1)6k✓k8k✓k63

�82
= (I) + (II),

where (I) = C��8
2 k✓k8 and (II) = C��8

2 (�2/�1)6k✓k8k✓k63. Now, first, since �1 ⇣ k✓k2
and |�2|/

p
�1 ! 0, (I)  C(�2/

p
�1)�8 ! 0. Second, since �1 ⇣ k✓k2 and k✓k63  k✓k4,

(II) =C��2
2 ��6

1 k✓k8k✓k63 C��2
2 . As |�2|/

p
�1 !1,

p
�1 ⇣ k✓k with k✓k!1, |�2|!

1 and (II)! 0. Inserting these into (7), the Type II error ! 0 and the claim follows.

APPENDIX C: MATRIX FORMS OF SIGNED-POLYGON STATISTICS

We prove Theorem 1.1. Recall that eA=A� ⌘̂⌘̂. By definition,

Tn = tr( eA3)�
X

at least two of
i,j,k are equal

eAij
eAjk

eAki,

Qn = tr( eA4)�
X

at least two of
i,j,k,` are equal

eAij
eAjk

eAk`
eA`i.

First, we derive the matrix form of Tn. If at least two of {i, j, k} are equal, there are four
cases: (a) i= j, k 6= i, (b) j = k, i 6= j, (c) k = i, j 6= k, (d) i= j = k. The first three cases
are similar. It follows that

Tn = tr( eA3)� 3
X

i,k(dist)

eAii
eA2
ik
�
X

i

eA3
ii

= tr( eA3)� 3
⇣X

i,k

eAii
eA2
ik
�
X

i

eA3
ii

⌘
�
X

i

eA3
ii

= tr( eA3)� 3tr( eA � eA2) + 2tr( eA � eA � eA).

This gives the desired expression of Tn.
Next, we derive the matrix form of Qn. When at least two of {i, j, k, `} are equal, depend-

ing on how many indices are equal, we have four patterns: {i, i, i, i}, {i, i, i, j}, {i, i, j, j},
{i, i, j, k}, where (i, j, k) are distinct. For each pattern, depending on the appearing locations
of the next distinct indices, there are a few variations. Take the pattern {i, i, j, k} for exam-
ple: (a) when a new distinct index appears at location 2 and at location 3, the variations are
(i, j, k, i), (i, j, k, j), (i, j, k, k); (b) when a new distinct index appears at location 2 and at
location 4, the variations are (i, j, i, k), (i, j, j, k); (c) when a new distinct index appears at
location 3 and location 4, the variation is (i, i, j, k). Using similar arguments, we can find all
variations of each pattern. They are summarized in Table C.3. Define

S1 =
X

i,j,k(dist)

eAii
eAij

eAjk
eAki, S2 =

X

i,j,k(dist)

eA2
ij
eA2
ik
,

S3 =
X

i,j(dist)

eA2
ii
eA2
ij , S4 =

X

i,j(dist)

eA4
ij ,

S5 =
X

i,j(dist)

eAii
eA2
ij
eAjj , S6 =

X

i

eA4
ii.
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TABLE C.3
Decomposition of tr( eA4). We note that the last column sums to n

4
.

Pattern Variations Summand Sum #Summands
{i, j, k, `} (i, j, k, `) eAij

eAjk
eAk`

eA`i Qn n(n� 1)(n� 2)(n� 3)

{i, i, j, k}

(i, j, k, i) eAij
eAjk

eAki
eAii S1

6n(n� 1)(n� 2)

(i, j, k, j) eAij
eAjk

eAkj
eAji S2

(i, j, k, k) eAij
eAjk

eAkk
eAki S1

(i, j, i, k) eAij
eAji

eAik
eAki S2

(i, j, j, k) eAij
eAjj

eAjk
eAki S1

(i, i, j, k) eAii
eAij

eAjk
eAki S1

{i, i, i, j}

(i, j, i, i) eAij
eAji

eAii
eAii S3

4n(n� 1)(i, j, j, j) eAij
eAjj

eAjj
eAji S3

(i, i, j, i) eAii
eAij

eAji
eAii S3

(i, i, i, j) eAii
eAii

eAij
eAji S3

{i, i, j, j}
(i, j, i, j) eAij

eAji
eAij

eAji S4
3n(n� 1)(i, j, j, i) eAij

eAjj
eAji

eAii S5
(i, i, j, j) eAii

eAij
eAjj

eAji S5

{i, i, i, i} (i, i, i, i) eAii
eAii

eAii
eAii S6 n

It follows from Table C.3 that

(8) Qn = tr( eA4)� 4S1 � 2S2 � 4S3 � S4 � 2S5 � S6.

What remains is to derive the matrix form of S1-S6. By direct calculations,

S1 =
X

i

eAii

 X

j 6=i,k 6=i

eAij
eAjk

eAki �
X

j 6=i

eAij
eAjj

eAji

�

=
X

i

eAii

⇣X

j,k

eAij
eAjk

eAki � 2
X

j

eA2
ij
eAii + eA3

ii

⌘
�
⇣X

j

eA2
ij
eAjj � eA3

ii

⌘�

=
X

i,j,k

eAii
eAij

eAjk
eAki � 2

X

i,j

eA2
ii
eA2
ij �

X

i,j

eAii
eA2
ij
eAjj + 2

X

i

eA4
ii

= tr( eA � eA3)� 2tr( eA � eA � eA2)� 10n[diag( eA)( eA � eA)diag( eA)]1n + 2S6.

Moreover, we can derive that

S2 =
X

i

 X

j 6=i,k 6=i

eA2
ij
eA2
ik
�
X

j 6=i

eA4
ij

�

=
X

i

⇣X

j,k

eA2
ij
eA2
ik
� 2

X

j

eA2
ij
eA2
ii + eA4

ii

⌘
�
⇣X

j

eA4
ij � eA4

ii

⌘�

=
X

i,j,k

eA2
ij
eA2
ik
� 2

X

i,j

eA2
ij
eA2
ii �

X

i,j

eA4
ij + 2

X

i

eA4
ii

= tr( eA2 � eA2)� 2tr( eA � eA � eA2)� 10n[ eA � eA � eA � eA]1n + 2S6.

It is also easy to see that

S3 =
X

i,j

eA2
ii
eA2
ij �

X

i

eA4
ii = tr( eA � eA � eA2)� S6,
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S4 =
X

i,j

eA4
ij �

X

i

eA4
ii = 10n[ eA � eA � eA � eA]1n � S6,

S5 =
X

i,j

eAii
eA2
ij
eAjj � S6 = 10n[diag( eA)( eA � eA)diag( eA)]1n � S6,

S6 = tr( eA � eA � eA � eA).

Plugging the matrix forms of S1-S6 into (8), we obtain

Qn =tr( eA4)� 4tr( eA � eA3)� 2tr( eA2 � eA2) + 8tr( eA � eA � eA2)� 6tr( eA � eA � eA � eA)

+ 2 · 10n[diag( eA)( eA � eA)diag( eA)]1n + 10n[ eA � eA � eA � eA]1n.

This gives the desired expression of Qn.
Last, we discuss the complexity of computing Tn and Qn. It involves the following oper-

ations:

• Compute the matrix eA=A� ⌘̂⌘̂0.
• Compute the Hadamard product of finitely many matrices.
• Compute the trace of a matrix.
• Compute the matrix DMD for a matrix M and a diagonal matrix D.
• Compute 10nM1n for a matrix M .
• Compute the matrices eAk, for k = 2,3,4.

Excluding the last operation, the complexity is O(n2). For the last operation, since we can
compute eAk recursively from eAk = eAk�1 eA, it suffices to consider the complexity of com-
puting B eA, for an arbitrary n⇥ n matrix B. Write

B eA=BA�B⌘̂(⌘̂)0.

Consider computing BA. The (i, j)-th entry of BA is
P

`:A`j 6=0Bi`A`j , where the total num-
ber of nonzero A`j equals to dj , the degree of node j. Hence, the complexity of comput-
ing the (i, j)-th entry of BA is O(dj). It follows that the complexity of computing BA is
O(

P
n

i,j=1 dj) = O(n2d̄). Consider computing B⌘̂(⌘̂)0. We first compute the vector v = B⌘̂

and then compute v(⌘̂)0, where the complexity of both steps is O(n2). Combining the above,
the complexity of computing B eA is O(n2d̄). We have seen that this is the dominating step in
computing Tn and Qn, so the complexity of the latter is also O(n2d̄).

APPENDIX D: ESTIMATION OF k✓k

We prove Lemma 2.1. First, we show that

k⌘⇤k2
⇢
= k✓k2, under the null,
⇣ k✓k2, under the alternative.

Recall that ⌘⇤ = (1/
p

10n⌦1n)⌦1n. Hence,

(9) k⌘⇤k2 = (10n⌦
21n)/(1

0
n⌦1n).

Under the null, ⌦= ✓✓0, and the claim follows by direct calculations. Under the alternative,
⌦=

P
K

k=1 �k⇠k⇠
0
k
, so

10n⌦1n =
KX

k=1

�k(1
0
n⇠k)

2, 10n⌦
21n =

KX

k=1

�2
k
(10n⇠k)

2.
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By Lemma E.2, �1 ⇣ k✓k2. By Lemma E.3, 10n⇠1 ⇣ k✓k�1k✓k1 and |10n⇠k|=O(k✓k�1k✓k1).
It follows that 10n⌦

21n � �21(1
0
n⇠1)

2 � Ck✓k21k✓k2 and 10n⌦
21n  �21

P
K

k=1(1
0
n⇠k)

2 
Ck✓k21k✓k2. We conclude that

(10) 10n⌦
21n ⇣ k✓k21k✓k2.

Moreover, 10n⌦1n  |�1|
P

K

k=1(1
0
n⇠k)

2  Ck✓k21, and by Lemma E.4, 10n⌦1n � Ck✓k21. It
follows that

(11) 10n⌦1n ⇣ k✓k21.

Plugging (10)-(11) into (9) gives the claim.
Next, we show (k⌘̂k2 � 1)/k⌘⇤k2 ! 1 in probability. Since k⌘⇤k ⇣ k✓k!1 as n!1,

it suffices to show k⌘̂k2/k⌘⇤k2 ! 1 in probability. By definition,

k⌘̂k2 = 10nA
21n

10nA1n
.

Compare this with (9), all we need to show is that in probability,

(12)
10nA1n
10n⌦1n

! 1, and
10nA

21n
10n⌦

21n
! 1.

Since the proofs are similar, we only show the second one. By elementary probability, it is
sufficient to show that as n!1,

(13)
E[10nA21n]

10n⌦
21n

! 1,
Var(10nA

21n)

(10n⌦
21n)2

! 0.

We now prove (13). Consider the first claim. Write

(14) 10nA
21n =

X

i,j,k

AijAjk =
X

i 6=j

A2
ij +

X

i,j,k(dist)

AijAjk.

It follows that

E[10nA21n] =
X

i 6=j

⌦ij +
X

i,j,k(dist)

⌦ij⌦jk.

Since ⌦ij  ✓i✓j under both hypotheses, we have
��E[10nA21n]� 10n⌦1n � 10n⌦

21n
��

���
X

i

⌦ii +
X

(i,j,k) are
not distinct

⌦ij⌦jk

���


X

i

✓2i +C
X

i,j

✓2i ✓
2
j +C

X

i,k

✓3i ✓k

Ck✓k2 +Ck✓k4 +Ck✓k33k✓k1

Ck✓k33k✓k1,

where we have used the universal inequality k✓k4  k✓k33k✓k1. Since k✓k33  ✓2maxk✓k1 =
o(k✓k1), the right hand side is o(k✓k21) = o(10n⌦1n). So,

(15) E[10nA21n] = 10n⌦
21n + 10n⌦1n + o(10n⌦1n).

Combining this with (10)-(11) gives
���
E[10nA21n]

10n⌦
21n

� 1
���. 10n⌦1n

10n⌦
21n

⇣ 1

k✓k2 ,
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and the claim follows by k✓k!1.
Consider the second claim. By (14),

(16) Var(10nA
21n) 2Var

⇣X

i 6=j

A2
ij

⌘
+ 2Var

⇣ X

i,j,k(dist)

AijAjk

⌘
.

We re-write
P

i 6=j
A2

ij
=
P

i 6=j
Aij = 2

P
i<j

Aij . The variables {Aij}1i<jn are mutually
independent. It follows that

(17) Var
⇣X

i 6=j

A2
ij

⌘
= 4

X

i<j

Var(Aij)C
X

i,j

⌦ij Ck✓k21.

Moreover, since AijAjk = (⌦ij +Wij)(⌦jk +Wjk), we have
X

i,j,k(dist)

AijAjk =
X

i,j,k(dist)

⌦ij⌦jk + 2
X

i,j,k(dist)

⌦ijWjk +
X

i,j,k(dist)

WijWjk

⌘
X

i,j,k(dist)

⌦ij⌦jk +X1 +X2.

By elementary probability,

Var
⇣ X

i,j,k(dist)

AijAjk

⌘
 2Var(X1) + 2Var(X2).

To compute the variance of X1, we note that

X1 = 4
X

j<k

�jkWjk, �jk =
X

i/2{j,k}

⌦ij .

The variables {Wjk}1j<k 6=n are mutually independent, and |�jk| C
P

i
✓i✓j  Ck✓k1✓j .

It follows that
Var(X1)C

X

j,k

(k✓k1✓j)2(✓j✓k)Ck✓k31k✓k33.

To compute the variance of X2, we note that

Var(X2) =
X

i,j,k(dist)

X

i0,j0,k0(dist)

E[WijWjkWi0j0Wj0k0 ].

The summand is nonzero only when the two variables {Wi0j0 ,Wj0k0} are the same as the two
variables {Wij ,Wjk}. This can only happen if (i, j, k) = (i0, j0, k0) or (i, j, k) = (k0, j0, i0),
where in either case the summand equals to E[W 2

ij
W 2

jk
]. It follows that

Var(X2) =
X

i,j,k(dist)

2E[W 2
ijW

2
jk
]C

X

i,j,k

✓i✓
2
j ✓k Ck✓k2k✓k21.

Combining the above gives

(18) Var
⇣ X

i,j,k(dist)

AijAjk

⌘
Ck✓k31k✓k33 +Ck✓k2k✓k21 Ck✓k31k✓k33,

where we have used the fact that k✓k1k✓k33 � k✓k4 (Cauchy-Schwarz inequality) and k✓k!
1. Plugging (17)-(18) into (16) gives
(19) Var(10nA

21n)Ck✓k31k✓k33.
Comparing this with (10) and using k✓k33  ✓2maxk✓k1, we obtain

Var(10nA
21n)

(10n⌦
21n)2

 Ck✓k31k✓k33
k✓k41k✓k4

 C✓2max

k✓k4 ,

and the claim follows by k✓k!1.
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APPENDIX E: SPECTRAL ANALYSIS FOR ⌦ AND e⌦
We state and prove some useful results about eigenvalues and eigenvectors of ⌦ and e⌦. In

Section E.4, we prove Lemma 2.2 and 2.3 of the main file.
For 1  k  K , let �k be the k-th largest (in absolute value) eigenvalue of ⌦ and let

⇠k 2Rn be the corresponding unit-norm eigenvector. We write

⌅= [⇠1, ⇠2, . . . , ⇠K ] = [u1, u2, . . . , un]
0,

so that ui is the i-th row of ⌅. Recall that G is the K ⇥K matrix k✓k�2(⇧0⇥2⇧).

E.1. Spectral analysis of ⌦. The following lemma relates �k and ⇠k to the eigenvalues
and eigenvectors of the K ⇥K matrix G

1
2PG

1
2 .

LEMMA E.1. Consider the DCMM model. Let dk be the k-th largest (in absolute value)

eigenvalue of G
1
2PG

1
2 and let �k 2 RK

be the associated eigenvector, 1  k  K . Then

under the null,

�1 = k✓k2, ⇠1 =±✓/k✓k.
Under the alternative, for 1 k K ,

�k = dkk✓k2, ⇠k = k✓k�1[✓ � (⇧G� 1
2�k)].

Under the alternative hypothesis, we further have the following lemma:

LEMMA E.2. Under the DCMM model, as n ! 1, suppose (2.2) holds. As n ! 1,

under the alternative hypothesis,

�1 ⇣ k✓k2, kuik Ck✓k�1✓i, for all 1 i n.

The quantities (10n⇠k) play key roles in the analysis of the Signed Polygon tests. By Lemma
E.1,

⇠1 = (k✓k)�1⇥⇧G�1/2�1,

where �1 is the first eigenvector of G1/2PG1/2, corresponding to the largest eigenvalue of
G1/2PG1/2. It is seen G�1/2�1 is the eigenvector of the matrix PG associated with the
largest eigenvalue of GP , which is the same as the largest eigenvalue of G1/2PG1/2. Since
PG is a non-negative matrix, by Perron’s theorem, we can assume all entries of G�1/2�1 are
non-negative. As a result, all entries of ⇠1 are non-negative, and

10n⇠1 > 0.

The following lemma is proved in Section E.3.

LEMMA E.3. Under the DCMM model, as n!1, suppose (2.2) holds. As n!1,

max
1kK

|10n⇠k|Ck✓k�1k✓k1, 10n⇠1 �Ck✓k�1k✓k1.

and so for any 2 k K ,

|10n⇠k|C|10n⇠1|

We also have a lower bound for 10n⌦1n. The following lemma is proved in Section E.3.

LEMMA E.4. Under the DCMM model, as n!1, suppose (2.2) holds. As n!1, both

under the null hypothesis and the alternative hypothesis,

10n⌦1n �Ck✓k21.
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E.2. Spectral analysis of ⌦̃. Recall that
e⌦=⌦� (⌘⇤)(⌘⇤)0, where ⌘⇤ = (1/

p
10n⌦1n)⌦1n,

and �1, . . . ,�K are the K nonzero eigenvalues of ⌦, arranged in the descending order in
magnitude, and ⇠1, . . . , ⇠K are the corresponding unit-norm eigenvectors of ⌦ The following
lemma is proved in Section E.3.

LEMMA E.5. Under the DCMM model, as n!1, suppose (2.2) holds. Then,

|�2| ke⌦k C|�2|.

Moreover, for any fixed integer m� 1,

|(e⌦m)ij |C|�2|m · k✓k�2✓i✓j , for all 1 i, j  n.

Recall that d1, . . . , dK are the nonzero eigenvalues of G
1
2PG

1
2 . Introduce

D = diag(d1, d2, . . . , dK), eD = diag(d2, d3, . . . , dK),

and

h=
⇣10n⇠2
10n⇠1

,
10n⇠3
10n⇠1

, . . . ,
10n⇠K
10n⇠1

⌘0
, u0 =

KX

k=2

dk(10n⇠k)
2

d1(10n⇠1)
2
.

By Lemma E.3, 10n⇠1 > 0, so h and u0 are both well-defined. Write ⌅= [⇠1, ⇠2, . . . , ⇠K ]. The
following lemma gives an alternative expression of e⌦.

LEMMA E.6. Under the DCMM model,

e⌦= k✓k2 ·⌅M⌅0,

where M is a K ⇥K matrix satisfying

M =


(1 + u0)�1h0 eDh�(1 + u0)�1h0 eD
�(1 + u0)�1 eDh eD� (d1(1 + u0))�1 eDhh0 eD

�
.

If additionally |�2|/�1 ! 0, then for the matrix fM 2RK,K
,

fM = k✓k2 ·

h0 eDh�h0 eD
� eDh eD

�
,

we have

|Mij � fMij |C�22/�1, for all 1 i, j K.

We now study tr(e⌦3) and tr(e⌦4). They are related to the power of the SgnT test and
SgnQ test, respectively. We discuss the two cases |�2|/�1 ! 0 and |�2|/�1 � c0 separately.
Consider the case of |�2|/�1 = o(1). Since e⌦= ⌅M⌅0, where ⌅0⌅= IK , we have

tr(e⌦3) = tr(M3), and tr(e⌦4) = tr(M4).

The following lemma is proved in Section E.3.
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LEMMA E.7. Consider the DCMM model, where (2.2) holds. As n!1, if |�2|/�1 ! 0,

then

(20) |tr(e⌦3)� tr(fM3)| o(|�2|3), |tr(e⌦4)� tr(fM4)| o(|�2|3),

Moreover,

tr(fM3) = tr( eD3) + 3h0 eD3h+ 3(h0 eDh)(h0 eD2h) + (h0 eDh)3,

and

tr(fM4) = tr( eD4) + (h0 eDh)4 + 4(h0 eD2h)2 + 4(h0 eDh)2(h0 eD2h) + 4h0 eD4h+ 4(h0 eDh)(h0 eD3h)

� tr( eD4) + (h0 eDh)4 + 2[(h0 eD2h)2 + (h0 eDh)2(h0 eD2h) + h0 eD4h]

� tr( eD4).

• In the special case where �2,�3, . . . ,�K have the same signs,

|tr(fM3)|� |
KX

k=2

�3
k
|=

KX

k=2

|�k|3,

and so

|tr(e⌦3)|�
KX

k=2

|�k|3 + o(|�2|3).

• In the special case where K = 2, the vector h is a scalar, and

tr(fM3) = (1 + h2)3�32, tr(fM4) = (1 + h2)4�42,

and so

tr(e⌦3) = [(1 + h2)3 + o(1)]�32, tr(e⌦4) = [(1 + h2)4 + o(1)]�42.

We now consider the case |�2/�1| � c0. In this case, fM is not a good proxy for M any
more, so we can not derive a simple formula for tr(e⌦3) or tr(e⌦4) as above. However, for
tr(e⌦4), since

tr(e⌦4)� ke⌦k4,

by Lemma E.5, we immediately have

(21) tr(e⌦4)�C�42 �C(
KX

k=2

�4
k
)/(K � 1)�C

KX

k=2

�4
k
.

E.3. Proof of Lemmas E.1-E.7.

E.3.1. Proof of Lemma E.1. The proof for the null case is straightforward, so we only
prove the lemma for the alternative case. Consider the spectral decomposition

G1/2PG1/2 =BDB0.

where

D = diag(d1, . . . , dK) and B = [�1, . . . ,�K ].
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Combining this with ⌦=⇥⇧P⇧0⇥ gives

⌦=⇥⇧G� 1
2 (G

1
2PG

1
2 )G� 1

2⇧0⇥

=⇥⇧G� 1
2 (BDB0)G� 1

2⇧0⇥

= (k✓k�1⇥⇧G� 1
2B)(k✓k2D)(k✓k�1⇥⇧G� 1

2B)0

=H(k✓k2D)H 0,

where

H = k✓k�1⇥⇧G� 1
2B.

Recalling that G= (k✓k2)�1 ·⇧0⇥2⇧, it is seen

(22) H 0H = k✓k�2B0G� 1
2 (⇧0⇥2⇧)G� 1

2B =B0B = IK ,

Therefore,

⌦=H(k✓k2D)H 0

is the spectral decomposition of ⌦. Since ( eDk, ⇠k) are the k-th eigenvalue of ⌦ and unit-norm
eigenvector respectively, we have

⇠k =±1 · the k-th column of H =±(k✓k)�1⇥⇧G�1/2�k.

This proves the claim.

E.3.2. Proof of Lemma E.2. Consider the first claim. By Lemma E.1, �1 = d1k✓k2,
where d1 is the maximum eigenvalue of G

1
2PG

1
2 . It suffices to show that d1 ⇣ 1. Since

all entries of P are upper bounded by constants, we have

kPk C.

Additionally, since G is a nonnegative symmetric matrix,

(23) kGk  kGkmax = max
1kK

KX

`=1

G(k, `) = k✓k�2 max
1kK

KX

`=1

nX

i=1

⇡i(k)⇡i(`)✓
2
i  1.

It follows that

(24) d1  kGkkPk C.

At the same time, for any unit-norm non-negative vector x 2 RK , since all entries of P are
non-negative and all diagonal entries of P are 1,

x0Px� x0x= 1.

It follows that

d1 = kG
1
2PG

1
2 k � (G� 1

2x)0(G
1
2PG

1
2 )(G� 1

2x)

k(G� 1
2x)k2

=
x0Px

x0G�1x
� 1

kG�1k .

Combining it with the assumption (2.2) gives

(25) d1 �C.

where we note C denotes a generic constant which may vary from occurrence to occurrence.
Combining (24)-(25) gives the claim.
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Consider the second claim. Let B = [�1,�2, . . . ,�K ] and D = diag(d1, d2, . . . , dK) as in
the proof of Lemma E.1, where we note B is orthonormal. By Lemma E.1 and definitions,

u0i = k✓k�1✓i⇡
0
iG

� 1
2B.

It follows that

kuik  k✓k�1✓i · k⇡ikkG� 1
2 kkBk  (k✓k)�1✓ikG�1/2k,

where we have used kBk= 1 and k⇡ik= [
P

K

k=1 ⇡i(k)
2]1/2  1. Finally, by the assumption

(2.2), kG�1k C and so kG�1/2k C . Combining these gives the claim.

E.3.3. Proof of Lemma E.3. It is sufficient to show the first two claims. Consider the first
claim. By Lemma E.2, for all 1 k K and 1 i n,

|⇠k(i)|Ck✓k�1✓i.

It follows that

(26) |10n⇠k|C
nX

i=1

k✓k�1✓i Ck✓k�1k✓k1, for all 1 k K,

and the claim follows.
Consider the second claim. By Lemma E.1,

(27) ⇠1 = k✓k�1⇥⇧(G� 1
2�1),

where �1 is the (unit-norm) eigenvector of G
1
2PG

1
2 associated with �1, which is the largest

eigenvalue of G1/2PG1/2. By basic algebra, �1 is also the largest eigenvalue of the matrix
PG, with G�1/2�1 being the corresponding eigenvector. Since PG is a nonnegative matrix,
G� 1

2�1 is a nonnegative vector (e.g., [2, Theorem 8.3.1]). Denote for short by

h=G�1/2�1.

It follows from (27) that

(28) 10n⇠1 = (k✓k)�1 · 10n⇥⇧h= k✓k�1 ·
KX

k=1

⇣ nX

i=1

⇡i(k)✓i
⌘
hk.

We note that
P

K

k=1

�P
n

i=1 ⇡i(k)✓i
�
= k✓k1. Combining it with the assumption (2.2) yields

min
1kK

n nX

i=1

⇡i(k)✓i
o
�Ck✓k1.

Inserting this into (28) gives

(29) 10n⇠1 �C(k✓k)�1k✓k1 · khk1.

We claim that khk � 1. Otherwise, if khk< 1, then every entry of h is no greater than 1 in
magnitude, and so

khk1 � khk2 = kG�1�1k2.

Since kG�1k= kGk�1 � 1 (see (23)) and k�1k= 1,

kG� 1
2�1k � 1.

and so it follows khk � 1. The contradiction show that khk � 1. The claim follows by com-
bining this with (29).
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E.3.4. Proof of Lemma E.4. For 1 k K , let

c= (k✓k1)�1⇧0⇥1n = (k✓k1)�1(10n⇥⇧)0.

Since ⌦=⇥⇧P⇧0⇥ and all entries of P are non-negative,

(30) 10n⌦1n = k✓k21(c0Pc)� k✓k2
⇣ KX

k=1

c2
k

⌘
.

Note that, first, ck � 0, and second, k✓k1
P

K

k=1 ck = 10n⇧⇥1n = 10n⇥1n, where the last term
is k✓k1, and so

KX

k=1

ck = 1.

Together with the Cauchy-Schwartz inequality, we have
KX

k=1

c2
k
� (

KX

k=1

ck)
2/K = 1/K.

Combining this with (30) gives the claim.

E.3.5. Proof of Lemma E.5. Consider the first claim. We first derive a lower bound for
ke⌦k. By Lemma E.6,

(31) ke⌦k= k✓k2 · kMk,

where with the same notations as in the proof of Lemma E.6, M =D � (1 + u0)�1vv0. Let
M0 be the top left 2⇥ 2 block of M . Let D0 = diag(d1, d2), and let v0 be the sub-vector of
v in (36) restricted to the first two coordinates. By (36),

M0 =D0 � (1 + u0)
�1v0v

0
0 =D

1
2

0

⇣
I2 � (1 + u0)

�1D�1/2
0 v0v

0
0D

� 1
2

0

⌘
D

1
2

0 ,

and so by kD�1/2
0 k= |d2|�1/2 we have

(32) k
⇣
I2 � (1 + u0)

�1D�1/2
0 v0v

0
0D

� 1
2

0

⌘
k  kD�1/2

0 M0D
�1/2
0 k  |d2|�1 · kM0k.

At the same time, since (1+u0)�1D�1/2
0 v0v00D

�1/2
0 is a rank-1 matrix, there is an orthonor-

mal matrix and a number b such that

Q(1 + u0)
�1D�1/2

0 v0v
0
0D

�1/2
0 Q0 = diag(b,0).

It follows

k
⇣
I2 � (1 + u0)

�1D�1/2
0 v0v

0
0D

� 1
2

0

⌘
k= kI2 � diag(b,0)k=max{|1� b|,1}� 1.

Inserting this into (32) gives

kM0k � |d2|,

Note that kMk � kM0k. Combining this with (31) gives

ke⌦k � |d2|k✓k2.

Next, we derive an upper bound for ke⌦k. By Lemma E.3,

(33) max
1kK

|10n⇠k|Ck✓k�1k✓k1, 10n⇠1 �Ck✓k�1k✓k1.
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By (33), all the entries of M are upper bounded by C|�2|, which implies kMk  C|d2|.
Plugging it into (31) gives

(34) ke⌦k  C

|1 + u0|
|d2|k✓k2,

and all remains to show is

1 + u0 �C > 0.

Now, recalling that ⌦=
P

K

k=1 �k⇠k⇠
0
k

and �k = dkk✓k2, by definitions,

d1(1
0
n⇠1)

2(1 + u0) =
KX

k=1

dk(1
0
n⇠k)

2 = k✓k�210n⌦1n.

By Lemma E.4 which gives 10n⌦1n �Ck✓k21. It follows that

1 + u0 �
k✓k�210n⌦1n
d1(10n⇠1)

2
�C

k✓k�2 · k✓k21
k✓k�2 · k✓k21

�C,

where in the second inequality we have used (33) and d1 = (k✓k)�2 · �1  1 (see Lemma
E.2). Inserting this into (34) gives the claim.

Consider the second claim. By Lemma E.6,

e⌦= ⌅M⌅0,

where ⌅ and M are the same there. Write

⌅= [⇠1, ⇠2, . . . , ⇠K ] = [u1, u2, . . . , un]
0.

Note that e⌦ and M have the same spectral norm. It follows that

e⌦m = ⌅Mm⌅0,

and

|(e⌦m)ij |= |u0iMmuj | kuikkMkmkujk.

By Lemma E.2, kuikkujk Ck✓k�2✓i✓j , and by the first part of the current lemma,

kMk= k⌦̃k C|d2|k✓k2.

It follows that

|(e⌦m)ij |C|d2|mk✓k2m�2✓i✓j .

This proves the claim.

E.3.6. Proof of Lemma E.6. Consider the first claim. By definitions,

(35) e⌦=⌦� (⌘⇤)(⌘⇤)0, where ⌘⇤ =
1p

10n⌦1n
⌦1n.

Recalling eDk = dkk✓k2 and ⌅= [⇠1, ⇠2, . . . , ⇠K ], we have

⌦=
KX

k=1

eDk⇠k⇠
0
k
= k✓k2 ·⌅D⌅0.
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It follows that

10n⌦1n = k✓k2
KX

k=1

dk(1
0
n⇠k)

2,

and

⌘⇤ =
k✓kqP

K

s=1 ds(1
0
n⇠s)

2

KX

k=1

dk(1
0
n⇠k)⇠k =

k✓kp
(1 + u0)

p
d1 ⇠1 +

KX

k=2

dk(10n⇠k)p
d1(10n⇠1)

⇠k

�
,

where the vector in the big bracket on the right is ⌅v, if we let

v = (
p

d1,
d2(10n⇠2)p
d1(10n⇠1)

, . . . ,
dK(10n⇠K)p
d1(10n⇠1)

)0.

Combining these gives

e⌦= k✓k2⌅D⌅0 � k✓k2

1 + u0
⌅vv0⌅.

Plugging it into (35) gives

(36) e⌦= k✓k2⌅D⌅0 � k✓k2

1 + u0
⌅vv0⌅= k✓k2⌅(D� (1 + u0)

�1vv0)⌅0.

By definitions,

D = diag(d1, d2, . . . , dK), and v = d�1/2
1 · (d1, h0 eD)0.

It follows

D� (1 + u0)
�1vv0 =


(1 + u0)�1d1u0 �(1 + u0)�1h0 eD
�(1 + u0)�1 eDh eD� (d1(1 + u0))�1 eDhh0 eD

�
,

where we note that

d1u0 =
KX

s=2

ds
(10n⇠s)

2

(10n⇠1)
2
= h0 eDh,

Combining these gives the claim.
Consider the second claim. By definitions,

M � fM = k✓k2 ·

[(1 + u0)�1 � 1]d1u0 (1� (1 + u0)�1)h0 eD
(1� (1 + u0)�1) eDh �(d1(1 + u0))�1 eDhh0 eD

�
.

Note that

|1� (1 + u0)
�1|C|u0|C| eD2|/ eD1,

and that by Lemma E.3,

|(10n⇠k)|C10n⇠1,

and so each entry of eDh does not exceed C|d2|. It follows that for all 2 i, j K ,

|M1i � fM1i|Ck✓k2(| eD2|/ eD1)d
2
2 C eD2

2/ eD1,

and

|Mij � fMij |Ck✓k2d�1
1 d22 C eD2

2/ eD1.
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Finally,

d1u
2
0 = d�1

1 (
X

s=2

d2
(10n⇠s)

2

(10n⇠1)
2
)2 Cd22/d1,

so

|M11 � fM11|Ck✓k2d22/d1 C eD2
2/ eD1.

Combining these gives the claim.

E.3.7. Proof of Lemma E.7. It is sufficient to show (20). In fact, once (20) is proved,
other claims follow by direct calculations, except for the first inequality regarding tr(e⌦4), we
have used

|(h0 eDh)(h0 eD3h)| |h0 eDh|
q

(h0 eD2h)(h0 eD4h) 1

2


(h0 eDh)2(h0 eD2h) + h0 eD4h

�
.

We now show (20). Since tr(e⌦m) = tr(fMm), for m= 3,4, it is sufficient to show

(37) |tr(M3)� tr(fM3)|C�42/�1), |tr(M4)� tr(fM4)|C|�2|5/�1.

Since the proofs are similar, we only show the first one. By basic algebra,

tr(M3 � fM3) = tr((M � fM)3) + 3tr(fM(M � fM)2) + 3tr(fM2(M � fM)).

By Lemma E.6, for all 1 i, j K ,

|Mij � fMij |C�22/�1.

Also, by Lemma E.3, all entries of h are bounded, so for all 1 i, j K ,

|fMij | |�2|.

It follows

|tr((M � fM)3|C(�22/�1)
3,

|tr(fM(M � fM)2)|C|�2|(�2/�1)2 C|�2|5/�21,

and

|tr(fM2(M � fM)|C�22(�
2/�1)C�42/�1.

where we note that �2/�1 = o(1). Combining these gives the claim.

E.4. Proof of Lemmas 2.2 and 2.3. Lemma 2.2 follows directly from Lemma E.7 of
this appendix. Consider Lemma 2.3. The second bullet point is a direct result of (21), and the
other two bullet points follow directly from Lemma E.7 of this appendix.

APPENDIX F: LOWER BOUNDS, REGION OF IMPOSSIBILITY

We study the Region of Impossibility by considering a DCMM with random mixed mem-
berships. First, in Section F.1, we establish the equivalence between regularity conditions for
a DCMM with non-random mixed memberships and those for a DCMM with random mixed
memberships. Next, we prove Lemma 3.1, which is key to the construction of inseparable
hypothesis pairs. Last, we prove Theorems 3.1-3.5 in the main article.
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F.1. Equivalence of regularity conditions. Let µ1, µ2, . . . , µK be the eigenvalues of P ,
arranged in the descending order in magnitude. Recall that �1,�2, . . . ,�K are the eigenvalues
of ⌦. The following lemma is proved in Section F.5.

LEMMA F.1 (Equivalent definition of Region of Impossibility). Consider the DCMM

model (1.1)-(1.4), where the alternative is true and the condition (2.2) holds. Suppose ✓max !
0 and k✓k!1 as n!1. Then, as n!1,

µ1 ⇣ 1,
|µ2|
µ1

⇣ |�2|
�1

, max
1i,jK

|Pij � 1|C(|�2|/�1).

As a result, |�2|/
p
�1 ! 0 if and only if k✓k · |µ2(P )|! 0.

We now consider DCMM with random mixed memberships: Given (⇥, P ) and a distribu-
tion F over V (the standard simplex in RK ), let

(38) ⌦=⇥⇧P⇧0⇥, ⇧= [⇡1,⇡2, . . . ,⇡n]
0, ⇡i

iid⇠ F.

We notice that the conclusion of Lemma F.1 holds provided that the regularity condition
(2.2) is satisfied. The next lemma shows that (2.2) holds with high probability. It is proved in
Section F.5.

LEMMA F.2 (Equivalence of regularity conditions). Consider the model (38). Let h =
E[⇡i] and ⌃ = E[⇡i⇡0i]. Suppose kPk  C , min1kK{hk}� C and k⌃�1k  C . Suppose

✓max ! 0, k✓k!1, and (k✓k2/k✓k1)
p

log(k✓k1)! 0, as n!1. Then, as n!1, with

probability 1� o(1), the condition (2.2) is satisfied, i.e.,

max1kK{
P

n

i=1 ✓i⇡i(k)}
min1kK{

P
n

i=1 ✓i⇡i(k)}
C0, kG�1k C0,

for a constant C0 > 0 and G= k✓k�2(⇧0⇥2⇧).

F.2. Proof of Lemma 3.1. Let M = diag(µ1, µ2, . . . , µK). It is seen µ =M1K and so
the desired result is to find a D such that

DADM1K = 1K () MDADM1K =M1K = µ () D(MAM)D1K = µ.

Since MAM has strictly positive entries, it is sufficient to show that for any matrix A (MAM
in our case; a slight misuse notation here) with strictly positive entries, there is a unique
diagonal matrix D with strictly positive diagonal entries such that

(39) DAD1k = µK .

We now show the existence and uniqueness separately.
For existence, we follow the proof in [6]. Consider d0Ad for a vector d 2RK with strictly

positive entries. It is shown there that d0Ad can be minimized using Lagrange multiplier:

1

2
d0Ad� �

KX

k=1

µk log(dk).

Differentiating with respect to d and set the derivative to 0 gives

(40) Ad= �
KX

k=1

µk/dk,
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where �= d0Ad/(
P

K

k=1 µk)> 0. Letting D = ��1/2diag(d1, d2, . . . , dK). It is seen that (40)
can be rewritten as

DAD1K = µ,

and the claim follows.
For uniqueness, we adapt the proof in [5] to our case. Suppose there are two different

eligible diagonal matrices D1 and D2 satisfying (39). Let d1 =D11K and d2 =D21K , and
let M = diag(µ1, µ2, . . . , µK). It follows that

D2D1Ad1 =D2D1AD11K =D2µ=Md2,

and so

M�1D2D1Ad1 = d2.

Now, for a diagonal matrix S with strictly positive diagonal entries to be determined, we have

S�1M�1D2D1ASS
�1d1 = S�1d2.

We pick S such that

S�1M�1D2D1 = S,

and denote such an S by S0. It follows

S0AS0(S
�1
0 d1) = S�1

0 d2.

or equivalently, if we let d̃1 = S�1
0 d1 and d̃2 = S�1

0 d2,

(41) S0AS0d̃1 = d̃2.

Similarly, by switching the places of D1 and D2, we have

(42) S0AS0d̃2 = d̃1.

Combining (41) and (42) gives

S0AS0(d̃1 + d̃2) = (d̃1 + d̃2), and S0AS0(d̃1 � d̃2) =�(d̃1 � d̃2).

This implies that 1 and �1 are the two eigenvalues of S0AS0, with d̃1 + d̃2 and d̃1 � d̃2
being the corresponding eigenvectors, respectively, where we note that especially, d̃1 + d̃2
has all strictly positive entries. By Perron’s theorem [2], since S0AS0 have all strictly positive
entries, the eigenvector corresponding to the largest eigenvalue (i.e., the Perron root) have all
strictly positive entries. As for any symmetric matrix, we can only have one eigenvector
that has all strictly positive entries, so 1 must be the Perron root of S0AS0. Using Perron’s
Theorem again, all eigenvalues of S0AS0 except the Perron root itself should be strictly
smaller than 1 in magnitude. This contradicts with the fact that �1 is an eigenvalue of S0AS0.
The contradiction proves the uniqueness.

F.3. Proof of Theorem 3.1. This theorem follows easily from Theorem 3.2 and Theo-
rems 3.3-3.5. Fix (⇥, P,F ) such that ✓ 2M⇤

n(�n/2) and k✓k · |µ2(P )| � 2↵n. Consider a
sequence of hypotheses indexed by n, where ⌦ = ✓✓0 under H(n)

0 , and ⌦ follows the con-
struction in any of Theorem 3.2 and Theorems 3.3-3.5 under H(n)

1 . Let P (n)
0 and P (n)

1 be the
probability measures associated with two hypotheses, respectively. By those theorems, the
�2-distance satisfy

D(P (n)
0 , P (n)

1 ) = o(1), as n!1.
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By connection between L1-distance and �2-distance, it follows that

kP (n)
0 � P (n)

1 k1 = o(1), as n!1.

We now slightly modify the alternative hypothesis. Let ⇧0 be a non-random membership ma-
trix such that (✓,⇧0, P ) 2Mn(K,c0,↵n,�n). In the modified alternative hypothesis eH(n)

1 ,

⇧=

(
e⇧, if (✓, e⇧, P ) 2Mn(K,c0,↵n,�n),

⇧0, otherwise,
where e⇡i

iid⇠ F.

Let eP (n)
1 be the probability measure associated with eH(n)

1 . By Lemmas F.1-F.2, ⇧= e⇧, ex-
cept for a vanishing probability. It follows that

kP (n)
1 � eP (n)

1 k1 = o(1), as n!1.

Under eH(n)
1 , all realizations (✓,⇧, P ) are in the class Mn(K,c0,↵n,�n). By Neyman-

Pearson lemma and elementary inequalities,

inf
 

n
sup

✓2M⇤
n(�n)

P( = 1) + sup
(✓,⇧,P )2Mn(K,c0,↵n,�n)

P( = 0)
o

� inf
 

n
P(n)
0 ( = 1) + eP(n)

1 ( = 0)
o

� 1� kP (n)
0 � eP (n)

1 k1

� 1� kP (n)
0 � P (n)

1 k1 � kP (n)
1 � eP (n)

1 k1
� 1� o(1),

where the second line is because all realizations in eP(n)
1 are in the class Mn(K,c0,↵n,�n),

and the third line follows from the Neyman-Pearson lemma.

F.4. Proof of Theorems 3.2-3.5. We note that Theorem 3.2, Theorem 3.4 and Theo-
rem 3.5 can be deduced from Theorem 3.3. To see this, recall that Theorem 3.3 assumes
there exists a positive diagonal matrix D such that

(43) DPDehD = 1K , min
1kK

{ehD,k}�C,

where ehD = E[D�1⇡i/kD�1⇡ik1]. We show that the condition (43) is implied by con-
ditions of other theorems. Theorem 3.2 assumes ⇡i 2 {e1, e2, . . . , eK}. It follows that
D�1⇡i/kD�1⇡ik1 = ⇡i, and so ehD = h. By Lemma 3.1, there exists D such that DPDh=
1K , hence, (43) is satisfied. Theorem 3.4 constructs the alternative hypothesis using e⇡i =
D⇡i/kD⇡ik1. Equivalently, D�1e⇡i/kD�1e⇡ik1 = ⇡i, and so ehD becomes h. Since DPDh=

1K , condition (43) holds. Theorem 3.5 assumes Ph = qn1K . Let D = q�1/2
n IK . Then,

ehD = h and DPDh= q�1
n Ph= 1K . Again, (43) is satisfied.

We only need to prove Theorem 3.3. Let P (n)
0 and P (n)

1 be the probability measure associ-
ated with H(n)

0 and H(n)
1 , respectively. Let D(P (n)

0 , P (n)
1 ) be the chi-square distance between

two probability measures. By elementary probability,

D(P (n)
0 , P (n)

1 ) =

Z 
dP (n)

1

dP (n)
0

�2
dP (n)

0 � 1.
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It suffices to show that, when k✓k · µ2(P )! 0,

(44)
Z 

dP (n)
1

dP (n)
0

�2
dP (n)

0 = 1+ o(1).

Let pij and qij(⇧) be the corresponding ⌦ij under the null and the alternative, respectively.
It is seen that

dP (n)
0 =

Y

i<j

pAij

ij
(1� pij)

1�Aij , dP (n)
1 = E⇧

hY

i<j

[qij(⇧)]
Aij [1� qij(⇧)]

1�Aij

i
.

Let ⇧̃ be an independent copy of ⇧. Then,

dP (n)

1

dP (n)
0

�2
= E⇧

Y

i<j

⇣qij(⇧)
pij

⌘Aij
⇣1� qij(⇧)

1� pij

⌘1�Aij

�
·E⇧̃

Y

i<j

⇣qij(⇧̃)
pij

⌘Aij
⇣1� qij(⇧̃)

1� pij

⌘1�Aij

�

= E⇧,⇧̃

Y

i<j

⇣qij(⇧)qij(⇧̃)
p2
ij

⌘Aij
⇣ [1� qij(⇧)][1� qij(⇧̃)]

[1� pij ]2

⌘1�Aij

| {z }
S(A,⇧,⇧̃)

�
.

It follows that
Z 

dP (n)
1

dP (n)
0

�2
dP (n)

0 = EA


dP (n)

1

dP (n)
0

�2

= E
A,⇧,⇧̃[S(A,⇧, ⇧̃)]

= E⇧,⇧̃

�
EA

⇥
S(A,⇧, ⇧̃)|⇧, ⇧̃

⇤ 
,

where the distribution of A|(⇧, ⇧̃) is under the null hypothesis. Under the null hypothesis, A
is independent of (⇧, ⇧̃), the upper triangular entries of A are independent of each other, and
Aij ⇠Bernoulli(pij). It follows that

EA

⇥
S(A,⇧, ⇧̃)|⇧, ⇧̃

⇤
=
Y

i<j

EA

⇣qij(⇧)qij(⇧̃)
p2
ij

⌘Aij
⇣ [1� qij(⇧)][1� qij(⇧̃)]

[1� pij ]2

⌘1�Aij

����⇧, ⇧̃
�

=
Y

i<j

⇢
pij

qij(⇧)qij(⇧̃)

p2
ij

+ (1� pij)
[1� qij(⇧)][1� qij(⇧̃)]

[1� pij ]2

�

=
Y

i<j

⇢
qij(⇧)qij(⇧̃)

pij
+

[1� qij(⇧)][1� qij(⇧̃)]

1� pij

�
.

Let �ij = qij(⇧)� pij and �̃ij = qij(⇧̃)� pij . By direct calculations,

qij(⇧)qij(⇧̃)

pij
+

[1� qij(⇧)][1� qij(⇧̃)]

1� pij
= 1+

�ij�̃ij

pij(1� pij)
.

Combining the above gives

(45)
Z 

dP (n)
1

dP (n)
0

�2
dP (n)

0 = E⇧,⇧̃

Y

i<j

⇣
1 +

�ij�̃ij

pij(1� pij)

⌘�
.
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We then plug in the expressions of �ij and �̃ij from the model. Let D be the matrix in
(43). Introduce M =DPD� 1K10

K
. We re-write

DPD = 1K10K +M.

It is seen that MehD = 0K . The following lemma is proved in Section F.5.

LEMMA F.3. Under the conditions of Theorem 3.3, kMk C|µ2(P )|.

Write for short ⇡D
i
= 1

kD�1⇡ik1
D�1⇡i and yi = ⇡D

i
�E[⇡D

i
] = ⇡D

i
� ehD . Under the alter-

native hypothesis,

qij(⇧) = ✓i✓jkD�1⇡ik1kD�1⇡jk1 · ⇡0iP⇡j

= ✓i✓j · (⇡Di )0(DPD)(⇡Dj )

= ✓i✓j · (⇡Di )0(1K10K +M)(⇡Dj )

= ✓i✓j ·
⇥
1 + (⇡Di )0M(⇡Dj )

⇤

= ✓i✓j ·
⇥
1 + (ehD + yi)

0M(ehD + yj)]

= ✓i✓j · (1 + y0iMyj).

Here, the fourth line is due to 10
K
⇡i = 1 and the last line is due to MehD = 0K . Under the

null hypothesis, pij = ✓i✓j . As a result,

�ij = ✓i✓j · y0iMyj , yi ⌘ ⇡Di �E[⇡Di ].

Similarly, �̃ij = ✓i✓j · ỹ0iMỹj , with ỹi = ⇡̃D
i
�E[⇡̃D

i
]. We plug them into (45) and use pij =

✓i✓j . It gives

(46)
Z 

dP (n)
1

dP (n)
0

�2
dP (n)

0 = E
Y

i<j

⇣
1 +

✓i✓j
1� ✓i✓j

(y0iMyj)(ỹ
0
iMỹj)

⌘�
,

where {yi, ỹi}ni=1 are iid random vectors with E[yi] = 0K .
We bound the right hand side of (46). Since 1 + x ex for all x 2R,

D(P (n)
0 , P (n)

1 ) E[exp(S)], where S ⌘
X

i<j

✓i✓j
1� ✓i✓j

(y0iMyj)(ỹ
0
iMỹj).

Let M =
P

K

k=1 �kbkb
0
k

be the eigen-decomposition of M . Then,

(y0iMyj)(ỹ
0
iMỹj) =

X

1k,`K

�k�`(b
0
k
yi)(b

0
k
yj)(b

0
`
ỹi)(b

0
`
ỹj).

This allows us to decompose

S =
1

K2

X

1k,`K

Sk`, where Sk` =K2�k�`
X

i<j

✓i✓j
1� ✓i✓j

(b0
k
yi)(b

0
k
yj)(b

0
`
ỹi)(b

0
`
ỹj).

By Jensen’s inequality, exp( 1
K2

P
k,`

Sk`) 1
K2

P
k,`

exp(Sk`). It follows that

(47)
Z 

dP (n)
1

dP (n)
0

�2
dP (n)

0  E[exp(S)] max
1k,`K

E[exp(Sk`)].
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We now fix (k, `) and derive a bound for E[exp(Sk`)]. For n large enough, ✓max  1/2
and K4kMk2k✓k2  1/9. By Taylor expansion of (1� ✓i✓j)�1,

Sk` =K2�k�`
X

i<j

1X

m=1

✓mi ✓
m

j (b0
k
yi)(b

0
k
yj)(b

0
`
ỹi)(b

0
`
ỹj)

⌘
1X

m=1

Xm, where Xm ⌘K2�k�`
X

i<j

✓mi ✓
m

j (b0
k
yi)(b

0
k
yj)(b

0
`
ỹi)(b

0
`
ỹj).

Since |Xm|  CkMk2k✓k2mm  CkMkk✓k21✓
2(m�1)
max , where

P1
m=1 ✓

2(m�1)
max < 1, the ran-

dom variable
P1

m=1Xm is always well-defined. For m � 1, let am = ✓2(m�1)
max (1 � ✓2max).

Then,
P1

m=1 am = 1. By Jenson’s inequality,

exp
⇣ 1X

m=1

Xm

⌘
= exp

⇣ 1X

m=1

am · a�1
m |Xm|

⌘


1X

m=1

am · exp(a�1
m Xm).

Using Fatou’s lemma, we have

(48) E[exp(Sk`)]
1X

m=1

am ·E
⇥
exp(a�1

m Xm)
⇤
.

By definition of Xm,

Xm =K2�k�`

⇢hX

i

✓mi (b0
k
yi)(b

0
`
ỹi)

i2
�
X

i

✓2mi (b0
k
yi)

2(b0
`
ỹi)

2

�
.

Note that maxi{kyik,kỹik}
p
K and maxk |�k|= kMk. Therefore,

|Xm|K2kMk2
hX

i

✓mi (b0
k
yi)(b

0
`
ỹi)

i2
+K4kMk2k✓k2m2m.

Write Y =
P

i
✓m
i
(b0

k
yi)(b0`ỹi). We see that Y is sum of independent, mean-zero random

variables. Since |(b0
k
yi)(b0`ỹi)|K , by Hoeffding’s inequality,

P(|Y |> t) 2exp
⇣
� t2

4K2k✓k2m2m

⌘
, for any t > 0.

Since k✓k2m2m  k✓k2✓2(m�1)
max  2amk✓k2, we have a�1

m K4kMk2k✓k2m2m  2K4kMk2k✓k2.
Note that K4kMk2k✓k2  1/9. By direct calculations,

E
⇥
exp(a�1

m |Xm|)
⇤
 ea

�1
m K

4kMk2k✓k2m
2m ·E

⇥
ea

�1
m K

2kMk2
Y

2⇤

 e2K
4kMk2k✓k2 ·E

⇥
ea

�1
m K

2kMk2
Y

2⇤

= e2K
4kMk2k✓k2

h
1 +

Z 1

0
et · P

�
a�1
m K2kMk2Y 2 > t

�
dt
i

 e2K
4kMk2k✓k2

h
1 +

Z 1

0
et · e�

t
8K4kMk2k✓k2 dt

i

 eK
4kMk2k✓k2 · (1 + 72K4kMk2k✓k2).

We plug it into (48) and notice that
P1

m=1 am = 1. It gives

(49) E[exp(Sk`)] eK
4kMk2k✓k2 · (1 + 72K4kMk2k✓k2).
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Combining (47) and (49) gives
Z 

dP (n)
1

dP (n)
0

�2
dP (n)

0  eK
4kMk2k✓k2 · (1 + 72K4kMk2k✓k2).

We recall that k✓k · kMk Ck✓k · |µ2(P )|! 0. Hence, the right hand side is 1+ o(1). This
proves (44).

F.5. Proof of Lemmas F.1-F.3.

F.5.1. Proof of Lemma F.1. The first claim follows by our assumptions on P , so we omit
the proof. Consider the second claim. Recall that G = k✓k�2⇧0⇥2⇧ and d1, d2, . . . , dK are
the eigenvalues of G1/2PG1/2, arranged in the descending order in magnitude. By Lemmas
D.1 and D.2, �k = k✓k2dk, 1 k K , and d1 ⇣ 1. Combining these, it suffices to show

|µ2|⇣ |d2|.

We now prove for the cases where P is non-singular and singular, separately. Consider the
first case. Since 1/dk and 1/µK are the largest eigenvalue of G�1/2P�1/2G�1/2 and P�1 in
magnitude, respectively, and kGk C and kG�1k C , it is seen that |µK |⇣ |dK |. To show
the claim, it sufficient to show that for any m� 2, if |µk|⇣ |dk| for k =m+ 1, . . . ,K , then
|µm|⇣ |dm|.

We now fix m � 2, and assume |µk| ⇣ |dk| for k = m + 1, . . . ,K . The goal is to show
|µm|⇣ |dm|. By symmetry, it is sufficient to show that

(50) |dm|C|µm|.

Let P = V diag(d1, d2, . . . , dK)V 0 be the SVD of P , where V 2 RK,K is orthonormal, and
let Vm be the sub-matrix of V consisting the first m columns of V . Introduce

ePm = VmDmV 0
m, where Dm = diag(d1, d2, . . . , dm).

Let µ⇤
1, µ

⇤
2, . . . , µ

⇤
m and d⇤1, d

⇤
2, . . . , d

⇤
m be the first m eigenvalues of ePm and G1/2PmG1/2,

respectively, arranged in the descending order in magnitude. Since kGk C , we have

kP � Pmk C|µm+1|, kG1/2(P � Pm)G1/2k C|µm+1|.

By Theorem [1, Theorem A.46],

(51) |µm � µ⇤
m|CkP � Pmk  |�m+1|,

and

(52) |dm � d⇤m| kG1/2(P � Pm)G1/2k C|µm+1|.

At the same time, note that the nonzero eigenvalues of G1/2PmG1/2 are the same as the
nonzero eigenvalues of DmV 0

mGVm, and also the same as those of (V 0
mGVm)1/2Dm(V 0

mGVm)1/2.
Since kGk  C and kG�1k  C , it is seen kV 0

mGVmk  C and kV 0
mGVm)�1k  C . There-

fore, by similar arguments,

(53) |µ⇤
m|⇣ |d⇤m|.

Combining (51), (52), and (53) gives

|µm| |µ⇤
m|+ |µm � µ⇤

m|C(|d⇤m|+ |dm+1|)

C[(|dm|+ |dm � d⇤m|) + |dm+1|]C|dm|.

This proves (50) and the claim follows.
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We now consider the case where P is singular, say, rank(P ) = r < K , and the nonzero
eigenvalues are µ1, µ2, . . . , µr . Let P = UDU 0 be the SVD, where U 2 Rn,r and D =
diag(µ1, µ2, . . . , µr). By similar argument, the nonzero eigenvalues of G1/2PG1/2 are the
same as (U 0GU)1/2D(U 0GU)1/2, where kU 0GUk C and k(U 0GU)�1k C . The remain-
ing part of the proof is similar so is omitted.

Consider the last claim. Let eP = ⌘⌘0, where ⌘ is the first eigenvector of P , scaled to have
a `2-norm of pµ1. Write

(54) |Pij � 1|= |Pij � ⌘i⌘j |+ |⌘i⌘j � 1|.

Now, first, by definitions and elementary algebra, for 1 i, j K ,

(55) |Pij � ⌘i⌘j | |Pij � ePij | kP � ePk  µ2,

where by the second claim, µ2 = o(1). Note that for 1  i, j  K , Pii = 1 and Pij � 0.
It is seen that |⌘i| = 1 + o(1) and all ⌘i must have the positive sign. It follows |⌘i � 1| =
(1+ ⌘i)�1(1� ⌘2

i
) µ2, and so

(56) |1� ⌘i⌘j | |(1� ⌘i)(1� ⌘j)|+ |1� ⌘i|+ |1� ⌘j |Cµ2.

Combining (54)-(56) gives the claim.

F.5.2. Proof of Lemma F.2. Consider the first claim about
P

i
✓i⇡i(k). Write X =P

n

i=1 ✓i(⇡i(k)� hk). It is seen that X is sum of independent mean-zero random variables,
where ✓i|⇡i(k)� hk| C✓max and

P
n

i=1Var(✓i(⇡i(k)� hk)) Ck✓k2. By Bernstein’s in-
equality, for any t > 0,

P(|X|> t) exp
⇣
� t2

Ck✓k2 +C✓maxt

⌘
.

It follows that, with probability 1� k✓k�1
1 ,

���
X

i

✓i⇡i(k)� hkk✓k1
���= |X|Ck✓k

p
log(k✓k1) +C✓max log(k✓k1).

Since k✓k ! 1, ✓max ! 0, and (k✓k2/k✓k1)
p

log(k✓k1) ! 0, the right hand side is
o(k✓k1). Combining it with the assumption of mink{hk}�C , we have

X

i

✓i⇡i(k)�Ck✓k1, with probability 1� k✓k�1 = 1� o(1).

Additionally, since ⇡i(k) 1,
P

i
✓i⇡i(k) k✓k1. Therefore, with probability 1� o(1), eachP

i
✓i⇡i(k) is at the order of k✓k1. This proves the first claim.

Consider the second claim about G. Let yi = ⇡i�h. Then, ⇡i⇡0i = hh0+hy0
i
+ yih0+ yiy0i

and ⌃= E[⇡i⇡0i] = hh0 +E[yiy0i]. It follows that

k✓k2G=
nX

i=1

✓2i ⇡i⇡
0
i =

nX

i=1

✓2i
�
⌃+ hy0i + yih

0 + yiy
0
i �E[yiy0i]

�

= k✓k2⌃+
nX

i=1

✓2i (yiy
0
i �E[yiy0i]) +

nX

i=1

✓2i hy
0
i +

nX

i=1

✓2i yih
0

⌘ k✓k2⌃+Z0 +Z1 +Z2.

Here, Z0 is the sum of independent, mean-zero random matrices. We apply the matrix Ho-
effding inequality [7] to bound its operator norm. Since ✓2

i
kyiy0i�E[yiy0i]k C✓2

i
, the matrix
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Hoeffding inequality implies that P
�
kZ0k> t

�
 exp

�
� t

2

C⇤k✓k4
4

�
for all t > 0, where C⇤ > 0

is a constant. Let ⇣n be a sequence such that ⇣n !1. With t= k✓k24
p

C⇤ log(⇣n), we have

kZ0k Ck✓k24
p

log(⇣n), with probability 1� ⇣n.

Similarly, we can apply the matrix Hoeffding inequality to Z1 and Z2. It gives

kZ1 +Z2k Ck✓k24
p

log(⇣n), with probability 1� ⇣n.

Since k✓k24  ✓maxk✓k ⌧ k✓k2, we can choose ⇣n so that k✓k24
p

log(⇣n) = o(k✓k2). It fol-
lows that, with probability 1� o(1),

kZ0 +Z1 +Z2k= o(k✓k2).

At the same time, �min(k✓k2⌃) = k✓k2 k⌃�1k�1 � Ck✓k2. Therefore, with probability 1�
o(1),

�min(k✓k2G)� �min(k✓k2⌃)� kZ0 +Z1 +Z2k �Ck✓k2.

This guarantees kG�1k C .

F.5.3. Proof of Lemma F.3. Let Q = P � 1K10
K

, and introduce d 2 RK such that D =
diag(d). By Lemma F.1, kQk C|µ2|. With these notations,

(57) DPD� 1K10K = dd0 +DQD� 1K10K .

Using the same notations, the assumption DPDehD = 1K can be written as D(1K10
K

+

Q)DehD = 1K . It implies

(58) 1K = (d0ehD)d+DQDehD.

We multiply eh0
D

on both sides and notice that 10
K
ehD = 1. It gives

(59) (d0ehD)2 = 1� eh0DDQDehD.

Combining (58)-(59) gives

dd0 � 1K10K = [1� (d0ehD)2]dd0 � (d0ehD)(DQDehDd+ dehDDQD)�DQDehDeh0DDQD

= (eh0DDQDehD) · dd0 � (d0ehD)(DQDehDd+ dehDDQD)�DQDehDeh0DDQD.

Since kehDk C and kdk C , we immediately have

kdd0 � 1K10Kk CkQk C|µ2|.

Plugging it into (57) gives

kDPD� 1K10Kk CkQk C|µ2|.

APPENDIX G: PROPERTIES OF SIGNED POLYGON STATISTICS

We prove Tables A.1-2 and Theorem A.1-4.3. The analysis of Tn and Qn is very simi-
lar. To save space, we only present the proof for results of Qn. The proof for results of Tn

(Tables A.1, A.2, and Theorems A.1, A.2, A.3) is omitted.



29

We recall the following notations:

e⌦=⌦� (⌘⇤)(⌘⇤)0, where ⌘⇤ =
1

p
v0

⌦1n, v0 = 10n⌦1n;

�ij = ⌘i(⌘j � ⌘̃j) + ⌘j(⌘i � ⌘̃i), where ⌘ =
1p
v
(EA)1n, ⌘̃ =

1p
v
A1n, v = 10n(EA)1n;

rij = (⌘⇤i ⌘
⇤
j � ⌘i⌘j)� (⌘i � ⌘̃i)(⌘j � ⌘̃j) + (1� v

V
)⌘̃i⌘̃j , where V = 10nA1n.

Then, the Ideal SgnQ statistic equals to

eQn =
X

i,j,k,`(dist)

(e⌦ij +Wij)(e⌦jk +Wjk)(e⌦k` +Wk`)(e⌦`i +W`i),

the Proxy SgnQ statistic equals to

Q⇤
n =

X

i,j,k,`(dist)

(e⌦ij +Wij + �ij)(e⌦jk +Wjk + �jk)(e⌦k` +Wk` + �k`)(e⌦`i +W`i + �`i),

and the SgnQ statistic equals to

Qn =
X

i,j,k,`(dist)

(e⌦ij+Wij+�ij+rij)(e⌦jk+Wjk+�jk+rjk)(e⌦k`+Wk`+�k`+rk`)(e⌦`i+W`i+�`i+r`i).

As explained in Section 4, each of eQn,Q⇤
n,Qn is the sum of a finite number of post-

expansion sums, each having the form

(60)
X

i,j,k,`(dist)

aijbjkck`d`i,

where aij equals to one of {e⌦ij ,Wij , �ij , rij}; same for bij , cij and dij . Let Ne⌦ be the
(common) number of e⌦ terms in each product; similarly, we define NW ,N�,Nr . These
numbers satisfy Ne⌦ + NW + N� + Nr = 4. For example, for the post-expansion sumP

i,j,k,`(dist)
e⌦ijWjkWk`W`i, (Ne⌦,NW ,N�,Nr) = (1,3,0,0). In Section G.1, we study eQn,

and it involves these post-expansion sums such that

N� =Nr = 0,

In Section G.2, we study (Q⇤
n � eQn), which involves post-expansion sums such that

N� > 0, and Nr = 0,

In Section G.3, we study (Qn �Q⇤
n), which is related to the sums such that

Nr > 0.

G.1. Analysis of Table 1, proof of Theorem 4.1. Define

X1 =
X

i,j,k,`(dist)

WijWjkWk`W`i, X2 =
X

i,j,k,`(dist)

e⌦ijWjkWk`W`i,

X3 =
X

i,j,k,`(dist)

e⌦ij
e⌦jkWk`W`i, X4 =

X

i,j,k,`(dist)

e⌦ijWjk
e⌦k`W`i,

X5 =
X

i,j,k,`(dist)

e⌦ij
e⌦jk

e⌦k`W`i, X6 =
X

i,j,k,`(dist)

e⌦ij
e⌦jk

e⌦k`
e⌦`i.
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We first consider the null hypothesis. Since e⌦ is a zero matrix, it is not hard to see that
eQn =X1.

The following lemmas are proved in Section G.4.

LEMMA G.1. Suppose the conditions of Theorem 4.1 hold. Under the null hypothesis, as

n!1, E[ eQn] = 0 and Var( eQn) = 8k✓k8 · [1 + o(1)].

LEMMA G.2. Suppose the conditions of Theorem 4.1 hold. Under the null hypothesis, as

n!1,

eQn �E[ eQn]q
Var( eQn)

�! N(0,1), in law.

We then consider the alternative hypothesis. By elementary algebra,
eQn =X1 + 4X2 + 4X3 + 2X4 + 4X5 +X6.

The following lemma characterizes the asymptotic mean and variance of X1-X6 under the
alternative hypothesis. It gives rise to Columns 5-6 of Table 1.

LEMMA G.3 (Table 1). Suppose conditions of Theorem 4.1 hold. Write ↵ = |�2|/�1.

Under the alternative hypothesis, as n!1,

• E[Xk] = 0 for 1 k  5, and E[X6] = tr(e⌦4) · [1 + o(1)].

• C�1k✓k8 Var(X1)Ck✓k8.

• Var(X2)C↵2k✓k4k✓k63 = o(k✓k8).
• Var(X3)C↵4k✓k6k✓k63 = o(↵6k✓k8k✓k63).
• Var(X4)C↵4k✓k123 = o(k✓k8).
• Var(X5)C↵6k✓k8k✓k63.

As a result, E[ eQn]⇠ tr(e⌦4) and Var( eQn)C(k✓k8 + ↵6k✓k8k✓k63).

Theorem 4.1 follows directly from Lemmas G.1-G.3.

G.2. Analysis of Table 2, proof of Theorem 4.2. We introduce Ua, Ub and Uc such that

Q⇤
n � eQn = Ua +Ub +Uc,

where Ua, Ub and Uc contain post-expansion sums (60) with N� = 1, N� = 2, and N� � 3,
respectively.

First, we consider the post-expansion sums with N� = 1. Define

(61) Ua = 4Y1 + 8Y2 + 4Y3 + 8Y4 + 4Y5 + 4Y6,

where

Y1 =
X

i,j,k,`(dist)

�ijWjkWk`W`i, Y2 =
X

i,j,k,`(dist)

�ij e⌦jkWk`W`i,

Y3 =
X

i,j,k,`(dist)

�ijWjk
e⌦k`W`i, Y4 =

X

i,j,k,`(dist)

�ij e⌦jk
e⌦k`W`i,

Y5 =
X

i,j,k,`(dist)

�ij e⌦jkWk`
e⌦`i, Y6 =

X

i,j,k,`(dist)

�ij e⌦jk
e⌦k`

e⌦`i.
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Under the null hypothesis, only Y1 is nonzero, and

Ua = 4Y1.

LEMMA G.4. Suppose the conditions of Theorem 4.1 hold. Under the null hypothesis, as

n!1, E[Ua] = 0 and Var(Ua)Ck✓k2k✓k63 = o(k✓k8).

Under the alternative hypothesis, the following lemma characterizes the asymptotic means
and variances of Y1-Y6. It gives rise to Rows 1-6 of Table 2 and is proved in Section G.4.

LEMMA G.5 (Table 2, Rows 1-6). Suppose the conditions of Theorem 4.1 hold. Let ↵=
|�2|/�1. Under the alternative hypothesis, as n!1,

• E[Yk] = 0 for k 2 {1,2,3,5,6}, and |E[Y4]|C↵2k✓k6 = o(↵4k✓k8).
• Var(Y1)Ck✓k2k✓k63 = o(k✓k8).
• Var(Y2)C↵2k✓k4k✓k63 = o(k✓k8).
• Var(Y3)C↵2k✓k4k✓k63 = o(k✓k8).

• Var(Y4) C↵
4k✓k10k✓k3

3

k✓k1
= o(↵6k✓k8k✓k63).

• Var(Y5) C↵
4k✓k4k✓k9

3

k✓k1
= o(k✓k8).

• Var(Y6) C↵
6k✓k12k✓k3

3

k✓k1
=O(↵6k✓k8k✓k63).

As a result, E[Ua] = o(↵4k✓k8) and Var(Ua)C↵6k✓k8k✓k63 + o(k✓k8).

Next, we consider the post-expansion sums with N� = 2. Define

(62) Ub = 4Z1 + 2Z2 + 8Z3 + 4Z4 + 4Z5 + 2Z6,

where

Z1 =
X

i,j,k,`(dist)

�ij�jkWk`W`i, Z2 =
X

i,j,k,`(dist)

�ijWjk�k`W`i,

Z3 =
X

i,j,k,`(dist)

�ij�jke⌦k`W`i, Z4 =
X

i,j,k,`(dist)

�ij e⌦jk�k`W`i,

Z5 =
X

i,j,k,`(dist)

�ij�jke⌦k`
e⌦`i, Z6 =

X

i,j,k,`(dist)

�ij e⌦jk�k`e⌦`i.

Under the null hypothesis, only Z1 and Z2 are nonzero, and

Ub = 4Z1 + 2Z2.

LEMMA G.6. Suppose the conditions of Theorem 4.1 hold. Under the null hypothesis, as

n!1,

• E[Z1] = k✓k4 · [1 + o(1)], and Var(Z1)Ck✓k2k✓k63 = o(k✓k8).

• E[Z2] = 2k✓k4 · [1 + o(1)], and Var(Z2) Ck✓k6k✓k3
3

k✓k1
= o(k✓k8).

As a result, E[Ub]⇠ 8k✓k4 and Var(Ub) = o(k✓k8).

Under the alternative hypothesis, the following lemma provides the asymptotic means and
variances of Z1-Z6. It gives rise to Rows 7-12 of Table 2:
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LEMMA G.7 (Table 2, Rows 7-12). Suppose conditions of Theorem 4.1 hold. Write ↵=
|�2|/�1. Under the alternative hypothesis, as n!1,

• |E[Z1]|Ck✓k4 = o(↵4k✓k8), and Var(Z1)Ck✓k2k✓k63 = o(k✓k8).

• |E[Z2]|Ck✓k4 = o(↵4k✓k8), and Var(Z2) Ck✓k6k✓k3
3

k✓k1
= o(k✓k8).

• EZ3 = 0, and Var(Z3)C↵2k✓k4k✓k63 = o(k✓k8).

• |E[Z4]|C↵k✓k4 = o(↵4k✓k8), and Var(Z4) C↵
2k✓k8k✓k3

3

k✓k1
= o(k✓k8).

• |E[Z5]|C↵2k✓k6 = o(↵4k✓k8), and Var(Z5) C↵
4k✓k14

k✓k2
1

= o(↵6k✓k8k✓k63).

• |E[Z6]| C↵
2k✓k8

k✓k2
1

= o(↵4k✓k8), and Var(Z6) C↵
4k✓k8k✓k6

3

k✓k2
1

= o(k✓k8).

As a result, E[Ub] = o(↵4k✓k8) and Var(Ub) = o(k✓k8 + ↵6k✓k8k✓k63).

Last, we consider the post-expansion sums with N� � 3. Define

(63) Uc = 4T1 + 4T2 + F,

where

T1 =
X

i,j,k,`(dist)

�ij�jk�k`W`i, T2 =
X

i,j,k,`(dist)

�ij�jk�k`e⌦`i,

F =
X

i,j,k,`(dist)

�ij�jk�k`�`i.

Under the null hypothesis, only T1 and F are nonzero, and

Ub = 4T1 + F.

LEMMA G.8. Suppose the conditions of Theorem 4.1 hold. Under the null hypothesis, as

n!1,

• E[T1] =�2k✓k4 · [1 + o(1)], and Var(T1) Ck✓k6k✓k3
3

k✓k1
= o(k✓k8).

• |E[F ]|= 2k✓k4 · [1 + o(1)], and Var(F ) Ck✓k10

k✓k2
1

= o(k✓k8).

As a result, E[Uc]⇠�6k✓k4 and Var(Uc) = o(k✓k8).

Under the alternative hypothesis, the next lemma studies the asymptotic means and vari-
ances of T1, T2 and F . It gives rise to Rows 13-15 of Table 2:

LEMMA G.9 (Table 2, Rows 13-15). Suppose conditions of Theorem 4.1 hold. Write

↵= |�2|/�1. Under the alternative hypothesis, as n!1,

• |E[T1]|Ck✓k4 = o(↵4k✓k8), and Var(T1) Ck✓k6k✓k3
3

k✓k1
= o(k✓k8).

• |E[T2]| C↵k✓k6

k✓k3
1

= o(↵4k✓k8), and Var(T2) C↵
2k✓k8k✓k3

3

k✓k1
= o(k✓k8).

• |E[F ]|Ck✓k4 = o(↵4k✓k8), and Var(F ) Ck✓k10

k✓k2
1

= o(k✓k8).

As a result, E|Uc|= o(↵4k✓k8) and Var(Uc) = o(k✓k8).
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We now prove Theorem 4.2. Since Q⇤
n � eQn = Ua +Ub +Uc, we have

E[Q⇤
n � eQn] = E[Ua] +E[Ub] +E[Uc],

Var(Q⇤
n � eQn) 3Var(Ua) + 3Var(Ub) + 3Var(Uc).

Consider the null hypothesis. By Lemmas G.4, G.6, G.8,

E[Q⇤
n � eQn] = 0 + 8k✓k4 � 6k✓k4 + o(k✓k4)⇠ 2k✓k4,

and

Var(Q⇤
n � eQn)Ck✓k2k✓k63 +

Ck✓k6k✓k33
k✓k1

+
Ck✓k10

k✓k21
.

Using the universal inequality k✓k4  k✓k1k✓k33, we further have

Var(Q⇤
n � eQn)Ck✓k2k✓k63 = o(k✓k8),

where k✓k33 = o(k✓k2) and k✓k!1 in our range of interest. This proves claims for the null
hypothesis. Consider the alternative hypothesis. By Lemmas G.5, G.7, G.9,

��E[Q⇤
n � eQn]

��C↵2k✓k6,

where the main contributors are Y4 and Z5. Since ↵k✓k ! 1 in our range of interest, the
above is o(↵4k✓k8). By Lemmas G.5, G.7, G.9,

Var(Q⇤
n � eQn)

C↵6k✓k12k✓k33
k✓k1

,

where the main contributor is Y6. Using the universal inequality of k✓k4  k✓k1k✓k33, the
above is O(↵6k✓k8k✓k63). This proves claims for the alternative hypothesis.

G.3. Analysis of (Qn � Q⇤
n), proof of Theorem 4.3. By definition, (Qn � Q⇤

n) ex-
pands to the sum of 175 post-expansion sums, where each has the form (60) and satisfies
Nr > 0. Recall that

rij = (⌘⇤i ⌘
⇤
j � ⌘i⌘j)� (⌘i � ⌘̃i)(⌘j � ⌘̃j) + (1� v

V
)⌘̃i⌘̃j .

Since �ij = ⌘i(⌘j� ⌘̃j)+⌘j(⌘i� ⌘̃i), we have ⌘̃i⌘̃j = ⌘i⌘j��ij+(⌘̃i�⌘i)(⌘̃j�⌘j). Inserting
it into the definition of rij gives

(64) rij = (⌘⇤i ⌘
⇤
j � ⌘i⌘j) + (1� v

V
)⌘i⌘j � (1� v

V
)�ij �

v

V
(⌘̃i � ⌘i)(⌘̃j � ⌘j).

Define

r̃ij =� v

V
(⌘̃i � ⌘i)(⌘̃j � ⌘j), ✏ij = (⌘⇤i ⌘

⇤
j � ⌘i⌘j) + (1� v

V
)⌘i⌘j � (1� v

V
)�ij .

Then, we can write

(65) rij = r̃ij + ✏ij .

Using this notation, we re-write

Qn =
X

i,j,k,`(dist)

MijMjkMk`M`i, where Mij = e⌦ij +Wij + �ij + r̃ij + ✏ij ,

and

Q⇤
n =

X

i,j,k,`(dist)

M⇤
ijM

⇤
jk
M⇤

k`
M⇤
`i
, where M⇤

ij ⌘ e⌦ij +Wij + �ij .
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We then introduce an intermediate variable:

(66) eQ⇤
n =

X

i,j,k,`(dist)

fM⇤
ij
fM⇤

jk
fM⇤

k`
fM⇤
`i
, where fM⇤

ij = e⌦ij +Wij + �ij + r̃ij .

As a result, (Qn �Q⇤
n) decomposes into

(67) Qn �Q⇤
n = ( eQ⇤

n �Q⇤
n) + (Qn � eQ⇤

n).

We note that Qn can be expanded to the sum of 54 = 625 post-expansion sums, each with
the form

X

i,j,k,`(dist)

aijbjkck`d`i,

where each of aij , bij , cij , dij takes values in {e⌦ij ,Wij , �ij , r̃ij , ✏ij}. Let Ne⌦ be the (common)
number of e⌦ terms in each product and define NW ,N�,Nr̃,N✏ similarly. Among the 625
post-expansion sums,

• 34 = 81 of them are contained in Q⇤
n,

• 44 � 34 = 175 of them are contained in ( eQ⇤
n �Q⇤

n),
• and 54 � 44 = 369 of them are contained in (Qn � eQ⇤

n).

We shall study ( eQ⇤
n �Q⇤

n) and (Qn � eQ⇤
n), separately.

In our analysis, one challenge is to deal with the random variable V that appears in the de-
nominator in the expression of rij . The following lemma is useful and proved in Section G.4.

LEMMA G.10. Suppose conditions of Theorem 4.3 hold. As n!1, for any sequence

xn such that

p
log(k✓k1)⌧ xn ⌧k✓k1,

E
⇥
( eQn �Qn)

2 · I{|V � v|> k✓k1xn}
⇤
! 0.

The next two lemmas are proved in Section G.4.

LEMMA G.11. Suppose conditions of Theorem 4.3 hold. Write ↵= |�2|/�1. As n!1,

• Under the null hypothesis, |E[ eQ⇤
n �Q⇤

n]|= o(k✓k4) and Var( eQ⇤
n �Q⇤

n) = o(k✓k8).

• Under the alternative hypothesis, |E[ eQ⇤
n � Q⇤

n]| = o(↵4k✓k8) and Var( eQ⇤
n � Q⇤

n) =
o(k✓k8 + ↵6k✓k8k✓k63).

LEMMA G.12. Suppose conditions of Theorem 4.3 hold. Write ↵= |�2|/�1. As n!1,

• Under the null hypothesis, |E[Qn � eQ⇤
n]|= o(k✓k4) and Var(Qn � eQ⇤

n) = o(k✓k8).

• Under the alternative hypothesis, |E[Qn � eQ⇤
n]| = o(↵4k✓k8) and Var( eQ⇤

n � Q⇤
n) =

O(k✓k8 + ↵6k✓k8k✓k63).

Theorem 4.3 follows directly from (67) and Lemmas G.11-G.12.

G.4. Proof of Lemmas G.1-G.12.
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G.4.1. Proof of Lemma G.1. Under the null hypothesis,

eQn =X1 =
X

i,j,k,`(dist)

WijWjkWk`W`i.

For mutually distinct indices (i, j, k, `), (Wij ,Wjk,Wk`,W`i) are independent of each other,
each with mean zero. So E[WijWjkWk`W`i] = 0. It follows that

E[ eQn] = 0.

We now calculate the variance of eQn. Under the null hypothesis, ⌦ij = ✓i✓j ; hence,
Var(Wij) =⌦ij(1�⌦ij) = ✓i✓j � ✓2

i
✓2
j
= ✓i✓j [1 +O(✓2max)]. It follows that

Var(WijWjkWk`W`i) = ✓2i ✓
2
j ✓

2
k
✓2
`
· [1 +O(✓2max)]

4

= ✓2i ✓
2
j ✓

2
k
✓2
`
· [1 +O(✓2max)].(68)

Note that each (i, j, k, `) corresponds to a 4-cycle in a complete graph of n nodes. For
(i, j, k, `) and (i0, j0, k0, `0), we can write WijWjkWk`W`i ·Wi0j0Wj0k0Wk0`0W`0i0 in the form
of
Q

t
(Witjt)

mt , where {Witjt} are mutually distinct with each other and mt is the number
of times that Witjt appears in this product. If the two 4-cycles corresponding to (i, j, k, `) and
(i0, j0, k0, `0) are not exactly overlapping, then at least two of mt equals to 1. As a result, the
mean of

Q
t
(Witjt)

mt is zero. In other words, we have argued that

(69)
Cov(WijWjkWk`W`i, Wi0j0Wj0k0Wk0`0W`0i0) = 0 if the
two cycles corresponding to (i, j, k, `) and (i0, j0, k0, `0)
are not exactly overlapping.

In the sum over all distinct (i, j, k, `), each 4-cycle is repeatedly counted by 8 times

(i, j, k, `), (j, k, `, i), (k, `, i, j), (`, i, j, k),
(`, k, j, i), (k, j, i, `), (j, i, `, k), (i, `, k, j).

It follows that

Var( eQn) = Var

✓
8
X

unique
4-cycles

WijWjkWk`W`i

◆

= 64 ·Var
✓ X

unique
4-cycles

WijWjkWk`W`i

◆

= 64
X

unique
4-cycles

Var
�
WijWjkWk`W`i

�

= 8
X

i,j,k,`(dist)

Var
�
WijWjkWk`W`i

�

= [1 +O(✓2max)] · 8
X

i,j,k,`(dist)

✓2i ✓
2
j ✓

2
k
✓2
`
,(70)

where the third line is from (69) and the last line is from (68). We then compute the right
hand side of (70). Note that

X

i,j,k,`(dist)

✓2i ✓
2
j ✓

2
k
✓2
`
= k✓k8 �

X

i,j,k,`(not dist)

✓2i ✓
2
j ✓

2
k
✓2
`
,
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where
X

i,j,k,`(not dist)

✓2i ✓
2
j ✓

2
k
✓2
`

✓
4

2

◆X

i,j,k

✓2i ✓
2
j ✓

4
k
Ck✓k4k✓k44 = k✓k8 ·O

⇣k✓k44
k✓k4

⌘
.

Combining the above gives

(71)
X

i,j,k,`(dist)

✓2i ✓
2
j ✓

2
k
✓2
`
= k✓k8 ·

h
1 +O

⇣k✓k44
k✓k4

⌘i
.

We combine (70)-(71) and note that ✓max = o(1) and k✓k44/k✓k4  (k✓k2✓2max)/k✓k4 = o(1).
So,

Var( eQn) = 8k✓k8 · [1 + o(1)].

This completes the proof.

G.4.2. Proof of Lemma G.2. Under the null hypothesis,

eQn =X1 =
X

i,j,k,`(dist)

WijWjkWk`W`i.

In the proof of Theorem 3.2 of [3], it has been shown that X1/
p

Var(X1)!N(0,1) in law
(in the proof there, X1/

p
Var(X1) is denoted as Sn,n). Since E[X1] = 0, we can directly

quote their results to get the desired claim.

G.4.3. Proof of Lemma G.3. We shall study the mean and variance of each of X1-X6

and then combine those results.
Consider X1. We have analyzed this term under the null hypothesis. Under the alternative

hypothesis, the difference is that we no longer have ⌦ij = ✓i✓j . Instead, we have an upper
bound ⌦ij = ✓i✓j(⇡0iP⇡j)  C✓i✓j . Using similar proof as that for the null hypothesis, we
can derive that

(72) E[X1] = 0, Var(X1)Ck✓k8.
To get a lower bound for Var(X1), we notice that Var(Wij) = ⌦ij(1 � ⌦ij) � ⌦ij [1 �
O(✓2max)]�⌦ij/2; this inequality is true even when ⌦ij = 0. It follows that

Var(WijWjkWk`W`i)�
1

16
⌦ij⌦jk⌦k`⌦`i.

Note that the second last line of (70) is still true. As a result,

Var(X1) = 8
X

i,j,k,`(dist)

Var
�
WijWjkWk`W`i

�

� 1

2

X

i,j,k,`(dist)

⌦ij⌦jk⌦k`⌦`i

=
1

2
tr(⌦4)� 1

2

X

i,j,k,`(not dist)

⌦ij⌦jk⌦k`⌦`i

� 1

2
tr(⌦4)�C

X

i,j,k,`(not dist)

✓2i ✓
2
j ✓

2
k
✓2
`

� 1

2
tr(⌦4)� o(k✓k8),
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where the last inequality is due to (71). Recall that �1, . . . ,�K denote the K nonzero eigen-
values of ⌦. By Lemma E.2, �1 �C�1k✓k2. It follows that

tr(⌦4) =
KX

k=1

�4
k
� �41 �C�1k✓k8.

Combining the above gives

(73) Var(X1)�C�1k✓k8.

So far, we have proved all claims about X1.
Consider X2. Recall that

X2 =
X

i,j,k,`(dist)

e⌦ijWjkWk`W`i.

It is easy to see that E[X2] = 0. Below, we bound its variance. Each index choice (i, j, k, `)
defines a undirected path j-k-`-i in the complete graph of n nodes. If the two paths j-k-`-i
and j0-k0-`0-i0 are not exactly overlapping, then WjkWk`W`i ·Wj0k0Wk0`0W`0i0 have mean
zero. In the sum above, each unique path j-k-`-i is counted twice as (i, j, k, `) and (j, i, `, k).
Mimicking the argument in (70), we immediately have

Var(X2) = 2
X

i,j,k,`(dist)

Var
�e⌦ijWjkWk`W`i

�

= 2
X

i,j,k,`(dist)

e⌦2
ij ·Var

�
WjkWk`W`i

�
.

By Lemma E.5, |e⌦ij |  |�2|k✓k�2✓i✓j . In our notations, ↵ = |�2|/�1; additionally, by
Lemma E.2, �1 Ck✓k2. Combining them gives

(74) |e⌦ij |C↵✓i✓j .

Moreover, Var(WjkWk`W`i)⌦jk⌦k`⌦`i C✓j✓2k✓
2
`
✓i. It follows that

Var(X2)C
X

i,j,k,`(dist)

(↵✓i✓j)
2 · ✓j✓2k✓2` ✓i

C↵2
X

i,j,k,`

✓3i ✓
3
j ✓

2
k
✓2
`

C↵2k✓k4k✓k63.

Since k✓k33  ✓max
P

i
✓2
i
= ✓maxk✓k2, the right hand side is  C↵2k✓k8✓2max. Note that

↵ 1 and ✓max ! 0. So, this term is o(k✓k8). We have proved all claims about X2.
Consider X3. Recall that

X3 =
X

i,j,k,`(dist)

e⌦ij
e⌦jkWk`W`i =

X

i,k,`(dist)

⇣ X

j /2{i,k,`}

e⌦ij
e⌦jk

⌘
Wk`W`i.

It is easy to see that E[X3] = 0. We then study its variance. We note that for Wk`W`i and
Wk0`0W`0i0 to be correlated, we must have that (k0, `0, i0) = (k, `, i) or (k0, `0, i0) = (i, `, k);
in other words, the two underlying paths k-`-i and k0-`0-i0 have to be equal. Mimicking the
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argument in (70), we have

Var(X3)C
X

i,k,`(dist)

Var
h⇣ X

j /2{i,k,`}

e⌦ij
e⌦jk

⌘
Wk`W`i

i

C
X

i,k,`(dist)

⇣ X

j /2{i,k,`}

e⌦ij
e⌦jk

⌘2
·Var(Wk`W`i).

By (74),
���
X

j /2{i,k,`}

e⌦ij
e⌦jk

���C
X

j

↵2✓i✓
2
j ✓k C↵2k✓k2 · ✓i✓k.

Combining the above gives

Var(X3)C
X

i,k,`

(↵2k✓k2✓i✓k)2 · ✓k✓2` ✓i

C↵4k✓k4
X

i,k,`

✓3i ✓
3
k
✓2
`

C↵4k✓k6k✓k63.
Since k✓k!1, the right hand side is o(↵4k✓k8k✓k63). We have proved all claims about X3.

Consider X4. Recall that

X4 =
X

i,j,k,`(dist)

e⌦ijWjk
e⌦k`W`i =

X

i,j,k,`(dist)

e⌦ij
e⌦k`WjkW`i.

It is easy to see that E[X4] = 0. To calculate its variance, note that WjkW`i and Wj0k0W`0i0

are uncorrelated unless (i) {j0, k0} = {j, k} and {`0, i0} = {`, i} or (ii) {j0, k0} = {`, i} and
{`0, i0}= {j, k}. Mimicking the argument in (70), we immediately have

Var(X4)C
X

i,j,k,`(dist)

Var
�e⌦ij

e⌦k`WjkW`i

�

C
X

i,j,k,`(dist)

e⌦2
ij
e⌦2
k`
·Var(WjkW`i)

C
X

i,j,k,`

(↵✓i✓j)
2(↵✓k✓`)

2 · ✓j✓k✓`✓i

C↵4
X

i,j,k,`

✓3i ✓
3
j ✓

3
k
✓3
`

C↵4k✓k123 .

Since k✓k33  ✓maxk✓k2 = o(k✓k2), the right hand side is o(k✓k8). This proves the claims of
X4.

Consider X5. Recall that

X5 =
X

i,j,k,`(dist)

e⌦ij
e⌦jk

e⌦k`W`i = 2
X

i<`

⇣ X

j,k/2{i,`}
j 6=k

e⌦ij
e⌦jk

e⌦k`

⌘
W`i.

It is easily seen that E[X5] = 0. Furthermore, we have

(75) Var(X5) = 2
X

i<`

⇣ X

j,k/2{i,`}
j 6=k

e⌦ij
e⌦jk

e⌦k`

⌘2
·Var(W`i).
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By (74),
���
X

j,k/2{i,`}
j 6=k

e⌦ij
e⌦jk

e⌦k`

���C
X

j,k

↵3✓i✓
2
j ✓

2
k
✓` C↵3k✓k4 · ✓i✓`

We plug it into (75) and use Var(W`i)⌦`i C✓`✓i. It yields that

Var(X5) C
X

`,i(dist)

(↵3k✓k4✓i✓`)2 · ✓`✓i

 C↵6k✓k8
X

`,i

✓3i ✓
3
`

 C↵6k✓k8k✓k63.(76)

This proves the claims of X5.
Consider X6. Recall that

X6 =
X

i,j,k,`(dist)

e⌦ij
e⌦jk

e⌦k`
e⌦`i = tr(e⌦4)�

X

i,j,k,`(not dist)

e⌦ij
e⌦jk

e⌦k`
e⌦`i.

This is a non-stochastic number, so its variance is zero and its mean is X6 itself. By
Lemma E.5, |�2|  ke⌦k  C|�2|. Since ke⌦k4  tr(e⌦4)  Kke⌦k4, we immediately have
tr(e⌦4) ⇣ ke⌦k4 ⇣ |�2|4. Additionally, |�2| = ↵�1 in our notation, and �1 ⇣ k✓k2 by
Lemma E.2. It follows that

tr(e⌦4)⇣ |�2|4 ⇣ ↵4k✓k8.

At the same time, by (74), |e⌦ij
e⌦jk

e⌦k`
e⌦`i|C↵4✓2

i
✓2
j
✓2
k
✓2
`
. We thus have

|X6 � tr(e⌦4)|C↵4
X

i,j,k,`(not dist)

✓2i ✓
2
j ✓

2
k
✓2
`

C↵4
X

i,j,k

✓2i ✓
2
j ✓

4
k

C↵4k✓k4k✓k44 = o(↵4k✓k8),

where the last equality is due to k✓k44  ✓2maxk✓k2 = o(k✓k4). Combining the above gives

X6 = tr(e⌦4) · [1 + o(1)].

This proves the claims of X6.
Last, we combine the results for X1-X6 to study eQn. Note that

eQn =X1 + 4X2 + 4X3 + 2X4 + 4X5 +X6.

Only X6 has a nonzero mean. So,

E[ eQn] = E[X6] = tr(e⌦4) · [1 + o(1)].

At the same time, given random variables Z1,Z2, . . . ,Zm, Var(
P

m

k=1Zk) =
P

k
Var(Zk) +P

k 6=`Cov(Zk,Z`)
P

k
Var(Zk) +

P
k 6=`

p
Var(Zk)Var(Z`)m2maxk{Var(Zk)}. We

thus have

Var( eQn)C max
1k6

Var(Xk)C
�
k✓k8 + ↵6k✓k8k✓k63

�
.

The proof of this lemma is now complete.



40

G.4.4. Proof of Lemma G.4. Recall that Ua = 4Y1 = 4
P

i,j,k,`(dist) �ijWjkWk`W`i. By
definition, �ij = ⌘i(⌘j � ⌘̃j) + ⌘j(⌘i � ⌘̃i). It follows that

Ua = 4
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)WjkWk`W`i + 4
X

i,j,k,`(dist)

⌘j(⌘i � ⌘̃i)WjkWk`W`i.

In the second sum, if we relabel (i, j, k, `) = (j0, i0, `0, k0), it becomes

4
X

i0,j0,k0,`0(dist)

⌘i0(⌘j0 � ⌘̃j0)Wi0`0W`0k0Wk0j0 = 4
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)Wi`W`kWkj ,

which is the same as the first term. It follows that

Ua = 8
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)WjkWk`W`i.

By definition, ⌘j = 1p
v

P
s 6=j

EAjs and ⌘̃j = 1p
v

P
s 6=j

Ajs. Hence,

(77) ⌘̃j � ⌘j =
1p
v

X

s 6=j

Wjs.

We then re-write

Ua =�8
X

i,j,k,`(dist)

⌘i
⇣ 1p

v

X

s 6=j

Wjs

⌘
WjkWk`W`i

=� 8p
v

X

i,j,k,`(dist)
s 6=j

⌘iWjsWjkWk`W`i.

In the summand, (i, j, k, `) are distinct, but s is only required to be distinct from j. We
consider two different cases: (a) the case of s= k, where the summand becomes W 2

jk
Wk`W`i,

and (b) the case of s 6= k. Correspondingly, we write

Ua =� 8p
v

X

i,j,k,`(dist)

⌘iW
2
jk
Wk`W`i �

8p
v

X

i,j,k,`(dist)
s/2{j,k}

⌘iWjsWjkWk`W`i

⌘ Ua1 +Ua2.(78)

It is easy to see that the summands in both sums have mean zero. Therefore,

E[Ua] = 0.

Next, we bound the variance of Ua. Since Var(Ua) 2Var(Ua1) + 2Var(Ua2), it suffices
to bound the variances of Ua1 and Ua2. Consider Ua1. Note that

(79) Var(Ua1) =
64

v

X

i,j,k,`(dist)
i
0
,j

0
,k

0
,`

0(dist)

⌘i⌘i0 ·E[W 2
jk
Wk`W`iW

2
j0k0Wk0`0W`0i0 ].

By definition, v = 10n(EA)1n = 10n⌦1n �
P

i
⌦ii. Since ⌦ii  ✓2

i
, it implies v = 10n⌦1n �

O(k✓k2) = 10n⌦1n + o(k✓k21). Moreover, we note that 10n⌦1n  C
P

i,j
✓i✓j  Ck✓k21, and

by Lemma E.4, 10n⌦1n �C�1k✓k21. Combining these results gives

(80) C�1k✓k21  v Ck✓k21.

Moreover, ⌘i = 1p
v

P
s 6=i

⌦is  C

k✓k1

P
s
✓i✓s. This gives

(81) 0 ⌘i C✓i, for all 1 i n.
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We plug (80)-(81) into (79) and find out that

Var(Ua1)
C

k✓k21

X

i,j,k,`(dist)
i
0
,j

0
,k

0
,`

0(dist)

✓i✓i0 ·E[W 2
jk
Wk`W`iW

2
j0k0Wk0`0W`0i0 ].

In order for the summand to be nonzero, all W terms have to be perfectly paired. By elemen-
tary calculations,

✓i✓i0E[W 2
jk
Wk`W`iW

2
j0k0Wk0`0W`0i0 ] =

8
>>><

>>>:

✓2
i
E[W 2

jk
W 2

k`
W 2
`i
W 2

j0k], if (`0, k0, i0)=(`, k, i);
✓i✓k E[W 2

jk
W 2

k`
W 2
`i
W 2

j0i], if (`0, k0, i0)=(`, i, k);
✓i✓j E[W 3

jk
W 2

k`
W 3
`i
], if (j0, k0)=(i, `), (i0, `0)=(j, k);

0, otherwise.

Here, (i, j, k, `) are distinct. In the second case above, (W 2
jk
,W 2

k`
,W 2

`i
,W 2

j0i) are independent
of each other, no matter j = j0 or j 6= j0 (we remark that j0 6= `, because j0 /2 {i0, k0, `0} =
{i, k, `}). It follows that E[W 2

jk
W 2

k`
W 2
`i
W 2

j0i]  ⌦jk⌦k`⌦`i⌦j0i  C✓2
i
✓j✓2k✓

2
`
✓j0 . In the

first case, when j 6= j0, E[W 2
jk
W 2

k`
W 2
`i
W 2

j0k]  ⌦jk⌦k`⌦`i⌦j0k  C✓i✓j✓3k✓
2
`
✓j0 ; when j =

j0, it holds that E[W 2
jk
W 2

k`
W 2
`i
W 2

j0k] = E[W 4
jk
W 2

k`
W 2
`i
]  C✓i✓j✓2k✓

2
`
. In the third case,

(W 3
jk
,W 2

k`
,W 3

`i
) are mutually independent, so E[W 2

jk
W 2

k`
W 2
`i
]  ⌦jk⌦k`⌦`i  C✓i✓j✓2k✓

2
`
.

We then have

✓i✓i0E[W 2
jk
Wk`W`iW

2
j0k0Wk0`0W`0i0 ]

8
>>>>>><

>>>>>>:

C✓3
i
✓j✓2k✓

2
`
, if (`0, k0, i0) = (`, k, i), j0 = j;

C✓3
i
✓j✓3k✓

2
`
✓j0 , if (`0, k0, i0) = (`, k, i), j0 6= j;

C✓3
i
✓j✓3k✓

2
`
✓j0 , if (`0, k0, i0) = (`, i, k);

C✓2
i
✓2
j
✓2
k
✓2
`
, if (j0, k0)=(i, `), (i0, `0)=(j, k);

0, otherwise.

It follows that

Var(Ua1)
C

k✓k21

⇣X

i,j,k,`

✓3i ✓j✓
2
k
✓2
`
+

X

i,j,k,`,j0

✓3i ✓j✓
3
k
✓2
`
✓j0 +

X

i,j,k,`

✓2i ✓
2
j ✓

2
k
✓2
`

⌘

 C

k✓k21

�
k✓k4k✓k33k✓k1 + k✓k2k✓k63k✓k21 + k✓k8

�

 Ck✓k2k✓k63,(82)

where we obtain the last inequality as follows: By Cauchy-Schwarz inequality, k✓k4 =

(
P

i
✓1/2
i

·✓3/2)2  (
P

i
✓i)(

P
i
✓3
i
) k✓k1k✓k33; therefore, k✓k8  k✓k4k✓k33k✓k1  k✓k63k✓k21.

We then consider Ua2. Define

P⇤
5 =

⇢
path i-`-k-j-s in a complete : nodes i, j, k, ` are distinct,
graph with n nodes and node s is different from j, k

�
.

Fix a path i-`-k-j-s in P⇤
5 . If s /2 {i, `}, then this path is counted twice in the definition of

Ua2, as i-`-k-j-s and s-j-k-`-i, respectively. If s 2 {i, `}, then it is counted only once in the
definition of Ua2. Hence, we can re-write

Ua2 =� 8p
v

X

path in P⇤
5

s/2{i,`}

(⌘i + ⌘s)WsjWjkWk`W`i �
8p
v

X

path in P⇤
5

s2{i,`}

⌘iWsjWjkWk`W`i.
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For two distinct paths in P⇤
5 , the corresponding summands are uncorrelated with each other.

It follows that

Var(Ua2) =
64

v

X

path in P⇤
5

s/2{i,`}

(⌘i + ⌘s)
2Var(WsjWjkWk`W`i)

+
64

v

X

path in P⇤
5

s2{i,`}

⌘2i Var(WsjWjkWk`W`i)

 C

v

X

i,j,k,`,s

(⌘2i + ⌘2s) · ✓i✓2j ✓2k✓2` ✓s

 C

k✓k21

X

i,j,k,`,s

(✓3i ✓
2
j ✓

2
k
✓2
`
✓s + ✓i✓

2
j ✓

2
k
✓2
`
✓3s)

 Ck✓k6k✓k33
k✓k1

.(83)

By Cauchy-Schwarz inequality, k✓k4  k✓k1k✓k33, so the right hand side of (83) is 
Ck✓k2k✓k63. Combining it with (82) gives

Var(Ua)Ck✓k2k✓k63 = o(k✓k8).

This proves the claim.

G.4.5. Proof of Lemma G.5. It suffices to prove the claims for each of Y1-Y6. Consider
Y1. We have analyzed this term under the null hypothesis. Using similar proof, we can easily
derive that

E[Y1] = 0, Var(Y1)Ck✓k2k✓k63 = o(k✓k8).

Consider Y2. Using the definition of Y2 and the expression of ⌘̃i in (77), we have

Y2 =
X

i,j,k,`(dist)

�ij e⌦jkWk`W`i

=
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)e⌦jkWk`W`i +
X

i,j,k,`(dist)

⌘j(⌘i � ⌘̃i)e⌦jkWk`W`i

=
1p
v

X

i,j,k,`(dist)

⌘i
⇣
�
X

s 6=j

Wjs

⌘
e⌦jkWk`W`i +

1p
v

X

i,j,k,`(dist)

⌘j
⇣
�
X

s 6=i

Wis

⌘
e⌦jkWk`W`i

=� 1p
v

X

i,j,k,`(dist)
s 6=j

⌘ie⌦jkWjsWk`W`i �
1p
v

X

i,k,`(dist)
s 6=i

⇣ X

j /2{i,k,`}

⌘j e⌦jk

⌘
WisWk`W`i.

In the second sum above, we further separate two cases, s= ` and s 6= `. It then gives rise to
three terms:

Y2 =� 1p
v

X

i,j,k,`(dist)
s 6=j

⌘ie⌦jkWjsWk`W`i

� 1p
v

X

i,k,`(dist)

⇣ X

j /2{i,k,`}

⌘j e⌦jk

⌘
W 2

i`
Wk`
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� 1p
v

X

i,k,`(dist)
s/2{i,`}

⇣ X

j /2{i,k,`}

⌘j e⌦jk

⌘
WisWk`W`i

⌘ Y2a + Y2b + Y2c.(84)

Since (i, j, k, `) are distinct, it is easy to see that all three terms have mean zero. We thus have

E[Y2] = 0.

Below, we calculate the variances. First, we bound the variance of Y2a. Each (i, j, k, `, s) is
associated with a length-3 path i-k-` and an edge j-s in the complete graph. For (i, j, k, `, s)
and (i0, j0, k0, `0, s0), if the associated path and edge are the same, then we group them to-
gether. Given a length-3 path i-k-` and an edge j-s (such that the edge is not in the path),
they are counted four times in the definition of Y2a, as (i) i-k-` and j-s, (ii) i-k-` and s-j, (iii)
`-k-i and j-s, (iv) `-k-i and s-j, so we group these four summands together. After grouping
the summands, we re-write

Y2a =� 1p
v

X

length-3
path

X

edge not
in the path

�
⌘ie⌦jk + ⌘ie⌦sk + ⌘ke⌦ji + ⌘ke⌦si

�
WjsWk`W`i.

In this new expression of Y2a, two summands are correlated only when the underlying
path&edge pairs are exactly the same. Additionally, by (74) and (81),

��⌘ie⌦jk + ⌘ie⌦sk + ⌘ke⌦ji + ⌘ke⌦si

��C↵(✓j + ✓s)✓i✓k.

It follows that

Var(Y2a)
C

v

X

i,j,k,`,s

↵2(✓j + ✓s)
2✓2i ✓

2
k
·Var(WjsWk`W`i)

 C

k✓k21

X

i,j,k,`,s

↵2(✓j + ✓s)
2✓2i ✓

2
k
· ✓i✓j✓k✓2` ✓s

 C↵2

k✓k21

X

i,j,k,`,s

(✓3i ✓
3
j ✓

3
k
✓2
`
✓s + ✓3i ✓j✓

3
k
✓2
`
✓3s)

 C↵2k✓k2k✓k93
k✓k1

.(85)

Second, we bound the variance of Y2b. Write �ik` =
P

j /2{i,k,`} ⌘j
e⌦jk. By (74) and (81),

|�ik`|C
P

j
✓j · ↵✓j✓k C↵k✓k2✓k. Using this notation,

Y2b =
1

v

X

i,j,k,`(dist)

�ik`W
2
i`
Wk`, where |�ik`|C↵k✓k2✓k.

It follows that

Var(Y2b) = E[Y 2
2b]

C

v

X

i,k,`(dist)
i
0
,k

0
,`

0(dist)

�ik`�i0k0`0 ·E[W 2
i`
Wk`W

2
i0`0Wk0`0 ]

 C↵2k✓k4

k✓k21

X

i,k,`(dist)
i
0
,k

0
,`

0(dist)

✓k✓k0 ·E[W 2
i`
Wk`W

2
i0`0Wk0`0 ].
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The summand is nonzero only when the two variables Wk` and Wk0`0 equal to each other or
when each of them equals to some other squared variables. By elementary calculations,

✓k✓k0 ·E[W 2
i`
Wk`W

2
i0`0Wk0`0 ]

=

8
>>>>>>>><

>>>>>>>>:

✓2
k
E[W 4

i`
W 2

k`
]C✓i✓3k✓

2
`
, if (k0, `0) = (k, `), i0 = i;

✓2
k
E[W 2

i`
W 2

k`
W 2

i0`]C✓i✓3k✓
3
`
✓i0 , if (k0, `0) = (k, `), i0 6= i;

✓k✓`E[W 2
i`
W 2

k`
W 2

i0k]C✓i✓3k✓
3
`
✓i0 , if (k0, `0) = (`, k);

✓2
k
E[W 3

i`
W 3

k`
]C✓i✓3k✓

2
`
, if `0 = `, (i0, k0) = (i, k);

✓k✓iE[W 3
i`
W 3

k`
]C✓2

i
✓2
k
✓2
`
, if `0 = `, (i0, k0) = (k, i);

0, otherwise.

As a result,

Var(Y2b)
C↵2k✓k4

k✓k21

⇣X

i,k,`

✓i✓
3
k
✓2
`
+

X

i,k,`,i0

✓i✓
3
k
✓3
`
✓i0 +

X

i,k,`

✓2i ✓
2
k
✓2
`

⌘

 C↵2k✓k4

k✓k21

�
k✓k33k✓k2k✓k1 + k✓k63k✓k21 + k✓k6

�

C↵2k✓k4k✓k63,(86)

where to get the last inequality we have used k✓k6 ⌧k✓k8  (k✓k1k✓k33)2 and k✓k33k✓k2k✓k1 ⌧
k✓k33k✓k4k✓k1  (k✓k1k✓k33)2. Last, we bound the variance of Y2c. Let �ik` =

P
j /2{i,k,`} ⌘j

e⌦jk

be the same as above. We write

Y2c =
1p
v

X

i,k,`(dist)
s/2{i,`}

�ik`WisWk`W`i, where |�ik`|C↵k✓k2✓k.

For E[WisWk`W`i ·Wi0s0Wk0`0W`0i0 ] to be nonzero, it has to be the case that (Wis,Wk`,W`i)
and (Wi0s0 ,Wk0`0 ,W`0i0) are the same set of variables, up to an order permutation. For each
fixed (i, k, `, s), there are only a constant number of (i0, k0, `0, s0) such that the above is satis-
fied. As we have argued many times before (e.g., see (70)), it is true that

Var(Y2c)
C

v

X

i,k,`(dist)
s/2{i,`}

�2
ik`

·Var(WisWk`W`i)

 C

k✓k21

X

i,k,`,s

(↵k✓k2✓k)2 · ✓2i ✓k✓2` ✓s

 C↵2k✓k8k✓k33
k✓k1

.(87)

We now combine the variances of Y2a-Y2c. Since k✓k33  ✓2maxk✓k1 ⌧ k✓k1, the right hand
side is (85) is o(↵2k✓k2k✓k63) = o(↵2k✓k4k✓k63). Since k✓k4  k✓k1k✓k33, the right hand side
is (87) is C↵2k✓k4k✓k63. It follows that

Var(Y2)C↵2k✓k4k✓k63 = o(k✓k8).
This proves the claims of Y2.

Consider Y3. By definition,

Y3 =
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)Wjk
e⌦k`W`i +

X

i,j,k,`(dist)

⌘j(⌘i � ⌘̃i)Wjk
e⌦k`W`i.
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In the second sum, if we relabel (i, j, k, `) = (j0, i0, `0, k0), it can be written as
P

i0,j0,k0,`0(dist) ⌘i0(⌘j0�
⌘̃j0)Wi0`0

e⌦`0k0Wk0j0 . This shows that the second sum is indeed equal to the first sum. As a
result,

Y3 = 2
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)Wjk
e⌦k`W`i

= 2
X

i,j,k,`(dist)

⌘i
⇣
� 1p

v

X

s 6=j

Wjs

⌘
Wjk

e⌦k`W`i

=� 2p
v

X

i,j,k,`(dist)
s 6=j

⌘ie⌦k`WjsWjkW`i

=� 2p
v

X

i,j,k,`(dist)

⌘ie⌦k`W
2
jk
W`i �

2p
v

X

i,j,k,`(dist)
s/2{j,k}

⌘ie⌦k`WjsWjkW`i

⌘ Y3a + Y3b,(88)

where the second line is from (77) and the second last line is from dividing all summands
into two cases of s= k and s 6= k. Both terms have mean zero, so

E[Y3] = 0.

Below, first, we calculate the variance of Y3a.

Var(Y3a) =
4

v

X

i,j,k,`(dist)
i
0
,j

0
,k

0
,`

0(dist)

(⌘ie⌦k`⌘i0 e⌦k0`0) ·E[W 2
jk
W`iW

2
j0k0W`0i0 ].

The summand is nonzero only if either the two variables W`i and W`0i0 are the same, or each
of the two variables W`i and W`0i0 equals to another squared W term. By (74), (81), and
elementary calculations,

(⌘ie⌦k`⌘i0 e⌦k0`0) ·E[W 2
jk
W`iW

2
j0k0W`0i0 ]

C↵2✓i✓k✓`✓i0✓k0✓`0 ·E[W 2
jk
W`iW

2
j0k0W`0i0 ]

=

8
>>>>>>>><

>>>>>>>>:

C↵2✓2
i
✓2
`
✓2
k
E[W 4

jk
W 2
`i
]C↵2✓3

i
✓j✓3k✓

3
`
, if {`0, i0}= {`, i}, (j0, k0) = (j, k);

C↵2✓2
i
✓2
`
✓k✓j E[W 4

jk
W 2
`i
]C↵2✓3

i
✓2
j
✓2
k
✓3
`
, if {`0, i0}= {`, i}, (j0, k0) = (k, j);

C↵2✓2
i
✓2
`
✓k✓k0 E[W 2

jk
W 2
`i
W 2

j0k0 ]C↵2✓3
i
✓j✓2k✓

3
`
✓j0✓2k0 , if {`0, i0}= {`, i}, {j0, k0} 6= {j, k};

C↵2✓2
i
✓`✓j✓2k E[W 3

jk
W 3
`i
]C↵2✓3

i
✓2
j
✓3
k
✓2
`
, if {`0, i0}= {j, k}, (j0, k0) = (`, i);

C↵2✓i✓2` ✓j✓
2
k
E[W 3

jk
W 3
`i
]C↵2✓2

i
✓2
j
✓3
k
✓3
`
, if {`0, i0}= {j, k}, (j0, k0) = (i, `);

0, otherwise.

There are only three different cases in the bounds. It follows that

Var(Y3a)
C↵2

k✓k21

⇣X

i,j,k,`

✓3i ✓j✓
3
k
✓3
`
+

X

i,j,k,`

✓3i ✓
2
j ✓

2
k
✓3
`
+

X

i,j,k,`,j0,k0

✓3i ✓j✓
2
k
✓3
`
✓j0✓

2
k0

⌘

 C↵2

k✓k21

�
k✓k1k✓k93 + k✓k4k✓k63 + k✓k4k✓k21k✓k63

�

 C↵2k✓k4k✓k63,(89)
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where in the last line we have used k✓k93  k✓k63(✓maxk✓k2) = o(k✓k2k✓k63) and k✓k1 �
✓�1
maxk✓k2 !1. Next, we calculate the variance of Y3b. We mimic the argument in (85) and

group summands according to the underlying path s-j-k and edge `-i in a complete graph. It
yields

Y3b =� 2p
v

X

length-3
path

X

edge not
in the path

�
⌘ie⌦k` + ⌘`e⌦ki + ⌘ie⌦s` + ⌘`e⌦si

�
WsjWjkW`i,

where
��⌘ie⌦k` + ⌘`e⌦ki + ⌘ie⌦s` + ⌘`e⌦si

��C↵(✓k + ✓s)✓i✓`.

It follows that

Var(Y3b)
C

v

X

i,j,k,`,s

↵2(✓k + ✓s)
2✓2i ✓

2
`
·Var(WsjWjkW`i)

 C↵2

k✓k21

X

i,j,k,`,s

(✓3i ✓
2
j ✓

3
k
✓3
`
✓s + ✓3i ✓

2
j ✓k✓

3
`
✓3s)

 C↵2k✓k2k✓k93
k✓k1

.(90)

Since k✓k93  k✓k63(✓maxk✓k1) = o(k✓k1k✓k63), so the right hand side of (90) is much smaller
than the right hand side of (89). Together, we have

Var(Y3)C↵2k✓k4k✓k63 = o(k✓k8).

This proves the claims of Y3.
Consider Y4. We plug in �ij = ⌘i(⌘j � ⌘̃j) + ⌘j(⌘i � ⌘̃i) and the expression (77). It gives

Y4 =
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)e⌦jk
e⌦k`W`i +

X

i,j,k,`(dist)

⌘j(⌘i � ⌘̃i)e⌦jk
e⌦k`W`i

=
X

i,j,k,`(dist)

⌘i
⇣
� 1p

v

X

s 6=j

Wjs

⌘
e⌦jk

e⌦k`W`i +
X

i,j,k,`(dist)

⌘j
⇣
� 1p

v

X

s 6=i

Wis

⌘
e⌦jk

e⌦k`W`i

=� 1p
v

X

i,j,`(dist)
s 6=j

⇣ X

k/2{i,j,`}

⌘ie⌦jk
e⌦k`

⌘
WjsW`i �

1p
v

X

i,`(dist)
s 6=i

⇣ X

j,k/2{i,`}

⌘j e⌦jk
e⌦k`

⌘
WisW`i

⌘ Y4a + Y4b.

First, we analyze Y4a. When (i, j, `) are distinct, WjsW`i has a mean zero. Therefore,

E[Y4a] = 0.

To calculate the variance, we rewrite

Y4a =� 1p
v

X

i,j,`(dist)
s 6=j

�ij`WjsW`i, where �ij` =
X

k/2{i,j,`}

⌘ie⌦jk
e⌦k`

By (74) and (81), |�ij`|  C
P

k
↵2✓i✓j✓2k✓`  C↵2k✓k2✓i✓j✓`. Also, for WjsW`i and

Wj0s0W`0i0 to be correlated, there are only two cases: (Wjs,W`i) = (Wj0s0 ,W`0i0) or
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(Wjs,W`i) = (W`0i0 ,Wj0s0). Mimicking the argument in (85) or (90), we can easily obtain
that

Var(Y4a)
C

v

X

i,j,`(dist)
s 6=j

�2
ij`

·Var(WjsW`i)

 C

k✓k21

X

i,j,`,s

(↵2k✓k2✓i✓j✓`)2 · ✓i✓j✓`✓s

 C↵4k✓k4k✓k93
k✓k1

.(91)

Next, we analyze Y4b. We re-write

Y4b =� 1p
v

X

i,`(dist)
s 6=i

�i`WisW`i, where �i` =
X

j,k/2{i,`}

⌘j e⌦jk
e⌦k`.

By separating the case of s= ` from the case of s 6= `, we have

Y4b =� 1p
v

X

i,`(dist)

�i`W
2
`i
� 1p

v

X

i,`(dist)
s/2{i,`}

�i`WisW`i ⌘ eY4b + Y ⇤
4b.

Only eY4b has a nonzero mean. By (74) and (81),

|�i`|C
X

j,k

↵2✓2j ✓
2
k
✓` C↵2k✓k4✓`.

It follows that

(92) |E[Y4b]|= |E[eY4b]|
C

k✓k1

X

i,`

(↵2k✓k4✓`)✓i✓` C↵2k✓k6.

We now bound the variances of eY4b and Y ⇤
4b. By direct calculations,

Var(eY4b) =
2

v

X

i,`(dist)

�2
i`
·Var(W 2

i`
) C

k✓k21

X

i,`

(↵2k✓k4✓`)2 · ✓i✓` 
C↵4k✓k8k✓k33

k✓k1
,

Var(Y ⇤
4b)

C

v

X

i,`(dist)
s/2{i,`}

�2
i`
·Var(WisW`i)

C

k✓k21

X

i,`,s

(↵2k✓k4✓`)2 · ✓2i ✓`✓s 
C↵4k✓k10k✓k33

k✓k1
.

Together, we have

(93) Var(Y4b) 2Var(eY4b) + 2Var(Y ⇤
4b)

C↵4k✓k10k✓k33
k✓k1

.

We combine the results of Y4a and Y4b. Since k✓k63  (✓maxk✓k2)2 = o(k✓k4), the right hand
side of (92) dominates the right hand side of (91). It follows that

|E[Y4]|C↵2k✓k6 = o(↵4k✓k8), Var(Y4)
C↵4k✓k10k✓k33

k✓k1
= o(↵6k✓k8k✓k63).

Here, we explain the equalities. The first one is due to ↵2k✓k2 !1. To get the second equal-
ity, we compare Var(Y4) with the order of ↵6k✓k8k✓k63. Note that k✓k10k✓k3

3

k✓k1
= k✓k6k✓k3

3

k✓k1
k✓k4 
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k✓k6k✓k3
3

k✓k1
k✓k1k✓k33  k✓k6k✓k63. It follows that Var(Y4)  C↵4k✓k6k✓k63 ⌧ C↵6k✓k8k✓k63,

where the last inequality is due to ↵2k✓k2 !1. So far, we have proved all claims about Y4.
Consider Y5. Recall that

Y5 =
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)e⌦jkWk`
e⌦`i +

X

i,j,k,`(dist)

(⌘i � ⌘̃i)⌘j e⌦jkWk`
e⌦`i.

With relabeling of (i, j, k, `) = (j0, i0, `0, k0), the second sum can be written as
P

i0,j0,k0,`0(dist)(⌘j0�
⌘̃j0)⌘i0 e⌦i0`0W`0k0 e⌦k0j0 . This suggests that it is actually equal to the first sum above. Hence,

Y5 = 2
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)e⌦jkWk`
e⌦`i

=
X

i,j,k,`(dist)

⌘i
⇣
� 2p

v

X

s 6=j

Wjs

⌘
e⌦jkWk`

e⌦`i

=� 2p
v

X

j,k,`(dist)
s 6=j

⇣ X

i/2{j,k,`}

⌘ie⌦jk
e⌦`i

⌘
WjsWk`

⌘� 2p
v

X

j,k,`(dist)
s 6=j

�jk`WjsWk`, where �jk` ⌘
X

i/2{j,k,`}

⌘ie⌦jk
e⌦`i.

It is easy to see that E[WjsWk`] = 0 when (j, k, `) are distinct. Hence,

E[Y5] = 0.

By (74) and (81), |�jk`| C
P

i
✓i · ↵2✓j✓k✓`✓i  C↵2k✓k2✓j✓k✓`. Similar to the argument

in (85) or (90), we can show that

Var(Y5)
C

v

X

j,k,`(dist)
s 6=j

�2
jk`

·Var(WjsWk`)

 C

k✓k21

X

j,k,`,s

(↵2k✓k2✓j✓k✓`)2✓j✓s✓k✓`

 C↵4k✓k4k✓k93
k✓k1

.

Since k✓k93 = (k✓k33)2k✓k33  (✓maxk✓k2)2(✓2maxk✓k1) = o(k✓k4k✓k1), the right hand side is
o(k✓k8). This proves the claims of Y5.

Consider Y6. By definition and elementary calculations,

Y6 =
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)e⌦jk
e⌦k`

e⌦`i +
X

i,j,k,`(dist)

⌘j(⌘i � ⌘̃i)e⌦jk
e⌦k`

e⌦`i

= 2
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)e⌦jk
e⌦k`

e⌦`i

= 2
X

i,j,k,`(dist)

⌘i
⇣
� 1p

v

X

s 6=j

Wjs

⌘
e⌦jk

e⌦k`
e⌦`i

=� 2p
v

X

j,s(dist)

⇣ X

i,k,`(dist)/2{j}

⌘ie⌦jk
e⌦k`

e⌦`i
⌘
Wjs.
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Here, to get the second line above, we relabeled (i, j, k, `) = (j0, i0, `0, k0) in the second sum
and found out the two sums are equal; the third line is from (77). We immediately see that

E[Y6] = 0.

By (74) and (81),
���

X

i,k,`(dist)/2{j}

⌘ie⌦jk
e⌦k`

e⌦`i
���

X

i,k,`

C✓i · ↵3✓j✓
2
k
✓2
`
✓i C↵3k✓k6✓j .

It follows that

Var(Y6) =
8

v

X

j,s(dist)

⇣ X

i,k,`(dist)/2{j}

⌘ie⌦jk
e⌦k`

e⌦`i
⌘2

·Var(Wjs)

 C

k✓k21

X

j,s

(↵3k✓k6✓j)2✓j✓s

 C↵6k✓k12k✓k33
k✓k1

.

Since k✓k4  k✓k1k✓k33, the variance is bounded by C↵6k✓k8k✓k63. This proves the claims of
Y6.

G.4.6. Proof of Lemma G.6. It suffices to prove the claims for each of Z1 and Z2; then,
the claims of Ub follow immediately.

We first analyze Z1. Plugging �ij = ⌘i(⌘j � ⌘̃j) + ⌘j(⌘i � ⌘̃i) into the definition of Z1

gives

Z1 =
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)⌘j(⌘k � ⌘̃k)Wk`W`i +
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)
2⌘kWk`W`i

+
X

i,j,k,`(dist)

(⌘i � ⌘̃i)⌘
2
j (⌘k � ⌘̃k)Wk`W`i +

X

i,j,k,`(dist)

(⌘i � ⌘̃i)⌘j(⌘j � ⌘̃j)⌘kWk`W`i.

In the last term above, if we relabel (i, j, k, `) = (k0, j0, i0, `0), it becomes
P

i0,j0,k0,`0(dist)(⌘k0�
⌘̃k0)⌘j0(⌘j0 � ⌘̃j0)⌘i0Wi0`0W`0k0 . This shows that the last sum equals to the first sum. Therefore,

Z1 =
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)
2⌘kWk`W`i

+2
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)⌘j(⌘k � ⌘̃k)Wk`W`i

+
X

i,j,k,`(dist)

(⌘̃i � ⌘i)⌘
2
j (⌘̃k � ⌘k)Wk`W`i

⌘ Z1a +Z1b +Z1c.(94)

Below, we compute the means and variances of Z1a-Z1c.
First, we study Z1a. When (i, j, k, `) are distinct, Wk`W`i has a mean zero and is indepen-

dent of (⌘̃j � ⌘j)2, so E[(⌘j � ⌘̃j)2Wk`W`i] = 0. It follows that

E[Z1a] = 0.

To bound the variance of Z1a, we use (77) to re-write

Z1a =
X

i,j,k,`(dist)

⌘i
⇣
� 1p

v

X

s 6=j

Wjs

⌘⇣
� 1p

v

X

t 6=j

Wjt

⌘
⌘kWk`W`i
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=
1

v

X

i,j,k,`(dist)
s,t/2{j}

⌘i⌘kWjsWjtWk`W`i

=
1

v

X

i,j,k,`(dist)
s/2{j}

⌘i⌘kW
2
jsWk`W`i +

1

v

X

i,j,k,`(dist)
s,t(dist)/2{j}

⌘i⌘kWjsWjtWk`W`i

⌘ eZ1a +Z⇤
1a.

We first bound the variance of eZ1a. It is seen that

Var( eZ1a) =
1

v2

X

i,j,k,`(dist),s/2{j}
i
0
,j

0
,k

0
,`

0(dist),s0 /2{j0}

⌘i⌘k⌘i0⌘k0 ·E[W 2
jsWk`W`i ·W 2

j0s0Wk0`0W`0i0 ].

The summand is nonzero only if `0 = ` and {k0, i0}= {k, i}. We also note that, if we switch
i0 and k0, the summand remains unchanged. So, it suffices to consider the case of `0 = ` and
(k0, i0) = (k, i). By (81) and elementary calculations,

⌘i⌘k⌘i0⌘k0 ·E[W 2
jsWk`W`i ·W 2

j0s0Wk0`0W`0i0 ]

=

8
><

>:

⌘2
i
⌘2
k
E[W 4

js
W 2

k`
W 2
`i
]C✓3

i
✓j✓3k✓

2
`
✓s, if (`0, k0, i0) = (`, k, i), {j0, s0}= {j, s};

⌘2
i
⌘2
k
E[W 2

js
W 2

k`
W 2
`i
W 2

j0s0 ]C✓3
i
✓j✓3k✓

2
`
✓s✓j0✓s0 , if (`0, k0, i0) = (`, k, i), {j0, s0} 6= {j, s};

0, otherwise.

It follows that

Var( eZ1a)
C

k✓k41

⇣ X

i,j,k,`,s

✓3i ✓j✓
3
k
✓2
`
✓s +

X

i,j,k,`,s,j0,s0

✓3i ✓j✓
3
k
✓2
`
✓s✓j0✓s0

⌘

 C

k✓k41

�
k✓k2k✓k63k✓k21 + k✓k2k✓k63k✓k41

�

Ck✓k2k✓k63.

We then bound the variance of Z⇤
1a. Note that

⌘i⌘k⌘i0⌘k0 ·E[WjsWjtWk`W`i ·Wj0s0Wj0t0Wk0`0W`0i0 ]

=

8
><

>:

⌘2
i
⌘2
k
E[W 2

js
W 2

jt
W 2

k`
W 2
`i
]C✓3

i
✓2
j
✓3
k
✓2
`
✓s✓t, if (j0, `0) = (j, `),{s0, t0}= {s, t},{k0, i0}= {k, i};

⌘i⌘k⌘s⌘tE[W 2
js
W 2

jt
W 2

k`
W 2
`i
]C✓2

i
✓2
j
✓2
k
✓2
`
✓2s✓

2
t , if (j0, `0) = (`, j),{s0, t0}= {k, i},{k0, i0}= {s, t};

0, otherwise.

It follows that

Var(Z⇤
1a)

C

k✓k41

⇣ X

i,j,k,`,s,t

✓3i ✓
2
j ✓

3
k
✓2
`
✓s✓t +

X

i,j,k,`,s,t

✓2i ✓
2
j ✓

2
k
✓2
`
✓2s✓

2
t

⌘

 C

k✓k41

�
k✓k4k✓k63k✓k21 + k✓k12

�

 Ck✓k4k✓k63
k✓k21

,

where the last inequality is because of k✓k12 = k✓k4(k✓k4)2  k✓k4(k✓k1k✓k33)2 = k✓k4k✓k63k✓k21.
Combining the above gives

(95) Var(Z1a) 2Var( eZ1a) + 2Var(Z⇤
1a)Ck✓k2k✓k63.
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Second, we study Z1b. Since (⌘j � ⌘̃j), (⌘k � ⌘̃k)Wk` and W`i are independent of each
other, each summand in Z1b has a zero mean. It follows that

E[Z1b] = 0.

We now compute its variance. By direct calculations,

Z1b = 2
X

i,j,k,`(dist)

⌘i
⇣
� 1p

v

X

s 6=j

Wjs

⌘
⌘j
⇣
� 1p

v

X

t 6=k

Wkt

⌘
Wk`W`i

=
2

v

X

i,j,k,`(dist)
s 6=j,t 6=k

⌘i⌘jWjsWktWk`W`i

=
2

v

X

i,j,k,`(dist)
s 6=j

⌘i⌘jWjsW
2
k`
W`i +

2

v

X

i,j,k,`(dist)
s 6=j,t/2{k,`}

⌘i⌘jWjsWktWk`W`i

⌘ eZ1b +Z⇤
1b.

We first bound the variance of eZ1b. Note that

Var( eZ1b) =
4

v

X

i,j,k,`(dist),s 6=j

i
0
,j

0
,k

0
,`

0(dist),s0 6=j
0

⌘i⌘j⌘i0⌘j0 ·E[WjsW
2
k`
W`i ·Wj0s0W

2
k0`0W`0i0 ].

For this summand to be nonzero, there are only two cases. In the first case, (Wjs,W`i) are
paired with (Wj0s0 ,W`0i0). It follows that

⌘i⌘j⌘i0⌘j0 ·E[WjsW
2
k`
W`iWj0s0W

2
k0`0W`0i0 ] = ⌘i⌘j⌘i0⌘j0 ·E[W 2

jsW
2
k`
W 2
`i
W 2

k0`0 ].

This happens only if (i) {j0, s0} = {j, s} and {`0, i0} = {`, i}, or (ii) {j0, s0} = {`, i} and
{`0, i0}= {j, s}. By (81) and elementary calculations,

⌘i⌘j⌘i0⌘j0 ·E[WjsW
2
k`
W`i ·Wj0s0W

2
k0`0W`0i0 ]

=

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

⌘2
i
⌘2
j
·E[W 2

js
W 2
`i
W 2

k`
W 2

k0`]C✓3
i
✓3
j
✓k✓3` ✓s✓k0 , if (j0, s0) = (j, s), (`0, i0) = (`, i);

⌘i⌘2j ⌘` ·E[W 2
js
W 2
`i
W 2

k`
W 2

k0i]C✓3
i
✓3
j
✓k✓3` ✓s✓k0 , if (j0, s0) = (j, s), (`0, i0) = (i, `);

⌘2
i
⌘j⌘s ·E[W 2

js
W 2
`i
W 2

k`
W 2

k0`]C✓3
i
✓2
j
✓k✓3` ✓

2
s✓k0 , if (j0, s0) = (s, j), (`0, i0) = (`, i);

⌘i⌘j⌘`⌘s ·E[W 2
js
W 2
`i
W 2

k`
W 2

k0i]C✓3
i
✓2
j
✓k✓3` ✓

2
s✓k0 , if (j0, s0) = (s, j), (`0, i0) = (i, `);

⌘i⌘j⌘`⌘s ·E[W 2
js
W 2
`i
W 2

k`
W 2

k0j ]C✓2
i
✓3
j
✓k✓3` ✓

2
s✓k0 , if (j0, s0) = (`, i), (`0, i0) = (j, s);

⌘i⌘2j ⌘` ·E[W 2
js
W 2
`i
W 2

k`
W 2

k0s]C✓2
i
✓3
j
✓k✓3` ✓

2
s✓k0 , if (j0, s0) = (`, i), (`0, i0) = (s, j);

⌘2
i
⌘j⌘s ·E[W 2

js
W 2
`i
W 2

k`
W 2

k0j ]C✓3
i
✓3
j
✓k✓2` ✓

2
s✓k0 , if (j0, s0) = (i, `), (`0, i0) = (j, s);

⌘2
i
⌘2
j
·E[W 2

js
W 2
`i
W 2

k`
W 2

k0s]C✓3
i
✓3
j
✓k✓2` ✓

2
s✓k0 , if (j0, s0) = (i, `), (`0, i0) = (s, j);

0, otherwise.

The upper bound on the right hand side only has two types C✓3
i
✓3
j
✓k✓3` ✓s✓k0 and C✓3

i
✓2
j
✓k✓3` ✓

2
s✓k0 .

The contribution of this case to Var( eZ1b) is

 C

v2

⇣ X

i,j,k,`,s,k0

✓3i ✓
3
j ✓k✓

3
`
✓s✓k0 +

X

i,j,k,`,s,k0

✓3i ✓
2
j ✓k✓

3
`
✓2s✓k0

⌘

 C

k✓k41

�
k✓k93k✓k31 + k✓k4k✓k63k✓k21

�
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 Ck✓k93
k✓k1

.

In the second case, {Wjs,Wk`,W`i} and {Wj0s0 ,Wk0`0 ,W`0i0} are two sets of same variables.
Then,

⌘i⌘j⌘i0⌘j0 ·E[WjsW
2
k`
W`iWj0s0W

2
k0`0W`0i0 ] = ⌘i⌘j⌘i0⌘j0 ·E[W 3

jsW
3
k`
W 3
`i
].

This can only happen if `0 = `, {i0, k0}= {i, k}, and {j0, s0}= {j, s}. By (81) and elementary
calculations,

⌘i⌘j⌘i0⌘j0 ·E[WjsW
2
k`
W`i ·Wj0s0W

2
k0`0W`0i0 ]

=

8
>>>>>><

>>>>>>:

⌘2
i
⌘2
j
·E[W 3

js
W 3
`i
W 3

k`
]C✓3

i
✓3
j
✓k✓2` ✓s, if `0 = `, (i0, k0) = (i, k), (j0, s0) = (j, s);

⌘2
i
⌘j⌘s ·E[W 3

js
W 3
`i
W 3

k`
]C✓3

i
✓2
j
✓k✓2` ✓

2
s , if `0 = `, (i0, k0) = (i, k), (j0, s0) = (s, j);

⌘i⌘k⌘2j ·E[W 3
js
W 3
`i
W 3

k`
]C✓2

i
✓3
j
✓2
k
✓2
`
✓s, if `0 = `, (i0, k0) = (k, i), (j0, s0) = (j, s);

⌘i⌘k⌘j⌘s ·E[W 3
js
W 3
`i
W 3

k`
]C✓2

i
✓2
j
✓2
k
✓2
`
✓2s , if `0 = `, (i0, k0) = (i, k), (j0, s0) = (s, j);

0, otherwise.

The upper bound on the right hand side has three types, and the contribution of this case to
Var( eZ1b) is

 C

v2

⇣ X

i,j,k,`,s

✓3i ✓
3
j ✓k✓

2
`
✓s +

X

i,j,k,`,s

✓3i ✓
2
j ✓k✓

2
`
✓2s +

X

i,j,k,`,s

✓2i ✓
2
j ✓

2
k
✓2
`
✓2s

⌘

 C

k✓k41

�
k✓k2k✓k63k✓k21 + k✓k6k✓k33k✓k1 + k✓k10

�

 Ck✓k2k✓k63
k✓k21

,

where we use k✓k4  k✓k1k✓k33 (Cauchy-Schwarz) in the last line. It is seen that the contri-
bution of the first case is dominating, and so

Var( eZ1b)
Ck✓k93
k✓k1

.

We then bound the variance of Z⇤
1b. Note that

Var(Z⇤
1b) =

4

v2

X

i,j,k,`(dist),s 6=j,t/2{k,`}
i
0
,j

0
,k

0
,`

0(dist),s0 6=j
0
,t

0
/2{k0

,`
0}

⌘i⌘j⌘i0⌘j0 ·E[WjsWktWk`W`i ·Wj0s0Wk0t0Wk0`0W`0i0 ].

For the summand to be nonzero, all W terms have to be perfectly matched, so that the expec-
tation in the summand becomes

E[WjsWktWk`W`i ·Wj0s0Wk0t0Wk0`0W`0i0 ] = E[W 2
jsW

2
kt
W 2

k`
W 2
`i
]C✓i✓j✓

2
k
✓2
`
✓s✓t.

For this perfect match to happen, we need (t0, k0, `0, i0) = (t, k, `, i) or (t0, k0, `0, i0) =
(i, `, k, t), as well as {j0, s0} = {j, s}. This implies that, i0 can only take values in {i, t}
and j0 can only take values in {j, s}. It follows that ⌘i⌘j⌘i0⌘j0 belongs to one of the following
cases:

⌘i⌘j(⌘i⌘j)C✓2i ✓
2
j , ⌘i⌘j(⌘i⌘s) =C✓2i ✓j✓s,

⌘i⌘j(⌘t⌘j)C✓i✓
2
j ✓t, ⌘i⌘j(⌘t⌘s)C✓i✓j✓t✓s.
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Combining the above gives

Var(Z⇤
1b)

C

v2

X

i,j,k,`,s,t

(✓2i ✓
2
j + ✓2i ✓j✓s + ✓i✓

2
j ✓t + ✓i✓j✓t✓s) · ✓i✓j✓2k✓2` ✓s✓t

 C

k✓k41

�
k✓k4k✓k63k✓k21 + 2k✓k8k✓k33k✓k1 + k✓k12

�

 Ck✓k4k✓k63
k✓k21

.

We combine the variances of eZ1b and Z⇤
1b. Since k✓k4  k✓k1k✓k33, the variance of eZ1b dom-

inates. It follows that

(96) Var(Z1b) 2Var( eZ1b) + 2Var(Z⇤
1b)

Ck✓k93
k✓k1

.

Third, we study Z1c. It is seen that

Z1c =
X

i,j,k,`(dist)

⇣
� 1p

v

X

s 6=i

Wis

⌘
⌘2j

⇣
� 1p

v

X

t 6=k

Wkt

⌘
Wk`W`i

=
1

v

X

i,k,`(dist)
s 6=i,t 6=k

⇣ X

j /2{i,k,`}

⌘2j

⌘
WisWktWk`W`i

⌘ 1

v

X

i,k,`(dist)
s 6=i,t 6=k

�ik`WisWktWk`W`i,

where

(97) �ik` ⌘
X

j /2{i,k,`}

⌘2j C
X

j

✓2j Ck✓k2.

We divide all summands into four groups: (i) s= t= `; (ii) s= `, t 6= `; (iii) s 6= `, t= `; (iv)
s 6= `, t 6= `. It yields that

Z1c =
1

v

X

i,k,`(dist)

�ik`W
2
k`
W 2
`i
+

1

v

X

i,k,`(dist)
t 6={k,`}

�ik`WktWk`W
2
`i

+
1

v

X

i,k,`(dist)
s/2{i,`}

�ik`WisW
2
k`
W`i +

1

v

X

i,k,`(dist)
s/2{i,`},t/2{k,`}

�ik`WisWktWk`W`i.

In the third sum, if we relabel (i, k, `, s) = (k0, i0, `0, t0), it has the form
P

i0,k0,`0(dist),t0 /2{k0,`0} �k0i0`0Wk0t0W 2
i0`0W`0k0 .

This shows that this sum equals to the second sum. We thus have

Z1c =
1

v

X

i,k,`(dist)

�ik`W
2
k`
W 2
`i
+

2

v

X

i,k,`(dist)
t 6={k,`}

�ik`WktWk`W
2
`i

+
1

v

X

i,k,`(dist)
s/2{i,`},t/2{k,`}

�ik`WisWktWk`W`i

⌘ eZ1c +Z⇤
1c +Z†

1c.
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Among all three terms, only eZ1c has a nonzero mean. It follows that

E[Z1c] = E[ eZ1c] =
1

v

X

i,k,`(dist)

�ik`⌦k`(1�⌦k`)⌦`i(1�⌦`i)

=
1

v

X

i,k,`(dist)

�ik`⌦k`⌦`i[1 +O(✓2max)].

Under the null hypothesis, ⌦ij = ✓i✓j . It follows that ⌘j =
✓jp
v

P
i:i 6=j

✓i = [1 + o(1)] ✓jk✓k1p
v

and that �ik` =
P

j /2{i,k,`} ⌘
2
j
= [1 + o(1)]k✓k

2
1

v

P
j /2{i,k,`} ✓

2
j
= [1 + o(1)]k✓k

2
1k✓k2

v
. Addition-

ally, v =
P

i 6=j
✓i✓j = k✓k21 · [1 + o(1)]. As a result,

E[Z1c] =
1

v

X

i,k,`(dist)

[1 + o(1)]
k✓k21k✓k2

v
· ✓k✓2` ✓i

= [1 + o(1)] · k✓k
2
1k✓k2

v2

X

i,k,`(dist)

✓k✓
2
`
✓i

= [1 + o(1)] · k✓k
2
1k✓k2

k✓k41

⇥
k✓k21k✓k2 �O(k✓k4 + k✓k1k✓k33)

⇤

= [1 + o(1)] · k✓k4,(98)

where in the last line we have used k✓k2 = o(k✓k1), k✓k33 = o(k✓k1) and k✓k1 !1. We then
bound the variance of Z1c by studying the variance of each of the three variables, eZ1c, Z⇤

1c

and Z†
1c. Consider eZ1c first. For W 2

k`
W 2
`i

and W 2
k0`0W

2
`0i0 to be correlated, it has to be the case

of either {k0, `0}= {k, `} or {i0, `0}= {i, `}. By symmetry between k and i in the expression,
it suffices to consider {k0, `0}= {k, `}. Direct calculations show that

Cov(W 2
k`
W 2
`i
, W 2

k0`0W
2
`0i0)

8
>>>>>><

>>>>>>:

E[W 4
k`
W 4
`i
]C✓k✓2` ✓i, if (k0, `0) = (k, `), i0 = i;

E[W 4
k`
W 2
`i
W 2
`i0 ]C✓k✓3` ✓i✓i0 , if (k0, `0) = (k, `), i0 6= i;

E[W 4
k`
W 2
`i
W 2

ki
]C✓2

k
✓2
`
✓2
i
, if (k0, `0) = (`, k), i0 = i;

E[W 4
k`
W 2
`i
W 2

ki0 ]C✓2
k
✓2
`
✓i✓i0 , if (k0, `0) = (`, k), i0 6= i;

0, otherwise.

Combining it with (97) and the fact of v �C�1k✓k21, we have

Var( eZ1c)
Ck✓k4

k✓k41

⇣X

i,k,`

✓k✓
2
`
✓i +

X

i,k,`,i0

✓k✓
3
`
✓i✓i0 +

X

i,k,`

✓2
k
✓2
`
✓2i +

X

i,k,`,i0

✓2
k
✓2
`
✓i✓i0

⌘

 Ck✓k4

k✓k41

�
k✓k2k✓k21 + k✓k33k✓k31 + k✓k6 + k✓k4k✓k21

�

 Ck✓k4k✓k33
k✓k1

.

Consider Z⇤
1c. By direct calculations,

E[WktWk`W
2
`i
Wk0t0Wk0`0W

2
`0i0 ]
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=

8
>>>>>><

>>>>>>:

E[W 2
kt
W 2

k`
W 4
`i
]C✓i✓2k✓

2
`
✓t, if (k0, t0, `0) = (k, t, `), i= i0;

E[W 2
kt
W 2

k`
W 2
`i
W 2
`i0 ]C✓i✓2k✓

3
`
✓t✓i0 , if (k0, t0, `0) = (k, t, `), i 6= i0;

E[W 2
kt
W 2

k`
W 2
`i
W 2

ti0 ]C✓i✓2k✓
2
`
✓2t ✓i0 , if (k0, t0, `0) = (k, `, t);

E[W 3
kt
W 2

k`
W 3
`i
]C✓i✓2k✓

2
`
✓t, if (k0, t0, `0, i0) = (`, i, k, t);

0, otherwise.

We combine it with (97) and find that

Var(Z⇤
1c) =

4

v2

X

i,k,`(dist),t 6={k,`}
i
0
,k

0
,`

0(dist),t0 6={k0
,`

0}

�ik`�i0k0`0 ·E[WktWk`W
2
`i
Wk0t0Wk0`0W

2
`0i0 ]

 Ck✓k4

k✓k41

⇣X

i,k,`,t

✓i✓
2
k
✓2
`
✓t +

X

i,k,`,t,i0

✓i✓
2
k
✓3
`
✓t✓i0 +

X

i,k,`,t,i0

✓i✓
2
k
✓2
`
✓2t ✓i0

⌘

 Ck✓k4

k✓k41

�
k✓k4k✓k21 + k✓k2k✓k33k✓k31 + k✓k6k✓k21

�

 Ck✓k6k✓k33
k✓k1

.

Consider Z†
1c. Re-write

Z†
1c =

1

v

X

i,k,`(dist)

�ik`W
2
ik
Wk`W`i +

1

v

X

i,k,`(dist)
s/2{i,`},t/2{k,`}

(s,t) 6=(k,i)

�ik`WisWktWk`W`i.

Regarding the first term, by direct calculations,

E[W 2
ik
Wk`W`i ·W 2

i0k0Wk0`0W`0i0 ]

=

8
><

>:

E[W 4
ik
W 2

k`
W 2
`i
]C✓2

i
✓2
k
✓2
`
, if `0 = `, {i0, k0}= {i, k};

E[W 3
ik
W 2

k`
W 3
`i
]C✓2

i
✓2
k
✓2
`
, if (`0, k0) = (k, `), i0 = i;

0, otherwise.

Combining it with (97) gives

Var
⇣1
v

X

i,k,`(dist)

�ik`W
2
ik
Wk`W`i

⌘
 Ck✓k4

k✓k41

X

i,j,k,`

✓2i ✓
2
k
✓2
`
 Ck✓k10

k✓k41
.

Regarding the second term, for WisWktWk`W`i and Wi0s0Wk0t0Wk0`0W`0i0 to be correlated,
all W terms have to be perfectly matched. For each fixed (i, k, `, s, t), there are only a con-
stant number of (i0, k0, `0, s0, t0) so that the above is satisfied. Mimicking the argument in (70),
we have

Var
⇣1
v

X

i,k,`(dist)
s/2{i,`},t/2{k,`}

(s,t) 6=(k,i)

�ik`WisWktWk`W`i

⌘
 C

v2

X

i,k,`(dist)
s/2{i,`},t/2{k,`}

(s,t) 6=(k,i)

�2
ik`

·Var(WisWktWk`W`i)

 C

k✓k41

X

i,k,`,s,t

k✓k4 · ✓2i ✓2k✓2` ✓s✓t 
Ck✓k10

k✓k21
.
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It follows that

Var(Z†
1c)

Ck✓k10

k✓k21
.

Combining the above results and noticing that k✓k4  k✓k1k✓k33, we immediately have

(99) Var(Z1c) 3Var( eZ1c) + 3Var(Z⇤
1c) + 3Var(Z†

1c)
Ck✓k6k✓k33

k✓k1
.

We now combine (95), (96), (98), and (99). Since Z1 = Z1a +Z1b +Z1c, it follows that

E[Z1] = k✓k4 · [1 + o(1)], Var(Z1)Ck✓k2k✓k63 = o(k✓k8).
This proves the claims of Z1.

Next, we analyze Z2. Since �ij = ⌘i(⌘j � ⌘̃j) + ⌘j(⌘i � ⌘̃i), by direct calculations,

Z2 =
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)Wjk⌘k(⌘` � ⌘̃`)W`i +
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)Wjk(⌘k � ⌘̃k)⌘`W`i

+
X

i,j,k,`(dist)

(⌘i � ⌘̃i)⌘jWjk⌘k(⌘` � ⌘̃`)W`i +
X

i,j,k,`(dist)

(⌘i � ⌘̃i)⌘jWjk(⌘k � ⌘̃k)⌘`W`i.

By relabeling the indices, we find out that the first and last sums are equal and that the second
and third sums are equal. It follows that

Z2 = 2
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)Wjk⌘k(⌘` � ⌘̃`)W`i

+2
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)Wjk(⌘k � ⌘̃k)⌘`W`i

⌘ Z2a +Z2b.(100)

First, we study Z2a. It is seen that

Z2a = 2
X

i,j,k,`(dist)

⌘i
⇣
� 1p

v

X

s 6=j

Wjs

⌘
Wjk⌘k

⇣
� 1p

v

X

t 6=`
W`t

⌘
W`i

=
2

v

X

i,j,k,`(dist)
s 6=j,t 6=`

⌘i⌘kWjsWjkW`tW`i.

We divide summands into four groups: (i) s= k and t= i, (ii) s= k and t 6= i, (iii) s 6= k and
t= i, (iv) s 6= k and t 6= i. By symmetry between (j, k, s) and (`, i, t), the sum of group (ii)
and group (iii) are equal. We end up with

Z2a =
2

v

X

i,j,k,`(dist)

⌘i⌘kW
2
jk
W 2
`i
+

4

v

X

i,j,k,`(dist)
s/2{j,k}

⌘i⌘kWjsWjkW
2
`i

+
2

v

X

i,j,k,`(dist)
s/2{j,k},t/2{`,i}

⌘i⌘kWjsWjkW`tW`i

⌘ eZ2a +Z⇤
2a +Z†

2a,

Only eZ2a has a nonzero mean. It follows that

E[Z2a] = E[ eZ2a] =
2

v

X

i,j,k,`(dist)

⌘i⌘k⌦jk(1�⌦jk)⌦`i(1�⌦`i).
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Under the null hypothesis, ⌦ij = ✓i✓j . Hence, ⌦jk(1� ⌦jk)⌦`i(1� ⌦`i) = ✓j✓k✓`✓i · [1 +
O(✓2max)]. Additionally, in the proof of (98), we have seen that v = [1 + o(1)] · k✓k21 and
⌘j = [1 + o(1)] · ✓j . Combining these results gives

E[Z2a] =
2[1 + o(1)]

k✓k21

X

i,j,k,`(dist)

(✓i✓k)(✓j✓k✓`✓i)

=
2[1 + o(1)]

k✓k21

hX

i,j,k,`

✓2i ✓j✓
2
k
✓` �

X

i,j,k,`

(not dist)

✓2i ✓j✓
2
k
✓`
i

=
2[1 + o(1)]

k✓k21

h
k✓k4k✓k21 �O

�
k✓k44k✓k21 + k✓k33k✓k2k✓k1 + k✓k6

�i

=
2[1 + o(1)]

k✓k21
· k✓k4k✓k21[1 + o(1)]

= [1 + o(1)] · 2k✓k4.(101)

We then bound the variance of Za. Consider eZ2a first. Note that W 2
jk
W 2
`i

and W 2
j0k0W 2

`0i0

are correlated only if either {j0, k0}= {j, k} or {j0, k0}= {`, i}. By symmetry, it suffices to
consider {j0, k0}= {j, k}. Direct calculations show that

Cov(⌘i⌘kW
2
jk
W 2
`i
, ⌘i0⌘k0W 2

j0k0W 2
`0i0)



8
>>>>>>>>>><

>>>>>>>>>>:

⌘2
k
⌘2
i
E[W 4

jk
W 4
`i
]C✓3

i
✓j✓3k✓`, if (j0, k0) = (j, k), i= i0, `= `0;

⌘2
k
⌘2
i
E[W 4

jk
W 2
`i
W 2
`0i]C✓4

i
✓j✓3k✓`✓`0 , if (j0, k0) = (j, k), i= i0, ` 6= `0;

⌘2
k
⌘i⌘i0E[W 4

jk
W 2
`i
W 2
`0i0 ]C✓2

i
✓j✓3k✓`✓

2
i0✓`0 , if (j0, k0) = (j, k), i 6= i0;

⌘j⌘k⌘2i E[W 4
jk
W 4
`i
]C✓3

i
✓2
j
✓2
k
✓`, if (j0, k0) = (k, j), i= i0, `= `0;

⌘j⌘k⌘2i E[W 4
jk
W 2
`i
W 2
`0i]C✓4

i
✓2
j
✓2
k
✓`✓`0 , if (j0, k0) = (k, j), i= i0, ` 6= `0;

⌘j⌘k⌘i⌘i0E[W 4
jk
W 2
`i
W 2
`0i0 ]C✓2

i
✓2
j
✓2
k
✓`✓2i0✓`0 , if (j0, k0) = (k, j), i 6= i0;

0, otherwise.

As a result,

Var( eZ2a) =
4

v2

X

i,j,k,`(dist)
i
0
,j

0
,k

0
,`

0(dist)

Cov(⌘i⌘kW
2
jk
W 2
`i
, ⌘i0⌘k0W 2

j0k0W 2
`0i0)

 C

k✓k41

�
k✓k63k✓k21 + k✓k44k✓k33k✓k31 + k✓k33k✓k4k✓k31

+ k✓k33k✓k4k✓k1 + k✓k44k✓k4k✓k21 + k✓k8k✓k21
�

 Ck✓k4k✓k33
k✓k1

,

where the last line is obtained as follows: There are six terms in the brackets; since
k✓k4  k✓k1k✓k33, the last three terms are dominated by the first three terms; for the first
three terms, since k✓k33  ✓2maxk✓k1 = o(k✓k1) and k✓k44  ✓2maxk✓k2 = o(k✓k2), the third
term dominates. Consider Z⇤

2a next. We note that for

E[WjsWjkW
2
`i
·Wj0s0Wj0k0W 2

`0i0 ]

to be nonzero, it has to be the case of either (Wj0s0 ,Wj0k0) = (Wjs,Wjk) or (Wj0s0 ,Wj0k0) =
(Wjk,Wjs). This can only happen if (j0, s0, k0) = (j, s, k) or (j0, s0, k0) = (j, k, s). By ele-
mentary calculations,

⌘i⌘k⌘i0⌘k0 ·E[WjsWjkW
2
`i
·Wj0s0Wj0k0W 2

`0i0 ]
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=

8
>>>>>>>>>><

>>>>>>>>>>:

⌘2
i
⌘2
k
E[W 2

js
W 2

jk
W 4
`i
]C✓3

i
✓2
j
✓3
k
✓`✓s, if (j0, s0, k0) = (j, s, k), i0 = i, `0 = `;

⌘2
i
⌘2
k
E[W 2

js
W 2

jk
W 2
`i
W 2
`0i]C✓4

i
✓2
j
✓3
k
✓`✓s✓`0 , if (j0, s0, k0) = (j, s, k), i0 = i, `0 6= `;

⌘i⌘i0⌘2k E[W 2
js
W 2

jk
W 2
`i
W 2
`0i0 ]C✓2

i
✓2
j
✓3
k
✓`✓s✓2i0✓`0 , if (j0, s0, k0) = (j, s, k), i 6= i0;

⌘2
i
⌘k⌘sE[W 2

js
W 2

jk
W 4
`i
]C✓3

i
✓2
j
✓2
k
✓`✓2s , if (j0, s0, k0) = (j, k, s), i0 = i, `0 = `;

⌘2
i
⌘k⌘sE[W 2

js
W 2

jk
W 2
`i
W 2
`0i]C✓4

i
✓2
j
✓2
k
✓`✓2s✓`0 , if (j0, s0, k0) = (j, k, s), i0 = i, `0 6= `;

⌘i⌘i0⌘k⌘sE[W 2
js
W 2

jk
W 2
`i
W 2
`0i0 ]C✓2

i
✓2
j
✓2
k
✓`✓2s✓

2
i0✓`0 , if (j0, s0, k0) = (j, k, s), i 6= i0;

0, otherwise.

It follows that

Var(Z⇤
2a) =

16

v2

X

i,j,k,`(dist)
i
0
,j

0
,k

0
,`

0(dist)

⌘i⌘k⌘i0⌘k0 ·E[WjsWjkW
2
`i
·Wj0s0Wj0k0W 2

`0i0 ]

 C

k✓k41

�
k✓k63k✓k2k✓k21 + k✓k44k✓k33k✓k2k✓k31 + k✓k33k✓k6k✓k31

+ k✓k33k✓k6k✓k1 + k✓k44k✓k6k✓k21 + k✓k10k✓k21
�

 Ck✓k6k✓k33
k✓k1

,

where the last inequality is obtained similarly as in the calculation of Var( eZ2a). Last, con-
sider Z†

2a. Write

(102) Z†
2a =

2

v

X

i,j,k,`(dist)

⌘i⌘kW
2
j`
WjkW`i +

2

v

X

i,j,k,`(dist)
s/2{j,k},t/2{`,i}

(s,t) 6=(`,j)

⌘i⌘kWjsWjkW`tW`i

Regarding the first term, we note that

⌘i⌘k⌘i0⌘k0 ·E[W 2
j`
WjkW`i ·W 2

j0`0Wj0k0W`0i0 ]

=

8
>>>>>><

>>>>>>:

⌘2
i
⌘2
k
E[W 2

jk
W 2
`i
W 4

j`
]C✓3

i
✓2
j
✓3
k
✓2
`
, if (j0, k0) = (j, k), (i0, `0) = (i, `);

⌘i⌘2k⌘`E[W 2
jk
W 2
`i
W 2

j`
W 2

ji
]C✓3

i
✓3
j
✓3
k
✓3
`
, if (j0, k0) = (j, k), (i0, `0) = (`, i);

⌘2
i
⌘k⌘`E[W 2

jk
W 2
`i
W 2

j`
W 2

k`
]C✓3

i
✓2
j
✓3
k
✓4
`
, if (j0, k0) = (k, j), (i0, `0) = (i, `);

⌘i⌘k⌘`⌘j E[W 2
jk
W 2
`i
W 2

j`
W 2

ki
]C✓3

i
✓3
j
✓3
k
✓3
`
, if (j0, k0) = (k, j), (i0, `0) = (`, i);

0, otherwise.

It follows that

Var
⇣2
v

X

i,j,k,`(dist)

⌘i⌘kW
2
j`
WjkW`i

⌘

 C

k✓k41

X

i,j,k,`

(✓3i ✓
2
j ✓

3
k
✓2
`
+ ✓3i ✓

3
j ✓

3
k
✓3
`
+ ✓3i ✓

2
j ✓

3
k
✓4
`
)

 C

k✓k41

�
k✓k63k✓k4 + k✓k123 + k✓k44k✓k63k✓k2

�

Ck✓k63k✓k4

k✓k41
.
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Regarding the second term in (102). We note that, for ⌘i⌘kWjsWjkW`tW`i and ⌘i0⌘k0Wj0s0Wj0k0W`0t0W`0i0

to be correlated, all the W terms have to be perfectly paired. It turns out that

E[WjsWjkW`tW`i ·Wj0s0Wj0k0W`0t0W`0i0 ] = E[W 2
jsW

2
jk
W 2
`t
W 2
`i
].

To perfectly pair the W terms, there are two possible cases: (i) (j0, `0) = (j, `), {s0, k0} =
{s, k}, {`0, i0} = {`, i}. (ii) (j0, `0) = (`, j), {s0, k0} = {`, i}, {`0, i0} = {s, k}. As a result,
⌘i⌘k⌘i0⌘k0 only has the following possibilities:

⌘i⌘k(⌘i⌘k) = ⌘2
i
⌘2
k
, ⌘i⌘k(⌘i⌘s) = ⌘2

i
⌘k⌘s, ⌘i⌘k(⌘`⌘k) = ⌘i⌘2k⌘`, ⌘i⌘k(⌘`⌘s) = ⌘i⌘k⌘`⌘s,

⌘i⌘k(⌘k⌘i) = ⌘2
i
⌘2
k
, ⌘i⌘k(⌘k⌘`) = ⌘i⌘2k⌘`, ⌘i⌘k(⌘s⌘i) = ⌘2

i
⌘k⌘s, ⌘i⌘k(⌘s⌘`) = ⌘i⌘k⌘`⌘s.

By symmetry, there are only three different types: ⌘2
i
⌘2
k
, ⌘2

i
⌘k⌘s, and ⌘i⌘k⌘`⌘s. It follows that

Var
⇣2
v

X

i,j,k,`(dist)
s/2{j,k},t/2{`,i},(s,t) 6=(`,j)

⌘i⌘kWjsWjkW`tW`i

⌘

 C

k✓k41

X

i,j,k,`,s,t

(✓2i ✓
2
k
+ ✓2i ✓k✓s + ✓i✓k✓`✓s) · ✓2j ✓s✓k✓2` ✓t✓i

 C

k✓k41

X

i,j,k,`,s,t

(✓3i ✓
2
j ✓

3
k
✓2
`
✓s✓t + ✓3i ✓

2
j ✓

2
k
✓2
`
✓2s✓t + ✓2i ✓

2
j ✓

2
k
✓3
`
✓2s✓t)

 C

k✓k41

�
k✓k63k✓k4k✓k21 + k✓k33k✓k8k✓k1

�
 Ck✓k4k✓k63

k✓k21
.

It follows that

Var(Z†
2a)

Ck✓k4k✓k63
k✓k21

.

Comparing the variances of eZ2a, Z⇤
2a and Z†

2a, we find out that the variance of Z⇤
2a dominates.

As a result,

(103) Var(Z2a) 3Var( eZ2a) + 3Var(Z⇤
2a) + 3Var(Z†

2a)
Ck✓k6k✓k33

k✓k1
.

Second, we study Z2b. It is seen that

Z2b = 2
X

i,j,k,`(dist)

⌘i
⇣
� 1p

v

X

s 6=j

Wjs

⌘
Wjk

⇣
� 1p

v

X

t 6=k

Wkt

⌘
⌘`W`i

=
2

v

X

i,j,k,`(dist)
s 6=j,t 6=k

⌘i⌘`WjsWjkWktW`i.

We divide summands into four groups: (i) s = k and t = j, (ii) s = k and t 6= j, (iii) s 6= k
and t= j, (iv) s 6= k and t 6= j. By index symmetry, the sums of group (ii) and group (iii) are
equal. We end up with

Z2b =
2

v

X

i,j,k,`(dist)

⌘i⌘`W
3
jk
W`i +

4

v

X

i,j,k,`(dist),t/2{k,j}

⌘i⌘`W
2
jk
WktW`i

+
2

v

X

i,j,k,`(dist),s 6={j,k},t 6={j,k}

⌘i⌘`WjsWjkWktW`i

⌘ eZ2b +Z⇤
2b +Z†

2b.
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It is easy to see that all three terms have mean zero. Therefore,

(104) E[Z2b] = 0.

We then bound the variances. Consider eZ2b first. By direct calculations,

⌘i⌘`⌘i0⌘`0 ·E[W 3
jk
W`i ·W 3

j0k0W`0i0 ]

=

8
><

>:

⌘2
i
⌘2
`
·E[W 6

jk
W 2
`i
]C✓3

i
✓j✓k✓3` , if {j0, k0}= {j, k}, {`0, i0}= {`, i};

⌘i⌘`⌘j⌘k ·E[W 4
jk
W 4
`i
]C✓2

i
✓2
j
✓2
k
✓2
`
, if {j0, k0}= {`, i}, {`0, i0}= {j, k};

0, otherwise.

It follows that

Var( eZ2b)
C

k✓k41

⇣X

i,j,k,`

✓3i ✓j✓k✓
3
`
+

X

i,j,k,`

✓2i ✓
2
j ✓

2
k
✓2
`

⌘

 C

k✓k41

�
k✓k63k✓k21 + k✓k8

�

 Ck✓k63
k✓k21

.

Consider Z⇤
2b next. By direct calculations,

⌘i⌘`⌘i0⌘`0 ·E[W 2
jk
WktW`i ·W 2

j0k0Wk0t0W`0i0 ]

=

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

⌘2
i
⌘2
`
E[W 4

jk
W 2

kt
W 2
`i
]C✓3

i
✓j✓2k✓

3
`
✓t, if (k0, t0) = (k, t), {`0, i0}= {`, i}, j0 = j;

⌘2
i
⌘2
`
E[W 2

jk
W 2

kt
W 2
`i
W 2

j0k]C✓3
i
✓j✓3k✓

3
`
✓t✓j0 , if (k0, t0) = (k, t), {`0, i0}= {`, i}, j0 6= j;

⌘2
i
⌘2
`
E[W 2

jk
W 2

kt
W 2
`i
W 2

j0t]C✓3
i
✓j✓2k✓

3
`
✓2t ✓j0 , if (k0, t0) = (t, k), {`0, i0}= {`, i};

⌘i⌘`⌘k⌘tE[W 2
jk
W 2

kt
W 4
`i
]C✓2

i
✓j✓3k✓

2
`
✓2t , if (k0, t0) = (`, i), {`0, i0}= {k, t}, j0 = i;

⌘i⌘`⌘k⌘tE[W 2
jk
W 2

kt
W 2
`i
W 2

j0`]C✓2
i
✓j✓3k✓

3
`
✓2t ✓j0 , if (k0, t0) = (`, i), {`0, i0}= {k, t}, j0 6= i;

⌘i⌘`⌘k⌘tE[W 2
jk
W 2

kt
W 4
`i
]C✓2

i
✓j✓3k✓

2
`
✓2t , if (k0, t0) = (i, `), {`0, i0}= {k, t}, j0 = `;

⌘i⌘`⌘k⌘tE[W 2
jk
W 2

kt
W 2
`i
W 2

j0i]C✓3
i
✓j✓3k✓

2
`
✓2t ✓j0 , if (k0, t0) = (i, `), {`0, i0}= {k, t}, j0 6= `;

⌘2
i
⌘2
`
E[W 3

jk
W 3

kt
W 2
`i
]C✓3

i
✓j✓2k✓

3
`
✓t, if (k0, t0, j0) = (k, j, t), {i0, `0}= {i, `};

0, otherwise.

There are only two four types on the right hand side. It follows that

Var(Z⇤
2b)

C

k✓k41

⇣ X

i,j,k,`,t,j0

✓3i ✓j✓
3
k
✓3
`
✓t✓j0 +

X

i,j,k,`,t,j0

✓3i ✓j✓
2
k
✓3
`
✓2t ✓j0

+
X

i,j,k,`,t

✓3i ✓j✓
2
k
✓3
`
✓t +

X

i,j,k,`,t

✓2i ✓j✓
3
k
✓2
`
✓2t

⌘

 C

k✓k41

�
k✓k93k✓k31 + k✓k63k✓k4k✓k21 + k✓k63k✓k2k✓k21 + k✓k33k✓k6k✓k1

�

 Ck✓k93
k✓k1

.

Last, consider Z†
2b. By direct calculations,

⌘i⌘`⌘i0⌘`0 ·E[WjsWjkWktW`i ·Wj0s0Wj0k0Wk0t0W`0i0 ]
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=

8
><

>:

⌘2
i
⌘2
`
E[W 2

js
W 2

jk
W 2

kt
W 2
`i
]C✓3

i
✓2
j
✓2
k
✓3
`
✓s✓t, if (j0, s0) = (j, s), (k0, t0) = (k, t), {`0, i0}= {`, i};

⌘2
i
⌘2
`
E[W 2

js
W 2

jk
W 2

kt
W 2
`i
]C✓3

i
✓2
j
✓2
k
✓3
`
✓s✓t, if (j0, s0) = (k, t), (k0, t0) = (j, s), {`0, i0}= {`, i};

0, otherwise.

It follows that

Var(Z†
2b)

C

k✓k41

X

i,j,k,`,s,t

✓3i ✓
2
j ✓

2
k
✓3
`
✓s✓t 

Ck✓k4k✓k63
k✓k21

.

Since k✓k1k✓k33 � k✓k4 !1, the variance of Z⇤
2b dominates the variances of eZ2b and Z†

2b.
We thus have

(105) Var(Z2b) 3Var( eZ2b) + 3Var(Z⇤
2b) + 3Var(Z†

2b)
Ck✓k93
k✓k1

.

We now combine (101), (103), (104), and (105). Since k✓k63  ✓2maxk✓k4 ⌧k✓k6, the right
hand side of (105) is much smaller than the right hand side of (103). It yields that

E[Z2] = 2k✓k4 · [1 + o(1)], Var(Z2)
Ck✓k6k✓k33

k✓k1
= o(k✓k8).

This proves the claims of Z2.

G.4.7. Proof of Lemma G.7. It suffices to prove the claims for each of Z1-Z6. We have
analyzed Z1-Z2 under the null hypothesis. The proof for the alternative hypothesis is similar
and omitted. We obtain that

��E[Z1]
��Ck✓k4, Var(Z1)Ck✓k2k✓k63 = o(k✓k8),

��E[Z2]
��Ck✓k4, Var(Z2)

Ck✓k6k✓k33
k✓k1

= o(k✓k8).

First, we analyze Z3. Since �ij = ⌘i(⌘j � ⌘̃j) + ⌘j(⌘i � ⌘̃i), we have

Z3 =
X

i,j,k,`

(dist)

⌘i(⌘j � ⌘̃j)⌘j(⌘k � ⌘̃k)e⌦k`W`i +
X

i,j,k,`

(dist)

⌘i(⌘j � ⌘̃j)
2⌘ke⌦k`W`i

+
X

i,j,k,`

(dist)

(⌘i � ⌘̃i)⌘
2
j (⌘k � ⌘̃k)e⌦k`W`i +

X

i,j,k,`

(dist)

(⌘i � ⌘̃i)⌘j(⌘j � ⌘̃j)⌘ke⌦k`W`i

⌘ Z3a +Z3b +Z3c +Z3d.(106)

First, we study Z3a. By direct calculations,

Z3a =
X

i,j,k,`(dist)

⌘i
⇣
� 1p

v

X

s 6=j

Wjs

⌘
⌘j
⇣
� 1p

v

X

t 6=k

Wkt

⌘
e⌦k`W`i

=
1

v

X

i,j,k,`(dist)
s 6=j,t 6=k

�ijk`WjsWktW`i, where �ijk` = ⌘i⌘j e⌦k`.

Since (i, j, k, `) are distinct, all summands have mean zero. Hence,

(107) E[Z3a] = 0.
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To bound its variance, re-write

Z3a =
1

v

X

i,j,k,`(dist)

�ijk`W
2
jk
W`i +

1

v

X

i,j,k,`(dist)
s 6=j,t 6=k,(s,t) 6=(k,j)

�ijk`WjsWktW`i

⌘ eZ3a +Z⇤
3a.

We note that |�ijk`|C↵✓i✓j✓k✓` by (74) and (81). Consider the variance of eZ3a. By direct
calculations,

�ijk`�i0j0k0`0 ·Cov(W 2
jk
W`i, W

2
j0k0W`0i0)

=

8
>>><

>>>:

C↵2✓2
i
✓2
j
✓2
k
✓2
`
E[W 4

jk
W 2
`i
]C↵2✓3

i
✓3
j
✓3
k
✓3
`
, if {`0, i0}= {`, i}, {j0, k0}= {j, k};

C↵2✓2
i
✓j✓k✓2` ✓j0✓k0 E[W 2

jk
W 2

j0k0W 2
`i
]C↵2✓3

i
✓2
j
✓2
k
✓3
`
✓2
j0✓

2
k0 , if {`0, i0}= {`, i}, {j0, k0} 6= {j, k};

C↵2✓2
i
✓2
j
✓2
k
✓2
`
E[W 3

jk
W 3
`i
]C↵2✓3

i
✓3
j
✓3
k
✓3
`
, if {j0, k0}= {`, i}, {`0, i0}= {j, k};

0, otherwise.

It follows that

Var( eZ3a)
C↵2

k✓k41

⇣X

i,j,k,`

✓3i ✓
3
j ✓

3
k
✓3
`
+

X

i,j,k,`,j0,k0

✓3i ✓
2
j ✓

2
k
✓3
`
✓2j0✓

2
k0

⌘

 C↵2

k✓k41

�
k✓k123 + k✓k8k✓k63

�

 C↵2k✓k123
k✓k21

.

Consider the variance of Z⇤
3a. For WjsWktW`i and Wj0s0Wk0t0W`0i0 to be correlated, all W

terms have to be perfectly paired. By symmetry across indices, it reduces to three cases: (i)
(`0, i0) = (`, i), (j0, s0) = (j, s), (k0, t0) = (k, t); (ii) (`0, i0) = (j, s), (j0, s0) = (`, i), (k0, t0) =
(k, t); (iii) (`0, i0) = (j, s), (j0, s0) = (k, t), (k0, t0) = (`, i). It follows that

�ijk`�i0j0k0`0 ·E[WjsWktW`i ·Wj0s0Wk0t0W`0i0 ]

C↵2(✓i✓j✓k✓`)(✓i0✓j0✓k0✓`0) ·E[W 2
jsW

2
kt
W 2
`i
]



8
>>><

>>>:

C↵2✓2
i
✓2
j
✓2
k
✓2
`
E[W 2

js
W 2

kt
W 2
`i
]C↵2✓3

i
✓3
j
✓3
k
✓3
`
✓s✓t, case (i)

C↵2(✓i✓j✓k✓`)(✓s✓`✓k✓j)E[W 2
js
W 2

kt
W 2
`i
]C↵2✓2

i
✓3
j
✓3
k
✓3
`
✓2s✓t, case (ii)

C↵2(✓i✓j✓k✓`)(✓s✓k✓`✓j)E[W 2
js
W 2

kt
W 2
`i
]C↵2✓2

i
✓3
j
✓3
k
✓3
`
✓2s✓t, case (iii)

0, otherwise.

As a result,

Var(Z⇤
3a)

C

k✓k41

⇣ X

i,j,k,`,s,t

↵2✓3i ✓
3
j ✓

3
k
✓3
`
✓s✓t +

X

i,j,k,`,s,t

↵2✓2i ✓
3
j ✓

3
k
✓3
`
✓2s✓t

⌘

 C↵2

k✓k41

�
k✓k123 k✓k21 + k✓k4k✓k93k✓k1

�

 C↵2k✓k123
k✓k21

.
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Combining the variance of eZ3a and Z⇤
3a gives

(108) Var(Z3a)
C↵2k✓k123

k✓k21
.

Second, we study Z3b. It is seen that

Z3b =
X

i,j,k,`(dist)

⌘i
⇣
� 1p

v

X

s 6=j

Wjs

⌘⇣
� 1p

v

X

t 6=j

Wjt

⌘
⌘ke⌦k`W`i

=
1

v

X

i,j,`(dist)
s 6=j,t 6=j

⇣ X

k/2{i,j,`}

⌘i⌘ke⌦k`

⌘
WjsWjtW`i

⌘ 1

v

X

i,j,`(dist)
s 6=j,t 6=j

�ij`WjsWjtW`i,

where by (74) and (81),

(109) |�ij`|
X

k/2{i,j,`}

|⌘i⌘ke⌦k`|
X

k

C↵✓i✓
2
k
✓` C↵k✓k2 · ✓i✓`.

We further decompose Z3b into

Z3b =
1

v

X

i,j,`(dist)
s 6=j

�ij`W
2
jsW`i +

1

v

X

i,j,`(dist)
s,t(dist)/2{j}

�ij`WjsWjtW`i ⌘ eZ3b +Z⇤
3b.

It is easy to see that both terms have mean zero. It follows that

(110) E[Z3b] = 0.

To calculate the variance of eZ3b, we note that

�ij`�i0j0`0 ·E[W 2
jsW`i ·W 2

j0s0W`0i0 ]

C↵2k✓k4✓i✓i0✓`✓`0 ·E[W 2
jsW`i ·W 2

j0s0W`0i0 ]



8
>>><

>>>:

C↵2k✓k4✓2
i
✓2
`
·E[W 4

js
W 2
`i
]C↵2k✓k4✓3

i
✓j✓3` ✓s if {`0, i0}= {`, i}, {j0, s0}= {j, s}

C↵2k✓k4✓2
i
✓2
`
·E[W 2

js
W 2
`i
W 2

j0s0 ]C↵2k✓k4✓3
i
✓j✓3` ✓s✓j0✓s0 , if {`0, i0}= {`, i}, {j0, s0} 6= {j, s};

C↵2k✓k4✓i✓`✓j✓s ·E[W 3
js
W 3
`i
]C↵2k✓k4✓2

i
✓2
j
✓2
`
✓2s , if {`0, i0}= {j, s}, {j0, s0}= {`, i};

0, otherwise.

It follows that

Var( eZ3b)
C↵2k✓k4

k✓k41

⇣X

i,j,`,s

✓3i ✓j✓
3
`
✓s +

X

i,j,`,s,j0,s0

✓3i ✓j✓
3
`
✓s✓j0✓s0 +

X

i,j,`,s,j0,s0

✓2i ✓
2
j ✓

2
`
✓2s

⌘

 C↵2k✓k4

k✓k41

�
k✓k63k✓k21 + k✓k63k✓k41 + k✓k8

�

C↵2k✓k4k✓k63.
To calculate the variance of Z⇤

3b, we note that E[WjsWjtW`i ·Wj0s0Wj0t0W`0i0 ] is nonzero
only if j0 = j, {s0, t0}= {s, t} and {`0, i0}= {`, i}. Combining it with (112) gives

Var(Z⇤
3b)

C

v2

X

i,j,`(dist)
s,t(dist)/2{j}

�2
ij`

·E[W 2
jsW

2
jtW

2
`i
]
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 C

k✓k41

X

i,j,`,s,t

(↵k✓k2✓i✓`)2 · ✓2j ✓s✓t✓`✓i

 C↵2k✓k4

k✓k41

X

i,j,`,s,t

✓3i ✓
2
j ✓

3
`
✓s✓t

 C↵2k✓k6k✓k63
k✓k21

.

Since k✓k6  k✓k4k✓k2 ⌧ k✓k4k✓k1, the variance of eZ3b dominates the variance of Z⇤
3b.

Combining the above gives

(111) Var(Z3b) 2Var( eZ3b) + 2Var(Z⇤
3b)C↵2k✓k4k✓k63.

Third, we study Z3c. It is seen that

Z3c =
X

i,j,k,`(dist)

⇣
� 1p

v

X

s 6=i

Wis

⌘
⌘2j

⇣
� 1p

v

X

t 6=k

Wkt

⌘
e⌦k`W`i

=
1

v

X

i,k,`(dist)
s 6=i,t 6=k

⇣ X

j /2{i,k,`}

⌘2j e⌦k`

⌘
WisWktW`i

⌘ 1

v

X

i,k,`(dist)
s 6=i,t 6=k

�ik`WisWktW`i,

where by (74) and (81),

(112) |�ik`|
X

j /2{i,k,`}

|⌘2j e⌦k`|
X

j

C↵✓2j ✓k✓` C↵k✓k2✓k✓`.

There are two cases for the indices: i= ` and i 6= `. We further decompose Z3c into

Z3c =
1

v

X

i,k,`(dist)
t 6=k

�ik`W
2
i`
Wkt +

1

v

X

i,k,`(dist)
s/2{i,`},t 6=k

�ik`WisWktW`i ⌘ eZ3c +Z⇤
3c.

It is easy to see that both terms have zero mean. Hence,

(113) E[Z3c] = 0.

To calculate the variance of eZ3c, we note that W 2
i`
Wkt and W 2

i0`0Wk0t0 are correlated only
when (i) {k0, t0}= {k, t} or (ii) {k0, t0}= {i, `} and {i0, `0}= {k, t}. By direct calculations,

�ik`�i0k0`0 ·E[W 2
i`
Wkt ·W 2

i0`0Wk0t0 ]

C↵2k✓k4✓k✓k0✓`✓`0 ·E[W 2
i`
Wkt ·W 2

i0`0Wk0t0 ]
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

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

C↵2k✓k4✓2
k
✓2
`
E[W 4

i`
W 2

kt
]C↵2k✓k4✓i✓3k✓3` ✓t, if (k0, t0) = (k, t), (i0, `0) = (i, `);

C↵2k✓k4✓2
k
✓`✓iE[W 4

i`
W 2

kt
]C↵2k✓k4✓2

i
✓3
k
✓2
`
✓t, if (k0, t0) = (k, t), (i0, `0) = (`, i);

C↵2k✓k4✓k✓2` ✓tE[W 4
i`
W 2

kt
]C↵2k✓k4✓i✓2k✓3` ✓2t , if (k0, t0) = (t, k), (i0, `0) = (i, `);

C↵2k✓k4✓k✓t✓`✓iE[W 4
i`
W 2

kt
]C↵2k✓k4✓2

i
✓2
k
✓2
`
✓2t , if (k0, t0) = (t, k), (i0, `0) = (`, i);

C↵2k✓k4✓2
k
✓`✓`0 E[W 2

i`
W 2

kt
W 2

i0`0 ]C↵2k✓k4✓i✓3k✓2` ✓t✓i0✓2`0 , if (k0, t0) = (k, t), {i0, `0} 6= {i, `};
C↵2k✓k4✓k✓t✓`✓`0 E[W 2

i`
W 2

kt
W 2

i0`0 ]C↵2k✓k4✓i✓2k✓2` ✓2t ✓i0✓2`0 , if (k0, t0) = (t, k), {i0, `0} 6= {i, `};
C↵2k✓k4✓k✓i✓`✓tE[W 3

i`
W 3

kt
]C↵2k✓k4✓2

i
✓2
k
✓2
`
✓2t , if (k0, t0) = (i, `), (i0, `0) = (k, t);

C↵2k✓k4✓2
k
✓i✓`E[W 3

i`
W 3

kt
]C↵2k✓k4✓2

i
✓3
k
✓2
`
✓t, if (k0, t0) = (i, `), (i0, `0) = (t, k);

C↵2k✓k4✓k✓2` ✓tE[W 3
i`
W 3

kt
]C↵2k✓k4✓i✓2k✓3` ✓2t , if (k0, t0) = (`, i), (i0, `0) = (k, t);

C↵2k✓k4✓2
k
✓2
`
E[W 3

i`
W 3

kt
]C↵2k✓k4✓i✓3k✓3` ✓t, if (k0, t0) = (`, i), (i0, `0) = (t, k);

0, otherwise.

There are only five types on the right hand side. It follows that

Var( eZ3c)
C↵2k✓k4

k✓k41

⇣X

i,k,`,t

✓i✓
3
k
✓3
`
✓t +

X

i,k,`,t

✓2i ✓
3
k
✓2
`
✓t +

X

i,k,`,t

✓2i ✓
2
k
✓2
`
✓2t

+
X

i,k,`,t,i0,`0

✓i✓
3
k
✓2
`
✓t✓i0✓

2
`0 +

X

i,k,`,t,i0,`0

✓i✓
2
k
✓2
`
✓2t ✓i0✓

2
`0

⌘

 C↵2k✓k4

k✓k41

�
k✓k63k✓k21 + k✓k4k✓k33k✓k1 + k✓k8 + k✓k4k✓k33k✓k31 + k✓k8k✓k21

�

 C↵2k✓k8k✓k33
k✓k1

,

where the last inequality is obtained as follows: Among the five terms in the brackets, the
first and third terms are dominated by the last term, and the second term is dominated by the
fourth term; it remains to compare the fourth term and the last term, where the fourth term
dominated because k✓k4  k✓k1k✓k33. To calculate the variance of Z⇤

3c, we write

Z⇤
3c =

1

v

X

i,k,`(dist)

�ik`W
2
ik
W`i +

1

v

X

i,k,`(dist)
s/2{i,`},t 6=k,(s,t) 6=(k,i)

�ik`WisWktW`i.

Regarding the first term, we note that

�ik`�i0k0`0 ·E[W 2
ik
W`i ·W 2

i0k0W`0i0 ]

C↵2k✓k4✓k✓`✓k0✓`0 ·E[W 2
ik
W`i ·W 2

i0k0W`0i0 ]



8
>>>>>><

>>>>>>:

C↵2k✓k4✓2
k
✓2
`
E[W 4

ik
W 2
`i
]C↵2k✓k4✓2

i
✓3
k
✓3
`
, if (`0, i0) = (`, i), k0 = k;

C↵2k✓k4✓k✓2` ✓k0 E[W 2
ik
W 2
`i
W 2

ik0 ]C↵2k✓k4✓3
i
✓2
k
✓3
`
✓2
k0 , if (`0, i0) = (`, i), k0 6= k;

C↵2k✓k4✓i✓k✓`✓k0 E[W 2
ik
W 2
`i
W 2
`k0 ]C↵2k✓k4✓3

i
✓2
k
✓3
`
✓2
k0 , if (`0, i0) = (i, `);

C↵2k✓k4✓2
k
✓2
`
E[W 3

ik
W 3
`i
]C↵2k✓k4✓2

i
✓3
k
✓3
`
, if (`0, i0) = (k, i), k0 = `;

0, otherwise.

It follows that

Var
⇣1
v

X

i,k,`(dist)

�ik`W
2
ik
W`i

⌘
 C↵2k✓k4

k✓k41

⇣X

i,k,`

✓2i ✓
3
k
✓3
`
+

X

i,k,`,k0

✓3i ✓
2
k
✓3
`
✓2
k0

⌘
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 C↵2k✓k4

k✓k41

�
k✓k2k✓k63 + k✓k4k✓k63

�
 C↵2k✓k8k✓k63

k✓k41
.

Regarding the second term, we note that

�ik`�i0k0`0 ·E[WisWktW`i ·Wi0s0Wk0t0W`0i0 ]

C↵2k✓k4✓k✓k0✓`✓`0 ·E[WisWktW`i ·Wi0s0Wk0t0W`0i0 ]



8
>>>>>><

>>>>>>:

C↵2k✓k4✓2
k
✓2
`
E[W 2

is
W 2

kt
W 2
`i
]C↵2k✓k4✓2

i
✓3
k
✓3
`
✓s✓t, if (i0, s0, `0) = (i, s, `), (k0, t0) = (k, t);

C↵2k✓k4✓k✓t✓2` E[W 2
is
W 2

kt
W 2
`i
]C↵2k✓k4✓2

i
✓2
k
✓3
`
✓s✓2t , if (i0, s0, `0) = (i, s, `), (k0, t0) = (t, k);

C↵2k✓k4✓2
k
✓`✓sE[W 2

is
W 2

kt
W 2
`i
]C↵2k✓k4✓2

i
✓3
k
✓2
`
✓2s✓t, if (i0, s0, `0) = (i, `, s), (k0, t0) = (k, t);

C↵2k✓k4✓k✓t✓`✓sE[W 2
is
W 2

kt
W 2
`i
]C↵2k✓k4✓2

i
✓2
k
✓2
`
✓2s✓

2
t , if (i0, s0, `0) = (i, `, s), (k0, t0) = (t, k);

0, otherwise.

It follows that

Var
⇣1
v

X

i,k,`(dist)
s/2{i,`},t 6=k,

(s,t) 6=(k,i)

�ik`WisWktW`i

⌘
 C↵2k✓k4

k✓k41

X

i,k,`,

s,t

(✓2i ✓
3
k
✓3
`
✓s✓t + ✓2i ✓

2
k
✓3
`
✓s✓

2
t + ✓2i ✓

2
k
✓2
`
✓2s✓

2
t )

 C↵2k✓k4

k✓k41

�
k✓k2k✓k63k✓k21 + k✓k6k✓k33k✓k1 + k✓k10

�

 C↵2k✓k6k✓k63
k✓k21

.

We plug the above results into Z⇤
3c. Since k✓k2  k✓k1✓max ⌧k✓k21, we have C↵

2k✓k8k✓k6
3

k✓k4
1

⌧
C↵

2k✓k6k✓k6
3

k✓k2
1

. It follows that

Var(Z⇤
3c)

C↵2k✓k6k✓k63
k✓k21

.

Since k✓k63 ⌧k✓k33k✓k1, the variance of Z⇤
3c is dominated by the variance of eZ3c. It follows

that

(114) Var(Z3c) 2Var( eZ3c) + 2Var(Z⇤
3c)

C↵2k✓k8k✓k33
k✓k1

.

Last, we study Z3d. In the definition of Z3d, if we switch the two indices (j, k), then it
becomes

Z3d =
X

i,j,k,`

(dist)

(⌘i � ⌘̃i)⌘k(⌘k � ⌘̃k)⌘j e⌦j`W`i =
X

i,j,k,`

(dist)

(⌘k⌘j e⌦j`)(⌘i � ⌘̃i)(⌘k � ⌘̃k).

At the same time, we recall that

Z3c =
X

i,j,k,`

(dist)

(⌘i � ⌘̃i)⌘
2
j (⌘k � ⌘̃k)e⌦k`W`i =

X

i,j,k,`

(dist)

(⌘2j e⌦k`)(⌘i � ⌘̃i)(⌘k � ⌘̃k).

Here, Z3d has a similar structure as Z3c. Moreover, in deriving the bound for Var(Z3c), we
have used |⌘2

j
e⌦k`|  C↵✓2

j
✓k✓`. In the expression of Z3d above, we also have |⌘k⌘j e⌦j`| 

C↵✓2
j
✓k✓`. Therefore, we can use (113) and (114) to directly get

(115) E[Z3d] = 0, Var(Z3d)
C↵2k✓k8k✓k33

k✓k1
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Now, we combine (107), (110), (113) and (114) to get

E[Z3] = 0.

We also combine (108), (111), (114)-(115). Since k✓k4  k✓k1k✓k33, the right hand side of
(114)-(115) is dominated by the right hand side of (111); since k✓k63 ⌧k✓k21, the right hand
side of (108) is negligible to the right hand side of (111). It follows that

Var(Z3)C↵2k✓k4k✓k63.

This proves the claims of Z3.
Next, we analyze Z4. Since �ij = ⌘i(⌘j � ⌘̃j) + ⌘j(⌘i � ⌘̃i),

Z4 =
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)e⌦jk⌘k(⌘` � ⌘̃`)W`i +
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)e⌦jk(⌘k � ⌘̃k)⌘`W`i

+
X

i,j,k,`(dist)

(⌘i � ⌘̃i)⌘j e⌦jk⌘k(⌘` � ⌘̃`)W`i +
X

i,j,k,`(dist)

(⌘i � ⌘̃i)⌘j e⌦jk(⌘k � ⌘̃k)⌘`W`i.

If we relabel (i, j, k, `) as (`0, k0, j0, i0) in the last sum, it is equal to the first sum. Therefore,

Z4 = 2
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)e⌦jk⌘k(⌘` � ⌘̃`)W`i

+
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)e⌦jk(⌘k � ⌘̃k)⌘`W`i

+
X

i,j,k,`(dist)

(⌘i � ⌘̃i)⌘j e⌦jk⌘k(⌘` � ⌘̃`)W`i

⌘ Z4a +Z4b +Z4c.(116)

First, we study Z4a and Z4b. We show that they have the same structure as Z3c and Z3a,
respectively. In Z4a, by relabeling (i, j, k, `) as (`, k, j, i), we have

Z4a = 2
X

i,j,k,`

(dist)

⌘`(⌘k � ⌘̃k)e⌦kj⌘j(⌘i � ⌘̃i)Wi` = 2
X

i,j,k,`

(dist)

(⌘j⌘`e⌦kj)(⌘i � ⌘̃i)(⌘k � ⌘̃k)W`i.

At the same time, we recall the definition of Z3c in (106):

Z3c =
X

i,j,k,`

(dist)

(⌘i � ⌘̃i)⌘
2
j (⌘k � ⌘̃k)e⌦k`W`i =

X

i,j,k,`

(dist)

(⌘2j e⌦k`)(⌘i � ⌘̃i)(⌘k � ⌘̃k)W`i.

It is seen that Z4a has a similar structure as Z3c does. Also, by (74) and (81), in the expression
of Z4a, we have |⌘j⌘`e⌦kj | C↵✓2

j
✓k✓`, while in the expression of Z3d, we have |⌘2

j
e⌦k`|

C↵✓2
j
✓k✓`. As a result, if we use similar calculation as before, we will get the same conclusion

for Z4a and Z3d. Hence, we use (113)-(114) to conclude that

(117) E[Z4a] = 0, Var(Z4a)
C↵2k✓k8k✓k33

k✓k1
.

For Z4b, we note that

Z4b =
X

i,j,k,`

(dist)

⌘i(⌘j � ⌘̃j)e⌦jk(⌘k � ⌘̃k)⌘`W`i =
X

i,j,k,`

(dist)

(⌘i⌘`e⌦jk)(⌘j � ⌘̃j)(⌘k � ⌘̃k)W`i,
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where |⌘i⌘`e⌦jk|C↵✓i✓j✓k✓`. At the same time, we recall the definition of Z3a in (106):

Z3a =
X

i,j,k,`

(dist)

⌘i(⌘j � ⌘̃j)⌘j(⌘k � ⌘̃k)e⌦k`W`i =
X

i,j,k,`

(dist)

(⌘i⌘j e⌦k`)(⌘j � ⌘̃j)(⌘k � ⌘̃k)W`i,

where |⌘i⌘j e⌦k`|  C↵✓i✓j✓k✓`. Therefore, we can quote the results for Z3a in (107)-(108)
to get

(118) E[Z4b] = 0, Var(Z4b)
C↵2k✓k123

k✓k21
.

Second, we study Z4c. It is seen that

Z4c =
X

i,j,k,`(dist)

⇣
� 1p

v

X

s 6=i

Wis

⌘
⌘j e⌦jk⌘k

⇣
� 1p

v

X

t 6=`
W`t

⌘
W`i

=
1

v

X

i,`(dist)
s 6=i,t 6=`

⇣ X

j,k(dist)/2{i,`}

⌘j⌘ke⌦jk

⌘
WisW`tW`i

⌘ 1

v

X

i,`(dist)
s 6=i,t 6=`

�i`WisW`tW`i,

where
(119) |�i`|

X

j,k(dist)/2{i,`}

|⌘j⌘ke⌦jk|
X

j,k

C↵✓2j ✓
2
k
C↵k✓k4.

We divide the summands into four groups: (i) s= `, t= i; (ii) s= `, t 6= i; (iii) s 6= `, t= i;
(iv) s 6= `, t 6= i. By symmetry, the sum of group (ii) and the sum of group (iii) are equal. It
yields that

Z4c =
1

v

X

i,`(dist)

�i`W
3
`i
+

2

v

X

i,`(dist)
s/2{i,`}

�i`WisW
2
`i
+

1

v

X

i,`(dist)
s/2{i,`},t/2{`,i}

�i`WisW`tW`i

⌘ eZ4c +Z⇤
4c +Z†

4c.

Only eZ4c has a nonzero mean. By (80) and (119),

(120)
��E[Z4c]

��=
��E[ eZ4c]

�� C

k✓k21

X

i,`

↵k✓k4✓i✓` C↵k✓k4.

We now compute the variances of these terms. It is seen that

Var( eZ4c)
C

v2

X

i,`(dist)

�2
i`
Var(W 3

i`
) C↵2k✓k8

k✓k41

X

i,`

✓i✓` 
C↵2k✓k8

k✓k21
.

For Z⇤
4c, by direct calculations,
�i`�i0`0 ·E[WisW

2
`i
·Wi0s0W

2
`0i0 ]

C↵2k✓k8 ·E[WisW
2
`i
·Wi0s0W

2
`0i0 ]



8
>>><

>>>:

C↵2k✓k8 ·E[W 2
is
W 4
`i
]C↵2k✓k8✓2

i
✓`✓s, if i0 = i, s0 = s, `0 = `;

C↵2k✓k8 ·E[W 2
is
W 2
`i
W 2
`0i]C↵2k✓k8✓3

i
✓`✓s✓`0 , if i0 = i, s0 = s, `0 6= `;

C↵2k✓k8 ·E[W 3
is
W 3
`i
]C↵2k✓k8✓2

i
✓`✓s, if i0 = i, s0 = `, `0 = s;

0, otherwise.
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It follows that

Var(Z⇤
4c)

C↵2k✓k8

k✓k41

⇣X

i,`,s

✓2i ✓`✓s +
X

i,`,s,`0

✓3i ✓`✓s✓`0
⌘

 C↵2k✓k8

k✓k41

�
k✓k2k✓k21 + k✓k33k✓k31

�

 C↵2k✓k8k✓k33
k✓k1

,

where, to get the last line, we have used k✓k2 ⌧ k✓k4  k✓k1k✓k33. Regarding the variance
of Z†

4c, we note that WisW`tW`i and Wi0s0W`0t0W`0i0 are correlated only when the two undi-
rected paths s-i-`-t and s0-i0-`0-t0 are the same. Mimicking the argument in (85) or (90), we
can derive that

Var(Z†
4c)

C

v2

X

i,`(dist)
s/2{i,`},t/2{`,i}

�2
i`
·Var(WisW`tW`i)

 C↵2k✓k8

k✓k41

X

i,`,s,t

✓2i ✓
2
`
✓s✓t

 C↵2k✓k12

k✓k21
.

Since k✓k4  k✓k1k✓k33, the variance of Z†
4c is dominated by the variance of Z⇤

4c. Since
k✓k !1, we have k✓k33 � 1/k✓k1; it follows that the variance of eZ4c is dominated by the
variance of Z⇤

4c. Combining the above gives

(121) Var(Z4c) 3Var( eZ4c) + 3Var(Z⇤
4c) + 3Var(Z†

4c)
C↵2k✓k8k✓k33

k✓k1
.

We combine (117), (118) and (120) to get
��E[Z4]

��C↵k✓k4 = o(↵4k✓k8).

We then combine (117), (118) and (121). Since k✓k63  (✓2maxk✓k1)(✓maxk✓k2) = o(k✓k1k✓k2),
the variance of Z4b is negligible compared to the variances of Z4a and Z4c. It follows that

Var(Z4)
C↵2k✓k8k✓k33

k✓k1
= o(k✓k8).

This proves the claims of Z4.
Next, we analyze Z5. By plugging in the definition of �ij , we have

Z5 =
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)⌘j(⌘k � ⌘̃k)e⌦k`
e⌦`i +

X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)
2⌘ke⌦k`

e⌦`i

+
X

i,j,k,`(dist)

(⌘i � ⌘̃i)⌘
2
j (⌘k � ⌘̃k)e⌦k`

e⌦`i +
X

i,j,k,`(dist)

(⌘i � ⌘̃i)⌘j(⌘j � ⌘̃j)⌘ke⌦k`
e⌦`i

= 2
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)⌘j(⌘k � ⌘̃k)e⌦k`
e⌦`i +

X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)
2⌘ke⌦k`

e⌦`i

+
X

i,j,k,`(dist)

(⌘i � ⌘̃i)⌘
2
j (⌘k � ⌘̃k)e⌦k`

e⌦`i
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⌘ Z5a +Z5b +Z5c.

(122)

First, we study Z5a. By definition, (⌘̃i � ⌘i) has the expression in (77). It follows that

Z5a = 2
X

i,j,k,`(dist)

⌘i
⇣
� 1p

v

X

s 6=j

Wjs

⌘
⌘j
⇣
� 1p

v

X

t 6=k

Wkt

⌘
e⌦k`

e⌦`i

=
2

v

X

j,k(dist)
s 6=j,t 6=k

⇣ X

i,`(dist)/2{j,k}

⌘i⌘j e⌦k`
e⌦`i

⌘
WjsWkt

⌘ 2

v

X

j,k(dist)
s 6=j,t 6=k

�jkWjsWkt,

where

(123) |�jk|
X

i,`(dist)/2{j,k}

|⌘i⌘j e⌦k`
e⌦`i|

X

i,`

(C✓i✓j)(C↵
2✓k✓

2
`
✓i)C↵2k✓k4✓j✓k.

In Z5a, the summand has a nonzero mean only if (s, t) = (k, j). We further decompose Z5a

into

Z5a =
2

v

X

j,k(dist)

�jkW
2
jk

+
2

v

X

j,k(dist)
s 6=j,t 6=k,

(s,t) 6=(k,j)

�jkWjsWkt ⌘ eZ5a +Z⇤
5a.

Only the first term has a nonzero mean. By (80) and (123), we have

(124)
��E[Z5a]

��=
��E[ eZ5a]

�� C

k✓k21

X

j,k

(↵2k✓k4✓j✓k)(✓j✓k)
C↵2k✓k8

k✓k21
.

We then compute the variances. In each of eZ5a and Z⇤
5a, two summands are uncorrelated

unless they are exactly the same variables (e.g., when (j0, k0) = (k, j) in eZ5a). Mimicking
the argument in (85) or (90), we can derive that

Var( eZ5a)
C

v2

X

j,k(dist)

�2
jk
Var(W 2

jk
) C↵4k✓k8

k✓k41

X

j,k

(✓2j ✓
2
k
)✓j✓k 

C↵4k✓k8k✓k63
k✓k41

,

Var(Z⇤
5a)

C

v2

X

j,k(dist)
s 6=j,t 6=k,

(s,t) 6=(k,j)

�2
jk
Var(WjsWkt)

C↵4k✓k8

k✓k41

X

j,k

(✓2j ✓
2
k
)✓j✓s✓k✓t 

C↵4k✓k8k✓k63
k✓k21

.

It immediately leads to

(125) Var(Z5a) 2Var( eZ5a) + 2Var(Z⇤
5a)

C↵4k✓k8k✓k63
k✓k21

.

Second, we study Z5b. It is seen that

Z5b =
X

i,j,k,`(dist)

⌘i
⇣
� 1p

v

X

s 6=j

Wjs

⌘⇣
� 1p

v

X

t 6=j

Wjt

⌘
⌘ke⌦k`

e⌦`i
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=
1

v

X

j,s 6=j,t 6=j

⇣ X

i,k,`(dist)/2{j}

⌘i⌘ke⌦k`
e⌦`i

⌘
WjsWjt

⌘ 1

v

X

j,s 6=j,t 6=j

�jWjsWjt,

where

(126) |�j |
X

i,k,`(dist)/2{j}

|⌘i⌘ke⌦k`
e⌦`i|

X

i,k,`

(C✓i✓k)(C↵
2✓i✓k✓

2
`
)C↵2k✓k6.

In Z5b, the summand has a nonzero mean only if s= t. We further decompose Z5b into

Z5b =
1

v

X

j,s(dist)

�jW
2
js +

1

v

X

j

s,t(dist)/2{j}

�jWjsWjt ⌘ eZ5b +Z⇤
5b.

Only eZ5b has a nonzero mean. By (80) and (126),

(127)
��E[Z5b]

��=
��E[ eZ5b]

�� C

k✓k21

X

j,s

(↵2k✓k6)✓j✓s C↵2k✓k6.

To compute the variance, we note that in each of eZ5b and Z⇤
5b, two summands are uncorrelated

unless they are exactly the same random variables (e.g., when {j0, s0} = {s, j} in eZ5b, and
when j0 = j and {s0, t0} = {s, t} in Z⇤

5b). Mimicking the argument in (85) or (90), we can
derive that

Var( eZ5b)
C

v2

X

j,s(dist)

�2j Var(W
2
js)

C↵4k✓k12

k✓k41

X

j,s

✓j✓s 
C↵4k✓k12

k✓k21
,

Var(Z⇤
5b)

C

v2

X

j

s,t(dist)/2{j}

�2j Var(WjsWjt)
C↵4k✓k12

k✓k41

X

j,s,t

✓2j ✓s✓t 
C↵4k✓k14

k✓k21
.

Combining the above gives

(128) Var(Z5b) 2Var( eZ5b) + 2Var(Z⇤
5b)

C↵4k✓k14

k✓k21
.

Third, we study Z5c. If we relabel (i, j, k, `) = (j, i, k, `), then Z5c becomes

Z5c =
X

i,j,k,`

(dist)

(⌘j � ⌘̃j)⌘
2
i (⌘k � ⌘̃k)e⌦k`

e⌦`j =
X

i,j,k,`

(dist)

(⌘2i e⌦k`
e⌦`j)(⌘j � ⌘̃j)(⌘k � ⌘̃k),

where |⌘2
i
e⌦k`

e⌦`j |C↵2✓2
i
✓j✓k✓2` . At the same time, we recall that

Z5a = 2
X

i,j,k,`

(dist)

⌘i(⌘j � ⌘̃j)⌘j(⌘k � ⌘̃k)e⌦k`
e⌦`i =

X

i,j,k,`

(dist)

(⌘i⌘j e⌦k`
e⌦`i)(⌘j � ⌘̃j)(⌘k � ⌘̃k),

where |⌘i⌘j e⌦k`
e⌦`i| C↵2✓2

i
✓j✓k✓2` . It is easy to see that Z5c has a similar structure as Z5c.

As a result, from (124)-(125), we immediately have

(129)
��E[Z5c]

�� C↵2k✓k8

k✓k21
, Var(Z5c)

C↵4k✓k8k✓k63
k✓k21

.
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We now combine the results for Z5a-Z5c. Since k✓k2  ✓maxk✓k1 ⌧ k✓k21, E[Z5a] and
E[Z5c] are of a smaller order than the the right hand side of (127). Since k✓k63  ✓2maxk✓k4 ⌧
k✓k6, Var(Z5a) and Var(Z5c) are of a smaller order than the right hand side of (128). It
follows that

��E[Z5]
��C↵2k✓k6 = o(↵4k✓k8), Var(Z5)

C↵4k✓k14

k✓k21
= o(↵6k✓k8k✓k63).

We briefly explain why Var(Z5) = o(↵6k✓k8k✓k63): since k✓k4  k✓k1k✓k33, we immediately
have k✓k14  k✓k6(k✓k1k✓k33)2; it follows that the bound for Var(Z5) is  C↵4k✓k6k✓k63;
note that ↵k✓k !1, we immediately have ↵4k✓k6k✓k63 = o(↵6k✓k8k✓k63). This proves the
claims of Z5.

Last, we analyze Z6. Plugging in the definition of �ij , we have

Z6 =
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)e⌦jk⌘k(⌘` � ⌘̃`)e⌦`i +
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)e⌦jk(⌘k � ⌘̃k)⌘`e⌦`i

+
X

i,j,k,`(dist)

(⌘i � ⌘̃i)⌘j e⌦jk⌘k(⌘` � ⌘̃`)e⌦`i +
X

i,j,k,`(dist)

(⌘i � ⌘̃i)⌘j e⌦jk(⌘k � ⌘̃k)⌘`e⌦`i

= 2
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)e⌦jk⌘k(⌘` � ⌘̃`)e⌦`i + 2
X

i,j,k,`(dist)

⌘i(⌘j � ⌘̃j)e⌦jk(⌘k � ⌘̃k)⌘`e⌦`i

⌘ Z6a +Z6b.

By relabeling (i, j, k, `) as (i, j, `, k), we can write

Z6a = 2
X

i,j,k,`

(dist)

⌘i(⌘j � ⌘̃j)e⌦j`⌘`(⌘k � ⌘̃k)e⌦ki =
X

i,j,k,`

(dist)

(⌘i⌘`e⌦j`
e⌦ki)(⌘j � ⌘̃j)(⌘k � ⌘̃k),

where |⌘i⌘`e⌦j`
e⌦ki|C↵2✓2

i
✓j✓k✓2` . Also, we write

Z6b = 2
X

i,j,k,`

(dist)

⌘i(⌘j � ⌘̃j)e⌦jk(⌘k � ⌘̃k)⌘`e⌦`i = 2
X

i,j,k,`

(dist)

(⌘i⌘`e⌦jk
e⌦`i)(⌘j � ⌘̃j)(⌘k � ⌘̃k).

where |⌘i⌘`e⌦jk
e⌦`i|C↵2✓2

i
✓j✓k✓2` . At the same time, we recall that

Z5a = 2
X

i,j,k,`

(dist)

⌘i(⌘j � ⌘̃j)⌘j(⌘k � ⌘̃k)e⌦k`
e⌦`i =

X

i,j,k,`

(dist)

(⌘i⌘j e⌦k`
e⌦`i)(⌘j � ⌘̃j)(⌘k � ⌘̃k),

where |⌘i⌘j e⌦k`
e⌦`i|C↵2✓2

i
✓j✓k✓2` . It is clear that both Z6a and Z6b have a similar structure

as Z5a. From (124)-(125), we immediately have
��E[Z6]

�� C↵2k✓k8

k✓k21
= o(↵4k✓k8), Var(Z6)

C↵4k✓k8k✓k63
k✓k21

= o(k✓k8).

This proves the claims of Z6.

G.4.8. Proofs of Lemmas G.8 and G.9. Recall that �1,�2, . . . ,�K are all the nonzero
eigenvalues of ⌦, arranged in the descending order in magnitude. Write for short ↵ =
|�2|/|�1|. We shall repeatedly use the following results, which are proved in (74), (80), and
(81):

v ⇣ k✓k21, 0< ⌘i <C✓i, |e⌦ij |C↵✓i✓j .
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Recall that Uc = 4T1 +F , under the null hypothesis; Uc = 4T1 +4T2 +F under the alterna-
tive hypothesis. By definition,

T1 =
X

i1,i2,i3,i4(dist)

�i1i2�i2i3�i3i4Wi4i1 ,

T2 =
X

i1,i2,i3,i4(dist)

�i1i2�i2i3�i3i4 e⌦i4i1 ,

F =
X

i1,i2,i3,i4(dist)

�i1i2�i2i3�i3i4�i4i1 ,

where �ij = ⌘i(⌘j � e⌘j) + ⌘j(⌘i � e⌘i), for 1 i, j  n, i 6= j. By symmetry and elementary
algebra, we further write

(130) T1 = 2T1a + 2T1b + 2T1c + 2T1d,

where

T1a =
X

i1,i2,i3,i4(dist)

⌘i2⌘i3⌘i4
⇥
(⌘i1 � ⌘̃i1)(⌘i2 � ⌘̃i2)(⌘i3 � ⌘̃i3)

⇤
·Wi4i1 ,

T1b =
X

i1,i2,i3,i4(dist)

⌘i2⌘
2
i3

⇥
(⌘i1 � ⌘̃i1)(⌘i2 � ⌘̃i2)(⌘i4 � ⌘̃i4)

⇤
·Wi4i1 ,

T1c =
X

i1,i2,i3,i4(dist)

⌘i1⌘i3⌘i4
⇥
(⌘i2 � ⌘̃i2)

2(⌘i3 � ⌘̃i3)
⇤
·Wi4i1 ,

T1d =
X

i1,i2,i3,i4(dist)

⌘i1⌘
2
i3

⇥
(⌘i2 � ⌘̃i2)

2(⌘i4 � ⌘̃i4)
⇤
·Wi4i1 .

Similarly, we write

(131) T2 = 2T2a + 2T2b + 2T2c + 2T2d,

where

T2a =
X

i1,i2,i3,i4(dist)

⌘i2⌘i3⌘i4
⇥
(⌘i1 � ⌘̃i1)(⌘i2 � ⌘̃i2)(⌘i3 � ⌘̃i3)

⇤
· e⌦i4i1 ,

T2b =
X

i1,i2,i3,i4(dist)

⌘i2⌘
2
i3

⇥
(⌘i1 � ⌘̃i1)(⌘i2 � ⌘̃i2)(⌘i4 � ⌘̃i4)

⇤
· e⌦i4i1 ,

T2c =
X

i1,i2,i3,i4(dist)

⌘i1⌘i3⌘i4
⇥
(⌘i2 � ⌘̃i2)

2(⌘i3 � ⌘̃i3)
⇤
· e⌦i4i1 ,

T2d =
X

i1,i2,i3,i4(dist)

⌘i1⌘
2
i3

⇥
(⌘i2 � ⌘̃i2)

2(⌘i4 � ⌘̃i4)
⇤
· e⌦i4i1 .

Also, similarly, we have

(132) F = 2Fa + 12Fb + 2Fc,

where

Fa =
X

i1,i2,i3,i4(dist)

⌘i1⌘i2⌘i3⌘i4
⇥
(⌘i1 � ⌘̃i1)(⌘i2 � ⌘̃i2)(⌘i3 � ⌘̃i3)(⌘i4 � ⌘̃i4)

⇤
,
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Fb =
X

i1,i2,i3,i4(dist)

⌘i2⌘
2
i3
⌘i4
⇥
(⌘i1 � ⌘̃i1)

2(⌘i2 � ⌘̃i2)(⌘i4 � ⌘̃i4)
⇤
,

Fc =
X

i1,i2,i3,i4(dist)

⌘2i2⌘
2
i4

⇥
(⌘i1 � ⌘̃i1)

2(⌘i3 � ⌘̃i3)
2
⇤
.

To show the lemmas, it is sufficient to show the following 11 items (a)-(k), corresponding to
T1a, T1b, T1c, T1d, T2a, T2b, T2c, T2d, Fa, Fb, Fc, respectively. Item (a) claims that both under
the null and the alternative,

(133) |E[T1a]|Ck✓k6/k✓k21, Var(T1a)Ck✓k4k✓k63/k✓k21.

Item (b) claims that both under the null and the alternative,

(134) |E[T1b]|Ck✓k6/k✓k21, , Var(T1b)Ck✓k6k✓k33/k✓k1.

Item (c) claims that both under the null and the alternative,

(135) E[T1c] = 0, Var(T1c)Ck✓k93/k✓k1,

Item (d) claims that

E[T1d]⇣�k✓k4 under the null,

|E[T1d]|Ck✓k4 under the alternative,(136)

and that both under the null and the alternative,

(137) Var(T1d)Ck✓k6k✓k33/k✓k1.

Next, for item (e)-(h), we recall that under the null, T2 = 0, and correspondingly T2a = T2b =
T2c = T2d = 0, so we only need to consider the alternative. Recall that ↵= |�2/�1|. Item (e)
claims that under the alternative,

(138) E[T2a] = 0, Var(T2a)C↵2 · k✓k4k✓k93/k✓k31.

Item (f) claims that under the alternative,

(139) E[T2b] = 0, Var(T2b)C↵2 · k✓k12k✓k33/k✓k51,

Item (g) claims that under the alternative,

(140) |E[T2c]|C↵k✓k6/k✓k31, Var(T2c)C↵2 · k✓k8k✓k33/k✓k1.

Item (h) claims that both under the null and the alternative,

(141) |E[T2d]|C↵k✓k6/k✓k31, Var(T2d)C↵2 · k✓k8k✓k33/k✓k1.

Finally, for items (i)-(k). Item (i) claims that both under the null and the alternative,

(142) |E[Fa]|Ck✓k8/k✓k41, Var(Fa)Ck✓k123 /k✓k41.

Item (j) claims that both under the null and the alternative,

(143) |E[Fb]|Ck✓k6/k✓k21, Var(Fb)Ck✓k4k✓k63/k✓k21.

Item (k) claims that

E[Fc]⇣ k✓k4 under the null,

|E[Fc]|Ck✓k4 under the alternative,(144)
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and that under both under the null and the alternative,

(145) Var(F3)Ck✓k10/k✓k21.

We now show Lemmas G.4 and G.5 follow once (a)-(k) are proved. In detail, first, we note
that k✓k6/k✓k21 = o(k✓k4). Inserting (136) and the first equation in each of (133)-(135) into
(130) gives that

E[T1]⇣�2k✓k4 under the null, |E[T1]|Ck✓k4 under the alternative,

and inserting (137) and the second equation in each of (133)-(135) into (130) gives that both
under the null and the alternative,

Var(T1)C[k✓k4k✓k63/k✓k21 + k✓k6k✓k33/k✓k1 + k✓k93/k✓k1 + k✓k6k✓k33/k✓k1],

where since k✓k33/k✓k2 = o(1) and k✓k2/k✓k1 = o(1), the right hand side

C[k✓k6k✓k33/k✓k21 + k✓k6k✓k33/k✓k1]Ck✓k6k✓k33/k✓k1.

Second, inserting the first equation in each of (138)-(141) into (131) gives that under the
alternative (recall that T2 = 0 under the null),

|E[T2]|C↵k✓k6/k✓k31,

and inserting the second equation in each of (138)-(141) into (131) gives

Var(T2)C↵2[k✓k8k✓k33/k✓k1 + k✓k12k✓k33/k✓k51]C↵2k✓k8k✓k33/k✓k1,

where we have used k✓k2 = o(k✓k21). Third, note that k✓k8/k✓k41 = o(k✓k4) and k✓k6/k✓k21 =
o(k✓k4). Inserting (144) and the first equation in each of (142)-(143) into (132) gives

E[F ]⇠ 2k✓k4 under the null, |E[F ]|Ck✓k4 under the alternative,

and inserting (145) and the second equation in each of (142)-(143) into (132) gives that both
under the null and the alternative,

Var(F )C[k✓k123 /k✓k41 + k✓k4k✓k63/k✓k21 + k✓k10/k✓k21]Ck✓k10/k✓k21,

where we have used k✓k33 ⌧ ✓k2 ⌧k✓k1 and k✓k33/k✓k2 = o(1).
We now combine the above results for T1, T2 and F . First, since that Uc = 4T1 +F under

the null, it follows that under the null,

E[Uc]⇠�6k✓k4,

and

Var(Uc)C[k✓k6k✓k33/k✓k1 + k✓k10/k✓k21]Ck✓k6k✓k33/k✓k1,

where we have used k✓k4  k✓k1k✓k33 (a direct use of Cauchy-Schwartz inequality). Second,
since Uc = 4T1 + 4T2 + F under the alternative, it follows that under the alternative,

|E[Uc]|Ck✓k4,

and

Var(Uc)C[k✓k6k✓k33/k✓k1+↵2k✓k8k✓k33/k✓k1+k✓k10/k✓k21]Ck✓k6k✓k33(↵2k✓k2+1)/k✓k1,

where we have used k✓k4  k✓k1k✓k33 and basic algebra. Combining the above gives all the
claims in Lemmas G.4 and G.5.

It remains to show the 11 items (a)-(k). We consider them separately.
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Consider Item (a). The goal is to show (133). Recall that

T1a =
X

i1,i2,i3,i4(dist)

⌘i2⌘i3⌘i4
⇥
(⌘i1 � ⌘̃i1)(⌘i2 � ⌘̃i2)(⌘i3 � ⌘̃i3)

⇤
·Wi4i1 ,

and that

(146) e⌘� ⌘ = v�1/2W1n.

Plugging (146) into T11 gives

T1a =� 1

v3/2

X

i1,i2,i3,i4(dist)

⌘i2⌘i3⌘i4

⇣ X

j1,j1 6=i1

Wi1j1

⌘⇣ X

j2,j2 6=i2

Wi2j2

⌘⇣ X

j3,j3 6=i3

Wi3j3

⌘
Wi4i1

=� 1

v3/2

X

i1,i2,i3,i4(dist)
j1 6=i1,j2 6=i2,j3 6=i3

⌘i2⌘i3⌘i4Wi1j1Wi2j2Wi3j3Wi1i4 .

By basic combinatorics and careful observations, we have

(147) Wi1j1Wi2j2Wi3j3Wi1i4 =

8
>>>>>>>><

>>>>>>>>:

W 2
i1i4

W 2
i2i3

, if j1 = i4, (j2, j3) = (i3, i2),

W 2
i1i4

Wi2j2Wi3j3 , if j1 = i4, (j2, j3) 6= (i3, i2),

W 2
i2i3

Wi1j1Wi1i4 , if j1 6= i4, (j2, j3) = (i3, i2),

W 2
i1i2

Wi3j3Wi1i4 , if (j1, j2) = (i2, i1),

W 2
i1i3

Wi2j2Wi1i4 , if (j1, j3) = (i3, i1),

Wi1j1Wi2j2Wi3j3Wi1i4 , otherwise.

This allows us to further split T11 into 6 different terms:

(148) T1a =Xa +Xb1 +Xb2 +Xb3 +Xb4 +Xc,

where

Xa =� 1

v3/2

X

i1,i2,i3,i4(dist)

⌘i2⌘i3⌘i4W
2
i1i4

W 2
i2i3

,

Xb1 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j2,j3

(j2,j3) 6={i3,i2}

⌘i2⌘i3⌘i4W
2
i1i4

Wi2j2Wi3j3 ,

Xb2 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j1(j1 6=i4)

⌘i2⌘i3⌘i4W
2
i2i3

Wi1j1Wi1i4 ,

Xb3 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j3(j3 6=i3)

⌘i2⌘i3⌘i4W
2
i1i2

Wi3j3Wi1i4 ,

Xb4 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j2(j2 6=i2)

⌘i2⌘i3⌘i4W
2
i1i3

Wi2j2Wi1i4 ,

Xc =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j1,j2,j3

j1 /2{i1,i4},(j2,j3) 6=(i3,i2)
(j1,j2) 6=(i2,i1),(j1,j3) 6=(i3,i1)

⌘i2⌘i3⌘i4Wi1j1Wi2j2Wi3j3Wi1i4 .

We now show (133). Consider the first claim of (133). It is seen that out of the 6 terms on
the right hand side of (148), the mean of all terms are 0, except for the first term. Note that
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for any 1  i, j  n, i 6= j, E[W 2
ij
] = ⌦ij(1 � ⌦ij), where ⌦ij are upper bounded by o(1)

uniformly for all such i, j. It follows

E[Xa] =�v�3/2
X

i1,i2,i3,i4(dist)

⌘i2⌘i3⌘i4E[W 2
i1i4

]E[W 2
i2i3

]

=�(1 + o(1)) · v�3/2
X

i1,i2,i3,i4(dist)

⌘i2⌘i3⌘i4⌦i1i4⌦i2i3 .

Since for any 1 i, j  n, i 6= j, 0< ⌘i C✓i, ⌦ij C✓i✓j and v ⇣ k✓k21,

|E[Xa]|C(k✓k1)�3
X

i1,i2,i3,i4(dist)

✓i1✓
2
i2
✓2i3✓

2
i4
Ck✓k6/k✓k21.

Inserting these into (148) gives

(149) |E[T1a]|Ck✓k6/k✓k21,

and the first claim of (133) follows.
Consider the second claim of (133) next. By (148) and Cauchy-Schwartz inequality,

Var(T1a)CVar(Xa) +Var(Xb1) +Var(Xb2) +Var(Xb3) +Var(Xb4) +Var(Xc))

C(Var(Xa) +E[X2
b1] +E[X2

b2] +E[X2
b3] +E[X2

b4] +E[X2
c ]).(150)

We now consider Var(Xa), E[X2
b1] +E[X2

b2] +E[X2
b3] +E[X2

b4], and E[X2
c ], separately.

Consider Var(Xa). Write Var(Xa) as

v�3
X

i1,··· ,i4(dist)
i
0
1,··· ,i04(dist)

⌘i2⌘i3⌘i4⌘i02⌘i03⌘i04

E
⇥
(W 2

i1i4
W 2

i2i3
�E[W 2

i1i4
W 2

i2i3
])(W 2

i
0
1i

0
4
W 2

i
0
2i

0
3
�E[W 2

i
0
1i

0
4
W 2

i
0
2i

0
3
])
⇤
.(151)

In the sum, a term is nonzero only when one of the following cases happens.

• (A). {Wi1i4 ,Wi2i3 ,Wi
0
1i

0
4
,Wi

0
2i

0
3
} has 2 distinct random variables.

• (B). {Wi1i4 ,Wi2,i3 ,Wi
0
1i

0
4
,Wi

0
2i

0
3
} has 3 distinct random variables. This has 4 sub-cases:

(B1) Wi1i4 =Wi
0
1i

0
4
, (B2) Wi1i4 =Wi

0
2i

0
3
, (B3) Wi2i3 =Wi

0
1i

0
4
, and (B4) Wi2i3 =Wi

0
2i

0
3
.

For Case (A), the two sets {i1, i2, i3, i4} and {i01, i02, i03, i04} are identical. By basic statistics
and independence between Wi1i4 and Wi2i3 ,

E[(W 2
i1i4

W 2
i2i3

�E[W 2
i1i4

W 2
i2i3

])(W 2
i
0
1i

0
4
W 2

i
0
2i

0
3
�E[W 2

i
0
1i

0
4
W 2

i
0
2i

0
3
])]

=E[(W 2
i1i4

W 2
i2i3

�E[W 2
i1i4

W 2
i2i3

])2]

=E[W 4
i1i4

]E[W 4
i2i3

]� (E[W 2
i1i4

])2(E[W 2
i2i3

])2

E[W 4
i1i4

]E[W 4
i2i3

],(152)

where by basic statistics and that ⌦ij C✓i✓j for all 1 i, j  n, i j, the right hand side

C⌦i1i4⌦i2i3 C✓i1✓i2✓i3✓i4 .

Combining these with (151) and noting that v ⇠ k✓k21 and that 0< ⌘i C✓i for all 1 i n,
the contribution of this case to Var(Xa) is no more than

(153) C(k✓k1)�6
X

i1,··· ,i4(dist)

X

a

✓a1+1
i1

✓a2+2
i2

✓a3+2
i3

✓a4+2
i4

,



78

where a = (a1, a2, a3, a4) and each ai is either 0 and 1, satisfying a1 + a2 + a3 + a4 = 3.
Note that the right hand side of (153) is no greater than

C(k✓k1)�6max{k✓k1k✓k93,k✓k4k✓k63}Ck✓k93/k✓k51,

where we have used k✓k4  k✓k1k✓k33.
Next, consider (B1). By independence between Wi1i4 , Wi2i3 , and Wi

0
2i

0
3

and basic algebra,

E[(W 2
i1i4

W 2
i2i3

�E[W 2
i1i4

W 2
i2i3

])(W 2
i
0
1i

0
4
W 2

i
0
2i

0
3
�E[W 2

i
0
1i

0
4
W 2

i
0
2i

0
3
])]

=E[(W 2
i1i4

W 2
i2i3

�E[W 2
i1i4

W 2
i2i3

])(W 2
i1i4

W 2
i
0
2i

0
3
�E[W 2

i1i4
W 2

i
0
2i

0
3
])]

=E[W 4
i1i4

]E[W 2
i2i3

]E[W 2
i
0
2i

0
3
]� (E[W 2

i1i4
])2E[W 2

i2i3
]E[W 2

i
0
2i

0
3
]

=Var(W 2
i1i4

)E[W 2
i2i3

]E[W 2
i
0
2i

0
3
],(154)

where by similar arguments, the last term

C⌦i1i4⌦i2i3⌦i
0
2i

0
3
C✓i1✓i2✓i3✓i4✓i02✓i03 .

Combining this with (151) and using similar arguments, the contribution of this case to
Var(Xa)

(155) C(k✓k1)�6
X

i1,i2,i3,i4(dist)
i
0
2,i

0
3(dist)

C✓b1+1
i1

✓2i2✓
2
i3
✓b2+2
i4

✓2
i
0
2
✓2
i
0
3
,

where similarly b1, b2 are either 0 or 1 and b1 + b2 = 1. By similar argument, the right hand
side

Ck✓k1k✓k8k✓k33/k✓k61 =Ck✓k8k✓k33/k✓k51.

The discussion for (B2), (B3), and (B4) are similar so is omitted, and their contribution to
Var(Xa) are respectively

(156) Ck✓k8k✓k33/k✓k51,

(157) Ck✓k8k✓k33/k✓k51,

and

(158) Ck✓k4k✓k63/k✓k41.

Finally, inserting (153), (155), (156), (157), and (158) into (151) gives

(159) Var(Xa)C[k✓k93/k✓k51 + k✓k8k✓k33/k✓k51 + k✓k4k✓k63/k✓k41]Ck✓k4k✓k63/k✓k41,

where we have used k✓k33 ⌧k✓k2 and k✓k4  k✓k1k✓k33.
Consider E[X2

b1] +E[X2
b21] +E[X2

b3] +E[X2
b4]. We claim that both under the null and the

alternative,

E[X2
b1]Ck✓k4k✓k63/k✓k21,(160)

E[X2
b2]Ck✓k8k✓k33/k✓k31,(161)

E[X2
b3]Ck✓k6k✓k63/k✓k41,(162)

E[X2
b4]Ck✓k6k✓k63/k✓k41,(163)

where the last two terms are seen to be negligible compared to the other two. Therefore,

(164) E[X2
b1] +E[X2

b2] +E[X2
b3] +E[X2

b4]C[k✓k4k✓k63/k✓k21 + k✓k8k✓k33/k✓k31],
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where since k✓k4  k✓k1k✓k33 (Cauchy-Schwartz inequality) the right hand side

C[k✓k4k✓k63/k✓k21.

We now prove (160)-(163). Since the study for E[X2
b1],E[X2

b2],E[X2
b3] and E[X2

b4] are
similar, we only present the proof for E[X2

b1]. Write E[X2
b1] as

v�3
X

i1,i2,i3,i4(dist)
i
0
1,i

0
2,i

0
3,i

0
4(dist)

X

j2,j3

(j2,j3) 6=(i3,i2)

X

j
0
2,j

0
3

(j02,j
0
3) 6=(i03,i

0
2)

⌘i2⌘i3⌘i4⌘i02⌘i03⌘i04W
2
i1i4

Wi2j2Wi3j3W
2
i
0
1i

0
4
Wi

0
2j

0
2
Wi

0
3j

0
3
.

Consider the term

W 2
i1i4

Wi2j2Wi3j3W
2
i
0
1i

0
4
Wi

0
2j

0
2
Wi

0
3j

0
3
.

In order for the mean to be nonzero, we have two cases

• Case A. The two sets of random variables {Wi1i4 ,Wi2j2 ,Wi3j3} and {Wi
0
1i

0
4
,Wi

0
2j

0
2
,Wi

0
3j

0
3
}

are identical.
• Case B. The two sets {Wi2j2 ,Wi3j3} and {Wi

0
2j

0
2
,Wi

0
3j

0
3
} are identical.

Consider Case A. In this case, {i02, i03, i04} are three distinct indices in {i1, i2, i3, i4, j2, j3},
and for some integers satisfying 0 a1, a2, . . . , a6  1, a1 + a2 + . . .+ a6 = 3,

⌘i2⌘i3⌘i4⌘i02⌘i03⌘i04 = ⌘a1

i1
⌘1+a2

i2
⌘1+a3

i3
⌘1+a4

i4
⌘a5

j2
⌘a6

j3

and for some integers satisfying 0 b1, b2, b3  1, and b1 + b2 + b3 = 1,

W 2
i1i4

Wi2j2Wi3j3W
2
i
0
1i

0
4
Wi

0
2j

0
2
Wi

0
3j

0
3
=W b1+3

i1i4
W b2+2

i2j2
W b3+2

i3j3
.

Similarly, by v ⇠ k✓k21, 0< ⌘i C✓i, and uniformly for all b1, b2, b3 above,

0< E[W b1+3
i1i4

W b2+2
i2j2

W b3+2
i3j3

]C⌦i1i4⌦i2j2⌦i3j3 C✓i1✓i2✓i3✓i4✓j2✓j3 .

Therefore under both the null and the alternative, the contribution of Case A to the variance
is
(165)
C(k✓k1)�6

X

i1,i2,i3,i4(dist)

X

j2,j3

j2 6=i2,j3 6=i3,(j2,j3) 6=(i3,i2)

[
X

a

✓a1+1
i1

✓a2+2
i2

✓a3+2
i3

✓a4+2
i4

✓a5+1
j2

✓a6+1
j3

],

where a= (a1, a2, . . . , a6) and ai satisfies the above constraints. Note that the right hand size

C(k✓k1)�6 ·max{k✓k31k✓k93,k✓k21k✓k4k✓k63,k✓k1k✓k8k✓k33,k✓k12}Ck✓k93/k✓k31.

Here in the last inequality we have used k✓k2 
p

k✓k1k✓k33.
Consider Case B. In this case, {i2, i3, j2, j3} = {i02, i03, j02, j03}, and for some integers 0 

c1, c2, c3, c4  1, c1 + c2 + c3 + c4 = 2,

⌘i2⌘i3⌘i4⌘i02⌘i03⌘i04 = ⌘c1+1
i2

⌘c2+1
i3

⌘i4⌘
c3

j2
⌘c4
j3
⌘i04 ,

and

W 2
i1i4

Wi2j2Wi3j3W
2
i
0
1i

0
4
Wi

0
2j

0
2
Wi

0
3j

0
3
=W 2

i1i4
W 2

i2j2
W 2

i3j3
W 2

i
0
1i

0
4
,

where the four W terms on the right are independent of each other. Similarly, by v ⇠ k✓k21,
0< ⌘i C✓i,

0< E[W 2
i1i4

W 2
i2j2

W 2
i3j3

W 2
i
0
1i

0
4
]C⌦i1i4⌦i2j2⌦i3j3⌦i

0
1i

0
4
C✓i1✓i2✓i3✓i4✓j2✓j3✓i01✓i04 ,
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we have that under both the null and the alternative, the contribution of Case B to the variance

C(k✓k1)�6
X

i1,i2,i3,i4(dist)
i
0
1,i

0
4(dist)

X

j2,j3

(j2,j3) 6=(i3,i2)

✓i1✓
c1+2
i2

✓c2+2
i3

✓2i4✓
c3+1
j2

✓c4+1
j3

✓i01✓
2
i
0
4
,

where the right hand size
(166)

C(k✓k1)�6 · k✓k21k✓k4 ·max{k✓k21k✓k63,k✓k1k✓k4k✓k33,k✓k8}Ck✓k4k✓k63/k✓k21.

Here we have again used k✓k2 
p

k✓k1k✓k33.
Finally, combining (165) and (166) gives

E[X2
b1]C(k✓k93/k✓k31 + k✓k4k✓k63/k✓k21)Ck✓k4k✓k63/k✓k21,

which proves (160).
Consider E[X2

c ]. Consider the terms in the sum,

⌘i2⌘i3⌘i4Wi1j1Wi2j2Wi3j3Wi1i4 , and ⌘i02⌘i03⌘i04Wi
0
1j

0
1
Wi

0
2j

0
2
Wi

0
3j

0
3
Wi

0
1i

0
4
.

Each term has a mean 0, and two terms are uncorrelated with each other if only if the two
sets of random variables {Wi1j1 ,Wi2j2 ,Wi3j3 ,Wi1i4} and {Wi

0
1j

0
1
,Wi

0
2j

0
2
,Wi

0
3j

0
3
,Wi

0
1i

0
4
} are

identical (however, it is possible that Wi1j1 does not equal to Wi1j
0
1

but equals to Wi
0
2j

0
2
, say).

Additionally, the indices i02, i03, i04 2 {i1, i2, i3, i4, j1, j2, j3}, and it follows

E[X2
c ]Cv�3

X

i1,i2,i3,i4(dist)

X

j1,j2,j3

j1 /2{i1,i4},(j1,j3) 6=(i3,i1)
(j2,j3) 6=(i3,i2),(j2,j1) 6=(i2,i1)

[
X

a

⌘a1

i1
⌘a2+1
i2

⌘a3+1
i3

⌘a4+1
i4

⌘a5

j1
⌘a6

j2
⌘a7

j3
] ·E[W 2

i1j1
W 2

i2j2
W 2

i3j3
W 2

i1j1
],

where a= (a1, a2, · · · , a7) and the power 0 a1, a2, · · · , a7  1, and a1+a2+ · · ·+a7 = 3.
Note that Wi1j1 ,Wi2j2 ,Wi3j3 and Wi1i4 are independent and E(W 2

ij
)  ⌦ij  C✓i✓j , 1 

i, j  n, i 6= j,

E[W 2
i1j1

W 2
i2j2

W 2
i3j3

W 2
i1i4

]⌦i1j1⌦i2j2⌦i3j3⌦i1i4 C✓2i1✓i2✓i3✓i4✓j1✓j2✓j3 .

Also, recall that both under the null and the alternative, v ⇣ k✓k21 and 0< ⌘i  C✓i, 1 i
n. Combining these gives

E[X2
c ]C(k✓k1)�6

X

i1,i2,i3,i4(dist)

X

j1,j2,j3

j1 /2{i1,i4},(j1,j3) 6=(i3,i1)
(j2,j3) 6=(i3,i2),(j2,j1) 6=(i2,i1)

[
X

a

⌘a1+2
i1

⌘a2+2
i2

⌘a3+2
i3

⌘a4+2
i4

⌘a5+1
j1

⌘a6+1
j2

⌘a7+1
j3

],

where the last term

C
X

a

k✓ka1+2
a1+2 · k✓k

a2+2
a2+2 · k✓k

a3+2
a3+2 · k✓k

a4+2
a4+2k✓k

a5+1
a5+1k✓k

a6+1
a6+1k✓k

a7+1
a7+1/k✓k

6
1.

Since a1, a2, · · · , a7 have to take values from {0,1} and their sum is 3, the above term

Ck✓k2k✓k93/k✓k31 = o(k✓k33),

where we have used k✓k33 ⌧k✓k22 ⌧k✓k1. Combining these gives

(167) E[X2
c ]Ck✓k2k✓k93/k✓k31.
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Finally, inserting (159), (164), and (167) into (148) gives that both under the null and the
alternative,

Var(T11)C[k✓k8/k✓k41 + k✓k4k✓k63/k✓k21 + k✓k2k✓k93/k✓k31]Ck✓k4k✓k63/k✓k21,

where we have used k✓k4  k✓k1k✓k33 and k✓k33/k✓k1 = o(1). This gives (133) and completes
the proof for Item (a).

Consider Item (b). The goal is to show (134). Recall that

T1b =
X

i1,i2,i3,i4(dist)

⌘i2⌘
2
i3

⇥
(⌘i1 � ⌘̃i1)(⌘i2 � ⌘̃i2)(⌘i4 � ⌘̃i4)

⇤
·Wi4i1 ,

and that

e⌘� ⌘ = v�1/2W1n.

Plugging this into T1b gives

T1b =�v�3/2
X

i1,i2,i3,i4(dist)

⌘i2⌘
2
i3

⇣X

j1 6=i1

Wi1j1

⌘⇣X

j2 6=i2

Wi2j2

⌘⇣X

j4 6=i4

Wi4j4

⌘
Wi1i4

=� 1

v3/2

X

i1,i2,i3,i4(dist)
j1 6=i1,j2 6=i2,j4 6=i4

⌘i2⌘
2
i3
Wi1j1Wi2j2Wi4j4Wi1i4 .

By basic combinatorics and careful observations, we have

(168) Wi1j1Wi2j2Wi4j4Wi1i4 =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

W 3
i1i4

Wi2j2 , if j1 = i4, j4 = i1,

W 2
i1i2

W 2
i1i4

, if j1 = i2, j2 = i1, j4 = i1,

W 2
i1i4

W 2
i2i4

, if j1 = i4, j2 = i4, j4 = i2,

W 2
i1i2

Wi4j4Wi1i4 , if j1 = i2, j2 = i1,

W 2
i1i4

Wi1j1Wi2j2 , if j4 = i1,

W 2
i1i4

Wi2j2Wi4j4 , if j1 = i4,{i2, j2} 6= {i4, j4},
W 2

i2i4
Wi1j1Wi1i4 , if j2 = i4, j4 = i2,

Wi1j1Wi2j2Wi4j4Wi1i4 , otherwise.

This allows us to further split T1b into 8 different terms:

(169) T1b = Ya1 + Ya2 + Ya3 + Yb1 + Yb2 + Yb3 + Yb4 + Yc,

where

Ya1 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j2(j2 6=i2)

⌘i2⌘
2
i3
W 3

i1i4
Wi2j2 ,

Ya2 =� 1

v3/2

X

i1,i2,i3,i4(dist)

⌘i2⌘
2
i3
W 2

i1i2
W 2

i1i4
,

Ya3 =� 1

v3/2

X

i1,i2,i3,i4(dist)

⌘i2⌘
2
i3
W 2

i1i4
W 2

i2i4
,

Yb1 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j4(j4 6=i4)

⌘i2⌘
2
i3
W 2

i1i2
Wi4j4Wi1i4 ,
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Yb2 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j1(j1 6=i1),j2(j2 6=i2)
{i1,j1} 6={i2,j2}

⌘i2⌘
2
i3
W 2

i1i4
Wi1j1Wi2j2 ,

Yb3 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j2(j2 6=i2),j4(j4 6=i4)
{i2,j2} 6={i4,j4}

⌘i2⌘
2
i3
W 2

i1i4
Wi2j2Wi4j4 ,

Yb4 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j1(j1 6=i1)

⌘i2⌘
2
i3
W 2

i2i4
Wi1j1Wi1i4 ,

Yc =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j1,j2,j4

j1 /2{i2,i4},j2 /2{i1,i4},j4 /2{i1,i2}

⌘i2⌘
2
i3
Wi1j1Wi2j2Wi4j4Wi1i4 .

We now show the two claims in (134) separately.
Consider the first claim of (134). It is seen that out of the 8 terms on the right hand side

of (196), the mean of all terms are 0, except that of the Ya2 and Ya3. Note that for any
1 i, j  n, i 6= j, E[W 2

ij
] =⌦ij(1�⌦ij), where ⌦ij are upper bounded by o(1) uniformly

for all such i, j. It follows

E[Ya2] =� 1

v3/2

X

i1,i2,i3,i4(dist)

⌘i2⌘
2
i3
E[W 2

i1i2
]E[W 2

i1i4
]

=�(1 + o(1)) · v�3/2
X

i1,i2,i3,i4(dist)

⌘i2⌘
2
i3
⌦i1i2⌦i1i4 .

Since for any 1 i, j  n, i 6= j, 0< ⌘i C✓i, ⌦ij C✓i✓j and v ⇣ k✓k21,

|E[Ya2]|C(k✓k1)�3
X

i1,i2,i3,i4(dist)

✓2i1✓
2
i2
✓2i3✓i4 Ck✓k6/k✓k21.

Therefore,

(170) |E[Ya2]|Ck✓k6/k✓k21.

By symmetry, we similarly find

(171) |E[Ya3]|Ck✓k6/k✓k21.

Combining (170) and (171) gives

E[|T1b|]Ck✓k6/k✓k21.

This completes the proof of the first claim of (134).
We now show the second claim of (134) . By Cauchy-Schwartz inequality,

Var(T1b)C(Var(Ya1) +Var(Ya2) +Var(Ya3) +
4X

s=1

Var(Ybs) +Var(Yc))

C(Var(Ya1) +Var(Ya2) +Var(Ya3) +
4X

s=1

E[Y 2
bs
] +E[Y 2

c ]).(172)

We now show Var(Ya1), Var(Ya2), Var(Ya3),
P4

s=1E[Y 2
bs
], and E[Y 2

c ], separately.
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Consider Var(Ya1). Recalling E[Ya1] = 0, we write Var(Ya1) as

(173) v�3
X

i1,i2,i3,i4(dist)
i
0
1,i

0
2,i

0
3,i

0
4(dist)

X

j2(j2 6=i2)

X

j
0
2(j

0
2 6=i

0
2)

⌘i2⌘
2
i3
⌘i02⌘

2
i
0
3
E
⇥
W 3

i1i4
Wi2j2W

3
i
0
1i

0
4
Wi

0
2j

0
2

⇤
.

In the sum, a term is nonzero only when one of the following cases happens.

• (A). {Wi1i4 ,Wi2j2 ,Wi
0
1i

0
4
,Wi

0
2j

0
2
} has 2 distinct random variables.

• (B). {Wi1i4 ,Wi2j2 ,Wi
0
1i

0
4
,Wi

0
2j

0
2
} has 3 distinct random variables. While it may seem we

have 4 possibilities in this case, but the only one that has a nonzero mean is when Wi2j2 =
Wi

0
2j

0
2
.

For Case (A), the two sets {i1, i2, i4, j2} and {i01, i02, i04, j02} are identical, and so for two
integers 0 b1, b2  1 and b1 + b2 = 1,

W 3
i1i4

Wi2j2W
3
i
0
1i

0
4
Wi

0
2j

0
2
=W 4+2b1

i1i4
W 2+2b2

i2j2
,

and so

E[W 3
i1i4

Wi2j2W
3
i
0
1i

0
4
Wi

0
2j

0
2
] = E[W 4+2b1

i1i4
W 2+2b2

i2j2
] = E[W 4+2b1

i1i4
]E[W 2+2b2

i2j2
],

Note that for any integer 2 b 6,

0< E[W b

ij ]C⌦ij ,

where note that ⌦ij  C✓i✓j for all 1  i, j  n, i  j. Recall that v ⇠ k✓k21, and that 0 <
⌘i C✓i for all 1 i n. Combining these that, the contribution of Case (A) to Var(Ya1) is
no more than

(174) C(k✓k1)�6
X

i1,··· ,i4(dist)

X

i
0
3,j2

X

a

✓a1+1
i1

✓a2+2
i2

✓2i3✓
a3+1
i4

✓2
i
0
3
✓a4+1
j2

,

where a = (a1, a2, a3, a4) and each ai is either 0 and 1, satisfying a1 + a2 + a3 + a4 = 1.
Note that the right hand side of (174) is no greater than

C(k✓k1)�6max{k✓k31k✓k4k✓k33,k✓k21k✓k8}Ck✓k4k✓k33/k✓k31,

where we have used k✓k4  k✓k1k✓k33.
Next, consider Case (B). In this case, {i2, j2}= {i02, j02} and

W 3
i1i4

Wi2j2W
3
i
0
1i

0
4
Wi

0
2j

0
2
=W 3

i1i4
W 2

i2j2
W 3

i
0
1i

0
4
,

and by similar argument,

0< E[W 3
i1i4

W 2
i2j2

W 3
i
0
1i

0
4
]C⌦i1i4⌦i2j2⌦i

0
1i

0
4
.(175)

Recall that ⌦ij  C✓i✓j for all 1 i, j  n, i j, that v ⇠ k✓k21, and that 0< ⌘i  C✓i for
all 1 i n. Combining this with (173), the contribution of this case to Var(Ya1)

(176) C(k✓k1)�6
X

i1,i2,i3,i4(dist)
i
0
1,i

0
3,i

0
4(dist)

X

j2

C✓i1✓
2+b1

i2
✓2i3✓i4✓i01✓

2
i
0
3
✓i04✓

1+b2

j2
,

where similarly b1, b2 are either 0 or 1 and b1 + b2 = 1. By similar argument, the right hand
side

Ck✓k�6
1 · [k✓k51k✓k4k✓k33 + k✓k41k✓k8]Ck✓k4k✓k33/k✓k1,

where we’ve used Cauchy-Schwartz inequality that k✓k4  k✓k1k✓k33.
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Now, inserting (174) and (176) into (173) gives

(177) Var(Ya1)C[k✓k4k✓k33/k✓k31 + k✓k4k✓k33/k✓k1]Ck✓k4k✓k33/k✓k1,

where we have used k✓k1 !1 and k✓k4  k✓k1k✓k33. This shows

(178) Var(Ya1)Ck✓k4k✓k33/k✓k1.

Next, we consider Var(Ya2) and Var(Ya3). The proofs are similar to that of Var(Xa) of
Item (a), so we skip the detail, but claim that

(179) Var(Ya2)Ck✓k4k✓k63/k✓k41,

and

(180) Var(Ya3)Ck✓k4k✓k63/k✓k41.

Combining (178), (179), and (180) gives
(181)
Var(Ya1)+Var(Ya2)+Var(Ya3)C[k✓k4k✓k33/k✓k1+k✓k4k✓k63/k✓k41]Ck✓k4k✓k33/k✓k1,

where we have used the universal inequality that k✓k33  k✓k31.
Next, consider

P4
s=1E[Y 2

bs
]. For each 1  s  4, the study of E[Y 2

bs
] is similar to that of

E[X2
b1] in Item (a), so we skip the details. We have that both under the null and the alternative,

E[Y 2
b1]Ck✓k12/k✓k41,(182)

E[Y 2
b2]Ck✓k6k✓k33/k✓k1,(183)

E[Y 2
b3]Ck✓k6k✓k33/k✓k1,(184)

E[Y 2
b4]Ck✓k12/k✓k41.(185)

Therefore,

(186)
4X

s=1

E[Y 2
bs
]C[k✓k6k✓k33/k✓k1 + k✓k12/k✓k41]Ck✓k6k✓k33/k✓k1.

Third, we consider E[Y 2
c ]. The proof is very similar to that of E[X2

c ] and we have that both
under the null and the alternative,

(187) E[Y 2
c ]Ck✓k8k✓k33/k✓k31.

Finally, combining (181), (186), and (187) with (172) gives
(188)
Var(T1b)C[k✓k4k✓k33/k✓k1 + k✓k6k✓k33/k✓k1 + k✓k8k✓k33/k✓k31]Ck✓k6k✓k33/k✓k1,

where we have used k✓k!1 and k✓k2 ⌧k✓k1. This completes the proof of (134).
Consider Item (c). The goal is to show (135). Recall that

T1c =
X

i1,i2,i3,i4(dist)

⌘i1⌘i3⌘i4
⇥
(⌘i2 � ⌘̃i2)

2(⌘i3 � ⌘̃i3)
⇤
·Wi4i1 ,

and that

e⌘� ⌘ = v�1/2W1n.
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Plugging this into T1c gives

T1c =� 1

v3/2

X

i1,i2,i3,i4(dist)

⌘i1⌘i3⌘i4

⇣X

j2 6=i2

Wi2j2

⌘⇣X

`2 6=i2

Wi2`2

⌘⇣X

j3 6=i3

Wi3j3

⌘
Wi1i4

=� 1

v3/2

X

i1,i2,i3,i4(dist)
j2 6=i2,`2 6=i2,j3 6=i3

⌘i1⌘i3⌘i4Wi2j2Wi2`2
Wi3j3Wi1i4 .

By basic combinatorics and careful observations, we have

(189) Wi2j2Wi2`2
Wi3j3Wi1i4 =

8
>>>>>><

>>>>>>:

W 3
i2i3

Wi1i4 , if j2 = `2 = i3, j3 = i2,

W 2
i2j2

Wi3j3Wi1i4 , if j2 = `2, (j3, j2) 6= (i2, i3),

W 2
i2i3

Wi2`2
Wi1i4 , if j2 = i3, j3 = i2, `2 6= i3,

W 2
i2i3

Wi2j2Wi1i4 , if `2 = i3, j3 = i2, j2 6= i3,

Wi2j2Wi2`2
Wi3j3Wi1i4 , otherwise.

This allows us to further split T1c into 5 different terms:

(190) T1c = Za +Zb1 +Zb2 +Zb3 +Zc,

where

Za =� 1

v3/2

X

i1,i2,i3,i4(dist)

⌘i1⌘i3⌘i4W
3
i2i3

Wi1i4 ,

Zb1 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j2,(j3,j2) 6=(i2,i3)

⌘i1⌘i3⌘i4W
2
i2j2

Wi3j3Wi1i4 ,

Zb2 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j2=i3,j3=i2

`2 6=i3

⌘i1⌘i3⌘i4W
2
i2i3

Wi2`2
Wi1i4 ,

Zb3 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

`2=i3,j3=i2

j2 6=i3

⌘i1⌘i3⌘i4W
2
i2i3

Wi2j2Wi1i4 ,

Zc =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j2,`2,j3

j2 6=`2,j2,`2 6=i3,j3 6=i2

⌘i1⌘i3⌘i4Wi2j2Wi2`2
Wi3j3Wi1i4 .

We now show the two claims in (135) separately. The proof of the first claim is trivial, so
we only show the second claim of (135).

Consider the second claim of (135). By Cauchy-Schwartz inequality,

Var(T1c)C(Var(Za) +Var(Zb1) +Var(Zb2) +Var(Zb3) +Var(Zc))

C(E[Z2
a ] +

3X

s=1

E[Z2
bs
] +E[Z2

c ]).(191)

Note that

• The proof of Var(Za) is similar to that of Var(Ya) in Item (b).
• The proof of

P3
s=1E[Z2

bs
] is similar to that of

P4
s=1E[X2

bs
] in Item (a).

• The proof of E[Z2
c ] is similar to that of E[X2

c ] in Item (a).
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For these reasons, we omit the proof details and only state the claims. We have that under
both the null and the alternative,

(192) Var(Za)Ck✓k4k✓k63/k✓k41,

(193)
3X

s=1

E[Z2
bs
]Ck✓k93/k✓k1,

and

(194) E[Z2
c ]Ck✓k2k✓k93/k✓k31.

Inserting (192), (193), and (194) into (191) gives

Var(T1c)C[k✓k4k✓k63/k✓k41 + k✓k93/k✓k1 + k✓k2k✓k93/k✓k31]Ck✓k93/k✓k1,

where we have used k✓k33 ⌧ k✓k2 ⌧ k✓k1, k✓k4  k✓k1k✓k33 and k✓k1 ! 1. This proves
(135).

Consider Item (d). The goal is to show (136) and (137). Recall that

T1d =� 1

v3/2

X

i1,i2,i3,i4(dist)

⌘i1⌘
2
i3

⇥
(⌘i2 � ⌘̃i2)

2(⌘i4 � ⌘̃i4)
⇤
·Wi4i1 .

and that

e⌘� ⌘ = v�1/2W1n.

Plugging this into T1d gives

T1d =� 1

v3/2

X

i1,i2,i3,i4(dist)

⌘i1⌘
2
i3

⇣X

j2 6=i2

Wi2j2

⌘⇣X

`2 6=i2

Wi2`2

⌘⇣X

j4 6=i4

Wi4j4

⌘
Wi1i4

=� 1

v3/2

X

i1,i2,i3,i4(dist)
j2 6=i2,`2 6=i2,j4 6=i4

⌘i1⌘
2
i3
Wi2j2Wi2`2

Wi4j4Wi1i4 .

By basic combinatorics and careful observations, we have
(195)

Wi2j2Wi2`2
Wi4j4Wi1i4 =

8
>>>>>>>>>><

>>>>>>>>>>:

W 3
i2i4

Wi1i4 , if j2 = `2 = i4, j4 = i2,

W 2
i2j2

W 2
i1i4

, if j2 = `2, j4 = i1,

W 2
i2j2

Wi4j4Wi1i4 , if j2 = `2, j4 6= i1, (j2, j4) 6= (i4, i2),

Wi2j2W
2
i2i4

Wi1i4 , if `2 = i4, j4 = i2, j2 6= i4,

Wi2`2
W 2

i2i4
Wi1i4 , if j2 = i4, j4 = i2, `2 6= i4,

Wi2j2Wi2`2
W 2

i1i4
, if j4 = i1, j2 6= `2,

Wi2j2Wi2`2
Wi4j4Wi1i4 , otherwise.

This allows us to further split T14 into 7 different terms:

(196) T1d = Ua1 +Ua2 +Ub1 +Ub2 +Ub3 +Ub4 +Uc,

where

Ua1 =� 1

v3/2

X

i1,i2,i3,i4(dist)

⌘i1⌘
2
i3
W 3

i2i4
Wi1i4 ,
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Ua2 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j2

⌘i1⌘
2
i3
W 2

i2j2
W 2

i1i4
,

Ub1 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j2(j2 6=i2),j4(j4 6=i4)
j4 6=i1,(j2,j4) 6=(i4,i2)

⌘i1⌘
2
i3
W 2

i2j2
Wi4j4Wi1i4 ,

Ub2 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j2(j2 6=i4)

⌘i1⌘
2
i3
Wi2j2W

2
i2i4

Wi1i4 ,

Ub3 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

`2(`2 6=i4)

⌘i1⌘
2
i3
Wi2`2

W 2
i2i4

Wi1i4 ,

Ub4 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j2 6=`2

⌘i1⌘
2
i3
Wi2j2Wi2`2

W 2
i1i4

,

Uc =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j2,`2,j4,W dist

⌘i1⌘
2
i3
Wi2j2Wi2`2

Wi4j4Wi1i4 .

We now show (136) and (137) separately.
Consider (136). It is seen that out of the 7 terms on the right hand side of (190), all terms

are mean 0, except for the second term Ua2. Note that for any 1 i, j  n, i 6= j, E[W 2
ij
] =

⌦ij(1�⌦ij), where ⌦ij are upper bounded by o(1) uniformly for all such i, j. It follows

E[Ua2] =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j2

⌘i1⌘
2
i3
E[W 2

i2j2
]E[W 2

i1i4
]

=�(1 + o(1)) · v�3/2
X

i1,i2,i3,i4(dist)
j2

⌘i1⌘
2
i3
⌦i2j2⌦i1i4 .

Under null, for any 1 i, j  n, i 6= j, ⌘i = (1+o(1))✓i, ⌦ij = (1+o(1))✓i✓j and v ⇣ k✓k21,

E[Ua2] = (k✓k1)�3
X

i1,i2,i3,i4(dist)

X

j2

✓2i1✓i2✓
2
i3
✓i4✓j2 =�(1 + o(1))k✓k4,

and under alternative, a similar arguments yields

(197) |E[Ua1]|Ck✓k4.

This proves (136).
We now consider (137). By Cauchy-Schwartz inequality,

Var(T1d)C(Var(Ua1) +Var(Ua2) +
4X

s=1

Var(Ubs) +Var(Uc))

C(Var(Ua1) +Var(Ua2) +
4X

s=1

E[U2
bs
] +E[U2

c ]).(198)

Note that

• The proof of Ua1 is similar to that of Ya1 in Item (b).
• The proof of Ua2 is similar to that of Xa1 in Item (a).
• The proof of Ubs, 1 s 4, is similar to that of Xb1 in Item (a).
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• The proof of Uc is similar to that of Xc in Item (a).

For these reasons, we omit the proof details, and claim that

(199) Var(Ua1)Ck✓k4k✓k63/k✓k41,

(200) Var(Ua2)Ck✓k4k✓k33/k✓k1,

(201)
4X

s=1

E[U2
bs
]Ck✓k6k✓k33/k✓k1,

and

(202) Var(Uc)Ck✓k8k✓k33/k✓k31,

Inserting (199), (200), (201), and (202) into (198) gives

Var(T1d)C[k✓k4k✓k63/k✓k41 + k✓k4k✓k33/k✓k1 + k✓k6k✓k33/k✓k1 + k✓k8k✓k33/k✓k31]
(203)

Ck✓k6k✓k33/k✓k1,(204)

where we have used k✓k!1 and k✓k33  k✓k31. This proves (137).
We now consider Item (e) and Item (f). Since the proof is similar, we only prove Item (e).

The goal is to show (138). Recall that

(205) T2a =
X

i1,i2,i3,i4(dist)

⌘i2⌘i3⌘i4
⇥
(⌘i1 � ⌘̃i1)(⌘i2 � ⌘̃i2)(⌘i3 � ⌘̃i3)

⇤
· e⌦i4i1 ,

and

(206) e⌘� ⌘ = v�1/2W1n.

Plugging (206) into (205) gives

T2a =� 1

v3/2

X

i1,i2,i3,i4(dist)

⌘i2⌘i3⌘i4

⇣X

j1 6=i1

Wi1j1

⌘⇣X

j2 6=i2

Wi2j2

⌘⇣X

j3 6=i3

Wi3j3

⌘
e⌦i4i1

=� 1

v3/2

X

i1,i2,i3,i4(dist)
j1 6=i1,j2 6=i2,j3 6=i3

⌘i2⌘i3⌘i4Wi1j1Wi2j2Wi3j3
e⌦i1i4 .

By basic combinatorics and careful observations, we have

(207) Wi1j1Wi2j2Wi3j3 =

8
>>><

>>>:

W 2
i1i2

Wi3j3 , if j1 = i2, j2 = i1,

W 2
i1i3

Wi2j2 , if j1 = i3, j3 = i1,

W 2
i2i3

Wi1j1 , if j2 = i3, j3 = i2,

Wi1j1Wi2j2Wi3j3 , otherwise.

This allows us to further split T2a into 4 different terms:

(208) T2a =Xa1 +Xa2 +Xa3 +Xb,
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where

Xa1 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j3 6=i3

⌘i2⌘i3⌘i4W
2
i1i2

Wi3j3
e⌦i1i4 ,

Xa2 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j2 6=i2

⌘i2⌘i3⌘i4W
2
i1i3

Wi2j2
e⌦i1i4 ,

Xa3 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j1 6=i1

⌘i2⌘i3⌘i4W
2
i2i3

Wi1j1
e⌦i1i4 ,

Xb =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j1,j2,j3

jk 6=i`,k,`=1,2,3

⌘i2⌘i3⌘i4Wi1j1Wi2j2Wi3j3
e⌦i1i4 .

We now consider the two claims of (138) separately. Since the mean of Xa1,Xa2,Xa3,Xb

are all 0, the first claim of (138) follows trivially, so all remains to show is the second claim
of (138).

We now consider the second claim of (138). By Cauchy-Schwartz inequality,

Var(T2a)CVar(Xa1) +Var(Xa2) +Var(Xa3) +Var(Xb))

C(E[X2
a1] +E[X2

a2] +E[X2
a3] +E[X2

b
]).(209)

We now consider E[X2
a1] +E[X2

a2] +E[X2
a3], and E[X2

b
], separately.

Consider E[X2
a1]+E[X2

a2]+E[X2
a3]. We claim that both under the null and the alternative,

E[X2
a1]C↵2k✓k12k✓k33/k✓k51,(210)

E[X2
a2]C↵2k✓k12k✓k33/k✓k51,(211)

E[X2
a3]C↵2k✓k12k✓k33/k✓k51.(212)

Combining these gives that both under the null and the alternative,

(213) E[X2
a1] +E[X2

a2] +E[X2
a3]C↵2k✓k12k✓k33/k✓k51.

It remains to show (210)-(212). Since the proofs are similar, we only prove (210). Write

E[X2
a1] = v�3

X

i1,i2,i3,i4(dist)
i
0
1,i

0
2,i

0
3,i

0
4(dist)

X

j3,j
0
3

j3 6=i3,j
0
3 6=i

0
3

⌘i2⌘i3⌘i4⌘i02⌘i03⌘i04E[W
2
i1i2

Wi3j3W
2
i
0
1i

0
2
Wi

0
3j

0
3
]e⌦i1i4

e⌦i
0
1i

0
4
.

Consider the term

W 2
i1i2

Wi3j3W
2
i
0
1i

0
2
Wi

0
3j

0
3
.

In order for the mean is nonzero, we have three cases

• Case A. Wi1i2 =Wi
0
3j

0
3

and Wi3j3 =Wi
0
1i

0
2
.

• Case B. Wi3j3 =Wi
0
3j

0
3

and Wi1i2 =Wi
0
1i

0
2
.

• Case C. Wi3j3 =Wi
0
3j

0
3

and Wi1i2 6=Wi
0
1i

0
2
.

Consider Case A. In this case, {i01, i02, i03} are three distinct indices in {i1, i2, i3, j3}. In this
case,

W 2
i1i2

Wi3j3W
2
i
0
1i

0
2
Wi

0
3j

0
3
=W 3

i1i2
W 3

i3j3
,

where by similar arguments as before

0< E[W 3
i1i2

W 3
i3j3

]C⌦i1i2⌦i3j3 C✓i1✓i2✓i3✓j3 .
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At the same time, recall that that 0 < ⌘i  C✓i for any 1  i  n, and that |e⌦ij |  C↵✓i✓j
for any 1 i, j  n, i 6= j, where ↵= |�2/�1| with �k being the k-th largest (in magnitude)
eigenvalue of ⌦, 1 k K . By basic algebra,

|⌘i2⌘i3⌘i4⌘i02⌘i03⌘i04 e⌦i1i4
e⌦i

0
1i

0
4
|C↵2✓i1✓i2✓i3✓

2
i4
✓i01✓i02✓i03✓

2
i
0
4
.

Note that in the current case, {i1, i2}= {i03, j03} and {i3, j3}= {i01, i02}, so for some integers
0 b1, b2  1 and b1 + b2 = 1,

✓i1✓i2✓i3✓
2
i4
✓i01✓i02✓i03✓

2
i
0
4
= ✓1+b1

i1
✓1+b2

i2
✓2i3✓j3✓

2
i4
✓2
i
0
4
.

Recall that v ⇣ k✓k21. Combining these, the contribution of Case (A) to E[X2
a1] is no greater

than

C↵2(k✓k1)�6
X

i1,i2,i3,i4(dist)

X

i
0
4

X

j3(j3 6=i3)

X

b1,b2(b1+b2=1)

✓2+b1

i1
✓2+b2

i2
✓3i3✓

2
j3
✓2i4✓

2
i
0
4
,

where the right hand side  C↵2 · k✓k8k✓k63/k✓k61. This shows that the contribution of Case
(A) to E[X2

a1] is no greater than

(214) C↵2 · k✓k8k✓k63/k✓k61.

Consider Case B. By similar arguments,

W 2
i1i2

Wi3j3W
2
i
0
1i

0
2
Wi

0
3j

0
3
=W 6

i1i2
W 2

i3j3
,

where

E[W 6
i1i2

W 2
i3j3

]C⌦i1i2⌦i3j3 C✓i1✓i2✓i3✓j3 ,

Also, by similar arguments,

|⌘i2⌘i3⌘i4⌘i02⌘i03⌘i04 e⌦i1i4
e⌦i

0
1i

0
4
|C↵2✓i1✓i2✓i3✓

2
i4
✓i01✓i02✓i03✓

2
i
0
4
,

where as Wi1i2 =Wi
0
1i

0
2

and Wi3j3 =Wi
0
3j

0
3
, the right hand side

C↵2✓2i1✓
2
i2
✓1+c1

i3
✓c2
j3
✓2i4✓

2
i
0
4
,

where 0 < c1, c2  are integers satisfying c1 + c2 = 1. Recall v ⇠ k✓k21. Combining these,
the contribution of Case (B) to E[X2

a1]

C↵2(k✓k1)�6
X

i1,i2,i3,i4(dist)

X

i
0
4

X

j3(j3 6=i3)

X

b1,b2(b1+b2=1)

✓3i1✓
3
i2
✓2+c1

i3
✓1+c2

j3
✓2i4✓

2
i
0
4
,

where by k✓k4  k✓k1k✓k33, the above term

C↵2[k✓k4k✓k93/k✓k51,k✓k8k✓k63/k✓k61]C↵2k✓k4k✓k93/k✓k51.

This shows that the contribution of Case (B) to E[X2
a1] is no greater than

(215) Ck✓k4k✓k93/k✓k51.

Consider Case (C). In this case,

W 2
i1i2

Wi3j3W
2
i
0
1i

0
2
Wi

0
3j

0
3
=W 2

i1i2
W 2

i3j3
W 2

i
0
1i

0
2
,

where by similar arguments,

E[W 2
i1i2

W 2
i3j3

W 2
i
0
1i

0
2
]C⌦i1i2⌦i3j3⌦i

0
1i

0
2
C✓i1✓i2✓i3✓j3✓i01✓i02 .

Also, by similar arguments,

|⌘i2⌘i3⌘i4⌘i02⌘i03⌘i04 e⌦i1i4
e⌦i

0
1i

0
4
|C↵2✓i1✓i2✓i3✓

2
i4
✓i01✓i02✓i03✓

2
i
0
4
,
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where as Wi3j3 =Wi
0
3j

0
3
, the right hand side

C↵2✓i1✓i2✓
1+c1

i3
✓c2
j3
✓2i4✓

2
i
0
4
,

with the same c1, c2 as in the proof of Case B. Combining these and using v ⇣ k✓k21, we have
that under both the null and the alternative, the contribution of Case (C) to E[X2

a1]

C↵2(k✓k1)�6
X

i1,i2,i3,i4(dist)
i
0
1,i

0
2,i

0
4(dist)

X

j3(j3 6=i3)

✓2i1✓
2
i2
✓2+c1

i3
✓1+c2

j3
✓2i4✓

2
i
0
1
✓2
i
0
2
✓2
i
0
4
,

where the right hand size

(216) C↵2 · [k✓k12k✓k33/k✓k51 + k✓k12k✓k63/k✓k61]C↵2k✓k12k✓k33/k✓k51.

Here we have again used k✓k4  k✓k1k✓k33.
Combining (214), (215), and (216) gives

E[X2
a1]C↵2(k✓k8k✓k63/k✓k61+k✓k4k✓k93/k✓k51+k✓k8k✓k93/k✓k5]C↵2k✓k8k✓k93/k✓k51,

where we have used k✓k4  k✓k1k✓k33 and k✓k!1. This proves (210).
We now consider E[X2

b
]. Write

E[X2
b
] = v�3

X

i1,i2,i3,i4(dist)
i
0
1,i

0
2,i

0
3,i

0
4(dist)

X

j3,j
0
3

j3 6=i3,j
0
3 6=i

0
3

⌘i2⌘i3⌘i4⌘i02⌘i03⌘i04

E[Wi1j1Wi2j2Wi3j3Wi
0
1j

0
1
Wi

0
2j

0
2
Wi

0
3j

0
3
]e⌦i1i4

e⌦i
0
1i

0
4
.

Consider

Wi1j1Wi2j2Wi3j3 , and Wi
0
1j

0
1
Wi

0
2j

0
2
Wi

0
3j

0
3
.

Each term has a mean 0, and two terms are uncorrelated with each other if and only if the
two sets of random variables {Wi1j1 ,Wi2j2 ,Wi3j3} and {Wi

0
1j

0
1
,Wi

0
2j

0
2
,Wi

0
3j

0
3
} are identical

(however, it is possible that Wi1j1 does not equal to Wi
0
1j

0
1

but equals to Wi
0
2j

0
2
, say). When

this happens, first, {i1, i2, i3, j1, j2, j3} = {i01, i02, i03, j01, j02, j03}. Recall that |e⌦ij |  C↵✓i✓j
for all 1  i, j  n, i 6= j, and that 0 < ⌘i  C✓i for all 1  i  n. For integers ai 2 {0,1},
1 i 4, that satisfy

P6
i=1 ai = 3, we have

|⌘i2⌘i3⌘i4⌘i02⌘i03⌘i04 e⌦i1i4
e⌦i

0
1i

0
4
|C⌘a1

i1
⌘a2

j1
⌘1+a3

i2
⌘a4

j2
⌘1+a5

i3
⌘a6

j3
⌘i4⌘i04 |e⌦i1i4 ||e⌦i

0
1i

0
4
|

C↵2✓1+a1

i1
⌘a2

j1
⌘1+a3

i2
⌘a4

j2
⌘1+a5

i3
⌘a6

j3
⌘2i4⌘

2
i
0
4
.

Second,

E[Wi1j1Wi2j2Wi3j3Wi
0
1j

0
1
Wi

0
2j

0
2
Wi

0
3j

0
3
] = E[W 2

i1j1
W 2

i2j2
W 2

i3j3
],

where by similar arguments, the right hand side

C⌦i1j1⌦i2j2⌦i3j3 C✓i1✓j1✓i2✓j2✓i3✓j3 .

Recall that v ⇠ k✓k21. Combining these gives

E[X2
b
]C↵2k✓k�6

1

X

i1,i2,i3,i4(dist)

X

i
0
4

X

j1,j2,j3

j1 6=i1,j2 6=i2,j3 6=i3

X

a

✓2+a1

i1
⌘1+a2

j1
⌘2+a3

i2
⌘1+a4

j2
⌘2+a5

i3
⌘1+a6

j3
⌘2i4⌘

2
i
0
4
,

where a= (a1, a2, . . . , a6) as above. By the way ai are defined, the right hand side

C↵2k✓k4(
X

a

k✓ka1+2
a1+2 · k✓k

a2+1
a2+1 · k✓k

a3+2
a3+2 · k✓k

a4+1
a4+1k✓k

a5+2
a5+2k✓k

a6+1
a6+1)/k✓k

6
1,
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which by k✓k4  k✓k1k✓k33, the term in the bracket does not exceed
Cmax{k✓k12,k✓k1k✓k8k✓k33,k✓k21k✓k4k✓k63,k✓k31k✓k93}Ck✓k31k✓k93.

Combining these gives
(217) E[X2

b
]C↵2k✓k4k✓k93/k✓k31.

Finally, inserting (213)-(217) into (209) gives
Var(T2a)C↵2[k✓k8k✓k33/k✓k51 + k✓k4k✓k93/k✓k31]C↵2k✓k4k✓k93/k✓k31,

and (138) follows.
Consider Item (g) and Item (h). The proof are similar, so we only show Item (g). The goal

is to show (140). Recall that

(218) T2c =
X

i1,i2,i3,i4(dist)

⌘i1⌘i3⌘i4
⇥
(⌘i2 � ⌘̃i2)

2(⌘i3 � ⌘̃i3)
⇤
· e⌦i4i1 ,

and
e⌘� ⌘ = v�1/2W1n.

Plugging this into T2c gives (note symmetry in e⌦)

T2c =� 1

v2/3

X

i1,i2,i3,i4(dist)

⌘i1⌘i3⌘i4

⇣X

j2 6=i2

Wi2j2

⌘⇣X

`2 6=i2

Wi2`2

⌘⇣X

j3 6=i3

Wi3j3

⌘
e⌦i4i1

=� 1

v3/2

X

i1,i2,i3,i4(dist)
j1 6=i1,j2 6=i2,j3 6=i3

⌘i1⌘i3⌘i4Wi2j2Wi2`2
Wi3j3

e⌦i1i4 .

By basic combinatorics and careful observations, we have

(219) Wi2j2Wi2`2
Wi3j3 =

8
>>>>>><

>>>>>>:

W 3
i2i3

, if j1 = `2 = i3, j3 = i2,

W 2
i2j2

Wi3j3 , if j1 = `2, (j2, j3) 6= (i3, i2),

W 2
i2i3

Wi2`2
, if j2 = i3, j3 = i2, `2 6= i3,

W 2
i2i3

Wi2j2 , if `2 = i3, j3 = i2, j2 6= i3,

Wi2j2Wi2`2
Wi3j3 , otherwise.

This allows us to further split T2c into 4 different terms:
(220) T2c = Ya + Yb1 + Yb2 + Yb3 + Yc,

Ya =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j3 6=i3

⌘i1⌘i3⌘i4W
3
i2i3

e⌦i1i4 ,

Yb1 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j3 6=i3

⌘i1⌘i3⌘i4W
2
i2j2

Wi3j3
e⌦i1i4 ,

Yb2 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j2 6=i2

⌘i1⌘i3⌘i4W
2
i2i3

Wi2`2
e⌦i1i4 ,

Yb3 =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j1 6=i1

⌘i1⌘i3⌘i4W
2
i2i3

Wi2j2
e⌦i1i4 ,

Yc =� 1

v3/2

X

i1,i2,i3,i4(dist)

X

j2,`2,j3

j2 6=i2,`2 6=i2,j3 6=i3

j2 6=i3,`2 6=i3,j3 6=i2

⌘i1⌘i3⌘i4Wi2j2Wi2`2
Wi3j3

e⌦i1i4 .
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We now show the two claims in (140) separately. Consider the first claim. It is seen that out
of the 5 terms on the right hand side of (220), the mean of all terms are 0, except for the
first one. Note that for any 1  i, j  n, i 6= j, E[W 3

ij
]  C⌦ij . Together with ⌦ij  C✓i✓j ,

e⌦ij C↵✓i✓j , 0< ⌘i <C✓i and v ⇠ k✓k21, it follows

E[|Ya|]
1

v3/2

X

i1,i2,i3,i4(dist)

⌘i1⌘i3⌘i4⌦i2i3
e⌦i1i4

C↵ · 1

k✓k31

X

i1,i2,i3,i4(dist)

✓2i1✓i2✓
2
i3
⌘2i4 ,

where the last term is no greater than C↵ · k✓k6/k✓k31, and the first claim of (140) follows.
Consider the second claim of (140). By Cauchy-Schwartz inequality,

Var(T2c)C(Var(Ya) +Var(Yb1) +Var(Yb2) +Var(Yb3) +Var(Yc))

C(Var(Ya) +E[Y 2
b1] +E[Y 2

b2] +E[Y 2
b3] +E[Y 2

c ]).(221)

We now study Var(Ya). Write

Var(Ya) = v�3
X

i1,i2,i3,i4(dist)
i
0
1,i

0
2,i

0
3,i

0
4(dist)

⌘i1⌘i3⌘i4⌘i01⌘i03⌘i04E[(W
3
i2i3

�E[W 3
i2i3

])(W 3
i
0
2i

0
3
�E[W 3

i
0
2i

0
3
])] · e⌦i1i4

e⌦i
0
1i

0
4
.

Fix a term (W 3
i2i3

� E[W 3
i2i3

])(W 3
i
0
2i

0
3
� E[W 3

i
0
2i

0
3
]). When the mean is nonzero, we must have

{i2, i3}= {i02, i03}, and when this happens,

E[(W 3
i2i3

�E[W 3
i2i3

])(W 3
i
0
2i

0
3
�E[W 3

i
0
2i

0
3
])] = Var(W 3

i2i3
).

For a random variable X , we have Var(X) E[X2], and it follows that

Var(W 3
i2i3

) E[W 6
i2i3

] E[W 2
i2i3

],

where we have used the property that 0  W 2
i2i3

 1. Notice that E[W 2
i2i3

]  C✓i2✓i3 , and
recall that v ⇣ k✓k21, e⌦ij  C↵✓i✓j and 0 < ⌘i  C✓i for all 1  i  n. Combining these
gives

(222) Var(Ya)C↵2(k✓k�6
1 ) ·

X

i1,i2,i3,i4(dist)
i
0
1,i

0
4(dist)

✓2i1✓i2✓
3
i3
✓2i4✓

2
i
0
1
✓2
i
0
4
C↵2k✓k8k✓k33/k✓k51.

Additionally, note that

• The proof of Yb1, Yb2, and Yb3 is similar to that of Xa1 in Item (e).
• The proof of Yc is similar to that of Xb in Item (e).

For these reasons, we skip the proof details, but only to state that, both under the null and the
alternative,

E[Y 2
b1]C↵2k✓k8k✓k33/k✓k1,(223)

E[Y 2
b2]C↵2k✓k12k✓k33/k✓k51,(224)

E[Y 2
b3]C↵2k✓k12k✓k33/k✓k51,(225)

and therefore,

(226) E[Y 2
b1] +E[Y 2

b2] +E[Y 2
b3]C↵2k✓k8k✓k33/k✓k1.
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At the same time, both under the null and the alternative,

(227) E[Y 2
c ]C↵2 · k✓k10k✓k33/k✓k31.

Inserting (226) and (227) into (221) gives

E[T 2
2c]C↵2[k✓k8k✓k33/k✓k51+k✓k8k✓k33/k✓k1+k✓k10k✓k33/k✓k31]C↵2k✓k8k✓k33/k✓k1.

This proves (140).
Consider Item (i). The goal is to show (142). Recall that

(228) Fa =
X

i1,i2,i3,i4(dist)

⌘i1⌘i2⌘i3⌘i4
⇥
(⌘i1 � ⌘̃i1)(⌘i2 � ⌘̃i2)(⌘i3 � ⌘̃i3)(⌘i4 � ⌘̃i4)

⇤
,

and that for any 1 i n,

⌘̃i � ⌘i = v�1/2
nX

j 6=i

Wij .

Inserting it into (228) gives

Fa =
X

i1,i2,i3,i4(dist)

⌘i1⌘i2⌘i3⌘i4
⇥
(⌘i1 � ⌘̃i1)(⌘i2 � ⌘̃i2)(⌘i3 � ⌘̃i3)(⌘i4 � ⌘̃i4)

⇤
,

By basic combinatorics and basic algebra, we have

Wi1j1Wi2j2Wi3j3Wi4j4 =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

W 2
i1i2

W 2
i3i4

, if (i1, j1) = (j2, i2), (i3, j3) = (j4, i4),
W 2

i1i3
W 2

i2i4
, if (i1, j1) = (j3, i3), (i2, j2) = (j4, i4),

W 2
i1i4

W 2
i2i3

, if (i1, i4) = (j4, i1), (i2, j2) = (j3, i3),
W 2

i1i2
Wi3j3Wi4j4 , if (i1, j1) = (j2, i2), (j4, j3) 6= (i3, i4),

W 2
i1i3

Wi2j2Wi4j4 , if (i1, j1) = (j3, i3), (j4, j2) 6= (i2, i4),
W 2

i1i4
Wi2j2Wi3j4 , if (i1, j1) = (j4, i4), (j3, j2) 6= (i2, i3),

W 2
i2i3

Wi1j1Wi4j4 , if (i2, j2) = (j3, i3), (j4, j1) 6= (i1, i4),
W 2

i2i4
Wi1j1Wi3j3 , if (i2, j2) = (j4, i4), (j3, j1) 6= (i1, i3),

W 2
i3i4

Wi1j1Wi2j2 , if (i3, j3) = (j4, i4), (j2, j1) 6= (i1, i2).
Wi1j1Wi2j2Wi3j3Wi4j4 , otherwise.

By symmetry, it allows us to further split F1 into 3 different terms:

(229) F1 = 3Xa + 6Xb +Xc,

where

Xa = v�2
X

i1,i2,i3,i4(dist)

⌘i1⌘i2⌘i3⌘i4W
2
i1i2

W 2
i3i4

,

Xb = v�2
X

i1,i2,i3,i4(dist)

X

j3,j4

(j3,j4) 6=(i4,i3)

⌘i1⌘i2⌘i3⌘i4W
2
i1i2

Wi3j3Wi4j4 ,

and

Xc = v�2
X

i1,i2,i3,i4(dist)

X

j1,j2,j3,j4

jk 6=i`,k,`=1,2,3,4

⌘i1⌘i2⌘i3⌘i4Wi1j1Wi2j2Wi3j3Wi4j4 .
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We now show the two claims in (142) separately. Consider the first claim of (142). Note
that E[Xb] = E[Xc] = 0. Recall that both under the null and the alternative, for any i 6= j,
E[W 2

ij
] =⌦ij(1�⌦ij)C✓i✓j , and that 0< ⌘i C✓i, and that v ⇣ k✓k21, Therefore,

0< E[Xa] v�2
X

i1,i2,i3,i4(dist)

✓i1✓i2✓i3✓i4✓i1✓i2✓i3✓i4 Ck✓k8/k✓k41.

Inserting into (229) gives

E[|F1|]Ck✓k8/k✓k41,

and the first claim (142) follows.
Consider the second claim (142) next. By (229) and Cauchy-Schwarz inequality,

Var(F1)C(Var(Xa) +Var(Xb) +Var(Xc))C(Var(Xa) +E[X2
b
] +E[X2

c ]).(230)

We now consider Var(Xa), E[X2
b
], and E[X2

c ], separately. Note that

• The proof of Var(Xa) is similar to that of Var(Xa) in Item (a).
• The proof of E[X2

b
] is similar to that of

P4
s=1E[X2

bs
] in Item (a).

• The proof of E[X2
c ] is similar to that of E[X2

c ] in Item (a).

For these reasons, we omit the proof details and only state the claims. We have that under
both the null and the alternative,

(231) Var(Xa)Ck✓k8k✓k63/k✓k81.

(232) Var(X2
b
) +Var(Ya3)Ck✓k4k✓k63/k✓k41,

(233) E[X2
c ]Ck✓k123 /k✓k41,

Finally, inserting (231), (232), and (233) into (229) gives that, both under the null and the
alternative,

Var(F1)C[k✓k8k✓k63/k✓k81 + k✓k8k✓k63/k✓k61 + k✓k123 /k✓k41]Ck✓k8k✓k63/k✓k61,

where we have used k✓k!1 and k✓k33 ⌧k✓k2 ⌧k✓k1. This gives (142) and completes the
proof for Item (i).

Consider Item (j). The goal is to show (143). Recall that

Fb =
X

i1,i2,i3,i4(dist)

⌘i2⌘
2
i3
⌘i4
⇥
(⌘i1 � ⌘̃i1)

2(⌘i2 � ⌘̃i2)(⌘i4 � ⌘̃i4)
⇤
,

and that

e⌘� ⌘ = v�1/2W1n.

Plugging this into Fb, we have

Fb = v�2
X

i1,i2,i3,i4(dist)

X

j1,`1,j2,j4

j1 6=i1,`1 6=i1,j2 6=i2,j4 6=i4

⌘i2⌘
2
i3
⌘i4Wi1j1Wi1`1

Wi2j2Wi4j4 .
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By basic combinatorics and basic algebra, we have

Wi1j1Wi1`1
Wi2j2Wi4j4 =

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

W 3
i1i2

Wi4j4 , if j1, `1 = i2, j2 = i1,
W 3

i1i4
Wi2j2 , if j1, `1 = i4, j4 = i1,

W 2
i1i2

W 2
i1i4

, if (j1, j2) = (i2, i1), (`1, j4) = (i4, i1),
W 2

i1i2
W 2

i1i4
, if (`1, j2) = (i2, i1), (j1, j4) = (i4, i1),

W 2
i1i4

W 2
i1i2

, if (j1, j4) = (i4, i1), (`1, j2) = (i2, i1),
W 2

i1i4
W 2

i1i2
, if (`1, j4) = (i4, i1), (j1, j2) = (i2, i1),

W 2
i1j1

W 2
i2i4

, if j1 = `1, (j2, j4) = (i4, i2),
W 2

i1i2
Wi1j1Wi4j4 , if `1 = i2, j2 = i1, j1 6= i2, i4,

W 2
i1i2

Wi1`1
Wi4j4 , if j1 = i2, j2 = i1, `1 6= i2, i4,

W 2
i1i4

Wi1j1Wi2j2 , if `1 = i4, j4 = i1, `1 6= i2, i4,
W 2

i1i4
Wi1`1

Wi2j2 , if j1 = i4, j4 = i1, j1 6= i2, i4,
W 2

i2i4
Wi1j1Wi1`1

, if j1 6= `1, (j2, j4) = (i4, i2).
W 2

i1j1
Wi2j2Wi4j4 , if j1 = `1, (j1, j2) 6= (i2, i1), (j1, j4) 6= (i4, i1),

Wi1j1Wi1`1
Wi2j2Wi4j4 , otherwise.

By these and symmetry, we can further split Fb into 7 different terms,
We decompose

(234) Fb = 2Ya1 + 4Ya2 + Ya3 + 4Yb1 + Yb2 + Yb3 + Yc,

where

Ya1 = v�2
X

i1,i2,i3,i4(dist)

X

j4,j4 6=i4

⌘i2⌘
2
i3
⌘i4W

3
i1i2

Wi4j4 ,

Ya2 = v�2
X

i1,i2,i3,i4(dist)

⌘i2⌘
2
i3
⌘i4W

2
i1i2

W 2
i1i4

,

Ya3 = v�2
X

i1,i2,i3,i4(dist)

X

j1,j1 6=i1

⌘i2⌘
2
i3
⌘i4W

2
i1j1

W 2
i2i4

,

Yb1 = v�2
X

i1,i2,i3,i4(dist)

X

j1,j4

j1 6=i1,j4 6=i4

⌘i2⌘
2
i3
⌘i4W

2
i1i2

Wi1j1Wi4j4 ,

Yb2 = v�2
X

i1,i2,i3,i4(dist)

X

j1,`1

j1,`1 6=i1

⌘i2⌘
2
i3
⌘i4W

2
i2i4

Wi1j1Wi1`1
,

Yb3 = v�2
X

i1,i2,i3,i4(dist)

X

j1,j2,j4

j1 6=i1,j2 6=i2,j4 6=i4

⌘i2⌘
2
i3
⌘i4W

2
i1j1

Wi2j2Wi4j4 ,

Yc = v�2
X

i1,i2,i3,i4(dist)

X

j1,`1,j2,j4

j1,`1 /2{i1,i2,i4}
j2 /2{i1,i4},j4 /2{i1,i2}

⌘i2⌘
2
i3
⌘i4Wi1j1Wi1`1

Wi2j2Wi4j4 ,

We now consider the two claims in (143) separately. Consider the first claim. It is seen that
only the second and the third terms above have non-zero mean. Recall that both under the
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null and the alternative, for any i 6= j, E[W 2
ij
] = ⌦ij(1 � ⌦ij)  C✓i✓j , 0 < ⌘i  C✓i, and

that v ⇣ k✓k21. It follows

(235) 0< E[Ya2] v�2
X

i1,i2,i3,i4(dist)

✓i2✓
2
i3
✓i4 · ✓2i1✓i2✓i4 Ck✓k8/k✓k41.

and

(236) 0< E[Ya3] v�2
X

i1,i2,i3,i4(dist)

X

j1

✓i2✓
2
i3
✓i4 · ✓i1✓i2✓j1✓i4 Ck✓k6/k✓k21.

Combining (235), (236) with (234) gives

E[|F2|]C[k✓k8/k✓k41 + k✓k6/k✓k21]Ck✓k6/k✓k21,

where we’ve used the universal inequality that k✓k2  k✓k1. It follows the first claim of (143).
We now show the second claim of (143). By Cauchy-Schwarz inequality,

Var(Fb)C
�
Var(Ya1) +Var(Ya2) +Var(Ya3) +Var(Yb1) +Var(Yb2) +Var(Yb3) +Var(Yc)

�

C
�
Var(Ya1) +Var(Ya2) +Var(Ya3) +E[Y 2

b1] +E[Y 2
b2] +E[Y 2

b3] +E[Y 2
c ]
�
.

(237)

We now consider Var(Ya1), Var(Ya2) + Var(Ya3), E[Y 2
b1] + E[Y 2

b2] + E[Y 2
b3], and E[Y 2

c ],
separately. Note that

• The proof of Var(Ya1) is similar to that of Var(Ya) in Item (b).
• The proof of Var(Ya2) and Var(Ya3) are similar to that of Var(Xa) in Item (a).
• The proof of

P3
s=1E[Y 2

bs
] is similar to that of

P4
s=1E[X2

bs
] in Item (a).

• The proof of E[Y 2
c ] is similar to that of E[X2

c ] in Item (a).

For these reasons, we omit the proof details and only state the claims. We have that under
both the null and the alternative,

(238) Var(Ya1)Ck✓k8k✓k33/k✓k51.

(239) Var(Ya2) +Var(Ya3)Ck✓k4k✓k63/k✓k41,

(240)
3X

s=1

E[Y 2
bs
]Ck✓k4k✓k63/k✓k21,

(241) E[Y 2
c ]Ck✓k6k✓k63/k✓k41.

Finally, inserting (238), (239), (240), and (241) into (237) gives

Var(F2)C[k✓k8k✓k33/k✓k51 + k✓k4k✓k63/k✓k41 + k✓k4k✓k63/k✓k21 + k✓k6k✓k63/k✓k41]

Ck✓k4k✓k63/k✓k41,(242)

where we have used k✓k33 ⌧k✓k2 ⌧k✓k1, k✓k!1 and k✓k4  k✓k1k✓k33. This completes
the proof of (143).

Consider Item (k). The goal is to show (144) and (145). Recall that

Fc =
X

i1,i2,i3,i4(dist)

⌘2i2⌘
2
i4

⇥
(⌘i1 � ⌘̃i1)

2(⌘i3 � ⌘̃i3)
2
⇤
,
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and that e⌘� ⌘ = v�1/2W1n. Plugging this into F3 gives

Fc = v�2
X

i1,i2,i3,i4(dist)

X

j1,`1,j2,j4

j1 6=i1,`1 6=i1,j3 6=i3,`3 6=i3

⌘2i2⌘
2
i4
Wi1j1Wi1`1

Wi3j3Wi3`3
.

By basic combinatorics and basic algebra, we have

Wi1j1Wi1`1
Wi3j3Wi3`3

=

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

W 4
i1i3

, if j1 = `1 = i1, j3 = `3 = i1,
W 3

i1i3
Wi1j1 , if j3 = `3 = i1, `1 = i3,

W 3
i1i3

Wi1`1
, if j3 = `3 = i1, j1 = i3,

W 3
i1i3

Wi3j3 , if j1 = `1 = i3, `3 = i1,
W 3

i1i3
Wi3`3

, if j1 = `1 = i3, j3 = i1,
W 2

i1j1
W 2

i3j3
, if j1 = `1, j3 = `3,

W 2
i1j1

Wi3j3Wi3`3
, if j1 = `1 6= i3, j3 6= `3,

W 2
i3j3

Wi1j1Wi1`1
, if j3 = `3 6= i1, j1 6= `1,

W 2
i1i3

Wi1`1
Wi3`3

, if j1 = i3, j3 = i1,
W 2

i1i3
Wi1j1Wi3j3 , if `1 = i3, `3 = i1,

W 2
i1i3

Wi1j1Wi3`3
, if `1 = i3, j3 = i1,

W 2
i1i3

Wi1`1
Wi3j3 , if j1 = i3, `3 = i1,

Wi1j1Wi1`1
Wi3j3Wi3`3

, otherwise.

By these and symmetry, we can further split F3 into 6 different terms:

(243) Fc = Za + 4Zb1 +Zb2 + 2Zc1 + 4Zc2 +Zd,

where

Za = v�2
X

i1,i2,i3,i4(dist)

⌘2i2⌘
2
i4
W 4

i1i3
,

Zb1 = v�2
X

i1,i2,i3,i4(dist)

X

j4,j4 6=i4

⌘2i2⌘
2
i4
W 3

i1i3
Wi3j3 ,

Zb2 = v�2
X

i1,i2,i3,i4(dist)

X

j1,j1 6=i1,j3,j3 6=i3

⌘2i2⌘
2
i4
W 2

i1j1
W 2

i3j3
,

Zc1 = v�2
X

i1,i2,i3,i4(dist)

X

j1,j3,`3

j1 /2{i1,i3},j3,`3

⌘2i2⌘
2
i4
W 2

i1j1
Wi3j3Wi3`3

,

Zc2 = v�2
X

i1,i2,i3,i4(dist)

X

`1,`3

`1 6=i1,`3 6=i3

⌘2i2⌘
2
i4
W 2

i1i3
Wi1`1

Wi3`3
,

Zd = v�2
X

i1,i2,i3,i4(dist)

X

j1,`1,j3,`3

j1 6=`1,j3 6=`3
j1,`1 6=i3,j3,`3 6=i1

⌘2i2⌘
2
i4
Wi1j1Wi1`1

Wi3j3Wi3`3
.

We now show (144) and (145) separately. Consider (144) first. It is among all the 6 Z-
terms, only Za and Zb2 have non-zero means. We now consider E[Za] and E[Zb2] separately.

First, consider E[Za]. By similar arguments, both under the null and the alternative,

E[W 4
i1i3

]C⌦i1i3 C✓i1✓i3 .
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Recalling that 0< ⌘i C✓i and v ⇣ k✓k2, it is seen that

(244) E[Za]C(k✓k1)�4
X

i1,i2,i3,i4(dist)

✓2i2✓
2
i4
✓i1✓i3 Ck✓k4/k✓k21.

Next, consider E[Zb2]. First, recall that under the null, ⌦= ✓✓0, v = 10n(⌦�diag(⌦))1n, and
⌘ = v�1/2(⌦� diag(⌦)1n. It is seen v ⇠ k✓k21, ⌘i = (1+ o(1)✓i, 1 i n, where o(1)! 0
uniformly for all 1  i  n, and for any i 6= j, E[W 2

ij
] = (1 + o(1))✓i✓j , where o(1) ! 0

uniformly for all 1 i, j  n. It follows

(245) E[Zb2] = v�2
X

i1,i2,i3,i4(dist)

X

j1,j1 6=i1,j3,j3 6=i3

⌘2i2⌘
2
i4
E[W 2

i1j1
W 2

i3j3
],

which

⇠ (k✓k1)�4
X

i1,i2,i3,i4(dist)

X

j1,j1 6=i1,j3,j3 6=i3

✓i1✓
2
i2
✓i3✓

2
i4
✓j1✓j3 ⇠ k✓k4.

Second, under the alternative, by similar argument, we have that v ⇣ k✓k21, 0< ⌘i <C✓i for
all 1 i n, and E[W 2

ij
] C✓i✓j for all 1 i, j  n, i 6= j. Similar to that under the null,

we have

(246) 0< |E[Zb2]|Ck✓k4.
Inserting (244), (245), and (246) into (243) and recalling that the mean of all other Z terms
are 0,

E[F3]⇠ k✓k4, under the null,

and

E[F3]Ck✓k4, under the alternative,

where we have used k✓k1 !1. This proves (144).
We now consider (145). By Cauchy-Schwarz inequality,

Var(Fc)C
�
Var(Za) +Var(Zb1) +Var(Zb2) +Var(Zc1) +Var(Zc2) +Var(Zd)

�

C
�
Var(Za) +E[Z2

b1] + Var(Zb2) +E[Z2
c1] +E[Z2

c2] +E[Z2
d
]
�
.(247)

Consider Var(Za). Write

Var(Za) = v�4
X

i1,i2,i3,i4(dist)
i
0
1,i

0
2,i

0
3,i

0
4(dist)

⌘2i2⌘
2
i4
⌘2
i
0
2
⌘2
i
0
4
E[(W 4

i1i3
�E[W 4

i1i3
])(W 4

i
0
1i

0
3
�E[W 4

i
0
1i

0
3
])].

Fix a term (W 4
i1i3

� E[W 4
i1i3

])(W 4
i
0
1i

0
3
� E[W 4

i
0
1i

0
3
]). When the mean is nonzero, we must have

{i1, i3}= {i01, i03}, and when this happens,

E[(W 4
i1i3

�E[W 4
i1i3

])(W 4
i
0
1i

0
3
�E[W 4

i
0
1i

0
3
])] = Var(W 4

i1i3
).

For a random variable X , we have Var(X) E[X2], and it follows that

Var(W 4
i1i3

) E[W 8
i1i3

] E[W 2
i1i3

],

where we have used the property that 0  W 2
i1i3

 1; note that E[W 2
i1i3

]  C✓i1✓i3 . Recall
that v ⇣ k✓k21 and 0< ⌘i C✓i for all 1 i n. Combining these gives

(248) Var(Za)C(k✓k�8
1 ) ·

X

i1,i2,i3,i4(dist)
i
0
2,i

0
4(dist)

✓2i2✓
2
i4
✓2
i
0
2
✓2
i
0
4
✓i1✓i3 Ck✓k8/k✓k61.

We now consider all other terms on the right hand side of (247). Note that
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• The proof of E[Z2
b1] is similar to that of Ya1 in Item (b).

• The proof of Var(Zb2) is similar to that of Xa in Item (a).
• The proof of E[Z2

c1] and E[Z2
c2] are similar to that of Xb in Item (a).

• The proof of E[Z2
d
] is similar to that of Xc in Item (a).

For these reasons, we skip the proof details. We have that, under both the null and the alter-
native,

(249) E[Z2
b1]Ck✓k8k✓k33/k✓k51,

(250) Var(Zb2)Ck✓k8/k✓k21,

(251) E[Z2
c1] +E[Z2

c2]Ck✓k10/k✓k21,

and

(252) E[Z2
d
]Ck✓k12/k✓k41.

Inserting (248), (249), (250), (251) and (252) into (247) gives

Var(Fc)C[k✓k8/k✓k61 + k✓k8/k✓k21 + k✓k10/k✓k21 + k✓k12/k✓k41]

Ck✓k10/k✓k21,

which completes the proof of (145).

G.4.9. Proof of Lemma G.10. Define an event D as

D =
�
|V � v| k✓k1 · xn

 
, for

p
log(k✓k1)⌧ xn ⌧k✓k1.

We aim to show that

(253) E[(Qn �Q⇤
n)

2 · IDc ] = o(k✓k8).

First, we bound the tail probability of |V � v|. Write

V � v = 2
X

i<j

(Aij �⌦ij).

The variables {Aij � ⌦ij}1i<jn are mutually independent with mean zero. They satisfy
|Aij �⌦ij | 1 and

P
i<j

Var(Aij �⌦ij)
P

i<j
⌦ij  10n⌦1n/2 k✓k21/2. Applying the

Bernstein’s inequality, for any t > 0,

P
⇣���2

X

i<j

(Aij �⌦ij)
���> t

⌘
 2exp

⇣
� t2/2

2k✓k21 + t/3

⌘
.

We immediately have that, for some positive constants C1,C2 > 0,

(254) P(|V � v|> t)
(
2exp

�
� C1

k✓k2
1
t2
�
, when xnk✓k1  t k✓k21,

2exp
�
�C2t

�
, when t > k✓k21.

Especially, letting t= xnk✓k1, we have

(255) P(Dc) 2exp(�C1x
2
n).

Next, we derive an upper bound of (Qn �Q⇤
n)

2 in terms of V . Recall that V is the total
number of edges and that Qn =

P
i,j,k,`(dist)MijMjkMk`M`i, where Mij = Aij � ⌘̂i⌘̂j . If

one node of i, j, k, ` has a zero degree (say, node i), then Aij = 0 and ⌘̂i = 0, and it follows
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that Mij = 0 and MijMjkMk`M`i = 0. Hence, only when (i, j, k, `) all have nonzero de-
grees, this quadruple has a contribution to Qn. Since V is the total number of edges, there
are at most V nodes that have a nonzero degree. It follows that

|Qn|CV 4.

Moreover, Q⇤
n =

P
i,j,k,`(dist)M

⇤
ij
M⇤

jk
M⇤

k`
M⇤
`i

, where M⇤
ij
= e⌦ij + Wij + �ij . Re-write

M⇤
ij
= Aij � ⌘⇤

i
⌘⇤
j
+ ⌘i(⌘j � ⌘̃j) + ⌘j(⌘j � ⌘̃j). First, since ⌘⇤

i
 C✓i and ⌘i  C✓i (see

(81)), |M⇤
ij
|  Aij + C✓i✓j + C✓i|⌘j � ⌘̃j | + C✓j |⌘i � ⌘̃i|. Second, note that ⌘̃i equals to

v�1/2 times degree of node i, where v ⇣ k✓k21 according to (80). It follows that |⌘i � ⌘̃i| 
C(✓i + k✓k�1

1 V ). Therefore,
|M⇤

ij |Aij +C✓i✓j +Ck✓k�1
1 V (✓i + ✓j).

We plug it into the definition of Q⇤
n and note that there are at most V pairs of (i, j) such that

Aij 6= 0. By elementary calculation,
|Q⇤

n|C(V 4 + k✓k41).
Combining the above gives
(256) (Qn �Q⇤

n)
2  2Q2

n + 2(Q⇤
n)

2 C(V 8 + k✓k81).
Last, we show (253). By (256) and that V 8 Cv8 +C|V � v|8, we have

E[(Qn �Q⇤
n)

2 · IDc ]CE[|V � v|8 · IDc ] +C(v8 + k✓k81) · P(Dc)

CE[|V � v|8 · IDc ] +Ck✓k161 · P(Dc),(257)

where the second line is from v ⇣ k✓k21. Note that xn �
p

log(k✓k1). For n sufficiently
large, x2n � 17C�1

1 log(k✓k1). Combining it with (255), we have

(258) k✓k161 · P(Dc) k✓k161 · 2e�C1x
2
n  k✓k161 · 2e�17k✓k1 = o(1).

We then bound E[|V � v|8 · IDc ]. Let f(t) and F (t) be the probability density and CDF of
|V � v|, and write F̄ (t) = 1�F (t). Using integration by part, for any continuously differen-
tiable function g(t) and x > 0,

R1
x

g(t)f(t)dt= g(x)F̄ (x) +
R1
x

g0(t)F̄ (t)dt. We apply the
formula to g(t) = t8 and x= xnk✓k1. It yields

E[|V � v|8 · IDc ] = (xnk✓k1)8 · P(Dc) +

Z 1

xnk✓k1

8t7 · P(|V � v|> t)dt

⌘ I + II.

Consider I . By (258) and xn ⌧k✓k1,
I ⌧k✓k161 · P(Dc) = o(1).

Consider II . By (254), (258), and elementary probability,

II  8(k✓k21)7 · P
�
xnk✓k1 < |V � v| k✓k21

�
+

Z

k✓k2
1

8t7 · P(|V � v|> t)dt

Ck✓k141 · P(Dc) +

Z

k✓k2
1

8t7 · 2e�C2tdt

= o(1),

where in the last line we have used (258) and the fact that
R1
x

t7e�C2tdt ! 0 as x ! 1.
Combining the bounds for I and II gives
(259) E[|V � v|8 · IDc ] = o(1).

Then, (253) follows by plugging (258)-(259) into (257).
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TABLE G.4
The 34 types of the 175 post-expansion sums for ( eQ⇤

n �Q
⇤
n).

Notation # Nr̃ (N� ,Ne⌦,NW ) Examples N
⇤
W

R1 4 1 (0, 0, 3)
P

i,j,k,`(dist) r̃ijWjkWk`W`i 5
R2 8 1 (0, 1, 2)

P
i,j,k,`(dist) r̃ij

e⌦jkWk`W`i 4
R3 4

P
i,j,k,`(dist) r̃ijWjk

e⌦k`W`i 4
R4 8 1 (0, 2, 1)

P
i,j,k,`(dist) r̃ij

e⌦jk
e⌦k`W`i 3

R5 4
P

i,j,k,`(dist) r̃ij
e⌦jkWk`

e⌦`i 3
R6 4 1 (0, 3, 0)

P
i,j,k,`(dist) r̃ij

e⌦jk
e⌦k`

e⌦`i 2
R7 8 1 (1, 0, 2)

P
i,j,k,`(dist) r̃ij�jkWk`W`i 5

R8 4
P

i,j,k,`(dist) r̃ijWjk�k`W`i 5
R9 8 1 (1, 1, 1)

P
i,j,k,`(dist) r̃ij�jk

e⌦k`W`i 4
R10 8

P
i,j,k,`(dist) r̃ij

e⌦jkWk`�`i 4
R11 8

P
i,j,k,`(dist) r̃ijWjk�k`

e⌦`i 4
R12 8 1 (1, 2, 0)

P
i,j,k,`(dist) r̃ij�jk

e⌦k`
e⌦`i 3

R13 4
P

i,j,k,`(dist) r̃ij
e⌦jk�k`

e⌦`i 3
R14 8 1 (2, 0, 1)

P
i,j,k,`(dist) r̃ij�jk�k`W`i 5

R15 4
P

i,j,k,`(dist) r̃ij�jkWk`�`i 5
R16 8 1 (2, 1, 0)

P
i,j,k,`(dist) r̃ij�jk�k`

e⌦`i 4
R17 4

P
i,j,k,`(dist) r̃ij�jk

e⌦k`�`i 4
R18 4 1 (3, 0, 0)

P
i,j,k,`(dist) erij�jk�k`�`i 5

R19 4 2 (0, 0, 2)
P

i,j,k,`(dist) r̃ij r̃jkWk`W`i 6
R20 2

P
i,j,k,`(dist) r̃ijWjk r̃k`W`i 6

R21 4 2 (0, 2, 0)
P

i,j,k,`(dist) r̃ij r̃jk
e⌦k`

e⌦`i 4
R22 2

P
i,j,k,`(dist) r̃ij

e⌦jk r̃k`
e⌦`i 4

R23 4 2 (2, 0, 0)
P

i,j,k,`(dist) r̃ij r̃jk�k`�`i 6
R24 2

P
i,j,k,`(dist) r̃ij�jk r̃k`�`i 6

R25 8 2 (0, 1, 1)
P

i,j,k,`(dist) r̃ij r̃jk
e⌦k`W`i 5

R26 4
P

i,j,k,`(dist) r̃ij
e⌦jk r̃k`W`i 5

R27 8 2 (1, 1, 0)
P

i,j,k,`(dist) r̃ij r̃jk�k`
e⌦`i 5

R28 4
P

i,j,k,`(dist) r̃ij�jk r̃k`
e⌦`i 5

R29 8 2 (1, 0, 1)
P

i,j,k,`(dist) r̃ij r̃jk�k`W`i 6
R30 4

P
i,j,k,`(dist) r̃ij�jk r̃k`W`i 6

R31 4 3 (0, 0, 1)
P

i,j,k,`(dist) r̃ij r̃jk r̃k`W`i 7
R32 4 3 (0, 1, 0)

P
i,j,k,`(dist) r̃ij r̃jk r̃k`

e⌦`i 6
R33 4 3 (1, 0, 0)

P
i,j,k,`(dist) r̃ij r̃jk r̃k`�`i 7

R34 1 4 (0, 0, 0)
P

i,j,k,`(dist) r̃ij r̃jk r̃k`r̃`i 8

G.4.10. Proof of Lemma G.11. There are 175 post-expansion sums in ( eQ⇤
n �Q⇤

n). They
divide into 34 different types, denoted by R1-R34 as shown in Table G.4. It suffices to prove
that, for each 1 k  34, under the null hypothesis,

(260)
��E[Rk]

��= o(k✓k4), Var(Rk) = o(k✓k8),
and under the alternative hypothesis,

(261)
��E[Rk]

��= o(↵4k✓k8), Var(Rk) =O(k✓k8 + ↵6k✓k8k✓k63).

We need some preparation. First, recall that r̃ij = � v

V
(⌘̃i � ⌘i)(⌘̃j � ⌘j). It follows that

each post-expansion sum has the form

(262)
⇣ v

V

⌘Nr̃ X

i,j,k,`(dist)

aijbjkck`d`i,
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where aij takes values in {e⌦ij ,Wij , �ij ,�(⌘̃i � ⌘i)(⌘̃j � ⌘j)} and bjk, ck`, d`i are similar.
The variable v

V
has a complicated correlation with each summand, so we want to get rid of

it. Denote the variable in (262) by Y . Write m=Nr̃ and

(263) Y =
⇣ v

V

⌘m
X, where X =

X

i,j,k,`(dist)

aijbjkck`d`i.

We compare the mean and variance of X and Y . By assumption,
p

log(k✓k1)⌧k✓k1/k✓k2.
Then, there exists a sequence xn such that

p
log(k✓k1)⌧ xn ⌧k✓k1/k✓k2, as n!1.

We introduce an event

D =
�
|V � v| k✓k1xn

 
.

In Lemma G.10, we have proved E[(Qn�Q⇤
n)

2 ·IDc ] = o(1). By similar proof, we can show:
as long as |Y �X| is bounded by a polynomial of V and k✓k1,

(264) E[(Y �X)2 · IDc ] = o(1).

Additionally, on the event D, since v ⇣ k✓k21 �k✓k1xn, we have |V � v|= o(v). It follows
that |V�v|

V
. |V�v|

v
 Ck✓k�1xn = o(1). For any fixed m � 1, (1 + x)m  1 + Cx for x

being close to 0. Hence, |1� v
m

V m |C|1� v

V
|Ck✓k�1

1 xn = o(k✓k�2). It implies

(265) |Y �X|= o(k✓k�2) · |X|, on the event D.

By (264)-(265) and elementary probability,

|E[Y �X]| |E[(Y �X) · ID]|+ |E[(Y �X) · IDc ]|

 o(k✓k�2) ·E[|X| · ID] +
p
E[(Y �X)2 · IDc ]

 o(k✓k�2)
p

E[X2] + o(1),

and

Var(Y ) 2Var(X) + 2Var(Y �X)

 2Var(X) + 2E[(Y �X)2]

= 2Var(X) + 2E[(Y �X)2 · ID] + 2E[(Y �X)2 · IDc ]

 2Var(X) + o(k✓k�4) ·E[X2] + o(1).

Under the null hypothesis, suppose we can prove that

(266) E[X2] = o(k✓k8).

Since E[X2] = (E[X])2 + Var(X), it implies |E[X]| = o(k✓k4) and Var(X) = o(k✓k8).
Therefore,

|E[Y ]| |E[X]|+ |E[Y �X]|= o(k✓k4),

Var(Y )CVar(X) + o(k✓k�4) ·E[X2] + o(1) = o(k✓k8).

Under the alternative hypothesis, suppose we can prove that

(267) |E[X]|=O(↵2k✓k6), Var(X) = o(k✓k8 + ↵6k✓k8k✓k63).
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Since E[X2] = (E[X])2 +Var(X), we have E[X2] =O(↵4k✓k12). Then,

|E[Y ]|O(↵2k✓k6) + o(k✓k�2) ·O(↵2k✓k6) = o(↵4k✓k8),

Var(Y ) o(k✓k8 + ↵6k✓k8k✓k63) + o(k✓k�4) ·O(↵4k✓k12) = o(k✓k8 + ↵6k✓k8k✓k63).

In conclusion, to prove that Y satisfies the requirement in (260)-(261), it is sufficient to prove
that X satisfies (266)-(267). We remark that (267) puts a more stringent requirement on the
mean of the variable, compared to (261).

From now on, in the analysis of each Rk of the form (262), we shall always neglect the
factor ( v

V
)Nr̃ , and show that, after this factor is removed, the random variable satisfies (266)-

(267). This is equivalent to pretending

r̃ij =�(⌘̃i � ⌘i)(⌘̃j � ⌘j)

and proving each Rk satisfies (266)-(267). Unless mentioned, we stick to this mis-use of
notation r̃ij in the proof below.

Second, we divide 34 terms into several groups using the intrinsic order of W defined
below. Note that r̃ij = �(⌘̃i � ⌘i)(⌘̃j � ⌘j), �ij = ⌘i(⌘j � ⌘̃j) + ⌘j(⌘i � ⌘̃i), and ⌘̃i � ⌘i =
1p
v

P
s 6=i

Wis. We thus have

r̃ij =�1

v

⇣X

s 6=i

Wis

⌘⇣X

t 6=j

Wjt

⌘
, �ij =� 1p

v
⌘i
⇣X

t 6=j

Wjt

⌘
� 1p

v
⌘j
⇣X

s 6=i

Wis

⌘
.

Each r̃ij is a weighted sum of terms like WisWjt, and each �ij is a weighted sum of terms
like Wjt. Intuitively, we view r̃-term as an “order-2 W -term" and view �-term as “order-1
W -term." It motivates the definition of intrinsic order of W as

(268) N⇤
W =NW +N� + 2Nr̃.

We group 34 terms by the value of N⇤
W

; see the last column of Table G.4.

G.4.10.1. Analysis of post-expansion sums with N⇤
W

 4. There are 14 such terms, includ-
ing R2-R6, R9-R13, R16-R17, and R21-R22. They all equal to zero under the null hypothesis,
so it is sufficient to show that they satisfy (267) under the alternative hypothesis. We prove
by comparing each Rk to some previously analyzed terms. Take R9 for example. Plugging
in the definition of r̃ij and �ij gives

R9 =
X

i,j,k,`(dist)

[(⌘̃i � ⌘i)(⌘̃j � ⌘j)][(⌘̃j � ⌘j)⌘k + ⌘j(⌘̃k � ⌘k)]e⌦k`W`i

=R9a +R9b,

where

R9a =
X

i,j,k,`(dist)

⌘ke⌦k` · [(⌘̃i � ⌘i)(⌘̃j � ⌘j)
2W`i],

R9b =
X

i,j,k,`(dist)

⌘j e⌦k` · [(⌘̃i � ⌘i)(⌘̃j � ⌘j)(⌘̃k � ⌘k)W`i].(269)

At the same time, we recall that T1 in Lemmas G.8-G.9 is defined as

T1 =
X

i,j,k,`(dist)

�ij�jk�k`W`i =
X

i,j,k,`(dist)

�`j�jk�kiWi`.
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In the proof of the above two lemmas, we express T1 as the weighted sum of T1a-T1d; see
(130). Note that T1a and T1d in (130) can be re-written as

T1d =
X

i,j,k,`(dist)

[⌘`(⌘̃j � ⌘j)][(⌘̃j � ⌘j)⌘k][⌘k(⌘̃i � ⌘i)
⇤
Wi`

=
X

i,j,k,`(dist)

⌘2
k
⌘` · [(⌘̃i � ⌘i)(⌘̃j � ⌘j)

2W`i],

T1a =
X

i,j,k,`(dist)

[⌘`(⌘̃j � ⌘j)][⌘j(⌘̃k � ⌘k)][⌘k(⌘̃i � ⌘i)
⇤
Wi`

=
X

i,j,k,`(dist)

⌘j⌘k⌘` · [(⌘̃i � ⌘i)(⌘̃j � ⌘j)(⌘̃k � ⌘k)Wi`].(270)

Compare (269) and (270). It is seen that R9a and T1d have the same structure, where the
non-stochastic coefficients in the summand satisfy |⌘ke⌦k`|  C↵✓2

k
✓` and |⌘2

k
⌘`|  C✓2

k
✓`,

respectively. This means we can bound |E(R9a)| and Var(R9a) in the same way as we bound
|E[T1d]| and Var(T1d), and the bounds have an extra factor of ↵ and ↵2, respectively. In
detail, in the proof of Lemmas G.8-G.9, we have shown

|E[T1d]|Ck✓k4, Var(T1d)
Ck✓k6k✓k33

k✓k1
.

It follows immediately that

|E[R9a]|C↵k✓k4 = o(↵2k✓k6), Var(T1d)
C↵2k✓k6k✓k33

k✓k1
= o(k✓k8).

Similarly, since we have proved

|E[T1a]|
Ck✓k6

k✓k21
, Var(T1a)

Ck✓k4k✓k63
k✓k21

,

it follows immediately that

|E[R9b]|
C↵k✓k6

k✓k21
= o(↵2k✓k6), Var(R9b)

C↵2k✓k4k✓k63
k✓k21

= o(k✓k8).

This proves (267) for X =R9a.
We use the same strategy to bound all other terms with N⇤

W
 4. The details are in Ta-

ble G.5. In each row of the table, the left column displays a targeting variable X , and the
right column displays a previously analyzed variable, which we call X⇤, that has a similar
structure as X . It is not hard to see that we can obtain upper bounds for |E[X]| and Var(X)
from multiplying the upper bounds of |E[X⇤]| and Var(X⇤) by ↵m and ↵2m, respectively,
where m is a nonnegative integer (e.g., m = 1 in the analysis of R9). Using our previous
results, each X⇤ in the right column satisfies

|E[X⇤]|=O(↵2k✓k6), Var(X⇤) = o(k✓k8 + ↵6k✓k8k✓k63).

So, each X in the left column satisfies (267).

G.4.10.2. Analysis of post-expansion sums with N⇤
W

= 5. There are 10 such terms, includ-
ing R1, R7-R8, R14-R15, R18, and R25-R28. Using the the notation

Gi = ⌘̃i � ⌘i,
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TABLE G.5
The 14 types of post-expansion sums with N

⇤
W

 4. The right column displays the post-expansion sums defined

before which have similar forms as the post-expansion sums in the left column. Definitions of the terms in the

right column can be found in (94), (100), (106), (116), (122), (130), (131), and (132). For some terms in the right

column, we permute (i, j, k, `) in the original definition for ease of comparison with the left column. (In all

expressions, the subscript “i, j, k, `(dist)" is omitted.)

Expression Expression
R2

P
(⌘̃i � ⌘i)(⌘̃j � ⌘j)e⌦jkWk`W`i Z1b

P
(⌘̃i � ⌘i)⌘j(⌘̃j � ⌘j)⌘kWk`W`i

R3
P

(⌘̃i � ⌘i)(⌘̃j � ⌘j)Wjk
e⌦k`W`i Z2a

P
⌘`(⌘̃j � ⌘j)Wjk⌘k(⌘̃i � ⌘i)Wi`

R4
P

(⌘̃i � ⌘i)(⌘̃j � ⌘j)e⌦jk
e⌦k`W`i Z3d

P
(⌘̃i � ⌘i)⌘j(⌘̃j � ⌘j)⌘ke⌦k`W`i

R5
P

(⌘̃i � ⌘i)(⌘̃j � ⌘j)e⌦jkWk`
e⌦`i Z4b

Pe⌦ij(⌘̃j � ⌘j)⌘kWk`⌘`(⌘̃i � ⌘i)

R6
P

(⌘̃i � ⌘i)(⌘̃j � ⌘j)e⌦jk
e⌦k`

e⌦`i Z5a
P

⌘i(⌘̃j � ⌘j)e⌦jk
e⌦k`⌘`(⌘̃i � ⌘i)

R9
P

(⌘̃i � ⌘i)(⌘̃j � ⌘j)
2
⌘k

e⌦k`W`i T1d
P

⌘`(⌘̃j � ⌘j)
2
⌘
2
k
(⌘̃i � ⌘i)Wi`P

(⌘̃i � ⌘i)(⌘̃j � ⌘j)⌘j(⌘̃k � ⌘k)e⌦k`W`i T1a
P

⌘`(⌘̃j � ⌘j)⌘j(⌘̃k � ⌘k)⌘k(⌘̃i � ⌘i)Wi`

R10
P

(⌘̃i � ⌘i)
2(⌘̃j � ⌘j)e⌦jkWk`⌘` T1c

P
(⌘̃j � ⌘j)⌘kWk`⌘`(⌘̃i � ⌘i)

2
⌘jP

(⌘̃i � ⌘i)(⌘̃j � ⌘j)e⌦jkWk`(⌘̃` � ⌘`)⌘i T1a
P

(⌘̃j � ⌘j)⌘kWk`(⌘̃` � ⌘`)⌘i(⌘̃i � ⌘i)⌘j
R11

P
(⌘̃i � ⌘i)(⌘̃j � ⌘j)Wjk⌘k(⌘̃` � ⌘`)e⌦`i T1a

P
(⌘̃i � ⌘i)⌘kWkj(⌘̃j � ⌘j)⌘`(⌘̃` � ⌘`)⌘iP

(⌘̃i � ⌘i)(⌘̃j � ⌘j)Wjk(⌘̃k � ⌘k)⌘`e⌦`i T1b
P

⌘i(⌘̃k � ⌘k)Wkj(⌘̃j � ⌘j)⌘
2
`
(⌘̃i � ⌘i)

R12
P

(⌘̃i � ⌘i)(⌘̃j � ⌘j)
2
⌘k

e⌦k`
e⌦`i T2c

P
⌘i(⌘̃j � ⌘j)

2
⌘k

e⌦k`⌘`(⌘̃i � ⌘i)P
(⌘̃i � ⌘i)(⌘̃j � ⌘j)⌘j(⌘̃k � ⌘k)e⌦k`

e⌦`i T2a
P

⌘i(⌘̃j � ⌘j)⌘j(⌘̃k � ⌘k)e⌦k`⌘`(⌘̃i � ⌘i)

R13
P

(⌘̃i � ⌘i)(⌘̃j � ⌘j)e⌦jk(⌘̃k � ⌘k)⌘`e⌦`i T2b
P

⌘i(⌘̃j � ⌘j)e⌦jk(⌘̃k � ⌘k)⌘
2
`
(⌘̃i � ⌘i)

R16
P

(⌘̃i � ⌘i)(⌘̃j � ⌘j)
2
⌘k(⌘̃k � ⌘k)⌘`e⌦`i Fb

P
⌘i(⌘̃j � ⌘j)

2
⌘k(⌘̃k � ⌘k)⌘

2
`
(⌘̃i � ⌘i)P

(⌘̃i � ⌘i)(⌘̃j � ⌘j)
2
⌘
2
k
(⌘̃` � ⌘`)e⌦`i Fb

P
⌘i(⌘̃j � ⌘j)

2
⌘
2
k
(⌘̃` � ⌘`)⌘`(⌘̃i � ⌘i)P

(⌘̃i � ⌘i)(⌘̃j � ⌘j)⌘j(⌘̃k � ⌘k)
2
⌘`

e⌦`i Fb

P
⌘i(⌘̃j � ⌘j)⌘j(⌘̃k � ⌘k)

2
⌘
2
`
(⌘̃i � ⌘i)P

(⌘̃i � ⌘i)(⌘̃j � ⌘j)⌘j(⌘̃k � ⌘k)⌘k(⌘̃` � ⌘`)e⌦`i Fa
P

⌘i(⌘̃j � ⌘j)⌘j(⌘̃k � ⌘k)⌘k(⌘̃` � ⌘`)⌘`(⌘̃i � ⌘i)

R17
P

(⌘̃i � ⌘i)(⌘̃j � ⌘j)⌘j(⌘̃k � ⌘k)e⌦k`(⌘̃` � ⌘`)⌘i Fa
P

⌘i(⌘̃j � ⌘j)⌘j(⌘̃k � ⌘k)⌘k(⌘̃` � ⌘`)⌘`(⌘̃i � ⌘i)P
(⌘̃i � ⌘i)(⌘̃j � ⌘j)

2
⌘k

e⌦k`(⌘̃` � ⌘`)⌘i Fb

P
⌘i(⌘̃j � ⌘j)

2
⌘
2
k
(⌘̃` � ⌘`)⌘`(⌘̃i � ⌘i)P

(⌘̃i � ⌘i)
2(⌘̃j � ⌘j)

2
⌘k

e⌦k`⌘` Fc
P

⌘`(⌘̃i � ⌘i)
2
⌘
2
k
(⌘̃j � ⌘j)

2
⌘`

R21
P

(⌘̃i � ⌘i)(⌘̃j � ⌘j)
2(⌘̃k � ⌘k)e⌦k`

e⌦`i Fb

P
⌘i(⌘̃j � ⌘j)

2
⌘k(⌘̃k � ⌘k)⌘

2
`
(⌘̃i � ⌘i)

R22
P

(⌘̃i � ⌘i)(⌘̃j � ⌘j)e⌦jk(⌘̃k � ⌘k)(⌘̃` � ⌘`)e⌦`i Fa
P

⌘i(⌘̃j � ⌘j)⌘j(⌘̃k � ⌘k)⌘k(⌘̃` � ⌘`)⌘`(⌘̃i � ⌘i)

we get the following expressions (note: factors of ( v

V
)m have been removed; see explanations

in (266)-(267)):

R1 =
X

i,j,k,`(dist)

GiGjWjkWk`W`i,

R7 =
X

i,j,k,`(dist)

GiGj⌘jGkWk`W`i +
X

i,j,k,`(dist)

GiG
2
j⌘kWk`W`i

=
X

i,j,k,`(dist)

⌘j(GiGjGkWk`W`i) +
X

i,j,k,`(dist)

⌘k(GiG
2
jWk`W`i),

R8 = 2
X

i,j,k,`(dist)

GiGjWjk⌘kG`W`i = 2
X

i,j,k,`(dist)

⌘k(GiGjG`WjkW`i),

R14 =
X

i,j,k,`

(dist)

GiG
2
j⌘

2
k
G`W`i + 2

X

i,j,k,`

(dist)

GiG
2
j⌘kGk⌘`W`i +

X

i,j,k,`

(dist)

GiGj⌘jGk⌘kG`W`i

=
X

i,j,k,`

(dist)

⌘2
k
(GiG

2
jG`W`i) + 2

X

i,j,k,`

(dist)

⌘k⌘`(GiG
2
jGkW`i) +

X

i,j,k,`

(dist)

⌘j⌘k(GiGjGkG`W`i),
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R15 =
X

i,j,k,`

(dist)

GiGj⌘jGkWk`G`⌘i + 2
X

i,j,k,`

(dist)

GiG
2
j⌘kWk`G`⌘i +

X

i,j,k,`

(dist)

GiG
2
j⌘kWk`⌘`Gi

=
X

i,j,k,`

(dist)

⌘i⌘j(GiGjGkG`Wk`) + 2
X

i,j,k,`

(dist)

⌘i⌘k(GiG
2
jG`Wk`) +

X

i,j,k,`

(dist)

⌘k⌘`(G
2
iG

2
jWk`),

R18 = 4
X

i,j,k,`(dist)

⌘j⌘k⌘`(G
2
iGjGkG`) + 4

X

i,j,k,`(dist)

⌘k⌘
2
`
(G2

iG
2
jGk),

R25 =
X

i,j,k,`(dist)

GiG
2
jGk

e⌦k`W`i =
X

i,j,k,`(dist)

e⌦k`(GiG
2
jGkW`i),

R26 =
X

i,j,k,`(dist)

GiGj
e⌦jkGkG`W`i =

X

i,j,k,`(dist)

e⌦jk(GiGjGkG`W`i),

R27 =
X

i,j,k,`(dist)

GiG
2
jGk⌘kG`

e⌦`i +
X

i,j,k,`(dist)

GiG
2
jG

2
k
⌘`e⌦`i

=
X

i,j,k,`(dist)

⌘ke⌦`i(GiG
2
jGkG`) +

X

i,j,k,`(dist)

⌘`e⌦`i(GiG
2
jG

2
k
),

R28 = 2
X

i,j,k,`(dist)

GiGj⌘jG
2
k
G`

e⌦`i = 2
X

i,j,k,`(dist)

⌘j e⌦`i(GiGjG
2
k
G`).

Each expression above belongs to one of the following types:

J1 =
X

i,j,k,`(dist)

GiGjWjkWk`W`i, J2 =
X

i,j,k,`(dist)

⌘j(GiGjGkWk`W`i),

J3 =
X

i,j,k,`(dist)

⌘k(GiGjG`WjkW`i), J4 =
X

i,j,k,`(dist)

⌘k(GiG
2
jWk`W`i),

J5 =
X

i,j,k,`(dist)

⌘j⌘k(GiGjGkG`W`i), J 0
5 =

X

i,j,k,`(dist)

e⌦jk(GiGjGkG`W`i),

J6 =
X

i,j,k,`(dist)

⌘k⌘`(GiG
2
jGkW`i), J 0

6 =
X

i,j,k,`(dist)

e⌦k`(GiG
2
jGkW`i),

J7 =
X

i,j,k,`(dist)

⌘2
k
(GiG

2
jG`W`i), J8 =

X

i,j,k,`(dist)

⌘k⌘`(G
2
iG

2
jWk`),

J9 =
X

i,j,k,`(dist)

⌘ke⌦`i(GiG
2
jGkG`), J10 =

X

i,j,k,`(dist)

⌘`e⌦`i(GiG
2
jG

2
k
).

Since |⌘j⌘k|C✓j✓k and |e⌦jk|C↵✓j✓k, the study of J5 and J 0
5 are similar. Also, the study

of J6 and J 0
6 are similar. We now study J1-J10. Consider J1. It is seen that

J1 =
1

v

X

i,j,k,`(dist)

⇣X

s 6=i

Wis

⌘⇣X

t 6=j

Wjt

⌘
WjkWk`W`i =

1

v

X

i,j,k,`(dist)
s 6=i,t 6=j

WisWi`WjtWjkWk`.
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Since s can be equal to ` and t can be equal to k, there are three different types:

J1a =
1

v

X

i,j,k,`(dist)

W 2
i`
W 2

jk
Wk`, J1b =

1

v

X

i,j,k,`(dist)
t/2{j,k}

W 2
i`
WjtWjkWk`,

J1c =
1

v

X

i,j,k,`(dist)
s/2{i,`},t/2{j,k}

WisWi`WjtWjkWk`.

We now calculate E[J2
1a]-E[J2

1c]. Take J1a for example. In order to get nonzero E[W 2
i`
W 2

jk
Wk`W 2

i0`0W
2
j0k0Wk0`0 ],

we need either Wk` = Wk0`0 or each of the two variables (Wk`,Wk0,`0) equals to another
squared-W term. The leading term of E[J2

1a] comes from the first case. In this case, we have
Wk` = Wk0`0 but allow for Wi` 6= Wi0`0 and Wjk 6= Wj0k0 . It has to be the case of either
(k0, `0) = (k, `) or (k0, `0) = (`, k). Therefore, we have E[W 2

i`
W 2

jk
Wk`W 2

i0`0W
2
j0k0Wk0`0 ] =

E[W 2
i`
W 2

jk
W 2

i0`0W
2
j0k0W 2

k`
]. Using similar arguments, we have the following results, where

details are omitted, as they are similar to the calculations in the proof of Lemmas G.4-G.9.

E[J2
1a]

C

v2

X

i,j,k,`

i
0
,j

0

E[W 2
i`
W 2

jk
W 2

i0`W
2
j0kW

2
k`
] C

k✓k41

X

i,j,k,`

i
0
,j

0

✓i✓j✓
3
k
✓3
`
✓i0✓j0 Ck✓k63,

E[J2
1b]

C

v2

X

i,j,k,`,t

i
0

E[W 2
i`
W 2

i0`W
2
jtW

2
jk
W 2

k`
] C

k✓k41

X

i,j,k,`,t

i
0

✓i✓
2
j ✓

2
k
✓3
`
✓t✓i0 

Ck✓k4k✓k33
k✓k1

,

E[J2
1c]

C

v2

X

i,j,k,`,s,t

E[W 2
isW

2
i`
W 2

jtW
2
jk
W 2

k`
] C

k✓k41

X

i,j,k,`,s,t

✓2i ✓
2
j ✓

2
k
✓2
`
✓s✓t 

Ck✓k8

k✓k21
.

The right hand sides are all o(k✓k8). It follows that

E[J2
1 ] = o(k✓k8), under both hypotheses.

Consider J2-J4. By definition,

J2 =
1

v
p
v

X

i,j,k,`(dist)
s 6=i,t 6=j,q 6=k

⌘jWisWjtWkqWk`W`i, J3 =
1

v
p
v

X

i,j,k,`(dist)
s 6=i,t 6=j,q 6=`

⌘kWisWjtW`qWjkW`i,

J4 =
1

v
p
v

X

i,j,k,`(dist)
s 6=i,t 6=j,q 6=j

⌘kWisWjtWjqWk`W`i.

The analysis is summarized in Table G.6. In the first column of this table, we study dif-
ferent types of summands. For example, in the expression of J2, WisWkqWk`W`i have
four different cases: (a) W 2

k`
W 2
`i

, (b) W 2
k`
W`iWis or Wk`W 2

`i
Wkq , (c) Wk`W`iW 2

ik
, and (d)

Wk`W`iWisWkq . In cases (b) and (d), Wis or Wkq may further equal to Wjt. Having explored
all variants and considered index symmetry, we end up with 6 different cases, as listed in the
first column of Table G.6. In the second column, we study the mean of the squares of the sum
of each type of summands. Take the first row for example. We aim to study

E
h⇣ X

i,j,k,`(dist)
t 6=j

⌘j(W
2
k`
W 2
`i
)Wjt

⌘i
.
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The naive expansion gives the sum of ⌘j⌘j0 E[W 2
k`
W 2
`i
WjtW 2

k0`0W
2
`0i0Wj0t0 ] over (i, j, k, `, t, i0, j0, k0, `0, t0).

However, for this term to be nonzero, all single-W terms have to be paired (either with an-
other single-W term or with a squared-W term). The main contribution is from the case of
Wjt =Wj0t0 . This is satisfied only when (j0, s0) = (j, s) or (j0, s0) = (s, j). By calculations
which are omitted here, we can show that (j0, s0) = (j, s) yields a larger bound. Therefore,
it reduces to the sum of ⌘2

j
E[(W 2

jt
)W 2

k`
W 2
`i
W 2

k0`0W
2
`0i0 ] over (i, j, k, `, t, i0, k0, `0), which is

displayed in the second column of the table. In the last column, we sum the quantity in the
second column over indices; it gives rise to a bound for the mean of the square of sum. See
the table for details. Recall that the definition of J2-J4 contains a factor of 1

v
p
v

in front of
the sum, where v ⇣ k✓k21 by (80). Hence, to get a desired bound, we only need that each row
in the third column of Table G.6 is

o(k✓k8k✓k61).

This is true. We thus conclude that

max
�
E[J2

2 ], E[J2
3 ], E[J2

4 ]
 
= o(k✓k8), under both hypotheses.

TABLE G.6
Analysis of J2-J4. In the second column, the variables in brackets are paired W terms.

Types of summand Terms in mean-squared Bound

J2

⌘j(W
2
k`
W

2
`i
)Wjt ⌘

2
j
E[(W 2

jt
)W 2

k`
W

2
`i
W

2
k0`0W

2
`0i0 ] ✓i✓

3
j
✓k✓

2
`
✓t✓i0✓k0✓

2
`0 k✓k4k✓k33k✓k

5
1

⌘j(Wk`W`iW
2
ik
)Wjt ⌘

2
j
E[(W 2

k`
W

2
`i
W

2
jt
)W 4

ik
]C✓

2
i
✓
3
j
✓
2
k
✓
2
`
✓t k✓k6k✓k33k✓k1

⌘j(W
2
k`
W`iWis)Wjt ⌘

2
j
E[(W 2

`i
W

2
is
W

2
jt
)W 2

k`
W

2
k0`]C✓

2
i
✓
3
j
✓k✓

3
`
✓s✓t✓k0 k✓k2k✓k63k✓k

4
1

⌘j(W
2
k`
W`i)W

2
ij

⌘j⌘j0 E[(W
2
`i
)W 2

k`
W

2
ij
W

2
k0`W

2
ij0 ]C✓

3
i
✓
2
j
✓k✓

3
`
✓
2
j0✓k0 k✓k4k✓k63k✓k

2
1

⌘j(Wk`W`iWkqWis)Wjt ⌘
2
j
E[(W 2

k`
W

2
`i
W

2
kq

W
2
is
W

2
jt
)]C✓

2
i
✓
3
j
✓
2
k
✓
2
`
✓s✓t✓q k✓k6k✓k33k✓k

3
1

⌘j(Wk`W`i)WkqW
2
ij

⌘j⌘j0 E[(W
2
k`
W

2
`i
W

2
kq

)W 2
ij
W

2
ij0 ]C✓

3
i
✓
2
j
✓
2
k
✓
2
`
✓q✓

2
j0 k✓k8k✓k33k✓k1

J3

⌘kW
3
`i
W

2
jk

⌘k⌘k0 E[W
3
`i
W

2
jk

W
3
`0i0W

2
j0k0 ]C✓i✓j✓

2
k
✓`✓i0✓j0✓

2
k0✓`0 k✓k4k✓k61

⌘kW
3
`i
(WjkWjt) ⌘

2
k
E[(W 2

jk
W

2
jt
)W 3

`i
W

3
`0i0 ]C✓i✓

2
j
✓
3
k
✓`✓t✓i0✓`0 k✓k2k✓k33k✓k

5
1

⌘k(W
2
`i
Wis)W

2
jk

⌘k⌘k0 E[(W
2
is
)W 2

`i
W

2
jk

W
2
`0iW

2
j0k0 ]C✓

3
i
✓j✓

2
k
✓`✓s✓j0✓

2
k0✓`0 k✓k4k✓k33k✓k

5
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J5 =
1

v2

X

i,j,k,`(dist)

⌘j⌘kWisWjtWkqW`mW`i, J6 =
1

v2

X

i,j,k,`(dist)

⌘k⌘`WisWjtWjqWkmW`i,

J7 =
1

v2

X

i,j,k,`(dist)

⌘2
k
WisWjtWjqW`mW`i, J8 =

1

v2

X

i,j,k,`(dist)

⌘k⌘`WisWitWjqWjmWk`,



110

The analysis is summarized in Table G.7. We note that J7 can be written as
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Although the values of �ij` change with indices, they have a common upper bound of Ck✓k2.
We treat �ij` as k✓k2 in Table G.7, as this doesn’t change the bounds but simplifies notations.
Recall that the definition of J5-J8 contains a factor of 1

v2 in front of the sum, where v ⇣ k✓k21
by (80). Hence, to get a desired bound, we only need that each row in the third column of
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Consider J9-J10. They can be analyzed in the same way as we did for J1-J8. To save
space, we only give a simplified proof for the case of k✓k � ↵[log(n)]5/2. For 1⌧ k✓k 
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event E. On the event E,

|J9|
X

i,j,k,`

|⌘ke⌦`i||GiG
2
jGkG`|

C
X

i,j,k,`

(↵✓i✓k✓`)

q
✓i✓2j ✓k✓`k✓k51[log(n)]5

p
v5

 C↵[log(n)]5/2p
k✓k51

⇣X

i

✓3/2
i

⌘⇣X

j

✓j
⌘⇣X

k

✓3/2
k

⌘⇣X

`

✓3/2
`

⌘

 C↵[log(n)]5/2p
k✓k31

⇣X

i

✓3/2
i

⌘3

 C↵[log(n)]5/2p
k✓k31

⇣X

i

✓2i

⌘3/2⇣X

i

✓i
⌘3/2

C↵[log(n)]5/2k✓k3,



111

TABLE G.7
Analysis of J5-J8. In the second column, the variables in brackets are paired W terms.
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where the second last line is from the Cauchy-Schwarz inequality. Since k✓k� ↵[log(n)]5/2,
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2
k
k✓k51[log(n)]5
p
v5
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 C↵[log(n)]5/2p
k✓k51

⇣X

i

✓3/2
i

⌘⇣X

j

✓j
⌘⇣X

k

✓k
⌘⇣X

`

✓2
`

⌘

 C↵[log(n)]5/2p
k✓k51

�
k✓k

p
k✓k1

�
k✓k21k✓k2

C↵[log(n)]5/2k✓k3;

again, the right hand side is o(k✓k4). Combining the above gives

max
�
E[J2

9 ], E[J2
10]
 
= o(k✓k8), under both hypotheses.

So far, we have proved: for each Rk with N⇤
W

= 5, it satisfies E[R2
k
] = o(k✓k8). This is

sufficient to guarantee (266)-(267) for X =Rk.

G.4.10.3. Analysis of post-expansion sums with N⇤
W

= 6. There are 7 such terms, including
R19-R20, R23-R24, R29-R30, and R32. We plug in the definition of r̃ij and �ij and neglect
all factors of v

V
(see the explanation in (266)-(267)). It gives (Gi = ⌘̃i � ⌘i):

R19 =
X

i,j,k,`(dist)

GiG
2
jGkWk`W`i,

R20 =
X

i,j,k,`(dist)

GiGjWjkGkG`W`i,

R23 =
X

i,j,k,`(dist)

GiG
2
jGk(⌘kG

2
`
⌘i + 2Gk⌘`G`⌘i +Gk⌘

2
`
Gi)

=
X

i,j,k,`(dist)

⌘i⌘kGiG
2
jGkG

2
`
+ 2

X

i,j,k,`(dist)

⌘i⌘`GiG
2
jG

2
k
G` +

X

i,j,k,`(dist)

⌘2
`
G2

iG
2
jG

2
k

= 3
X

i,j,k,`(dist)

⌘i⌘kGiG
2
jGkG

2
`
+

X

i,j,k,`(dist)

⌘2
`
G2

iG
2
jG

2
k
,

R24 =
X

i,j,k,`(dist)

GiGj(⌘jGk +Gj⌘k)GkG`(⌘`Gi +G`⌘i)

= 4
X

i,j,k,`(dist)

⌘j⌘`G
2
iGjG

2
k
G`,

R29 =
X

i,j,k,`(dist)

GiG
2
jGk(⌘kG` +Gk⌘`)W`i

=
X

i,j,k,`(dist)

⌘kGiG
2
jGkG`W`i +

X

i,j,k,`(dist)

⌘`GiG
2
jG

2
k
W`i,

R30 = 2
X

i,j,k,`(dist)

GiGj(⌘jGk)GkG`W`i = 2
X

i,j,k,`(dist)

⌘jGiGjG
2
k
G`W`i,

R32 =
X

i,j,k,`(dist)

e⌦`iGiG
2
jG

2
k
G`.

Each expression above belongs to one of the following types:

K1 =
X

i,j,k,`(dist)

GiG
2
jGkWk`W`i, K2 =

X

i,j,k,`(dist)

GiGjGkG`WjkW`i,
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K3 =
X

i,j,k,`(dist)

⌘kGiG
2
jGkG`W`i, K4 =

X

i,j,k,`(dist)

⌘`GiG
2
jG

2
k
W`i,

K5 =
X

i,j,k,`(dist)

⌘i⌘kGiG
2
jGkG

2
`
, K 0

5 =
X

i,j,k,`(dist)

e⌦ikGiG
2
jGkG

2
`
,

K6 =
X

i,j,k,`(dist)

⌘2
`
G2

iG
2
jG

2
k
.

Since |⌘i⌘k|C✓i✓k and |e⌦ik|C↵✓i✓k, the study of K5 and K 0
5 are similar; we thus omit

the analysis of K 0
5. We now study K1-K6.

Consider K1. Re-write

K1 =
1

v2

X

i,j,k,`(dist)
s 6=i,t 6=j,q 6=j,m 6=k

WisWjtWjqWkmWk`W`i.

Note that WkmWk`W`iWis has four different cases: (a) W 2
k`
W 2
`i

, (b) W 2
k`
W`iWis, (c)

Wk`W`iW 2
ik

, and (d) Wk`W`iWkmWis. At the same time, WjtWjq has two cases: (i) W 2
jk

and (ii) WjtWjq . This gives at least 4 ⇥ 2 = 8 cases. Each case may have sub-cases, e.g.,
for (W 2

k`
W`iWis)W 2

jt
, if (s, t) = (j, i), it becomes W 2

k`
W`iW 3

ij
. By direct calculations, all

possible cases of the summand are as follows:

(W 2
k`
W 2
`i
)W 2

jt, (W 2
k`
W 2
`i
)(WjtWjq), (W 2

k`
W`iWis)W

2
jt,

W 2
k`
W`iW

3
ij , (W 2

k`
W`iWis)(WjtWjq), W 2

k`
W`iW

2
ijWjq,

(Wk`W`iW
2
ik
)W 2

jt, (Wk`W`iW
2
ik
)(WjtWjq),

(Wk`W`iWkmWis)W
2
jt, Wk`W`iWkmW 3

ij ,

(Wk`W`iWkmWis)(WjtWjq), Wk`W`iWkmW 2
ijWjq,

Wk`W`iW
2
kj
W 2

ij .(272)

Take the second type for example. We aim to bound E[(
P

i,j,k,`,t,q
W 2

k`
W 2
`i
WjtWjq)2], which

is equal to
X

i,j,k,`,t,q

i
0
,j

0
,k

0
,`

0
,t

0
,q

0

E[W 2
k`
W 2
`i
WjtWjqW

2
k0`0W

2
`0i0Wj0t0Wj0q0 ].

For the expectation to be nonzero, each single W term has to be paired with another term.
The main contribution comes from the case that Wj0t0Wj0q0 =WjtWjq . It implies (j0, t0, q0) =
(j, t, q) or (j0, t0, q0) = (j, q, t). Then, the expression above becomes

X

i,j,k,`,t,q

i
0
,k

0
,`

0

E[(W 2
jtW

2
jq)W

2
k`
W 2
`i
W 2

k0`0W
2
`0i0 ]C

X

i,j,k,`,t,q

i
0
,k

0
,`

0

✓i✓
2
j ✓k✓

2
`
✓t✓q✓i0✓k0✓2

`0

Ck✓k6k✓k61.

There are a total of 9 indices in this sum, which are (i, j, k, `, t, q, i0, k0, `0). Similarly, for each
type of summand, when we bound the expectation of the square of its sum, we count how
many indices appear in the ultimate sum. This number equals to twice of the total number
of indices appearing in the summand, minus the total number of indices appearing in single
W terms. For the above example, all indices appearing in the summand are (i, j, k, `, t, q),
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while indices appearing in single W terms are (j, t, q); so, the aforementioned number is
2⇥ 6� 3 = 9. If this number if m0, then the expectation of the square of sum of this type is
bounded by Ck✓km0

1 . We note that K1 has a factor 1
v2 in front of the sum, which brings in a

factor of C

k✓k8
1

in the bound. Therefore, for any type of summand with m0  8, the expectation
of the square of its sum is O(1), which is o(k✓k8). As a result, among the types in (272), we
only need to consider those with m0 � 9. We are left with

(W 2
k`
W 2
`i
)W 2

jt, (W 2
k`
W 2
`i
)(WjtWjq), (W 2

k`
W`iWis)W

2
jt.

We have proved that the expectation of the square of sum of the second type of summands is
bounded by Ck✓k2k✓k61 = o(k✓k8k✓k81). For the other two types, by direct calculations,

E
⇣ X

i,j,k,`(dist)
t 6=j

W 2
k`
W 2
`i
W 2

jt

⌘2�


X

i,j,k,`,t

i
0
,j

0
,k

0
,`

0
,t

0

E[W 2
k`
W 2
`i
W 2

jtW
2
k0`0W

2
`0i0W

2
j0t0 ]


X

i,j,k,`,t

i
0
,j

0
,k

0
,`

0
,t

0

✓i✓j✓k✓
2
`
✓t✓i0✓j0✓k0✓2

`0✓t0

Ck✓k4k✓k81 = o(k✓k8k✓k81),

E
⇣ X

i,j,k,`(dist)
s/2{i,`},t 6=j,

(s,t) 6=(j,i)

W 2
k`
W`iWisW

2
jt

⌘2�


X

i,j,k,`,s,t

j
0
,k

0
,t

0

E[(W 2
`i
W 2

is)W
2
k`
W 2

jtW
2
k0`W

2
j0t0 ]

C
X

i,j,k,`,s,t

j
0
,k

0
,t

0

✓2i ✓j✓k✓
3
`
✓s✓t✓j0✓k0✓t0

Ck✓k2k✓k33k✓k71 = o(k✓k8k✓k81).

Combining the above gives

E[K2
1 ] = o(k✓k8), under both hypotheses.

Consider K2. Re-write

K2 =
1

v2

X

i,j,k,`(dist)
s 6=i,t 6=j,q 6=k,m 6=`

WisWjtWkqW`mWjkW`i.

Note that WqkWkjWjt has three cases: (a) W 3
kj

, (b) W 2
kj
Wjt (or WqkW 2

kj
), and (c)

WqkWkjWjt. Simiarly, Wm`W`iWis has three cases: (a) W 3
`i

, (b) W 2
`i
Wis (or Wm`W 2

`i
), and

(c) Wm`W`iWis. By index symmetry, this gives 3+2+1 = 6 different cases. Some case may
have sub-cases, due to that (s, t) may equal to (j, i), say. By direct calculations, all possible
cases of the summand are as follows:

W 3
kj
W 3
`i
, W 3

kj
(W 2

`i
Wis), W 3

kj
(Wm`W`iWis), (W 2

kj
Wjt)(W

2
`i
Wis),

W 2
kj
W 2

jiW
2
`i
, (W 2

kj
Wjt)(Wm`W`iWis), W 2

kj
W 2

jiWm`W`i,

(WqkWkjWjt)(Wm`W`iWis), WqkWkjW
2
jiWm`W`i, WkjW

2
jiW

2
k`
W`i.

As in the analysis of (272), we count the effective number of indices, m0, which equals
to twice of the total number of indices appearing in the summand minus the total number
of indices appearing in all single-W terms. For the above types of summand, m0 equals to
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8,8,8,8,8,8,7,8,6,4, respectively. None is larger than 8. We conclude that the expectation
of the square of sum of each type of summand is bounded by Ck✓k81. We immediately have

E[K2
2 ] =

1

v4
·Ck✓k81 =O(1) = o(k✓k8), under both hypotheses.

Consider K3. Re-write

K3 =
1

v2
p
v

X

i,j,k,`(dist)
s 6=i,t 6=j,q 6=j,m 6=k,p 6=`

⌘kWisWjtWjqWkmW`pW`i

Note that WjtWjqWkm has four cases: (a) W 3
jk

, (b) W 2
jk
Wjt (or W 2

jk
Wjq), (c) W 2

jt
Wkm, and

(d) WjtWjqWkm. At the same time, WisW`pW`i has three cases: (a) W 3
`i

, (b) W 2
`i
Wis (or

W 2
`i
W`p), and (c) W`iWisW`p. This gives 4 ⇥ 3 = 12 different cases. Each case may have

sub-cases. For example, in the case of ⌘k(W 2
jk
Wjt)(W 2

`i
Wis), if (s, t) = (j, i), it becomes

⌘kW 2
jk
W 2

ji
W 2
`i

. By direct calculations, we obtain all possible cases of summands as follows:

⌘kW
3
jk
W 3
`i
, ⌘kW

3
jk
(W 2

`i
Wis), ⌘kW

3
jk
(W`iWisW`p), ⌘k(W

2
jk
Wjt)W

3
`i
,

⌘k(W
2
jk
Wjt)(W

2
`i
Wis), ⌘kW

2
jk
W 2

jiW
2
`i
, ⌘k(W

2
jk
Wjt)(W`iWisW`p),

⌘kW
2
jk
W 2

jiW`iW`p, ⌘k(W
2
jtWkm)W 3

`i
, ⌘k(W

2
jtWkm)(W 2

`i
Wis), ⌘kW

2
jtW

2
ki
W 2
`i
,

⌘k(W
2
jtWkm)(W`iWisW`p), ⌘kW

2
jtW

2
ki
W`iW`p, ⌘k(WjtWjqWkm)W 3

`i
,

⌘k(WjtWjqWkm)(W 2
`i
Wis), ⌘kWjtW

2
jiWkmW 2

`i
, ⌘kWjtWjqW

2
ki
W 2
`i
,

⌘k(WjtWjqWkm)(W`iWisW`p), ⌘kWjtW
2
jiWkmW`iW`p, ⌘kWjtWjqW

2
ki
W`iW`p.

Same as before, let m0 be the effective number of indices for each type of summand, which
equals to twice of number of distinct indices appearing in the summand minus the number of
distinct indices appearing in single-W terms (see (272) and text therein). By direct calcula-
tions, m0  10 for all types above. It follows that, for each type of summand, the expectation
of the square of their sums is bounded by

1

(v
p
v)2

·Ck✓km0

1 Ck✓km0�10
1 =O(1) = o(k✓k8).

We immediately have

E[K2
3 ] = o(k✓k8), under both hypotheses.

Consider K4. Re-write

K4 =
1

v2
p
v

X

i,j,k,`(dist)
s,t,q,m,p

⌘`WisWjtWjqWkmWkpW`i.

Note that WisW`i has two cases: (a) W 2
`i

and (b) W`iWis. Moreover, there are a total of
six cases for WjtWjqWkmWkp: (a) W 4

jk
, (b) W 3

jk
Wjt, (c) W 2

jk
WjtWkm, (d) W 2

jt
W 2

km
, (e)

WjtWjqW 2
km

, and (f) WjtWjqWkmWkp. It gives 2⇥ 6 = 12 different cases. Each case may
have some sub-cases. It turns out all different types of summand are as follows:

⌘`W
2
`i
W 4

jk
, ⌘`W

2
`i
(W 3

jk
Wjt), ⌘`W

2
`i
(W 2

jk
WjtWkm), ⌘`W

2
`i
(W 2

jtW
2
km

),

⌘`W
2
`i
(WjtWjqW

2
km

), ⌘`W
2
`i
(WjtWjqWkmWkp), ⌘`(W`iWis)W

4
jk
,

⌘`(W`iWis)(W
3
jk
Wjt), ⌘`W`iW

3
jk
W 2

ji, ⌘`(W`iWis)(W
2
jk
WjtWkm),
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⌘`W`iW
2
jk
W 2

jiWkm, ⌘`(W`iWis)(W
2
jtW

2
km

), ⌘`W`iW
3
ijW

2
km

,

⌘`(W`iWis)(WjtWjqW
2
km

), ⌘`W`iW
2
ijWjqW

2
km

, ⌘`W`iWjtWjqW
3
ki
,

⌘`(W`iWis)(WjtWjqWkmWkp), ⌘`W`iW
2
ijWjqWkmWkp.

Same as before, for each type, let m0 be the effective number of indices. It suffices to focus
on cases where m0 � 11. We are left with

⌘`W
2
`i
(W 2

jtW
2
km

), ⌘`W
2
`i
(WjtWjqW

2
km

), ⌘`(W`iWis)(W
2
jtW

2
km

).

By direct calculations,

E
⇣ X

i,j,k,`(dist)
t 6=j,m 6=k

⌘`W
2
`i
W 2

jtW
2
km

⌘�


X

i,j,k,`,t,m

i
0
,j

0
,k

0
,`

0
,t

0
,m

0

⌘`⌘`0 E[W 2
`i
W 2

jtW
2
km

W 2
`0i0W

2
j0t0W

2
k0m0 ]

C
X

i,j,k,`,t,m

i
0
,j

0
,k

0
,`

0
,t

0
,m

0

✓i✓j✓k✓
2
`
✓t✓m✓i0✓j0✓k0✓2

`0✓t0✓m0

Ck✓k4k✓k101 = o(k✓k8k✓k101 ),

E
⇣ X

i,j,k,`(dist)
t 6=j,q 6=j,m 6=k

t 6=q

⌘`W
2
`i
WjtWjqW

2
km

⌘�


X

i,j,k,`,t,q,m

i
0
,k

0
,`

0
,m

0

⌘`⌘`0 E[(W 2
jtW

2
jq)W

2
`i
W 2

km
W 2
`0i0W

2
k0m0 ]

C
X

i,j,k,`,t,q,m

i
0
,k

0
,`

0
,m

0

✓i✓
2
j ✓k✓

2
`
✓t✓q✓m✓i0✓k0✓2

`0✓m0

Ck✓k6k✓k81 = o(k✓k8k✓k101 ),

E
⇣ X

i,j,k,`(dist)
s 6=i,t 6=j,m 6=k

(s,t) 6=(j,i),(s,m) 6=(k,i)

⌘`W`iWisW
2
jtW

2
km

⌘�
C

X

i,j,k,`,s,t,m

j
0
,k

0
,t

0
,m

0

⌘2
`
E[(W 2

`i
W 2

is)W
2
jtW

2
km

W 2
j0t0W

2
k0m0 ]

C
X

i,j,k,`,s,t,m

j
0
,k

0
,t

0
,m

0

✓2i ✓j✓k✓
3
`
✓s✓t✓m✓j0✓k0✓t0✓m0

Ck✓k2k✓k33k✓k91 = o(k✓k8k✓k101 ).

It follows that

E[K2
4 ]

1

(v2
p
v)2

· o(k✓k8k✓k101 ) = o(k✓k8), under both hypotheses.

Consider K5-K6. To save space, we only present the proof for the case of k✓k �
[log(n)]3/2. When 1⌧k✓k C[log(n)]3/2, we can bound E[K2

5 ] and E[K2
6 ] in the same way

as in the study of J1-J8, so the proof is omitted. Let E be the event defined in (271). We have
argued that it suffices to focus on the event E. On this event, |Gi| C

p
✓ik✓k1 log(n)/v. It

follows that

|K5|C
X

i,j,k,`

(✓i✓k)

q
✓i✓2j ✓k✓

2
`
k✓k31[log(n)]3

v3



117

 C[log(n)]3

k✓k31

⇣X

i

✓3/2
i

⌘⇣X

j

✓j
⌘⇣X

k

✓3/2
k

⌘⇣X

`

✓`
⌘

 C[log(n)]3

k✓k31

�
k✓k

p
k✓k1

�2k✓k21

C[log(n)]3k✓k2,

where we have used the Cauchy-Schwarz inequality (
P

i
✓3/2
i

) k✓k
p

k✓k1. Similarly,

|K6|C
X

i,j,k,`

✓2
`
· ✓i✓j✓kk✓k

3
1[log(n)]

3

v3

 C[log(n)]3

k✓k31

X

i,j,k,`

✓i✓j✓k✓
2
`

C[log(n)]3k✓k2.

When k✓k� [log(n)]3/2, both right hand sides are o(k✓k4). We immediately have

max
�
E[K2

5 ], E[K2
6 ]
 
= o(k✓k8).

We have proved: Each Rk with N⇤
W

= 6 satisfies E[R2
k
] = o(k✓k8). This is sufficient to

guarantee (266)-(267) for X =Rk.

G.4.10.4. Analysis of terms with N⇤
W

� 7. There are 3 such terms, R31, R33 and R34.
Consider R31. By definition,

R31 =
X

i,j,k,`(dist)

GiG
2
jG

2
k
G`W`i =

1

v3

X

i,j,k,`(dist)
s 6=i,t 6=j,q 6=j,

m 6=k,p 6=k,y 6=`

WisWjtWjqWkmWkpW`yW`i.

We note that W`iWisW`y has three cases: (a) W 3
`i

, (b) W 2
`i
Wis, and (c) W`iWisW`y . More-

over, WjtWjqWkmWkp has six cases: (a) W 4
jk

, (b) W 3
jk
Wjt, (c) W 2

jk
WjtWkm, (d) W 2

jt
W 2

km
,

(e) WjtWjqW 2
km

, and (f) WjtWjqWkmWkp. This gives 3⇥6 = 18 different cases. Since each
case may have sub-cases, we end up with the following different types:

W 3
`i
W 4

jk
, W 3

`i
(W 3

jk
Wjt), W 3

`i
(W 2

jk
WjtWkm), W 3

`i
(W 2

jtW
2
km

),

W 3
`i
(WjtWjqW

2
km

), W 3
`i
(WjtWjqWkmWkp), (W 2

`i
Wis)W

4
jk
,

(W 2
`i
Wis)(W

3
jk
Wjt), W 2

`i
W 3

jk
W 2

ji, (W 2
`i
Wis)(W

2
jk
WjtWkm),

W 2
`i
W 2

jk
W 2

jiWkm, (W 2
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4
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3
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3
jk
W 2

ji,

(W`iWisW`y)(W
2
jk
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2
jk
W 2
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3
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3
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W`iW
2
jiWjqW

3
ki
, (W`iWisW`y)(WjtWjqWkmWkp),

W`iW`yW
2
jiWjqWkmWkp, W`iW

2
jiWjqW

2
k`
Wkp.

For each type, we count m0, the effective number of indices. It equals to twice of the number
of distinct indices in the summand, minus the number of distinct indices appearing in all
single-W terms. It turns out that m0  12 for all types above. By similar arguments as in
(272), we conclude that

E[R2
31]

1

v6
·Ck✓km0

1 Ck✓km0�12
1 =O(1) = o(k✓k8), under both hypotheses.

Consider R33-R34. We only give the proof when k✓k6 � [log(n)]7, as it is much simpler.
In the case of 1⌧ k✓k6  C[log(n)]7, we can follow similar steps above to obtain desired
bounds, where details are omitted. On the event E (see (271) for definition),

|R33|
X

i,j,k,`

|⌘`||G2
iG

2
jG

2
k
G`|

C
X

i,j,k,`

✓`

q
✓2
i
✓2
j
✓2
k
✓`k✓k71[log(n)]7

(
p
v)7

 C[log(n)]7/2p
k✓k71

⇣X

i

✓i
⌘⇣X

j

✓j
⌘⇣X

k

✓k
⌘⇣X

`

✓3/2
`

⌘

 C[log(n)]7/2p
k✓k71

· k✓k31
�
k✓k

p
k✓k1

�

C[log(n)]7/2k✓k,

where we have used the Cauchy-Schwarz inequality
P

`
✓3/2
`

 k✓k
p

k✓k1 in the second last
line. When k✓k6 � [log(n)]7, the right hand side is o(k✓k4). Similarly,

|R34|
X

i,j,k,`

|G2
iG

2
jG

2
k
G2
`
|

C
X

i,j,k,`

✓i✓j✓k✓`k✓k41[log(n)]4

v4

C[log(n)]4.

When k✓k6 � [log(n)]7, the right hand side is o(k✓k4). As we have argued in (271), the event
Ec has a negligible effect. It follows that

max
�
E[R2

31], E[R2
33], E[R2

34]
 
= o(k✓k8), under both hypotheses.

This is sufficient to guarantee (266)-(267) for Rk.
We have analyzed all 34 terms in Table G.4. The proof is now complete.

G.4.11. Proof of Lemma G.12. Consider an arbitrary post-expansion sum of the form

(273)
X

i,j,k,`(dist)

aijbjkck`d`i, where a, b, c, d 2 {e⌦,W, �, r̃, ✏}.
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Let (Ne⌦,NW ,N�,Nr̃,N✏) be the number of each type in the product, where these numbers
have to satisfy Ne⌦ +NW +N� +Nr̃ +N✏ = 4. As discussed in Section G.3, (Qn �Q⇤

n)
equals to the sum of all post-expansion sums such that N✏ > 0. Recall that

✏ij = (⌘⇤i ⌘
⇤
j � ⌘i⌘j) + (1� v

V
)⌘i⌘j � (1� v

V
)�ij .

Define

✏(1)
ij

= ⌘⇤i ⌘
⇤
j � ⌘i⌘j , ✏(2)

ij
= (1� v

V
)⌘i⌘j , ✏(3)

ij
=�(1� v

V
)�ij .

Then, ✏ij = ✏(1)
ij

+ ✏(2)
ij

+ ✏(3)
ij

. It follows that each post-expansion sum of the form (273) can
be further expanded as the sum of terms like

(274)
X

i,j,k,`(dist)

aijbjkck`d`i, where a, b, c, d 2 {e⌦,W, �, r̃, ✏(1), ✏(2), ✏(3)}.

Let (Ne⌦,NW ,N�,Nr̃) have the same meaning as before, and let N (m)
✏ be the number of ✏(m)

term in the product, for m 2 {1,2,3}. These numbers have to satisfy Ne⌦+NW +N�+Nr̃+

N (1)
✏ +N (2)

✏ +N (3)
✏ = 4. Now, (Qn �Q⇤

n) equals to the sum of all post-expansion sums of
the form (274) with

(275) N (1)
✏ +N (2)

✏ +N (3)
✏ � 1.

Fix such a post-expansion sum and denote it by Y . We shall bound |E[Y ]| and Var(Y ).
We need some preparation. First, we derive a bound for |✏(1)

ij
|. By definition, ⌘i =

(1/
p
v)
P

j 6=i
⌦ij and ⌘⇤

i
= (1/

p
v0)

P
j
⌦ij . It follows that

⌘⇤i =

p
v

p
v0
⌘i +

1
p
v0

⌦ii.

We then have

⌘⇤i ⌘
⇤
j =

v

v0
⌘i⌘j +

p
v

v0
(⌘i⌦jj + ⌘j⌦ii) +

1

v0
⌦ii⌦jj .

Note that v =
P

i 6=j
⌦ij and v0 =

P
ij
⌦ij ⇣ k✓k21. It follows that v0�v =

P
i
⌦ii 

P
i
✓2
i


k✓k2. Therefore,

|⌘⇤i ⌘⇤j � ⌘i⌘j |
���1�

v

v0

���⌘i⌘j +
p
v

v0
(⌘i⌦jj + ⌘j⌦ii) +

1

v0
⌦ii⌦jj

 Ck✓k2

k✓k21
· ✓i✓j +

C

k✓k1
(✓i✓

2
j + ✓j✓

2
i ) +

C

k✓k21
· ✓2i ✓2j

C✓i✓j ·
⇣k✓k2

k✓k21
+
✓i + ✓j
k✓k1

+
✓i✓j
k✓k21

⌘
.

Since k✓k2  ✓maxk✓k1, the term in the brackets is bounded by C✓max/k✓k1. We thus have

(276) |✏(1)
ij

| C✓max

k✓k1
· ✓i✓j , for all 1 i 6= j  n.

Second, in Lemmas G.1-G.11, we have studied all post-expansion sums of the form

Z ⌘
X

i,j,k,`(dist)

aijbjkck`d`i, where a, b, c, d 2 {e⌦,W, �, r̃},
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where (Ne⌦,NW ,N�,Nr̃) are the numbers of each type in the product. We hope to take ad-
vantage of these results. Using the proved bounds for |E[Z]| and Var(Z), we can get

(277) E[Z2]C(↵2)Ne⌦ · f(✓;Ne⌦,NW ,N�,Nr̃),

where ↵ = |�2|/�1 and f(✓;m1,m2,m3,m4) is a function of ✓ whose form is determined
by (m1,m2,m3,m4). For example,

8
>>>>>><

>>>>>>:

f(✓; 0,4,0,0)=k✓k8, by claims of X1 in Lemmas G.1&G.3;
f(✓; 4,0,0,0)=k✓k16, by claims of X6 in Lemma G.3;
f(✓; 3,1,0,0)=k✓k8k✓k63, by claims of X5 in Lemma G.3;
f(✓; 1,2,1,0)=k✓k4k✓k63, by claims of Y2, Y3 in Lemma G.5;
f(✓; 1,1,1,1)=k✓k8, by claims of R9-R11 in the proof of Lemma G.11.

If there are more than one post-expansion sum that corresponds to the same (Ne⌦,NW ,N�,Nr̃),
we use the largest bound to define f(✓;Ne⌦,NW ,N�,Nr̃). Thanks to previous lemmas, we
have known the function f(✓;m1,m2,m3,m4) for all possible (m1,m2,m3,m4).

We now show the claim. Recall that Y is the post-expansion sum in (274). The key is to
prove the following argument: For any sequence xn such that

p
log(k✓k1)⌧ xn ⌧k✓k1,

E[Y 2]C(↵2)Ne⌦ ⇥
⇣✓2max

k✓k21

⌘N (1)
✏ ⇥

⇣ x2n
k✓k21

⌘N (2)
✏ +N

(3)
✏

⇥ f(✓;m1,m2,m3,m4)

����m1=Ne⌦+N
(1)
✏ +N

(2)
✏ , m2=NW ,

m3=N�+N
(3)
✏ , m4=Nr̃,

(278)

where (Ne⌦,NW ,N�,Nr̃,N
(1)
✏ ,N (2)

✏ ,N (3)
✏ ) are the same as in (274)-(275), and f(✓;m1,m2,m3,m4)

is the known function in (277).
We prove (278). Let D be the event

D = {|V � v| k✓k1xn}.
In Lemma G.10, we have proved E[(Qn�Q⇤

n)
2 ·IDc ] = o(1). By similar proof, we can show:

when |Y | is bounded by a polynomial of V and k✓k1 (which is always the case here),

E[Y 2 · IDc ] = o(1).

It follows that

(279) E[Y 2] E[Y 2 · ID] + o(1).

We then bound E[Y 2 ·ID]. In the definition of Y , each ✏(2) term introduces a factor of (1� v

V
),

and each ✏(3) term introduces a factor of �(1� v

V
). We bring all these factors to the front and

re-write the post-expansion sum as

Y = (�1)N
(3)
✏

⇣
1� v

V

⌘N (2)
✏ +N

(3)
✏

X, X ⌘
X

i,j,k,`(dist)

aijbjkck`d`i.

After the factor (1� v

V
) is removed, ✏(2) becomes ⌘i⌘j ; similarly, ✏(3) becomes �ij . Therefore,

in the expression of X ,

(280)

8
>>>><

>>>>:

aij , bij , cij , dij 2 {e⌦ij ,Wij , �ij , r̃ij , ✏
(1)
ij

,⌘i⌘j},
number of ⌘i⌘j in the product is N (2)

✏ ,

number of �ij in the product is N� +N (3)
✏ ,

number of any other term in the product is same as before.
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On the event D, |1� v

V
| xnk✓k1

Ck✓k2
1
=O( xn

k✓k1
). Hence,

|Y |C
⇣ xn
k✓k1

⌘N (2)
✏ +N

(3)
✏ |X|, on the event D.

It follows that

(281) E[Y 2 · ID]C
⇣ x2n
k✓k21

⌘N (2)
✏ +N

(3)
✏ ·E[X2].

To bound E[X2], we compare X and Z . In obtaining (277), the only property of e⌦ we have
used is

|e⌦ij | ↵ ·C✓i✓j .

In comparison, in the expression of X , we have (by (276) and (81))

(282) |e⌦ij | ↵ ·C✓i✓j , |✏(1)
ij

| ✓max

k✓k1
·C✓i✓j , |⌘i⌘j |C✓i✓j .

If we consider (↵Ne⌦ · ( ✓max

k✓k1
)N

(1)
✏ · 1N (2)

✏ )�1X and (↵Ne⌦)�1Z , we can derive the same upper
bound for the second moment of both variables, except that the effective N� in X should be
N� +N (3)

✏ and the effective Ne⌦ in X should be Ne⌦ +N (1)
✏ +N (2)

✏ . It follows that

E[X2]C(↵2)Ne⌦ ⇥
⇣✓2max

k✓k21

⌘N (1)
✏

⇥ f(✓;m1,m2,m3,m4)

����m1=Ne⌦+N
(1)
✏ +N

(2)
✏ , m2=NW ,

m3=N�+N
(3)
✏ , m4=Nr̃.

(283)

We plug (283) into (281), and then plug it into (279). It gives (278).
Next, we use (278) to prove the claims of this lemma. Under our assumption, we can

choose a sequence xn such that
p

log(k✓k1) ⌧ xn ⌧ k✓k1/k✓k2. Also, note that k✓k1 �
✓�1
maxk✓k2 �k✓k2. Then,

(284)
✓max

k✓k1
= o(k✓k�2),

xn
k✓k1

= o(k✓k�2).

As a result, since N (1)
✏ +N (2)

✏ +N (3)
✏ � 1, (278) implies

(285) E[Y 2] = o(k✓k�4) · f(✓;m1,m2,m3,m4),

for m1 = Ne⌦ +N (1)
✏ +N (2)

✏ , m2 = NW , m3 = N� +N (3)
✏ and m4 = Nr̃ . We then extract

f(✓;m1,m2,m3,m4) from previous lemmas. Recall the following facts:

• Under the null hypothesis, for any previously analyzed post-expansion sum Z , |E[Z]| 
Ck✓k4 and Var(Z)Ck✓k8.

• Under the alternative hypothesis, except
P

i,j,k,`(dist)
e⌦ij

e⌦jk
e⌦k`

e⌦`i, for all previously an-
alyzed post-expansion sum Z , |E[Z]|C↵2k✓k6 and Var(Z)Ck✓k8+C↵6k✓k8k✓k63.

Therefore, under both hypotheses, except for (m1,m2,m3,m4) = (4,0,0,0),

(286) f(✓;m1,m2,m3,m4)C(k✓k8 + k✓k12 + k✓k8k✓k63)Ck✓k12.

Consider two cases for Y . The first case is Ne⌦ +N (1)
✏ +N (2)

✏ 6= 4. Combining (285)-(286)
gives

E[Y 2] = o(k✓k�4) ·Ck✓k12 = o(k✓k8).
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The claims follow immediately. The second case is Ne⌦ +N (1)
✏ +N (2)

✏ = 4. In this case,

f(✓;m1,m2,m3,m4) = f(✓; 4,0,0,0) = k✓k16.

If N (1)
✏ +N (2)

✏ � 2, then by (278) and (284),

E[Y 2] = o(k✓k�8) ·Ck✓k16 = o(k✓k8).

The claims follow. It remains to consider N (1)
✏ +N (2)

✏ = 1 (and so Ne⌦ = 3). Write for short
S = 1� v

V
. By (280),

Y = SN
(2)
✏ ·X, where X =

X

i,j,k,`(dist)

aijbjkck`d`i,

and aij , bij , cij , dij can only take values from {e⌦ij , ✏
(1)
ij

,⌘i⌘j}. So, X is a non-stochastic
number. Using (282), we can easily show

|X|C↵Ne⌦

⇣✓max

k✓k1

⌘N (1)
✏ k✓k8.

When (N (1)
✏ ,N (2)

✏ ) = (1,0), we have Y =X . By (284), ✓max

k✓k1
= o(k✓k�2). It follows that

Var(Y ) = 0, |E[Y ]|= |X|C↵3 · o(k✓k�2) · k✓k8 = o(↵4k✓k8).

This gives the desired claims. When (N (1)
✏ ,N (2)

✏ ) = (0,1), we have Y = S ·X . So,

|Y |= |X| · |S|C↵3k✓k8 · |S|.

Note that S = 1 � v

V
, where v = E[V ]. Using the tail bound (254), we can prove E[S2] 

Ck✓k�2
1 . Therefore,

E[Y 2] C↵6k✓k16

k✓k21
C↵6k✓k8k✓k63,

where the last inequality is due to k✓k4  k✓k1k✓k33 (Cauchy-Schwarz). The claims follow
immediately.

APPENDIX H: ADDITIONAL SIMULATION RESULTS

In Section 5 of the main article, we investigated the numerical performance of SgnT and
SgnQ tests and compare them with the EZ and GC tests. Due to space limit, we only reported
the sum of the percent of type I errors and the percent of type II errors. It does not show
the contribution of each type of errors. We now report separately the percent of each type of
errors.

Figures H.1-H.3 here are supplement to Figures 3-5 of the main article, corresponding to
Experiments 1-3, respectively. Below is a brief summary of the settings in three experiments:

• Experiment 1. In this experiment, K = 2, and the degree parameters are iid generated from
a uniform distribution (Experiment 1a), a two-point mass (Experiment 1b), and a Pareto
distribution (Experiment 1c), respectively.

• Experiment 2. In this experiment, K is larger (K 2 {5,10}) and P is more complicated,
and the community sizes are either balanced (Experiment 2a) or unbalanced (Experiment
2b).

• Experiment 3. In this experiment, we allow for mixed memberships, where the percent
of mixed nodes is 0% (Experiment 3a), 10% (Experiment 3b), and 25% (Experiment 3c),
respectively.
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FIG H.1. Experiment 1 (from top to bottom: Experiment 1a, 1b, and 1c). The x-axis is k✓k, and the y-axis is type

I error (left), type II error (middle) and the sum (right).

For each parameter setting, we generate 200 networks under the null hypothesis and 200
networks under the alternative hypothesis, run all the four tests with a target level ↵ = 5%,
and record the percent of type I errors, the percent of type II errors, and their sum. In each
figure, the plots in the third column are those already shown in the main article.

The results confirm our claims in Section 5. In terms of the type I error, the EZ and GC
tests fail to control it at the target level when k✓k is large. It is because the biases of these tests
are non-negligible for less sparse networks (the bias of GC is comparably larger). The SgnT
and SgnQ tests successfully control the type I error for both sparse and less sparse networks.
In terms of the type II error, the order-4 graphlet counting tests have uniformly better power
than the order-3 graphlet counting tests. E.g., the type II error of GC is smaller than that of
EZ, and the type II error of SgnQ is smaller than that of SgnT.
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FIG H.3. Experiment 3 (from top to bottom: Experiment 3a, 3b, and 3c). The x-axis is k✓k, and the y-axis is type

I error (left), type II error (middle) and the sum (right).
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